
Modular Full-System Verification of Hardware

Muralidaran Vijayaraghavan and Joonwon Choi

1 Introduction

Verification of systems can mean different things depending on the properties being
verified. On one hand, one can verify if a system satisfies certain safety properties
(for example, a program never divides by zero) and on the other hand, we have full-
system verification (for example, a sorting function sorts its inputs, i.e., create an
ordered permutation of the input). This paper focuses on the problem of full-system
verification for hardware designs.

What does a full-system verification for a hardware design entail? Does it mean
verifying an exhaustive list of properties that a design must obey? Another way of
doing full-system verification involves describing two systems: a simpler specifica-
tion and a more complex implementation and showing that the implementation is
indistinguishable from the specification. Our methodology proposes using the latter
technique for verification.

This brings to the question of how to give a hardware specification and its
implementation, and what the respective semantics are. Our proposition is to use
the same language to describe both the specification and implementation and prove
a simulation relation from the implementation to the specification, i.e., a relation
between a state in the implementation to the state in the specification iff the state
reached by the state transitions in the implementation is also reachable by the state
transitions in the specification.

State transitions are a straightforward concept when it comes to sequential sys-
tems. However, hardware systems are highly parallel, so a discussion of the specifi-
cation of state transitions in hardware systems is warranted.

The commonly used technique for describing hardware systems is in the form
of Register-Transfer-Level (RTL) descriptions. Here, all the (finite) state present in
the hardware system is specified, along with the inputs and outputs for the overall
system, and a state transition is specified in terms of the current state, and the
current set of inputs, producing a new state and a new set of outputs.

The above description requires global specifications. But realistic systems are
too big to be designed using global specifications, and must instead be broken into
smaller modules. These modules are again RTL descriptions, and they are intercon-
nected by joining the inputs of one modules to outputs of another modules, making
sure that there are no cycles comprising of inputs and outputs which does not begin
or end with a state element (these are called combinational cycles).

While RTL-based languages (like Verilog and VHDL) still dominate the industry
for specifying hardware, there is a severe shortcoming in designing hardware using

1

Module
Implementation

Actual Hardware

Low-Level HDL
Code

Formal
Semantics

Formal
Verification

Our focus now

Using PHOAS

Synthesis

Implementation

Rule r

Spec

Rule r'

Method f

Method g

Method f'

Method g'

Intuitive

Mapping
Figure 1: The overall roadmap of the project

these languages. RTL descriptions are synchronous in that they tie the functionality
of a design with the timing behavior. For instance, if a register state is added to
the output of say a multiplier module, the rest of the system that the multiplier is
connected to will receive the output of the multiply operation in the next transition
(i.e. clock cycle, in terms of hardware) and thus has to be redesigned, making the
entire system fragile.

An alternative way to specify hardware is using guarded atomic actions à la
Bluespec [1]. Here, the hardware system is specified in terms of several atomic
transactions or rules, each of which describes how the state of the system changes
when the rule fires, i.e., the transaction happens. The state reached by the overall
system is given by some sequence of firing of rules. The hardware circuit generated
by a Bluespec compiler is smart enough to schedule non-conflicting transactions
concurrently, thus improving performance.

We are going to use Bluespec-like descriptions as a starting point for hardware
descriptions as these specifications are not as fragile as RTL descriptions. We de-
veloped a DSL in Coq for writing Bluespec-like specifications. We give modular
semantics for this language, i.e., semantics of a module without knowing about the
other modules in the system. The semantics relate these modules to labeled tran-
sition systems (LTSes) [3, 4], a well known theory for describing communicating
processes.

Our overall goal is to make this Bluespec-like DSL in Coq expressive enough to
describe hardware systems easily. From these descriptions, we would like to generate
hardware circuits (in Verilog) eventually. But in this project, we focused only on
developing a modular semantics for this language and verifying simple hardware
system examples using the language and its semantics. Figure 1 gives the overall

2

roadmap of this project and what we have achieved in the course of the 6.888 class.
Before taking this class, we had done preliminary research to make all the decisions
that we have taken for this class, namely using Bluespec-like descriptions, and the
feasibility of this approach to verify complex systems. This preliminary research
was submitted earlier to CAV, and has since been accepted. We are also attaching
a copy of that paper for reference.

Paper Organization We start with a description of the syntax and semantics of
the Bluespec-like DSL language in Section 2. We also describe the various issues in
describing modular semantics for this language, and how these issues were solved. In
Section 3, we describe the examples that we verified, namely that a single processor
connected to an atomic memory and a register file implements sequential consis-
tency. Finally, in 4, we describe how we want to take this project in the future,
including verification of a more realistic and complex example involving coherent
cache hierarchy and multiple processors, and developing a verified compiler à la
CompCert [2] to synthesize the descriptions into hardware circuits.

2 Labeled Transition System Language for Specifying
Hardware

We begin this chapter by giving the syntax for specifying hardware. A hardware
module is similar to a notion of class in well-known language systems such as
C++/Java. Each module has its own local state, internal state transition mech-
anism, and methods dealing with external requests. Once we define the module, the
next step for specifying hardware is to develop the way of communication among
modules. We adopted the notion of LTS to define such characteristics.

We give a syntax for modular hardware specifications in Section 2.1, relating
it with the semantics of LTS. In Section 2.2, we present the LTS semantics. In
Section 2.3, we present the definition of trace refinement, to determine if one LTS
implements another.

2.1 Syntax for the LTS language

A module in LTS language consists of registers with initial values, methods and
rules (see Figure 2 for a a block diagram of a module). Methods and rules consist
of actions. An action is either a call of a method of a different module, passing an
expression as an argument, a variable-to-expression binding, writing of an expression
into a register, a conditional action, an assertion or returning an expression (which
is relevant only when the action is in a method’s definition).

The expressions in this language correspond to register reads, constants or op-
erations on other expressions. Symbol ⇀· represents a list of elements. Henceforth we
will use r and c as a representative symbol for registers and constants, respectively.

3

Module A

Rule

Module B

Rule

Method

f(a) = v

Module A

Rule r

Module B

Rule r'

Method f

Method Call

Method g

Figure 2: Communication of two modules

Expression 〈e〉 ::= r
| c
| op ⇀e

Actions comprise of register writes, method calls, expressing bindings, condi-
tional actions, asserts and return actions. They are defined using the Continuation
Passing Style (CPS) syntax. Each action except the return action contains a con-
tinuation which is terminated by the return action.

Action 〈a〉 ::= r := e; a
| letx = f(e); a
| letx = e; a
| if e then a else a; a
| when(e); a
| return(e)

Finally, a module is defines as follows:

Basic Module 〈M〉 ::= 〈⇀〈r, c〉; ⇀〈g, a〉;⇀〈f, λx.a〉〉
Lastly, our entire hardware system consists of a tree hierarchy of modules, where

the leaves are basic modules. Figure 2 actually shows two modules in the hierarchy,
where the first module calls a method f of the second module (the method calls are
matched via names). The modules are composed using ⊕ and we can hide certain

methods of a module using m/⇀f which hides all modules other than those in the list
⇀f . Overall, the composition is given by m as follows:

〈m〉 ::= M
| m⊕m
| m/⇀f

The register names and method names are unique across all the modules which
are hierarchically composed. For defining the semantics later, we want to be able
to get the names of the registers and methods defined in a hierarchical module. We

4

also want to get the initial value for all registers in a hierarchical module. Registers
can be obtained using function regs, rules obtained by rules, methods obtained by
defs, and the initial values obtained by the regInits function. We use function πi to
project the ith value in a tuple (starting with 1), and for a non-tuple single value,
π1 returns that value.

regsM = map π1 (map π1M)
regs (m1 ⊕m2) = regs m1 ∪ regs m2

regs (m/p) = regs m

rulesM = map π1 (map π2M)
rules (m1 ⊕m2) = defs m1 ∪ defs m2

rules (m/p) = defs m

defsM = map π1 (map π3M)
defs (m1 ⊕m2) = defs m1 ∪ defs m2

defs (m/p) = defs m ∩ p

regInitsM = π1M
regInits (m1 ⊕m2) = regInits m1 ∪ regInits m2

regInits (m/p) = regInits m

2.2 Semantics of LTS

2.2.1 Semantics for Expression

We first give the deterministic, denotational semantics of evaluating an expression
when given a map of register values. JopK returns a function which is semantically
equivalent to the operation performed by op on the list of expressions. It takes the
current register mapping σ as an argument.

JrK σ = σ r
JcK σ = c

Jop(es)K σ = JopK (map (λe.(JeK σ)) es)

2.2.2 Semantics for Action

Next we give the nondeterministic, relational semantics of an action a, which are
given by the following judgments denoting transition relations from the current
register mapping o to a set of register updates u, with an indication of the methods
from other modules (composed with the current module using ⊕) being called cs
along with the arguments passed and the return values expected and the return
value of the action v. The judgment for actions are of the form: o ` a cs−→ 〈u, v〉.
One point to note in a judgment for actions is that the return values of the called
methods cs will eventually be supplied by the execution of the method defined in
the module being composed with the current module using ⊕; they are effectively
unknown free-variables for the current action at this point.

We use a # b to denote map π1 a ∩map π1 b = {}, i.e., given two sets of tuples
(or single values) a and b, their first values (or the only values) are disjoint.

5

ActionWriteReg
o ` a cs−→ 〈u, v〉 〈r, 〉 /∈ u

o ` r := e; a
cs−→ 〈〈r, JeK o〉 :: u, v〉

ActionAssert
JeK o o ` a cs−→ 〈u, v〉
o ` when(e); a

cs−→ 〈u, v〉

ActionReturn

o ` return(e)
{}−→ 〈o, JeK o〉

ActionBind
o ` a[(JeK o)/x]

cs−→ 〈u, v〉
o ` letx = e; a

cs−→ 〈u, v〉

ActionTrue

o ` aT
csT−−→ 〈uT , vT 〉 o ` a[vT /x]

cs−→ 〈u, v〉
JeK o uT # u csT # cs

o ` letx = if e then aT else aF ; a
csT∪cs−−−−→ 〈uT ++ u, v〉

ActionFalse

o ` aF
csF−−→ 〈uF , vF 〉 o ` a[vF /x]

cs−→ 〈u, v〉
¬(JeK o) uF # u csF # cs

o ` letx = if e then aT else aF ; a
csF∪cs−−−−→ 〈uF ++ u, v〉

ActionCall
o ` a[v′/x]

cs−→ 〈u, v〉 〈f, , 〉 /∈ cs

o ` letx = f(e); a
cs∪{〈f,JeK o,v′〉}−−−−−−−−−−→ 〈u, v〉

2.2.3 Semantics for Basic Module

From this, we define the semantics for a module. The judgments define a transition
from current register mapping o to a set of register updates u, with an indication of
the defined method along with the argument expected and the returned value, the
methods from other modules being called cs along with the arguments passed and
the return values expected, and whether the current transition is happening because
of the rule g or because of a method (indicated by Rule(g) or Meth). We also allow
combining multiple methods; this is needed to permit calling of multiple methods of
a module from another module’s rule or method, the latter module composed with

the previous module using ⊕. The judgments are of the form: o ` M 〈`,ds,cs〉−−−−−→ u,
where ` is either Rule(g) or Meth, and ds is the set of methods whose transitions
are allowed in this judgment. Just like how action judgments had a free-variable
denoting the return values of the called methods, the judgment for a module has
free-variables denoting the arguments for the methods defined in the module (which
will be supplied by another module composed with the current module using ⊕).

As mentioned before, no register name or method name is being duplicated in
a module, and the domain of the register mapping is given by the register names
defined in the module. We will not litter the semantics by writing these conditions.

6

Module A

Rule

Module B

Rule

Method

f(a) = v

Module A

Rule r

Module B

Rule r'

Method f

Method Call

Method g

Figure 3: Communication of two modules with “call chains”

Empty

o ` M 〈Meth,{},{}〉−−−−−−−−→ []

AddMeth

o ` M 〈Meth,ds,cs1〉−−−−−−−−−→ u1 〈f, λx.a〉 ∈ π3M o ` a[y/x]
cs2−−→ 〈u2, v〉

u1 # u2 f /∈ ds cs1 # cs2

o ` M 〈Meth,ds∪{f},cs1∪cs2〉−−−−−−−−−−−−−−−→ u1 ++ u2

AddRule

o ` M 〈Meth,ds,cs1〉−−−−−−−−−→ u1 〈g, a〉 ∈ π2M o ` a cs2−−→ 〈u2, 〉
u1 # u2 cs1 # cs2

o ` M 〈Rule(g),ds,cs1∪cs2〉−−−−−−−−−−−−−→ u1 ++ u2

2.2.4 Communication of modules with Labels

Once we are equipped with the semantics for basic modules, now we have to consider
how to give semantics for communication among modules. As mentioned in Section
2.1, modules are combined like a binary tree, so inductively it is sufficient to deal
with the case where two modules are combined.

Figure 2 shows the basic communication case between two modules. The rule in
module A calls the method f with an argument value a in module B, which returns
value v. A function name, an argument, and the return value is sufficient ingredients
to form a label, since each module has its own transition step independent to each
other. In other words, state transitions (register map transition) are independently
performed.

Nondeterministic and relational semantics for basic modules allow such commu-
nication with labels. For module A, it does not have any information on the return
value so nondeterministically it assumes that value v is returned. Conversely, for
module B, it does not know what argument would be assigned so it also assumes
that an argument a is assigned. When combining two modules, we semantically
check that two transition steps and a label match correctly. See 2.2.5 for formal
definitions for such semantics.

7

Notice that in our semantics, the label associated with a transition of a module
can contain multiple defined methods. Why do we need such a definition for a
transition of a module? Consider a module composition as shown in Figure 3 where
rule r in module A calls method f in module B, and f also calls method g in A
once more. For module A, we need to reflect two transition steps: one for rule r,
and the other for method g, because when r calls method f of module B, then it in
turn calls g of module A. This is made possible by having a combined transition for
the rule r and method g. This combined transition will combine with a transition
denoting method f in module B. We will discuss how to give a combined transition
consisting of transitions of multiple methods and rules next.

2.2.5 Semantics for a Hierarchy of Modules

We thus define the semantics of a hierarchy of modules, which combines several
transitions of methods and rules into one transition. For each constructor of a
module hierarchy, we provide the semantics via judgments in the form of labeled
transitions. The labels of the transition is given by 〈`, ds, cs〉, where ds denotes the
methods defined by the module that are taking part in the transition and cs denotes
the methods of other modules being called in this transition. Both ds and cs have
the arguments and return values of each of the methods in them. We call a label
empty when it is 〈 , {}, {}〉 and denote it by ε.

The judgment for the semantics of a hierarchy of modules is given by o
〈`,ds,cs〉−−−−−→

m
n

where m is the hierarchical module undergoing the transition, o is the old state
mapping, n the new state mapping, ` is either Rule(g) or Meth, ds the defined
methods in this transition, and cs the called methods in this transition. The function
apply o u applies the register updates u on the register mapping o, as follows:

apply o [] = o
apply o (〈r, v〉 :: u) = apply (o[r := v]) u

There are three judgments for the semantics for hierarchy of modules. The
first one is for a single basic module; we get the semantic by naturally lifting the
semantics for basic modules (SingleModule). A semantic for method-hidden module
is also defined easily by checking whether each method in ds belongs to the filter
(HideModule).

SingleModule
o ` M 〈`,ds,cs〉−−−−−→ u

o
〈`,ds,cs〉−−−−−→
M

apply o u

HideModule

o
〈`,ds,cs〉−−−−−→

m
n 〈f, , 〉 ∈ ds ⇒ f ∈ h

o
〈`,ds,cs〉−−−−−→
m/h

n

Finally, we give an judgment for combined modules, where both two modules
undergo transitions. The rule or method of one module calls the methods of another
module, which in turn can call methods of the first module. Note that the only

8

judgment for combined modules includes the case where one module progresses
while another one remains the same, since it is exactly the “EmptyMeth” case.

We define a predicate called defCallEq to denote that the argument and return
value of a called method in a judgment used for module composition is exactly equal
to the defined method’s argument and return value, respectively. This is useful in
defining the judgment for combined modules.

defCallEq fs ds cs := ∀f ∈ fs. 〈f, , 〉 ∈ cs ⇒
〈f, , 〉 ∈ ds ∧ ∀a.∀v. 〈f, a, v〉 ∈ ds ⇔ 〈f, a, v〉 ∈ cs

The function rmMeths x y removes the methods of x that also occur in y. The
sets x and y are 3-tuples 〈f, a, v〉 where f denotes the method-name, a the argument
and v the return value. rmMeths matches for common method names; the arguments
are return values can be different.

rmMeths x y := {〈f, a, v〉|〈f, a, v〉 ∈ x ∧ 〈f, , 〉 /∈ y}

We are now in a position to combine transitions from two different modules.
Note that once a defined method is called by an action in another module, it can
no longer be called by any other action taking part in the same overall transition;
the defined method is effectively hidden.

Combine

o1
〈`1,ds1,cs1〉−−−−−−−→

m1

n1 o2
〈`2,ds2,cs2〉−−−−−−−→

m2

n2

¬(∃g1. `1 = Rule(g1) ∧ ∃g2. `2 = Rule(g2))
defCallEq (defs m2) ds2 cs1 defCallEq (defs m1) ds1 cs2

o1] o2
〈`,ds,cs〉−−−−−→
m1⊕m2

n1] n2

where ` = if `1 = Rule() then `1 else if `2 = Rule() then `2 else Meth
cs = rmMeths cs1 ds2 ∪ rmMeths cs2 ds1
ds = rmMeths ds1 cs2 ∪ rmMeths ds2 cs1

2.2.6 Transition Closure

From a judgment representing single-step module evolution, we can build a judgment
capturing arbitrary-length evolutions.

Definition 1. Transitive-Reflexive Closure: If module m steps from state o to
a state n using zero or more transitions, then we say that o

σ−→
m

∗n, where the label σ

is a sequence of labels given by the concatenation of all non-empty labels generated
in m during the course of the transitions.

*Nil

o
[]−→
m

∗o

9

*Empty

o
σ−→
m

∗n n
ε−→
m

n′

o
σ−→
m

∗n′

*NonEmpty

o
σ−→
m

∗n n
α−→
m

n′ α 6= ε

o
α::σ−−→
m

∗n′

Definition 2. Evolution of m: If m steps from its initial state to a state n using
zero or more transitions, then we say that m →∗ 〈n, σ〉, where the label σ is a
sequence of labels given by the concatenation of all non-empty labels generated in
m during the course of the transitions.

Evolution

λx.(Jfind x (regInits m)K)
σ−→
m

∗n

m→∗ 〈n, σ〉

2.3 Trace Refinement for LTS

We need a notion of when one LTS implements another. A system that produces
identical labels as another under all circumstances, and has a mapping from its state
to the other’s state can be considered as safe substitutes for one another. We will
define an asymmetrical notion of compatibility:

Definition 3. Let two LTSes m1 and m2 have the same label set L ⊆ {〈`, ds, cs〉}
(i.e., same set of defined and called methods). Let ρ : L → L be a function that is
able to replace labels with alternative labels, or erase them altogether (i.e., make
the label empty). We say that m1 trace-refines m2 w.r.t. ρ, or m1 vρ m2, if:

∀s1.∀σ. m1 →∗ 〈s1, σ〉 ⇒ ∃s2. m2 →∗ 〈s2, ρ̂ σ〉
All ε-labels in ρ is dropped before they are replaced by the mapping of ρ on it,

and labels mapped to ε by ρ are also dropped. ρ̂ is the overloaded version of ρ for
a sequence of labels when applied to σ.

As a shorthand, we write m1 v m2 for m1 vid m2, for id an identity function,
forcing traces in the two systems to match exactly. Under this notion of identical
traces, we say that m1 is sound w.r.t. m2.

2.3.1 Lemmas for Easy Trace Refinement Proofs

The trace refinement definition presented in the previous section is general, but is
practically hard to use. Often, every transition step that an implementation makes
can be made to map to a transition step of the specification. In this case, we can
have a weaker theorem for trace refinement.

Lemma 1. If there is a mapping f from any state of the implementation A to a
state of the specification B, and for every transition step that the implementation
takes, going from state sA to s′A producing label `, there is a transition step in the
specification from state (f sA) to state (f s′A) producing label (g `), then A vg B.

10

The above theorem is still not very useful. According to this theorem, we have to
prove the existence of mapped labels for all possible labels that the implementation
can produce. More specifically, since labels can be produced by combined transi-
tion, we need to provide a mapping for all possible legal combinations of individual
transitions. For example, if a module has two rules and three methods, we should
give a mapping for each combined transition formed from the 3 methods with any
one rule, or no rule, leading to a total of 24 combined transitions.

However, if there is a mapping from each rule and each method of the imple-
mentation to a rule or a method, respectively, of the specification, then we do not
have to give a mapping for each combined transition; it would suffice to give a
mapping for transitions comprising just individual rules or methods. However, in
the implementation, a rule (or a method) can call methods of other modules – only
the semantics obtained by inlining the called methods can match the semantics of
the rule (or method) of a specification. These conditions are summarized in the
following theorem:

Lemma 2. If there is a mapping f from any state of the implementation A to a
state of the specification B, and

1. for every “simple” transition step that the implementation takes, going from
state sA to s′A producing label 〈Rule(x), {}, cs〉, there is a rule y in the spec-
ification from state (f sA) to state (f s′A) producing label 〈Rule(y), {}, cs〉,
and

2. for every “simple” transition step that the implementation takes, going from
state sA to s′A producing label 〈Meth, {〈h, a, v〉}, cs〉, method h in the specifica-
tion also takes the state state (f sA) to (f s′A) producing label 〈Meth, 〈h, a, v〉, cs〉,

then A v B.

3 Examples for the LTS Language

In this chapter we give two examples which employ the LTS language. We first
present a simple one-element FIFO in Section 3.1. With this example we will have a
better understanding for evaluating an action. Then we present a decoupled modular
processor in Section 3.2. The processor consists of three modules - the main core,
register file, and data memory. We will show that the composed processor is an
implementation of sequential consistency.

3.1 An One-Element FIFO

FIFO (First-In-First-Out) is a simple structure that allows elements to be saved
temporarily and ensures them to be used in order. In this section, we present the
module definition for an one-element FIFO. The FIFO has only one element, which
indicates that an old element is overwritten when we request to push a new element.

FIFO can be easily defined by the LTS language. We will have a register which
holds the only element. With the register we can define enq and deq which requests

11

to push a value and to pop the value, respectively. The following defines the FIFO
module F :

regs F = 〈data, 0〉 :: []
rules F = {}
defs F = 〈enq, enqBody〉 :: 〈deq, deqBody〉 :: []

enqBody := λx.(data := x; return(0))
deqBody := λ .(return(data))

We have the only one register data which holds the data. There are no rules in F .
Two methods enq and deq are defined so they push and pop the data respectively.

Now we can prove a simple property of F that when we enqueue an element and
dequeue right away, we may get the same element value. The theorem is stated as
follows:

Theorem 1 (A property of F). ∀o.∀u.∀v. o ` enqBody v
{}−→ 〈u, 〉 ⇒ apply o u `

deqBody
{}−→ 〈 , v〉

The proof is straightforward by the inference rules for actions. We first derive
u = 〈data, v〉 :: {} with the inference tree for enqBody, and substitute u to the
inference tree for deqBody to derive that the return value equals v, as follows:

ActionWriteReg

ActionReturn

o ` return(0)
{}−→ 〈{}, 0〉

o ` data := v; return(0)
{}−→ 〈〈data, v 〉 :: {}, 0〉

Figure 4: Inference tree for enqBody

ActionReturn

apply o (〈data, v 〉 :: []) ` return(data)
{}−→ 〈{}, v〉

Figure 5: Inference tree for deqBody

3.2 A Decoupled Modular Processor and Sequential Consistency

In this section we first modularly define components for a simple processor. As
seen in Figure 6, the target processor comprises of the execution core, register file,
instruction memory, and data memory. Finally we build the final processor by
composing three modules: core, register file, and data memory.

Next we give a proof that the composed processor implements sequential consis-
tency, by defining a specification module which defines sequential consistency and
proving the trace refinement between them.

12

Core

RegFile

Inst.
Memory

Data
Memory

Sequential
Consistency

Implements

Figure 6: A decoupled processor and Sequential Consistency

3.2.1 A Decoupled Modular Processor

We introduce a number of simplifications which makes the proof easier:

• We do not have an instruction memory as a module; instead, we assume that
there is a decode function dec parameter, which takes the Program Counter
(PC) address as an argument and returns the instruction. In Coq, dec is
passed as a Gallina term.

• We only have three kinds of instructions - load, store, and halt; this captures
all the instructions relevant to Sequential Consistency.

• Lastly, we have no buffers (FIFOs) between any two components, which implies
that there are no cycle delays for the register file or the memory. It simplifies
the refinement proof since we do not have to introduce empty steps (ε-labeled)
to match progress steps.

Core The main core has a register pc which acts as PC, and a rule procExec for
executing an instruction with respect to pc. procExec first decodes the instruction
(dec pc), where dec is given as a parameter, and checks whether the instruction
is load, store, or halt by seeing its opcode which is then handled accordingly. The
formal definition for such a core P is given as follows:

regs P = pc :: []
rules P = (procExec dec) :: []
defs P = {}

13

(procExec dec) := λ . if opcodeOf (dec pc) = load
then let v = ReqLd(addrOf (dec pc));

let = RfWrite(regOf (dec pc), v);
return(0)

else if opcodeOf (dec pc) = store
then let = ReqSt(addrOf (dec pc), valOf (dec pc)); return(0)
else let = Halt(); return(0)

The core P may call a number of methods depending on the instruction. For
instance, when (dec pc) is a load instruction, we first call ReqLd to bring the loaded
value from the memory, and call RfWrite to save the value to the target register.
All necessary information - address, register name, and store value - is included in
(dec pc), where we can access their value by addrOf, regOf, and valOf.

Register File and Memory Register file and memory are implemented by a
register storing a vector (which is a primitive expression in our LTS language).
Register file has two methods RfRead and RfWrite for reading and writing register
values, respectively. Memory also has two methods ReqLd and ReqSt for reading and
writing values for addresses, respectively. Recall that all methods have no delays,
i.e., requests are handled and values are returned immediately.

3.2.2 A Specification Module: Sequential Consistency

In order to prove the processor implements Sequential Consistency (SC), we first
have to formally define what it is. There are a number of ways to define SC, in
this paper, we give the definition by implementing a module which will act as a
specification for SC.

The module SC has three registers: a program counter, a register file and a
memory. It has only one rule scExec, similar to the rule procExec in the core P in
the previous section. scExec exactly does the same thing as procExec does. SC also
gets dec as an argument to support the definition of scExec. It is defined formally
as follows:

regs SC = pc :: rf :: mem :: []
rules SC = (scExec dec) :: []
defs SC = {}

(scExec dec) := λ . if opcodeOf (dec pc) = load
then let v = mem (addrOf (decpc));

rf := rf[regOf (dec pc) := v];
return(0)

else if opcodeOf (dec pc) = store
then mem := mem[addrOf (dec pc) := valOf (dec pc)]; return(0)
else let = Halt(); return(0)

14

Notice that SC is basically a syntactially inlined version of the processor. That
is, we can build SC by composing all registers in modules in P, inlining all methods
bodies in each module.

3.2.3 Refinement Proof

Equipped with the definitions for the processor and SC, our goal is to prove that
the processor v SC.

We use Theorem 2 for the proof. A register map should be defined to use
this theorem; in this case, the map is like an identity function. This is because
the registers in SC are exactly same as the composed ones in each module in the
processor.

The only proof burden is to prove two itemized conditions in Theorem 2. How-
ever, it can be proven easily in this case since the two rules procExec and scExec
have a similar structure; scExec is a syntactically inlined version of procExec, as
mentioned in Section 3.2.2. And, the action in each of the methods of the processor
maps exactly to those in SC.

4 Future Works

There are two areas to expand this work: one is to develop lemmas and LTac tactics
for easy verification of LTS in Coq, and the other is to verify the real-world hardware
systems using this theory.

In spite of having designed and proved several lemmas, and developed several
custom proof tactics for automation, we are still seeing a lot of proof processes should
be abstracted and automated. This proof engineering will be performed during the
verification for complex hardware systems. Our development is currently hosted in
http://github.mit.edu/joonwonc/LtsLanguage.

Currently we aim to verify the sequential consistency of complex out-of-order
processor connected to a multi-level coherent cache hierarchy. We expect that with
our current modular syntax and semantics, verifying out-of-order processor and
cache coherence protocol can be done modularly, which makes the whole system
proof tractable. The CAV paper we attached describes the actual steps for verifying
such a complex processor.

References

[1] James C. Hoe and Arvind. Synthesis of operation-centric hardware descriptions.
In Proceedings of the 2000 IEEE/ACM International Conference on Computer-
aided Design, ICCAD ’00, pages 511–519, Piscataway, NJ, USA, 2000. IEEE
Press.

[2] Xavier Leroy and Sandrine Blazy. Formal verification of a C-like memory model
and its uses for verifying program transformations. Journal of Automated Rea-
soning, 41(1):1–31, 2008.

15

[3] Robin Milner. A Calculus of Communicating Systems, volume 92 of Lecture
Notes in Computer Science. Springer, 1980.

[4] Robin Milner. Communication and concurrency. PHI Series in computer science.
Prentice Hall, 1989.

16

