Extracting parallelism in OS kernels using type-safe languages

Cody Cutler M. Frans Kaashoek

Robert Morris

Nickolai Zeldovich

MIT CSAIL
{ccutler, kaashoek, rtm, nickolai}@csail.mit.edu

Abstract

Operating system kernels are rife with potential concur-
rency, but exploiting this parallelism requires significant
effort from programmers that write kernel code in C: the
language provides little help for creating transient threads or
packaging up arguments in closures, and fine-grained con-
currency forces the programmer to carefully reason about
what memory might be used by each thread and when it can
be freed. This position paper argues that OS kernels should
be written in a type-safe garbage-collected language, such
as Go, which provides simple abstractions for threads and
closures, as well as garbage-collection. We describe a num-
ber of opportunities for taking advantage of fine-grained
parallelism in an OS kernel, illustrated by examples from
our Go-based kernel, BISCUIT, challenges that must be ad-
dressed for this approach to be practical, and a preliminary
performance evaluation.

1. Introduction

Operating system kernels are filled with performance oppor-
tunities that can be exploited by concurrency: background
and speculative I/O, differing priorities for different incom-
ing packet streams, and splitting up the work of expensive
calls like fork and exec over multiple cores. A particularly
streamlined style of programming for these situations cre-
ates transient threads as needed to perform specific tasks,
allowing concurrency or parallelism to be expressed at fine
granularity. However, this style is difficult in languages with-
out garbage collection, because the threads complicate the
programmer’s reasoning about when data structures can be
freed. This in turn has caused kernels written in C, such as
Linux, to make limited use of transient threads, and to create
many specialized mechanisms to manage concurrent activi-
ties.

Inspired by the example of the Firefly and Taos [13, 16],
we believe that a kernel could expose and exploit much more
concurrency if it were written in a language with support for
threads, closures, and garbage collection. Such an arrange-
ment would allow free use of transient threads to create con-
currency, to improve the structure of concurrent kernel code,
to unify existing ad-hoc techniques, and to allow concur-
rency where it is currently prohibitively complex to manage.

To explore the potential benefits of structuring kernels
with free use of concurrency, we propose to build a tradi-
tional monolithic OS kernel in a garbage-collected language
with thread support (Go [2] in our initial prototype). We be-
lieve that a monolithic kernel, rather than a microkernel, is
the right approach for this project: we are looking for op-
portunities to exploit concurrency, and the more substantial
services the kernel provides, the more likely we are to find
concurrency.

We expect to address three challenges in this project, as
follows. First, we need to find situations where threads and
garbage collection can simplify implementations of existing
parallel and concurrent techniques, or where free use of
transient threads can enable improved software structure.

Second, there are likely to be performance problems
when managing a large number of threads in the kernel.
Although languages like Go have gotten better at handling
many threads, performance problems can still arise [1]. In
many situations a closure encapsulating the concurrent com-
putation should be queued for a worker thread pool, or the
number of transient threads should be chosen based on cur-
rent core utilization.

Finally, we are depending on garbage collection, but
garbage collection is often time-consuming. One significant
concern is stop-the-world pauses during garbage collection,
which may be problematic in an OS kernel that has to ser-
vice periodic events like TCP packet acknowledgments or
device interrupts. Some languages, such as Rust [3], have
decided that garbage collection cannot be made efficient,
and instead give the programmer explicit control over what
memory is managed “by hand” and what memory is man-
aged by different garbage collectors. Is such explicit control
really necessary?

To address these questions, we have started to design and
implement a type-safe monolithic kernel, BISCUIT, in Go.

2015/5/20



In the rest of this paper, we lay out the opportunities for
aggressive threading in OS kernels, and describe some of
our initial experiences in exploiting fine-grained parallelism
in BISCUIT.

2. Opportunity for parallelism

We believe that language support for fine-grained paral-
lelism will lead to more natural designs for a number of OS
kernel subsystems, as follows.

Existing uses in the Linux kernel. The Linux kernel de-
velopers already try to parallelize some aspects of kernel ex-
ecution with a wide range of mechanisms, including work
queues, tasklets, softirgs, bottom half handlers, timers, and
so on. Each of these mechanisms are widely used; just as an
example, Linux uses work queues for disk block I/O, cryp-
tographic operations, ACPI callbacks, PCI devices, etc.

All of these are effectively threads but have different
APIs that are tailored to specific use cases. Furthermore,
using each of these mechanisms requires the programmer to
package up their computation into a callback function with
all state explicitly passed as arguments in a data structure
that has to be manually allocated and freed.

We expect that a unified language mechanism will lead to
much cleaner designs and more pervasive use of this pro-
gramming pattern. Being able to use language-supported
closures and threads will help the programmer to encapsu-
late the state for a computation and to create transient threads
even for small tasks.

Packet processing. Many network workloads are easy tar-
gets for parallelism, such as IP packet forwarding, or TCP
processing for different connections. Current Linux kernel
implementations try to parallelize some packet processing
with the help of multiple NIC hardware queues, but we be-
lieve language support for parallelism would lead to cleaner
software structures.

The network stack currently performs processing at all
layers for an incoming packet on the same core where the
NIC initially delivered the packet. Splitting up this process-
ing (e.g., performing cryptographic operations on a dedi-
cated core, or re-distributing packets after extracting them
from an IP tunnel) currently requires the developer to write
explicit scheduling code in the network stack. Structuring
the software around threads would simplify these kinds of
scheduling decisions.

The current Linux network stack is also designed as a
state machine, for maximum performance. However, a more
natural structure might be to create a separate thread per
TCP connection, with TCP connection state managed as
variables on that thread’s stack. This approach might lead
to a simpler implementation that could better exploit multi-
core hardware.

System calls from a single process. As demonstrated by
FlexSC [15], a single application can take advantage of other

cores executing its system calls in parallel. In Linux, this re-
quired an explicit mechanism to send system calls to other
cores, and process them there. With easy support for spawn-
ing a transient thread within a system call, implementing
FlexSC-like optimizations would be simply a scheduling de-
cision.

Parallelism within a system call. Today’s operating sys-
tems typically do not create additional parallelism within a
system call, under the assumption that it’s the application de-
veloper’s job to run a sufficient number of processes to keep
all cores busy. However, this makes it difficult for applica-
tions with few threads to exploit a many-core processor.

On the other hand, there are plenty of opportunities for
parallelism within a system call, especially for some of the
complex system calls specified by POSIX. For example, the
fork system call needs to copy the entire file descriptor ta-
ble and the entire process address space. For a large process,
each of these tasks could be significant. Given a convenient
way to create transient threads, the kernel developer could
create a separate thread to copy each virtual memory region,
so that the work of copying a large address space can be par-
allelized over many cores. By creating parallelism within a
system call, this reduces the burden on application program-
mers from creating enough parallelism to keep the OS busy
on all cores.

There are many other examples in POSIX, such as the
exec system call for a large binary, which involves loading
many segments and pages from the ELF executable, and the
read and write system calls for large buffers, which can
farm out the work of copying a large buffer across many
cores.

Speculative execution. Given language support for par-
allelism, it may be easy for kernel developers to imple-
ment speculative operations that execute in parallel with the
“main” code, such as prefetching data, pre-populating page
table entries, and so on.

If the language support were to include the ability to can-
cel threads or make their side-effects conditional on a later
check, this would allow even more aggressive speculative
execution, such as processing network inputs in parallel with
checking signatures or checksums, or even executing code in
parallel with flushing data to disk as in Speculator [12].

3. Exploiting parallelism

We present three examples which demonstrate some of the
benefits of fine-grained parallelism with garbage collec-
tion in the BISCUIT kernel: IPSec packet transmission, the
POSIX read system call, and simplified RCU protecting the
routing table.

3.1 IPSec packet transmission

Figure 1 displays the IPSec transmission code. A thread
is created for each packet-sized unit of the data to be sent.

2015/5/20



func ipsec_send(so socket, p [lbyte) {
done := make(chan int)
ps := so.packetsize
nthreads := len(p)/ps + 1

for i := 0; i < nthreads; i++ {
s := i*ps
e := (i+1)*ps
if e > len(p) {
e = len(p)
}
go encrypt_send(so, pl[s:e], done)
}
for i := 0; i < nthreads; i++ {
<- dome
}

}

func encrypt_send(so socket, p [lbyte,
done chan int) {
buf := encrypt(p)
so_send(so, buf)
done <- 1

Figure 1. Parallelism in the IPSec layer

These threads each encrypt their own allotment of the data
and send it to the underlying network device. ipsec_send
waits for all spawned threads to send their encrypted packets
before returning.

This simple design is natural: both stages of packet pro-
cessing are written in a separate function. This design is also
powerful: if there are idle CPU cores, ipsec_send will take
advantage of the available cores to parallelize the encryp-
tion of the data. Writing code that makes such use of tran-
sient threads is easy in a type-safe language with support for
light-weight threads.

Consider ipsec_send if it were written in C. Since start-
ing and synchronizing with transient threads is more cum-
bersome in C, it is more likely that the programmer would
implement ipsec_send in a way that serializes the encryp-
tion and transmission of the packets unnecessarily.

3.2 Parallel read system call

Figure 2 shows example code for a parallel read system
call specialized for the case in which the data is already
in the buffer cache. The arguments to sys_read are a file
descriptor and a slice! into which the data should be copied.
A thread is created for each block to be copied. Each thread
locates the buffer caching the desired block and copies it.

I'a “slice” is a Go type that can be thought of as an array with corresponding
length

func sys_read(fd int, p [Jbyte) int {
done := make(chan int)
// update fd metadata...
cnt := fd_size(fd)
if len(p) < cnt {
cnt := len(p)
}
nthreads := cnt / BLKSIZE
for i := 0; i < nthreads; i++ {
s := i*BLKSIZE
e := (i+1)*BLKSIZE
go parcopy(fd, s, pls:e], done)

}
left := cnt ’, BLKSIZE
if left != 0 {

t := cnt - left
from := buffer_get(fd, t)
for i, ¢ := range from {
plt + il = ¢

}

}

for i := 0; i < nthreads; i++ {
<- done

}

return cnt

3

func parcopy(fd int, offset int, to []byte,
d chan int) {
from := buffer_get(fd, offset)

for i, ¢ := range from {
tol[i] = ¢

}

done <- 1

Figure 2. Example parallel read system call

The final partial block is copied without creating a thread.
Finally, the main thread waits for the worker threads to
complete.

One desirable feature of this implementation of read is
that if the size of the data to read is larger than a few blocks
and CPU cores are available, the data will be copied to
the destination buffer in parallel. A large, parallel copy will
take advantage of the RAM bandwidth of modern machines
which is unlikely to be saturated by a single CPU core [9].

An implementation of parallel read in a language with-
out good support for transient threads would be considerably
more awkward.

3.3 Read-Copy Update

Read-copy update (RCU) [11] is a technique for read-
lock-free parallel data access. In languages without garbage

2015/5/20



var route_table *Table

func route_get(dst addr) *route {
return route_table.lookup(dst)
}

func route_insert(r *route, dst addr) {
rtlock.Lock()
defer rtlock.Unlock()

newrt := copy_table()
newrt.insert(dst) = r

// make new table available
route_table = newrt

}

Figure 3. A read-lock-free routing table lookup, along with
routing table update, illustrating an RCU-like technique that
is simplified by having garbage collection.

collection, RCU requires a lock-free mechanism for reliably
determining whether any reader may hold a reference to an
old version of the data structure in order to safely free the
old data structure.

Figure 3 shows example code demonstrating how RCU
can be simplified with garbage collection. Readers of a
routing table perform the route lookup directly using the
route_table pointer. To update the routing table, writer
threads must serialize access with a lock. Once the lock has
been acquired, the routing table is copied and the new route
is inserted into the new copy. Finally, the route_table
pointer is updated to reference the new routing table.

This example RCU code is simple because the garbage
collector takes care of reclaiming the old copy of the routing
table after updates instead of the programmer. In a C imple-
mentation, the programmer must at some point free the stale
version of the routing table once it is known that no readers
will attempt to access a stale copy.

4. Evaluation

In this section we describe our preliminary performance
evaluation of BISCUIT- we describe several experiments
using microbenchmarks. The goal is to answer the following
questions:

¢ is BISCUIT’s performance competitive with a kernel writ-
ten in C?

e are there performance penalties for using many threads?
¢ how much can garbage collection degrade performance?

e what performance benefits can we achieve by exploiting
fine-grained parallelism?

In the first experiment, we compare against xv6 [14], a
kernel written in C. xv6 and BISCUIT are practically iden-
tical in terms of features. All experiments, using BISCUIT
or xv6, are run on the same machine with 8 logical CPUs
(4 cores) and 12 GB of memory. The block cache capacity
for BISCUIT and xv6 is set to 1024 to minimize the number
of disk seeks required, making the microbenchmarks CPU
bound so that we can compare performance of both kernels
by comparing elapsed execution time of the microbench-
marks.

4.1 Smallfile microbenchmark

This experiment helps answer our first two evaluation quest-
sions (“is BISCUIT’s performance competitive with a kernel
written in C?” and “are there performance penalties for using
many threads?”).

For this experiment we run a program (called “smallfile”)
on both BISCUIT and xv6 with a single CPU and record
the wall-clock time of the program’s execution. Smallfile
performs many file system related system calls (using the
POSIX interface i.e. open, write, read, etc) in order to test
the performance of BISCUIT and xv6. Precisely, small-
file first iteratively creates, writes one byte to, and closes
100 separate files in a few different directories (‘“‘create”
phase). Smallfile then opens, reads, and closes all 100 files
(“read” phase). Finally, smallfile unlinks all the files (‘“un-
link” phase).

Smallfile stresses the file system and exposes the over-
head of system call handling (receiving a CPU trap, handling
it, and returning to the user program). Because BISCUIT’s
file system creates a thread for each i-node, BISCUIT will
create on the order of 100s of threads: one for each distinct
file and one for each directory containing each file. Thus this
microbenchmark also stresses BISCUIT’s handling of many
threads.

Figure 4 shows the results. The unit in the “cycles”
columns is millions of cycles. While the “read” and “un-
link” phases have similar times, BISCUIT’s “create” phase is
almost 20% faster than xv6’s. The reason BISCUIT’s “cre-
ate” phase is faster is that, for each file, BISCUIT allocates a
file, file descriptor, and inode object on the heap while xv6
allocates said objects by iteratively searching a static array
for each object type. Despite BISCUIT allocating these ob-
jects in the heap, garbage collection is not costly during the
smallfile microbenchmark: BISCUIT garbage collects 100s
of times but the total wall-clock time of garbage collection
pauses amount to less than 0.1% of total execution time.

This experiment shows two things: first, that for some
workloads, BISCUIT has comparable performance to a ker-
nel written in C. Second, that BISCUIT can manage 100s of
threads without suffering significant performance degrada-
tion.

2015/5/20



Smallfile phase xv6’s cycles BISCUIT’s cycles
Create 2,066 1,742
Read 36 37
Unlink 1,014 956
Total 3,117 2,735

Number of kernel objects Millions of cycles/fork

.1 million 56.5
1 million 67.7
10 million 80.2
50 million 87.9

Figure 4. Smallfile microbenchmark results. The units are
millions of cycles.

4.2 BMGC microbenchmark

The purpose of this experiment is to demonstrate the impact
on performance BISCUIT’s garbage collection can have in a
worst-case scenario (our third evaluation question). We run a
program, BMGC, several times using a single CPU on BIS-
cuIT. BMGC does the following: first, BMGC uses a special
system call which causes the kernel to create and populate
a hash table where the number of objects are specified by
the special system call’s argument. BMGC then forks 500
times (the child process immediately exits). Finally, BMGC
outputs only the elapsed wall-clock time taken to fork 500
times (i.e. the elapsed time of the special system call is not
included). We vary the number of objects added to the kernel
hashtable each run.

Although BISCUIT uses copy-on-write fork, the fork
syscall requires a significant amount of allocation since page
tables must be allocated for the child process. Furthermore,
both the parent and child processes will allocate a few more
pages to replace the copy-on-write pages as they fault on
them. Since BMGC causes many large allocations, BISCUIT
will be forced to garbage collect often. However, total heap
size remains stable since each child process frees its page
tables by exiting immediately. Thus allocations are satis-
fied by reclaiming free memory, not by using new pages.
We vary the number of objects added to the hash table by
the special system call to increase garbage collector work —
the garbage collector must trace every live object once per
garbage collection.

Figure 5 shows the results. The time to fork increases
as the number of live kernel objects increases. A fork takes
55% longer when hash table contains 50 million objects than
when the hash table has only 100 thousand objects. Informal
experiments indicate that OpenBSD on a commodity laptop
allocates approximately 375 thousand objects from pools in
steady state. Thus 50 million objects is a reasonable worst-
case amount of live kernel objects.

4.3 Parallel fork microbenchmark

To answer our final evaluation question (“what performance
benefits can we achieve by exploiting fine-grained paral-
lelism?”’), we implemented a parallel version of the fork sys-
tem call. The parallel version of fork creates a thread for each
page in the page map. Each thread then copies the page ta-
ble entries to the new page and insert a reference to the new
page into the new page tables. We run this microbenchmark

Figure 5. BMGC microbenchmark results. The units are
millions of cycles.

with eight CPUs to observe the performance increase due to
parallelism.

We test the parallel fork with a program that fills it ad-
dress space with 4GB of memory and then forks 500 times
and outputs the elapsed wall-clock time necessary to com-
plete all 500 forks. The program allocates 4GB of memory
into its address space in order to ensure that the fork system
call takes up the vast majority of the CPU time executing the
program. In the non-parallel version of fork, each fork takes
525 million cycles while each parallel fork takes only 70
million cycles to complete, yielding a speedup of 7. Thus
fine-grained parallelism can achieve significant speedups.

5. Discussion

While a coding style that makes use of many transient
threads may simplify some kernel subsystems, heavy use
of threads is likely to incur performance costs. The main
cost is the CPU time spent on thread creation, scheduling,
and context switching. It seems likely that under high load
thread creation will need to be adaptively turned into queu-
ing of closures for thread pools. A closure-based solution is
much easier to write in a type-safe language with garbage
collection than in C where the programmer has to manage
callbacks by “hand”.

Garbage collection (GC) is particularly desirable when
using closures and transient worker threads, which may hold
references to data that should be freed after the last relevant
thread exits.

The price of this convenience is GC pauses. Some kernel
work is latency sensitive and a GC pause may prevent the
kernel from meeting deadlines. For example, a network card
interrupt signalling a full receive buffer may not be serviced
quickly enough if a GC occurs during or near the time that
the interrupt is raised and thus packets may be dropped,
reducing the performance of the receiving application.

In order to reduce GC pauses in BISCUIT, it may be
possible to modify Go’s garbage collector to better suit the
kernel environment. For example, instead of tracing the table
of open network connections (which may contain millions of
entries) during every GC, the garbage collector could cache
the identities of pages which contain at least one object
describing an open connection during some previous GC
and only trace network connection objects that have been
recently added. Tracing the entire open network connections
table would then become a last resort when system memory

2015/5/20



is critically low. Thus most GCs would be likely to skip the
tracing of the network connection table and therefore have
reduced tracing time.

6. Related work

The usefulness of threads for structuring and parallelism has
long been appreciated, and many useful design patterns are
known [6, 17].

The Firefly [16] project explored use of a high-level
garbage-collected language (Modula-2+) for the operating
system on a multi-processor. The kernel, the file system, the
window system, and many other services used threads ex-
tensively both for structuring and for parallelism [13]. This
idea is worth revisiting now because multi-core hardware is
more common and because the performance characteristics
of hardware have changed significantly (CPUs are now or-
ders of magnitude faster than memory, in contrast to Firefly’s
hardware).

Another line of investigation has been the use of high-
level languages to improve security or secure extensibility
in operating system kernels; SPIN [5] and Singularity [7]
pursue these ideas. However, neither SPIN nor Singularity
focused on the opportunities for fine-grained parallelism.

Developments in garbage collection for interactive and
real-time systems [4, 8, 10] reduce collection pause times
by performing most of the collection while the application
runs. These collectors have short pause times, and might be
appropriate for use in a kernel.

7. Conclusion

Building a monolithic kernel in a type-safe, garbage col-
lected language using fine-grained parallelism seems likely
to yield new insights into structuring kernels for concur-
rency. We have discussed several possibilities for how ker-
nels may benefit from fine-grained parallelism and presented
three examples from the BISCUIT kernel that demonstrate
some of these benefits: design simplification, exploiting idle
CPUs, and efficient use of RAM bandwidth. We also pre-
sented a preliminary performance evaluation showing that a
kernel written in a high level language can achieve perfor-
mance comparable to kernel written in C for some work-
loads. Garbage collection is critical to this programming
style since it enables easy data sharing between transient
worker threads.

References

[1] runtime: limit number of operating system threads. from
https://github.com/golang/go/issues/4056, .

[2] The go programming language.
golang.org/, .

from https://

[3] The rust programming language.
www.rust-lang.org/.

from https://

[4] H. G. Baker, Jr. List processing in real time on a serial
computer. Commun. ACM, 21(4):280-294, Apr. 1978. ISSN
0001-0782.

[5] B. N. Bershad, S. Savage, P. Pardyak, E. G. Sirer, M. Fiuczyn-
ski, D. Becker, S. Eggers, and C. Chambers. Extensibility,
safety and performance in the SPIN operating system. In Pro-
ceedings of the 15th ACM Symposium on Operating Systems
Principles, pages 267-284, Copper Mountain, CO, Dec. 1995.

[6] C. Hauser, C. Jacobi, M. Theimer, B. Welch, and
M. Weiser. Using threads in interactive systems: A case
study. In Proceedings of the Fourteenth ACM Sympo-
sium on Operating Systems Principles, SOSP ’93, pages
94-105, New York, NY, USA, 1993. ACM. ISBN
0-89791-632-8. doi: 10.1145/168619.168627. URL
http://doi.acm.org/10.1145/168619.168627.

[7]1 G. C. Hunt, J. R. Larus, M. Abadi, M. Aiken, P. Barham,
M. Fahndrich, C. Hawblitzel, O. Hodson, S. Levi, N. Mur-
phy, B. Steensgaard, D. Tarditi, T. Wobber, and B. Zill. An
overview of the Singularity project. Technical Report MSR-
TR-2005-135, Microsoft, Redmond, WA, Oct. 2005.

[8] B. Iyengar, G. Tene, M. Wolf, and E. Gehringer. The Collie: A
Wait-free Compacting Collector. In Proceedings of the 2012
International Symposium on Memory Management, ISMM
’12, pages 85-96, Beijing, China, 2012. ACM.

[9] Y. Mao, C. Cutler, and R. Morris. Optimizing RAM-latency
dominated applications. In Proceedings of the 4th Asia-Pacific
Workshop on Systems, Singapore, July 2013.

[10] B. McCloskey, D. F. Bacon, P. Cheng, and D. Grove. Staccato:
A Parallel and Concurrent Real-time Compacting Garbage
Collector for Multiprocessors. Technical report, IBM, 2008.

[11] P. E. McKenney and J. D. Slingwine. Read-copy update:
Using execution history to solve concurrency problems. In
Parallel and Distributed Computing and Systems, pages 509—
518, 1998.

[12] E. B. Nightingale, P. M. Chen, and J. Flinn. Speculative
execution in a distributed file system. In Proceedings of
the 20th ACM Symposium on Operating Systems Principles,
Brighton, UK, Oct. 2005.

[13] S. Owicki. Experience with the Firefly Multiprocessor Work-
station. Digital. Systems Research Center, 1989.

[14] R. M. Russ Cox, Frans Kaashoek. Xv6, a simple Unix-
like teaching operating system. Technical report. URL
http://pdos.csail.mit.edu/6.828/2012/xv6.html.

[15] L. Soares and M. Stumm. FlexSC: Flexible system call
scheduling with exception-less system calls. In Proceedings
of the 9th Symposium on Operating Systems Design and Im-
plementation, Vancouver, Canada, Oct. 2010.

[16] C. P. Thacker and L. C. Stewart. Firefly: A multiproces-
sor workstation. In Proceedings of the Second International
Conference on Architectual Support for Programming Lan-
guages and Operating Systems, ASPLOS II, pages 164-172,
Los Alamitos, CA, USA, 1987. IEEE Computer Society Press.
ISBN 0-8186-0805-6. doi: 10.1145/36206.36199. URL
http://dx.doi.org/10.1145/36206.36199.

[17] M. Vandevoorde and E. Roberts.
abstraction for controlling parallelism.

Workcrews: An
International

2015/5/20



Journal of Parallel Programming, 17(4):347-366, 1988.
ISSN 0885-7458. doi: 10.1007/BF01407910. URL
http://dx.doi.org/10.1007/BF01407910.

7 2015/5/20



