
Protocol Encryption and Message
Stream Encryption for WebTorrent

Brian Gu, Kelvin Lu

MIT, 6.858 (Computer Systems Security)
{bgu, kelvinlu}@mit.edu

May 12, 2018

Abstract

Message Stream Encryption (MSE), also known as Protocol Encryption (PE), is an extension to the Bittorrent
Protocol that encrypts the Bittorrent stream and header information. The goal is to make Bittorrent traffic
harder to detect by third parties (e.g. ISP’s) while maintaining high download speeds. In this paper, we
assess the security of PE/MSE and why it was important to implement for WebTorrent, a Javascript-based
Bittorrent client for web browsers and Node.js servers.

I. Introduction

Readers can find Related Pull Request/Code
here and here.

The goal of Message Stream Encryption
(MSE) and Protocol Encryption (PE) is to ob-
fuscate the header for third-parties to detect
BitTorrent traffic by encrypting header infor-
mation. This provides anonymity and con-
fidentiality for peers, which is important in
countries where ISP’s are allowed to ban peers
suspected of illegal file sharing. Furthermore,
BitTorrent is a favorite target of ISPs for throt-
tling mechanisms1, and PE makes BitTorrent
traffic harder to detect and throttle. Protocol
Encryption also provides defense against man-
in-the-middle attacks, preventing third-parties
from spying on plaintext data being sent over
the protocol.

Section II and III give context as to what
problem we are solving and what the threat
model looks like. Section IV details the
PE/MSE handshake protocol, and Sections V
and VI discuss the protocol and our discover-
ies while researching and implementing this
protocol for WebTorrent.

1TorrentFreak, Comcast Throttles BitTorrent Traffic, Seed-
ing Impossible

II. Background

i. Bittorrent

The BitTorrent Protocol is one of the most pop-
ular protocols for peer-to-peer file sharing. The
peer-to-peer file sharing network model dif-
fers significantly from the typical client-server
model in that all participants (nodes) on the
peer-to-peer network are equally privileged:
all nodes both consume and supply resources.
This contrasts with the client-server model,
where a central authority is needed to coor-
dinate between clients. As of 2015, AT&T es-
timates that BitTorrent makes up 20% of all
broadband traffic2.

To download a file from a BitTorrent net-
work, a peer user must obtain the correspond-
ing .torrent file or magnet URI to discover
peers who currently possess the file. The user
then reaches out to each seeding peer and initi-
ates the BitTorrent protocol to download por-
tions of the file from each seeder. Once the
user has downloaded the file, they are then
also seeders of the file and other peers can
download the file from them.

2AT&T, AT&T patents system to âĂŸfast-laneâĂŹ BitTor-
rent traffic

1

https://github.com/webtorrent/bittorrent-protocol/pull/36
https://github.com/webtorrent/webtorrent/pull/1384


PE/MSE Encryption • May 2018 • bgu, kelvinlu

ii. WebTorrent

WebTorrent is an open-source torrent client
written in Javascript, which works both in-
browser and as a Node.js application. WebTor-
rent implements the BitTorrent protocol as well
as a number of features that are interesting in
the context of usability and security.

When run in browser, the WebTorrent client
uses a modified version of the BitTorrent proto-
col and WebRTC, which encrypts data streams.
The WebRTC protocol is important as the in-
browser client does not support TCP and in-
stead relies on WebRTC for transport. Our fo-
cus is on the Node.js server implementation of
WebTorrent that uses TCP, as the browser client
is incompatible with most BitTorrent clients
and is already provided encryption (both a
result of using WebRTC).

The current server implementation of
WebTorrent does not provide PE/MSE, which
is an issue for servers communicating with
peers with restrictive ISP’s. The lack of encryp-
tion is also an issue for users with particularly
strict firewalls.

III. Threat Model

The threat model which Protocol Encryption
addresses is one in which attackers may read
the data streams between peers, in order to
possibly:

• Passively eavesdrop, with the goal of pro-
tocol or content identification.

• Actively execute MITM attacks.

.
An example of an attacker which may read

the data streams (i.e. TCP transports) between
peers is an Internet Service Provider, which
may do so with the goal of identifying and
throttling BitTorrent traffic. Many ISPs are
easily able to identify unencrypted BitTorrent
traffic simply by reading the plaintext hand-
shake sent between clients; the unencrypted
handshake always begins with \19Bittorrent
Protocol.

Our goal is to make BitTorrent traffic look
indistinguishable from other Internet traffic so
that ISP’s and other eavesdroppers cannot de-
tect that we are using BitTorrent. We also want
to ensure that the PE/MSE handshake itself is
secure from detection by eavesdroppers and
attackers that use MITM attacks.

It is important to note that PE/MSE is not
meant to provide security against an untrust-
worthy peer. The original BitTorrent protocol
ensures that seeders cannot send a different
file than what was originally asked for without
downloaders noticing, and PE/MSE is meant
to add an additional layer of security above
BitTorrent without compromising any of its
features.

IV. PE/MSE Protocol

i. Cryptographic Handshake Protocol

The BitTorrent protocol begins with a Diffie-
Helman key exchange and encrypts using a
RC4 keystream cipher. Suppose that Client A is
a BitTorrent client that is seeking to download
a file, and suppose that Client B is a BitTor-
rent client that is seeding the same file. When
Client A initiates a connection with Client B,
the handshake proceeds in five blocking steps.
In the first two steps, the two clients exchange
Diffie-Helman Public Keys in order to negoti-
ate a shared secret. In the next two steps, the
two clients verify the shared secret and shared
torrent info hash, and negotiate a shared en-
cryption method (usually RC4 cipher). These
steps are described in more detail below.3

1. Client A sends their Diffie-Helman Public
Key using Ya = GXa (mod P). G and P
are known constants. Client A then sends
a random-length padding PadA between 0
and 512 bytes.

2. Client B sends their Diffie-Helman Pub-
lic Key Yb, along with a random-length
padding PadB. By this point, Client A and
Client B both can calculate a shared secret
S = YXb

a (mod P) = YXa
b (mod P).

3Specification taken from Vuze Wiki

2

https://github.com/webtorrent/webtorrent/issues/69
https://github.com/webtorrent/webtorrent/issues/291
https://github.com/webtorrent/webtorrent/issues/291


PE/MSE Encryption • May 2018 • bgu, kelvinlu

Figure 1: The PE/MSE handshake. Pluses are concatenations and quotations indicate string literals.

3. Client A sends over three to four items in
concatenation:

• A SHA-1 hash of the string ’req1’
concatenated with the Secret S. This
allows Client B to resynchronize
their buffer after the random-length
padding

• A SHA-1 hash of ’req2’ with SKEY
xor’d with a SHA-1 hash of ’req3’
with Secret S. Client B is able to iden-
tify which infohash Client A is re-
questing with this, and initialize its
RC4 keystream.

• An encrypted concatenation of: a pro-
tocol verification constant (VC), a list
of encryption methods Client B may
select from (crypto_provide, meth-
ods currently supported are plaintext
and RC4 encryption), and a pad PadC
and its length (between 0 and 512
bytes).

• (Optional) Client A may choose to be-
gin and encrypt the regular bittorrent
protocol (IA) To ensure synchroniza-
tion, Client A always sends the length
of IA (0 if not sent)

4. Client B sends an encrypted concatenation
of: the same verification constant VC, an en-
cryption method crypto_select selected
from the list of methods crypto_provide
provided by Client A, and a pad padD and
its length (between 0 and 512 bytes). This
ends the handshake.

5. From here on out, Client A and Client B
communicate with the encryption method
chosen by Client B (ENCRYPT2). This is
usually continuing the RC4 cipher, though
some clients may opt to revert to plaintext
communication.

The stream key SKEY is the infohash of the
torrent being requested. Client A will know
this because it is initiating the connection in
order to download a torrent with that infohash.
In the current implementation of WebTorrent,
a client may seed multiple files, so the seeding
Client B will be able to determine which file
Client A is requesting based on the hash of the
stream key. See Figure 1 for a summary of the
handshake.

ii. Handshake Security

Here, we explain the security features provided
by the components of the cryptographic hand-
shake.

In the first two steps, each client sends a se-
quence of between 96 and 508 bytes that are in-
distinguishable from a random sequence. The
purpose of concatenating PadA and PadB to the
ends of the respective clients’ DH public keys
is to obfuscate the fact that both clients are
engaging in the MSE protocol; passive eaves-
droppers would be able to more easily identify
the protocol if a fixed length header was used
instead. These two steps enable the clients to
establish a shared Diffie-Helman secret S.

3



PE/MSE Encryption • May 2018 • bgu, kelvinlu

The information sent by Client A in the third
step allows Client B to identify the appropriate
torrent (via the obfuscated hash of the stream
key), in the case where Client B is seeding
multiple torrents. The encrypted verification
constant allows Client B to verify that Client
A agrees on the shared secret and stream key,
and crypto_provide provides Client B with a
list of encryption methods to use. Currently, all
known implementations provide both plaintext
and RC4 encryption as options; in the future,
perhaps more will be provided. Finally, PadC
may be used for future extensions to the MSE
protocol.

The information sent by Client B in the
fourth step includes the same verification con-
stant, a selected encryption method, and a pad
PadD. The verification constant allows Client
A to verify that the two clients agree on shared
secret and stream key; the selected encryption
method completes the encryption method ne-
gotiation process; and PadD may be used in
the future for extensions.

It is also of note that, because RC4 encryp-
tion uses a keystream, communication of the
encrypted verification constant helps to protect
against MITM replay attacks.

iii. Fallback

Because many clients will not support
PE/MSE, clients must be prepared to "fallback"
to the original unencrypted protocol. Deter-
mining whether or not a peer implements pro-
tocol encryption can be done with little over-
head:

Seeders who receive requests can check
the first several characters of the first mes-
sage. The unencrypted protocol always begins
with the ASCII encoded string \19BitTorrent
Protocol.

Initiators who send requests can try to send
the beginning of the encryption handshake,
and get rejected. Afterwards, they will know
to send only unencrypted messages.

V. System Evaluation

We implemented PE for WebTorrent according
to the above specification. Through our test-
ing, we found that WebTorrent clients with our
implementation are able to communicate with
each other, and also with other major torrent
clients implementing PE (such as µTorrent).

As stated before, the goal of PE/MSE is to
provide fast encryption and make BitTorrent
traffic more difficult to detect4. However, in the
years since the PE/MSE protocol was originally
designed, further work has demonstrated key
weaknesses and vulnerabilities. We evaluate
how well PE/MSE is able to meet its goals
given the current state of knowledge.

i. Protocol Detectability

The main goal of PE/MSE encryption is to
make BitTorrent traffic undetectable to eaves-
droppers such as ISP’s. ISP’s generally detect
BitTorrent traffic either by looking for the hand-
shake protocol and looking for traffic shape (i.e.
looking at the lengths of packets sent).

In terms of traffic shape detection, the
PE/MSE handshake hides itself very well.
Each message is sent with a random-length
padding whose length is either not sent or hid-
den in an encryption. It is generally difficult to
identify the PE/MSE handshake alone. How-
ever, ISP’s are still able to identify BitTorrent
traffic using the shape of the rest of the Bit-
Torrent protocol, which often involves large
transfers of data in one direction.

Though the encryption methods used (RC4
cipher, SHA-1) have been proven to be inse-
cure, in practice the protocol is still fairly effec-
tive against passive eavesdroppers. In theory,
with enough computational power, an active
attacker certainly could exploit the vulnerabil-
ities in RC4 (Fluhrer attack) and SHA-1 (the
SHAppening) for protocol/content identifica-
tion or MITM attacks. However, seeding ses-
sions are generally not long enough for such
attacks to occur, and thus Protocol Encryp-

4SourceForge, Identifying the Message Stream Encryption
(MSE) protocol

4



PE/MSE Encryption • May 2018 • bgu, kelvinlu

tion still provides a reasonable level of security
against passive eavesdroppers that are not ac-
tively attempting to decode messages. Addi-
tionally, the protocol takes basic precautions
to mitigate the risks posed by these insecuri-
ties: for example, the RC4 cipher discards the
first 1024 bytes of the keystream to avoid the
Fluhrer attack.

Overall, PE/MSE provides a very weak level
of protection from detectability. It is generally
used against small ISP’s and other passive lis-
teners who do not have the expensive resources
to monitor traffic in detail.

ii. Performance

The PE/MSE protocol handshake only needs to
be initiated once per session between seeder, as
many times as the regular handshake is used.
The methods used in the handshake (SHA-1, D-
H key exchange) are all relatively lightweight
and add little overhead to the protocol. RC4
itself is also a fairly lightweight cipher algo-
rithm, and so even full protocol encryption is
not a large overhead for BitTorrent. In practice,
we found that the cryptographic handshake
added no significant overhead to the time it
took to download a file.

VI. Conclusion

Overall, the Protocol Encryption and Message
Stream Encryption protocols are fairly weak
encryption methods. However,they follow a
paradigm of opportunistic encryption and as
a result they are fast and provide a first line
of defense against ISP detection and throttling.
This will be immensely helpful for WebTor-
rent users who live in areas with non-standard
ISP’s and in areas with high risk of MITM at-
tacks/eavesdroppers. We hope that our contri-
bution to the WebTorrent client will be helpful
for BitTorrent servers and its torrents.

As of 5/11/2018, our implementation is
available online in two Github pull requests
(here and here) to the open source WebTor-
rent repository. Because this is a fairly signif-
icant change to protocol implementation, the

pull request is still currently under review by
WebTorrent contributors.

We would like to acknowledge Feross
Aboukhadijeh, the creator of WebTorrent, for
suggesting this project to us, for providing us
with resources and guidance on BitTorrent and
WebTorrent, and for reviewing our implemen-
tation.

References

[1] At&t patents system to ’fast-lane’ bittorrent
traffic, Aug 2015.

[2] Azureus, Message stream encryption, Jan
2006.

[3] Ernesto, Encrypting bittorrent to take out traf-
fic shapers, Dec 2015.

[4] SourceForge, Identifying the message stream
encryption (mse) protocol, Jul 2009.

5

https://github.com/webtorrent/bittorrent-protocol/pull/36
https://github.com/webtorrent/webtorrent/pull/1384

	Introduction
	Background
	Bittorrent
	WebTorrent

	Threat Model
	PE/MSE Protocol
	Cryptographic Handshake Protocol
	Handshake Security
	Fallback

	System Evaluation
	Protocol Detectability
	Performance

	Conclusion

