
Client Side Trusted Web-server Modules using Intel SGX

Ajay Brahmakshatriya and Alexandra Zytek
{ajaybr, zyteka}@mit.edu

Abstract
Intel’s SGX enclaves allow execution of code on a
client computer without risk of external processes
reading or saving data within the enclave. We pro-
pose using SGX to allow arbitrary code (such as for
a browser game) from a server to be executed on a
clients computer without allowing the client to un-
fairly change the code or its outputs. This makes it
possible for a small server to handle thousands of
clients without a decrease in performance.

1 Motivation
Web applications are usually divided into two parts – client
side components and server side components. The client side
components handle aspects such as UI, capturing user inputs
and actions, basic sanitation of input, and relaying input to the
server for further processing. The server components handle
authentication, maintaining records in databases, and inter-
acting with other services. These modules are usually run
on the server because the computation they perform has to
be correctly done for the application logic. For example, if
foo.com started checking the passwords on the client side,
a malicious user could bypass this logic and simply return to
the server that the user has correctly authenticated.

This model is usually fine for applications that are not
latency sensitive. But with the introduction of near native
speed execution in browsers with NaCl or Web Assembly,
many game developers are making their games available to
the users to be played directly in the browser. This allows
users to quickly demo games without having to install a sepa-
rate game client. Even when playing against an AI, the game
logic has to run on the server so that the client cannot un-
fairly change game state and arbitrarily award themselves re-
wards or advantages. But this separation between the server
and client has two main issues – Firstly, the communication
between the client and the server introduces communication
latencies which can range all the way from 15 ms to a few
hundred ms (depending on the network quality and the num-
ber of hops between the client and the server). While this
may be okay for turn based games like chess, it is completely
unsuitable for real-time fast-paced games. The second chal-
lenge is that since the computation of the game state happens
on the server side, the server resources (both memory and

compute) have to scale linearly to the number of clients con-
nected. For some very popular games maintained by small
companies this could incur significant costs.

We attempt to solve this problem by allowing the server to
send over to the client some modules of the server side logic
and provide a guarantee that the logic is run exactly as it is
supposed to be. Our solution comes as an API extension to
the JavaScript engine in the browser that allows the JavaScript
loaded from the server to create Intel SGX enclaves inside the
browser, load arbitrary code and remote attest the code with
the server. The JavaScript can then communicate with the
running module through a defined interface while the trusted
module can communicate with the server as required. The
JavaScript can terminate the execution of the enclave at any
time.

The game developers can now offload the game state com-
putation to the client machine while also reducing the latency
between the browser and the game server to order of a few
microseconds. The game server can also trust the final state
(user score, player profile changes) relayed to it from the
trusted enclave and update it when the game ends. This al-
lows a very small server to handle thousands of clients at the
same time.

2 Criteria for Success
We define the following three goals for the project:

1. Successfully design an API extension to the JavaScript
engine that allows the browser to create an SGX enclave,
load and execute arbitrary code, and attest the code with
the server.

2. Demonstrate that latency, bandwith utilization, and
server utilization are improved by the design.

3. Show that the system is secure for the client.
We believe that goal 1 is the most important for a project in
this context; however, goals 2 and 3 are necessary for making
the infrastructure usable in real world.

3 Design
We developed a new API in JavaScript which browsers can
choose to implement (depending on availability of SGX hard-
ware and user preferences). The following types and function
calls were added to the JavaScript API to facilitate creation



of the enclave module, communication with the module, and
termination of the module.
The TrustedModule can be created and managed by the
JavaScript using the following API:

1 @global
2 @module
3 TrustedModule = {
4 @params url - URL for the image of the

trusted module to be loaded inside
the enclave

5 @params remote_attestation_url - URL for
the attestation server

6 @returns the newly created TrustedModule
or None if the creation failed

7 create: function(url: string) :
TrustedModule

8
9 @intializes and runs the module

10 run: function()
11
12 @params message - The string message to

be sent to the trusted module
13 send: function(message: string)
14
15 @params handler - Registers a handler to

be called when a message is received
from the trusted module

16 onmessage: function(handler: function(
message:string)

17 }

The trusted module has a C API that allows it to commu-
nicate with the JavaScript in the browser and the attestation
server over an encrypted channel.

1
2 // An already initialized fd which has the

browser on the other side
3 int websocket_fd;
4
5 // fd - the connection fd, should always be =

websocket_fd
6 // message - a C string message to be sent to

the browser
7 // size - size of the string to be sent
8 // returns 0 on success, -1 otherwise
9 int send_message(int fd, char* message,

size_t size);
10
11 // fd - the connection fd, should always be =

websocket_fd
12 // returns - a heap allocated string

containing the message on success, NULL
otherwise. The returned string if not
NULL, should be free’d

13 char *recv_message(int fd);
14
15 // data - buffer of data to be encrypted and

sent to the attestation server
16 // size - size of data to be sent
17 // return 0 on success, -1 otherwise
18 int send_backend(uint8_t *data, size_t size);
19
20 // size - variable to get the size of the

received data in

21 // returns the data received from the
attestation server on success, NULL on
failure

22 uint8_t *recv_backend(size_t *size);

We also provide a attestation library that automatically
verifies the attestation report received from the browser, ex-
changes cryptographic keys and provides a library by which
the attestation server can exchange messages with the trusted
module. The attestation library guarantees confidentiality and
integrity of the messages exchanged.

4 Implementation
We implement the feature of creating enclaves in a separate
service called the enclave_service that is started with
the browser. This service waits for incoming WebSocket
connections from the browser and on receiving a connection,
expects 2 URLs from the browser. The first URL is the URL
of the image that should be downloaded and instantiated
inside the enclave. The second is a hostname:port pair
to connect to for remote attestation of the enclave. The
enclave_service then forks a new process where it
creates and initializes an enclave. It then connects to the
attestation server and retrieves the attestation report from
the client. After the attestation server verifies the report, it
tells the host service to run the enclave. After this point, the
only responsibility of the host service is to relay messages
between the enclave, remote server and the browser. The
messages between the browser and the enclave are exchanged
in clear text and the messages to and fro the attestation server
are encrypted using the cryptographic keys exchanged as
a part of the attestation report. The root of trust of these
keys are based in the enclave because the hash of the keys is
signed and included as a part of the report.

This guarantees confidentiality and integrity of messages
for the server and the enclave. But we also need to make
sure that the enclave cannot hijack the execution of the
enclave_service and steal client secrets because it runs
in the same address space of the host service. We are okay
with the execution of the host service being hijacked as long
as it cannot do anything malicious to the user’s system. To
guarantee that, we restrict the system calls the host service
can make to just read and writes (and a few related ones for
memory mapping). This is done with the use of seccomp 2
filters. These filters are inserted just after the enclave is
created but before calling any function within the enclave.
This ensures that once the enclave code starts executing, no
malicious system calls can be made.
We build our host and enclave library on top of the Mi-
crosoft Openenclave framework 3. This includes the
enclave_service, the attestation server and the actual
enclave itself.

5 Testing Performance
As mentioned in Section 2, we want to evaluate our infras-
tructure on 2 fronts. Latency and server resource utilization.



Figure 1: The response time across pings was significantly improved
when using the trusted browser. Note the log scale of the y-axis.

To achieve this we created two applications and measured
various parameters.

5.1 Echo Server
This is a simple ping application where the browser sends
subsequent 80 ping requests to the server at an interval of
100 ms. The time for the response is measured in microsec-
ond granularity. The server component of this application just
echoes back whatever messages it receives. We build this ap-
plication in two ways. One using traditional server side com-
putation and second using trusted modules. Both the modes
have different server and JavaScript components.
Figure 1 shows the latencies of the subsequent requests for
both the modes on a log scale. We can clearly see that the
average latencies of the traditional echo server are around 52
times higher than that of the latencies from the trusted mod-
ule. This is possible because the communication is directly
over the local loop back interface to the enclave running on
the same machine. This drastic improvement in latencies can
greatly improve the experience for browser games. Note here
that the backend communication here is minimum. The at-
testation server simply establishes the identity of the enclave
and sends it a message it to start replying to the pings.

5.2 K-means++ clustering
To measure the resource utilization of the server, we need an
application that would have significant load on the server both
in terms of CPU and bandwidth usage. This is characteristic
of applications where the client sends over large amount of
data, which is processed and sent back to the user. For exam-
ple, proprietary video processing algorithms or other scien-
tific computations wherw the server doesn’t want to share it’s
algorithm with the user and wants to charge them for every
use.
We pick one such example, the K-means++ clustering algo-
rithm 1. This algorithm separates out a bunch of points in 2D
space into user supplied K number of clusters. This being an
iterative algorithm takes significant computation resources.
For our experiments we repeatedly cluster 1000 points into 11
clusters. The browser code here instead of taking data from
the user, generates random coordinates for a 1000 points, se-

rializes them and sends them over to the server. The server
classifies them and reports the time for clustering. We create
10 parallel requests, each of which send a new one to replace
them once a response is received.
Figure 2 shows the CPU utilization of the server for both the
baseline and our framework. It is easy to see the start dif-
ference in the CPU usage. This directly would translate to
higher throughputs and the server being able to handle more
clients at a time. Figure 3 shows the bandwidth utilization of
the server. The baseline has more network bandwidth con-
sumption almost all the time. There is a large peak in the
beginning for our framework at initiation time, because the
enclave image is being downloaded. Currently the way our
framework is implemented, the image size is very large be-
cause we have to statically link the entire binary. But this can
be controlled by sending only the actual server code and then
merging with the libraries on the client side. The signature of
the entire file would still remain the same.
Reduction in both these factors enable the server maintainer
to reduce the cost of the running the service while incurring
very little cost to the client (cost for clients is distributed over
all the clients).

6 Side notes
While implementing our technique we noticed a major flaw
in the remote attestation samples provided with Openenclave.
Which was that they send the public key of the enclave to the
server (with it’s hash signed in the report). And then use RSA
public key cryptography to exchange messages. The draw-
back of this technique is that it doesn’t provide integrity of
the messages sent to the enclave because the host also has
access to the public key. We raised an issue on the Ope-
nenclave repository regarding the same. The maintainers ac-
knowledged the bug, but decided not to fix it because a new
release with full TLS support is soon coming out. But we
fixed this issue while using with out system by generating an
ephemeral symmetric AES-256 key, then signing with the en-
claves private key and encrypting it with the remote servers
public key and sending it to the server. Then we use this
ephemeral key to do all the communication after that point.
This guarantees both confidentiality and integrity of the com-
munication.

References
1. K-means++ clustering. (2019, April 28). Retrieved from

https://rosettacode.org.
2. Seccomp filters - http://man7.org/linux/man-pages/

man3/seccomp init.3.html.
3. Microsoft Openenclave - https://github.com/Microsoft/

openenclave.

https://rosettacode.org
http://man7.org/linux/man-pages/man3/seccomp_init.3.html
http://man7.org/linux/man-pages/man3/seccomp_init.3.html
https://github.com/Microsoft/openenclave
https://github.com/Microsoft/openenclave


Time (secs)

CP
U 

(%
)

0

20

40

60

80

20 30 40 50

Baseline Trusted Browser

CPU utilization

Figure 2: The CPU utilization for the server in percentage over time.

Time (secs)

N
et

w
or

k 
us

ag
e 

(K
bp

s)

0

2500

5000

7500

10000

12500

20 30 40 50

Baseline Trusted Browser

Network utilization

Figure 3: The Network utilization for the server in Kbps over time.


	Motivation
	Criteria for Success
	Design
	Implementation
	Testing Performance
	Echo Server
	K-means++ clustering

	Side notes

