MUSM

Minimal Universal Secure Messaging

Nikita Samsonau
samsonov @mit.edu

Abstract—Messaging apps became an essential part of modern
communication. Very few of those apps, however, provide methods
to verify privacy, and most users have no option but to trust
that end-to-end encryption is provided. Cross-platform data
sharing has been shown to be common practice, some of those
platforms are forced to have back doors systems under specific
political regimes. To ensure privacy, we propose MUSM (Minimal
Universal Secure Messaging), an application that guarantees end-
to-end encryption by overlaying existing messaging systems with
RSA message encryption.

I. BACKGROUND AND MOTIVATION

Messaging apps are an ubiquitous and necessary tech-
nology for communicating today. Among teenagers, they are
currently preferred over social media apps [1], and represent
a rising trend of customer communication channel in the
developed world [2]. Very few of those apps, however, provide
methods for users to be able to verify privacy, and a number
of those application have been reported to share data across
different platforms, or have plans to do so [3]. Specific political
situations [4] often enforce back door policies that leave
user data exposed, and unreliable handling of encryption is
pervasive among platforms [5]. Finally, the rapid adoption of
so-called secure messaging apps such as Wire or Signal reveal
a growing desire for privacy.

II. THREAT MODEL

Whenever a message is sent, it passes through multiple
points from the sender to the received: from browser, to router,
to ISP, to the webserver, and then to the receiver. While TLS
and similar approaches protect comunications from client to
the webserver, it does not protect from the webserver itself.
Even if we assume that apps like Facebook that claim high
standards of security actually implement it, they still might be
limited by the government regulations. For example, messages
on Facebook can be retrieved by the government provided
a subpoena. Therefore, we focus specifically on end-to-end
encryption, meaning no unencrypted message leaves the user
machine.

Since we need to display decrypted user messages in the
browser, for the scope of this project, we assume website like
Facebook and Whatsapp do not maliciously record user data
and only store the sent texts. This limitation, however, can be
lifted in the future, as described in the Future work section.
Moreover, we need to rely on Google Chrome extensions
framework - specifically, on its sandboxing mechanisms and
storage. We assume no other pages or extensions have access
to the code and environment of our chrome extension. This
assumption is limited, however, since a malicious extension
could still read the decrypted messages from the page. And

Allan Costa
allanc @mit.edu

Driss Hafdi
dhafdi @mit.edu

of course, we assume the user’s machine is not compromised,
since that would defeat the purpose of this application.

III. APPROACH

We propose MUSM, a multi-platform, overlay extension
that uses messaging apps to send encrypted messages between
individual users and groups in order to provide strong and
minimal security.

MUSM is a modular system that is able to provide End-
to-End Encryption to any preexisting messaging service. The
application works by locally intercepting messages before
they are sent through a preexisting messaging infrastructure,
encrypting it, and forwarding the encrypted message to the
interlocutor. On the other side of the communication channel,
the encrypted message is detected by the receivers app and
decrypted. The app then re-renders the UI such that every
encrypted message appears decrypted to the receiver.

MUSM provides a seamless interface to the user with
a simple chrome extension menu, so that users impact in
communication is minimal, and users are only aware of the
application through tags that indicate successful encryption and
decryption.

The proof of concept of MUSM was implemented as a
chrome extension application and built to operate with Face-
book Messenger. The extension was designed to be modular
so that extending it to other Uls require minimal effort and
ensures security. To prove the later point, we implemented a
basic wrapper for WhatsApp in less than 1 hour, and although
slightly buggy, it confirmed our hope of modularity and rapid
prototyping. Moreover, as outlined in our threat model, we
designed our extension to limit its interaction with any online
resource. This means that we store locally the main user’s
private key, all of his/her pre-encrypted messages and every
public key received from a given user.

IV. IMPLEMENTATION

The extension was designed to achieve two main goals:
security and universality. Security is achieved through a mod-
ular and hierarchical approach to functionality, enforcing least
privileges to each of the system’s components. Communication
with local storage, for example, is localized and constrained
to a single component of the system.

In order for MUSM to be universal in a chrome ex-
tension level, it must be able to overlay and interface with
any standard, HTML-based messaging app in the Web. For
such, we developed an UI Interface class that abstracts the
required methods for MUSM to operate. By building on this

class, simple interface-specific code can be written to indicate
essential messaging functionality, such as what to encrypt,
actions to intercept and user specific identifiers. As a proof of
concept of this, we provide two example scripts that abstract
basic Messenger and Whatsapp functionality, allowing MUSM
to operate on those.

We now investigate MUSM’s architecture and specific
component features. MUSM has four layers of operation, each
with minimized privilege for specific functionality. Commu-
nication between each component is done through Chrome’s
built-in runtime API, allowing the system to behave in a
OKWS-like model [6]. Figure 1 depicts message passing
through the system.

chrome.local.storage

A

background <

L)

I inject
1|

| *-Ul-Interface

AV

[Existing Application J popup

Fig. 1. The hierarchical structure of MUSM. Black arrows indicate requests-
response message passing between the different layers. Inject code acts on the
messaging app’s DOM through methods provided by interface. Note that only
the bottom two components (Existing Application and popup) have interfaces
for the user to interact with.

A. Background:

Background is responsible mainly for handling low-level
and application-oblivious functionality, such as communicating
with Chrome’s local storage, or responsively activating or
deactivating MUSM according to the current visited website.
Background also performs essential encryption operations,
such as generating keys or making RSA pairs. It is indepen-
dent of local conversations and runs continuously with the
extension. It communicates with other parts of the application
through message passing and it doesn’t initiate requests on its
own.

B. Inject:

Inject is responsible for setting up most of the interface
overlay logic for the messaging application. It commands
DOM operations by invoking methods defined in inferface (see
below), such as outputting RSA keys or alerting the user about
key deletion. It also makes sure to include a nonce to the
message before encryption, limiting potential attacks on the
system.

When a conversation is detected, Inject builds conversation-
specific, concrete classes which are based on a conversation’s
unique identifier and are responsible for most of the crypto-
graphic methods. Through interface, inject can then operate on
the DOM and intercept, encrypt and decrypt message passing.

C. User interface:

As previously outlined, modularity was a driving factor
for MUSM. Hence, when designing the user interface code,
we had to implement a basic abstract class that provides
methods that will be required by any hypothetical messaging
application.

It provides methods to intercept when the user presses the
“Enter” key, extract the text in the input box, encrypt it and
forward it again to the messaging service. Using a similar
scheme, it also allows the user to share its public on the click
of a button.

Another one of its functions is to provide ways to render
encrypted messages in order to provide a seamless experience
to the user. We append a given keyword at the beginning of
any message sent by MUSM. When the user interface code
detects one of the keywords, it re-renders the textbox in the
conversation to display the appropriate text, whether it is a
decrypted message or an information message telling the user
that encryption is turned on/off for the current conversation.

As previously described, interface can be understood as a
basis code that provides a foundation class on which interface-
specific code is build. In order to implement a new messaging
app specific wrapper, a programmer will have to modify the
addListener fillText and injectScripts methods, updating the
location of the input textbox in the html so that MUSM can
send encrypted messages and share the user’s public key.
The addListener method will also need to include a way
to differentiate sent and receive signals, since the rendering
would differ in some aspects. Lastly, updateUID will also
me modified so that MUSM can update who the current
interlocutor is.

Our prototype contains two such interface-specific scripts,
one for Messenger and one for Whatsapp. The Messenger
version was our initial implementation and is bug free. On the
other hand, we implemented the WhatsApp version mostly as
a proof that our system was modular enough. Given how fast
the implementation turned out to be, we are fairly confident
in the modularity of our system and its ease of use for new
programmers.

D. Popup:

Popup is the main form of interaction of MUSM with
the user. It abstracts the extension functionality into a simple
interface for controling encryption, and is responsible for
keeping globals that report encryption status for the users.
Through popup, the user is able to toggle global encryption,
local/conversation-specific encryption, send his/her RSA key
or delete conversation keys.

V. FUTURE WORK

Since the scope of the project was limited, we focused
mostly on the confidentiality aspect of the application. A
clear improvement would be adding signatures and MACs
to the messages, so that we can ensure full integrity of the
messages. As this would imply message overhead, such an
implementation would require careful design and trade-off
choices.

MUSM

MUSM

MUSM IS OFF MUSM IS ON

You don't have

You have [N s key-

SECURE

Bl send Public Key
Deactivate Local Encryption
[dY Delete Conversation Key

Send Public Key
ilelY Activate Local Encryption
Delete Conversation Key

Je (

s CAlar

Fig. 2. MUSM’s popup interface can be used to send public RSA keys,
toggle conversation-specific encryption, or delete keys. The menu is also color
responsive to indicate if messages are currently being encrypted or not.

As mentioned in the Thread model, we assume the website
does not intercept data from the users screen. We can lift this
assumption by employing iframe and relying on the browser
security instead.

Since our architecture has been designed to be generic and
modular, we can easily extend it to other services, and much
of future work will come from expanding MUSM to other
platforms. Moreover, we could create a generic way to create
interfaces for other messaging apps - in particular, we are
interested in text messaging apps that don’t require internet
connection.

The UI could definitely be more user friendly. As of now,
MUSM requires a significant amount of user control and some
basic knowledge of some cryptographic principles.

Finally, an essential future work would be expanding
MUSM into mobile technology, since much activity of messag-
ing apps rely on those. In this scenario, user-friendliness would
require a form of coordination between mobile and computer
devices, for which case a number of approaches are possible
and for discussion.

VI. CONCLUSION

In this paper, we have proposed and described MUSM, a
Minimal Universal Secure Messaging technology that overlays
existing messaging applications to ensure privacy. We built a
modular and resilient software system that is able to intercept,
encrypt and decrypt messages while providing a simple and
intuitive interface for users to operate it. One of the goals for
the project was scalability and universality, which was further
confirmed when we quickly expanded MUSM to WhatsApp
from existing infrastructure. Much work is to be done for future
work, but as a proof of concept MUSM was able to achieve
its main goals.

APPENDIX A
PROJECT REPOSITORY

https://github.mit.edu/dhafdi/6.858-Final-Project

(1]

[2]

(3]

(4]

[3]

[6]

REFERENCES

Messaging apps are now bigger than social networks. Business Insider.
Sep, 2016.

Facebook study: 53% of consumers more likely to shop with a business
they can message. Campaign US. August 03, 2016.

WhatsApp will not share user data with Facebook until it complies with
GDPR, ICO closes investigation. Tech Crunch. Mar 14, 2018.

We(Chat) The People: Technology and Social Control in China. Har-
vard Political Review, 2017. http://harvardpolitics.com/world/wechat-the-
people-technology-and-social-control-in-china/

WhatsApp Security Flaws. Wired Magazine, 2018.
https://www.wired.com/story/whatsapp-security-flaws-encryption-
group-chats/

Building Secure High-Performance Web Services with OKWS

https://css.csail.mit.edu/6.858/2018/readings/okws.pdf

