
Towards A Certified Peer-to-Peer Lookup System

Anish Athalye
aathalye@mit.edu

Abstract

Implementing peer-to-peer systems correctly is difficult
due to the extreme situations under which these systems
are designed to operate. Unlike in other types of dis-
tributed systems, in peer-to-peer systems, arbitrary ma-
chines can participate in the system, and machines can
leave and join the network at any time. This distinction
makes it challenging to formally reason about these types
of systems.

In order to better understand how to design and imple-
ment certified P2P systems supporting dynamic member-
ship, we work towards verifying a peer-to-peer lookup
system.

1 Introduction

Decentralized peer-to-peer systems can be an effective
way of implementing many types of services. However,
implementing correct peer-to-peer systems is challeng-
ing due to the unique properties of P2P systems. In
some types of distributed systems, the system topology
is static: all machines involved are known in advance,
the set of machines does not change through the course
of operation, and often times, all the machines are iden-
tically configured and managed by a single party. On the
other hand, in P2P systems, many of these properties do
not hold.

In many P2P systems, arbitrary computers can join
and leave the network at any time. The machines can
have very different properties in terms of hardware con-
figuration, network connectivity, and system availability.
P2P protocols are designed to handle this and work cor-
rectly while nodes join and leave the network.

Given the challenges associated with designing and
implementing P2P protocols, it is desirable to have some
guarantees about the correctness of the systems. Some-
times, protocol designers mathematically prove the cor-
rectness of designs on paper. Some widely-used proto-

cols such as Kademlia [1] have also been formalized [2]
using a formal specification language such as Maude [3],
providing a greater degree of assurance about the cor-
rectness of the protocol. Unfortunately, approaches us-
ing modeling tools are limited due to the limited power
of some of these tools, and many of the properties that
are formalized in these works are fairly shallow.

As it currently stands, there is still a formality gap with
a lack of certified implementations of protocols. Even if
the design of a protocol is proven correct on paper, there
are still a variety of bugs that could arise in the actual
implementation of the protocol. End-to-end correctness
proofs would provide a much stronger guarantees about
the proper functioning of a system.

In the past, others have used proof assistants to prove
distributed systems correct. The Verdi framework [4],
a general-purpose library for reasoning about distributed
systems, is the current state-of-the-art tool for the job.
The framework has been used to verify simple protocols,
and a partial proof of the Raft consensus protocol has
been completed.

However, the Verdi framework is not designed for rea-
soning about peer-to-peer systems. There are several
unique challenges when dealing with P2P. The set of ma-
chines participating in the system is not known in ad-
vance, and machines can join and leave at any time. In
addition, desired properties of these protocols are diffi-
cult to specify and formalize.

In this paper, we describe our experience working to-
ward a certified implementation of a peer-to-peer lookup
protocol based on the Chord protocol [5]. We build this
protocol as a case study hoping to gain a better under-
standing of how to build verified P2P systems and how
to specify and prove properties about them.

2 Protocol

Our P2P lookup protocol is based on the Chord proto-
col [5]. Chord is a peer-to-peer lookup protocol that

0

1

2

3
4

5

6

7

8

9

10

11
12

13

14

15

Figure 1: An example Chord ring with 16 nodes. Each
node maintains only a successor pointer that points to the
node with the next greatest ID.

maps 160-bit key IDs to nodes in the network that are
also assigned 160-bit IDs. The protocol has been proven
correct on paper, and it is used in practice for real-world
applications [6, 7], so it is a good choice of protocol for a
case study. Chord is highly efficient and scalable due to
optimizations, but these optimizations make proofs more
difficult. For the purpose of our work, we implement
Chord without any optimizations such as finger tables.
In our implementation, we simply have each node in the
network maintain a successor pointer, as shown in Fig-
ure 1. In the worst case, messages will need to travel
around the entire Chord ring to reach a node.

3 Formal model

Before we can prove theorems about the implementation
of a protocol, we must have a formal system model pre-
cisely specifying the behavior of computers and the net-
work.

3.1 Machine model
Machines in the system behave deterministically given
their input. Machines maintain internal state, and ma-
chines perform computation when they receive input or
network messages. Machines have two transition func-
tions describing how their state changes when they re-
ceive local input or network messages. Upon receiving
input, machines can change their internal state, produce
local output, and send network messages.

A machine’s behavior is summarized by its state and
transition functions:

Inductive node_state :=

| ST_Empty : node_state
| ST_Succ : id → node_state.

Definition node_input : id→ node_state→ input→
node_state × list output × list message.

Definition node_recv : id→ node_state→ message
→ node_state × list output × list message.

3.2 Network model
We considered reliable networks in our formalization of
the system. In our model, the network does not duplicate
or drop packets. In addition, the network preserves the
order in which messages are sent – essentially, the net-
work acts like a globally shared queue of messages. We
model the network in this manner for simplicity. Support
for duplicated or dropped packets would require nodes
to have some form of failure detection and retransmis-
sion capability, which would complicate the protocol,
and therefore complicate the proofs.

3.3 System state
In modeling overall system state, we need to track all the
nodes’ states and the set of messages that are in flight:

Record net_state := mkNetState {
States : map id node_state;
Messages : list message

}.

3.4 Step semantics
We model overall system behavior using small-step se-
mantics, having a relation over system states. This al-
lows us to reason about nondeterministic behavior in a
clean manner. We have three inference rules – deliver,
input, and join. The deliver rule (Figure 2) allows a node
to process a message from the network. The input rule
(Figure 3) allows a node to process a local input. The
join rule (Figure 4) allows a new node to join the net-
work initialized with an empty state.

4 Properties

There are many properties that could be desirable to have
in a peer-to-peer lookup system. These properties can be
divided into two categories, safety properties and live-
ness properties. An example of a safety property is that
lookups always return the “correct” result, and an ex-
ample of a liveness property is that lookups return a re-
sult in a bounded amount of time. Often times, these
properties that we desire are difficult to specify precisely

2

m m_t m’ : list message
m_h : message
st st’ : net_state
src dst : id
body : body
q q’ : node_state
n n’ : map id node_state

DELIVER

m = mh : mt st = mkNetState n m
mh = mkMessage src dst body

dst ∈ n q = n(dst)
(q′,mnew,out) = node_recv dst q mh

n′ = n[dst := q′]
m′ = mt ++mnew st ′ = mkNetState n′ m′

st⇒ st ′

Figure 2: Deliver inference rule.

m m_new m’ : list message
st st’ : net_state
id : id
input : input
q q’ : node_state
n n’ : map id node_state

INPUT

st = mkNetState n m id ∈ n q = n(id)
(q′,mnew,out) = node_input id q input

n′ = n[id := q′]
m′ = m++mnew st ′ = mkNetState n′ m′

st⇒ st ′

Figure 3: Input inference rule.

joining : id
m : list message
st st’ : net_state
input : input
n n’ : map id node_state

JOIN

joining 6∈ n st = mkNetState n m
n′ = n[joining := ST _Empty]

st ′ = mkNetState n′ m
st⇒ st ′

Figure 4: Join inference rule.

0

1

2

3
4

5

6

7

8

9

10

11 13

14

15

Figure 5: A quiescent network in which no nodes are
attempting to join.

because the guarantees offered in P2P system are often
loose guarantees. In the example of the safety property,
it is difficult to formulate what is a “correct” result. We
could say that a result is correct if the result of a lookup
is the identifier of a node that was responsible for the key
being looked up at some point between when the lookup
request was sent and the response was received. Even
when we can informally specify these properties, they
are tricky to formalize and prove.

4.1 Towards a safety proof

As of now, we have made some progress in proving the
correctness of the lookup protocol, proving a key invari-
ant of the system. We have proven that in our system,
the ring structure is always okay, in that all nodes point
to the correct successor. In our joining protocol, we may
have a single dangling node at a time, so we allow for
this in our formalization of correct ring structure.

Definition ring_ok st :=
ring_ok_quiet st ∨
(exists joining, ring_ok_joining st joining) ∨
(exists joining, ring_ok_attached st joining).

The first property, ring_ok_quiet, describes a quies-
cent network in which no nodes are pending joining (see
Figure 5). The second property, ring_ok_joining, de-
scribes a system where a single node that is joining has
sent a lookup request into the network but has not re-
ceived a response (see Figure 6). The third property,
ring_ok_attached, describes a system where a join-
ing node has received a response and set its successor
pointer.

With this description of a ring_ok state, we can prove
that this property is an invariant of system execution – we

3

0

1

2

3
4

5

6

7

8

9

10

11 13

14

15

12

Figure 6: A system where a node is awaiting a response
to a join request.

0

1

2

3
4

5

6

7

8

9

10

11 13

14

15

12

Figure 7: A system where a joining node has set its suc-
cessor pointer.

ring_ok_quiet

ring_ok_joiningJOIN

DELIVER

ring_ok_attached

DELIVER

DELIVER

Figure 8: A diagram of transitions between different
types of okay states. Starting in a quiet state, the sys-
tem can transition into the joining state when a node
joins. While messages are being delivered, the system
remains in this state. Once the node receives a response
and sets its successor pointer, the system transitions into
an attached state. Once the joining node informs its
predecessor-to-be and it updates its pointer, the system
transitions back into a quiet state.

can prove that we always stay in one of the okay states
(see Figure 8).

5 Implementation

The current implementation of the protocol is approxi-
mately 150 lines of Coq code. The infrastructure and
proofs make up another 850 lines of Coq code; this in-
cludes some long, manual proofs that could be automated
and shortened. In addition, we have written a network
simulator in Haskell so that we can interact with a sim-
ulated system and observe how it behaves. This driver
code is approximately 50 lines of Haskell implementa-
tion along with about 100 lines of helper functions such
as Show type class instances.

6 Future work

There is still much work to be done on the lookup proto-
col and proofs. To begin with, we intend to complete the
safety proof, verifying that the system executes lookup
operations correctly. After that, we want to add function-
ality to allow multiple nodes to leave or join the network
concurrently. Then, we want to refine the network model
such that we can tolerate dropped or duplicated messages
and handle asynchronous message delivery. Finally, we
would like to explore the possibility of adding the op-
timizations used in the Chord protocol, such as finger
tables, and we want to be able to handle nodes crash-
ing. Implementing and verifying functionality to handle
crashes will require us to perform some sort of proba-
bilistic reasoning in Coq; we are not aware of much work
that has been done in the area.

7 Conclusion

We describe our work towards implementing a certified
peer-to-peer lookup system. Our work is currently un-
finished, but we have made progress in proving basic
lemmas and learning how to formally reason about peer-
to-peer systems. We have ideas on how to improve our
work, and in the future, we hope to accomplish build-
ing high-assurance peer-to-peer software that is robust
enough to be used in real-world applications.

References
[1] P. Maymounkov and D. Mazières, “Kademlia: A peer-to-peer in-

formation system based on the xor metric,” in Revised Papers from
the First International Workshop on Peer-to-Peer Systems, IPTPS
’01, (London, UK, UK), pp. 53–65, Springer-Verlag, 2002.

[2] I. Pita and A. Riesco, “Specifying and analyzing the kademlia pro-
tocol in maude,” in 9th International Workshop on Rewriting Logic
and its Applications, WRLA, 2012.

4

[3] M. Clavel, F. Durán, S. Eker, P. Lincoln, N. Martí-Oliet,
J. Meseguer, and C. Talcott, All About Maude - a High-
performance Logical Framework: How to Specify, Program and
Verify Systems in Rewriting Logic. Berlin, Heidelberg: Springer-
Verlag, 2007.

[4] J. R. Wilcox, D. Woos, P. Panchekha, Z. Tatlock, X. Wang,
M. Ernst, and T. Anderson, “Verdi: A framework for implement-
ing and formally verifying distributed systems.” To appear in PLDI
’15.

[5] I. Stoica, R. Morris, D. Karger, M. F. Kaashoek, and H. Balakr-
ishnan, “Chord: A scalable peer-to-peer lookup service for inter-
net applications,” in Proceedings of the 2001 Conference on Ap-
plications, Technologies, Architectures, and Protocols for Com-
puter Communications, SIGCOMM ’01, (New York, NY, USA),
pp. 149–160, ACM, 2001.

[6] G. DeCandia, D. Hastorun, M. Jampani, G. Kakulapati, A. Laksh-
man, A. Pilchin, S. Sivasubramanian, P. Vosshall, and W. Vogels,
“Dynamo: Amazon’s highly available key-value store,” SIGOPS
Oper. Syst. Rev., vol. 41, pp. 205–220, Oct. 2007.

[7] A. Lakshman and P. Malik, “Cassandra: A decentralized structured
storage system,” SIGOPS Oper. Syst. Rev., vol. 44, pp. 35–40, Apr.
2010.

5

	Introduction
	Protocol
	Formal model
	Machine model
	Network model
	System state
	Step semantics

	Properties
	Towards a safety proof

	Implementation
	Future work
	Conclusion

