
1

Using Innovative Instructions to Create Trustworthy
Software Solutions

Matthew Hoekstra, Reshma Lal, Pradeep Pappachan, Carlos Rozas, Vinay Phegade,
Juan del Cuvillo
Intel Corporation

{matthew.hoekstra, reshma.lal, pradeep.m.pappachan, carlos.v.rozas, vinay.phegade,

 juan.b.del.cuvillo}@intel.com

Abstract
Software developers face a number of challenges when creating
applications that attempt to keep important data confidential.
Even diligent use of correct software design and implementation
practices, can allow secrets to be exposed through a single flaw in
any of the privileged code on the platform, code which may have
been written by thousands of developers from hundreds of
organizations throughout the world. Intel is developing
innovative security technology that allows software developers
control of the security of sensitive code and data by creating
trusted domains within applications to protect critical information
during execution and at rest. This paper will show how
protection of private information, including enterprise rights
management, video chat, trusted financial transactions, among
others, has been demonstrated using this technology. Examples
will include both protection of local processing and the
establishment of secure communication with cloud services. It
will illustrate useful software design patterns that can be followed
to create many additional types of trusted software solutions.

1 Introduction
1.1 Secure Software Challenges
Digital devices are integral to the lives of millions of people
today. Applications on these devices are used for everything
from sharing pictures with family and friends, to working with
top secret enterprise intellectual property, with hundreds of new
applications and cloud services becoming available every day.

As a result, applications are responsible for protecting
increasing amounts of sensitive information including financial
account data, passwords, personal calendars, medical
information, as well as confidential enterprise data, etc..
Recognizing their responsibility to ensure that private data is only
used as intended, application developers are becoming
increasingly security conscious. Secure development practices
are standardized in many organizations and security testing is
often a key part of software validation cycles. But even so,
protection of critical data depends upon the correctness of a
significant amount of software on the platform which has been
written by others and which grants privileges to look into an
application’s data space. Application developers must also trust
the users of client platforms and system administrators of cloud
service platforms to follow security best practices that keep
application-managed data safe from malicious software.

Anti-virus products play a critical role in limiting
opportunities for the introduction of malware, but history shows
that users will continue to browse, download interesting
applications, and fail to follow security best practices when these

practices become inconvenient. As a result, users fall victim to
bad actors and put not only their personal information at risk, but
potentially critical enterprise intellectual property as well.

There is a clear need for technological solutions that will
help software developers ensure that even naïve users, with little
understanding of digital security threats, can safely manage their
personal, financial, and enterprise IP without encumbering their
user experience, or limiting their personal control. This need is
exhibited across hundreds of applications that manage important
information, with more created every day.

1.2 Overview
The paper Innovative Instructions and Software Model for
Isolated Execution [1] provides a description of Intel® Software
Guard Extensions (Intel® SGX), a new set of CPU instructions
that give application and service providers a safe place to stand
when managing the use of the data they consume and collect.
Sensitive data is protected within applications even when the
platforms on which they run are infected with more privileged
malicious software or if the platform falls into the physical
control of a person wishing to gain unauthorized access to the
data.

The remainder of this paper provides a review of the
programming model for SGX. It describes the design steps taken
by developers wishing to take advantage of these instructions,
and then reviews three example secure solutions that have been
developed to take advantage of these new instructions.

2 SGX Programming Model
In this review of SGX and its programming model, we use the
following terminology:
• Enclave – isolated region of code and data within an
application’s address space. Only code executing within the
enclave can access data within the same enclave.
• Measurement – a cryptographic hash of the code and
data in an enclave at the time it is initialized.
• Attestation – the mechanism by which an enclave on
one platform proves to a remote entity, that it was instantiated
correctly.

Using SGX, an application can start the enclave creation process
by executing the following sequence of instructions:
� ECREATE – Allocates a region of virtual memory within

the application for hosting the secure code and data.
� EADD - Critical code and data pages are added to the

enclave using EADD.
� EEXTEND – Updates the measurement of the enclave to

include the code or data added in EADD.

2

� EINIT – Locks down the contents of the enclave and
ensures that only the code within the enclave has access to
the data regions in the same enclave.

Once the enclave has been created and initialized with EINIT,
attempted accesses to the enclave’s memory from unauthorized
software, even software such as virtual machine monitors, BIOS,
or operating system functions operating at a higher privilege
level, are prevented.

From a physical point of view, while enclave data is
resident within registers, caches, or other logic blocks inside the
processor package, unauthorized access via software is prevented
by CPU logic. Whenever enclave data leaves the on-package
caches to be written to platform memory, the data is
automatically encrypted and integrity protected. This prevents
malicious individuals from using memory probes or other
techniques to view, modify, or replay data or code contained
within the enclave.

As each page of data is loaded into the enclave, using the
EADD and EEXTEND instructions, internal data structures
within the CPU are updated to include cryptographic
measurements of the code and data added to the enclave. The
ability of a remote party to verify that enclave measurements
and platform settings are configured as expected is referred to as
attestation. SGX uses two related credentials for attestation:
reports and quotes. A report is used to verify the correctness of
enclaves on the local platform, and a quote can be used to reflect
platform and enclave state to entities outside of the platform.
Once the attestation has been successfully completed, a trusted
channel can be established between a server and the enclave
enabling secrets to be securely transmitted. More details
regarding attestation are discussed in [2].

3 Example Applications
Using the software model described in the overview, a number of
interesting trustworthy applications can be created through the
use of the SGX technology. Each of the applications described in
the remainder of this document have been successfully built and
executed on a prototype hardware implementation of the SGX
technology. Design and prototyping of the Enterprise Rights
Management (ERM) and Secure Video Conferencing (SVC)
applications in particular were sponsored by the United States
Department of Homeland Security and the United States Air
Force Academy.i

3.1 One-time Password (OTP)
A simple application that can be created with SGX is a generator
of one-time passwords.

3.1.1 Overview
OTP is an authentication technology often used as a second factor
to authenticate a user. As suggested by the name, the password is
valid only for one authentication and is often used to authorize
online financial transactions.

One example of a one-time password solution is RSA
SecurID®. With this solution, a pre-shared key is established
between a server component and a hardware token, the RSA
SecurID® Hardware Authenticator, which can be in the form of a
keychain or a credit card. Periodically an algorithm is used to
cryptographically combine the pre-shared key and the time to
produce a code which becomes the one-time password.

When logging into a service that uses a one-time password,
in addition to the traditional username and password, a user will
also enter the code that is displayed on the token (computed from
the pre-shared key and the time). In more advanced services the
user may need to use a keypad on the token to enter a value
generated by the server and displayed on the login page

(challenge-response) to prevent phishing attacks. When verifying
the user’s identity, the server component can also generate a code
given the pre-shared key, the time, and an optional challenge
code.

3.1.2 Design Goals
For such a one-time password solution to work, hardware tokens
must be created and distributed to users, resulting in increased
cost for organizations that wish to deploy such a solution.
Software versions of one-time password solutions exist.
However, depending upon the value of the service or transaction
being protected, the solution may be too vulnerable to malware
targeted at the solution.

It would be desirable then to create a software-based one-
time password solution which utilizes the SGX technology to
prevent attacks from malware. A prototype was developed to
evaluate such a solution.

3.1.3 Secure One-time Password Architecture
Like the hardware token based solution, there are two primary
components to the architecture: the OTP server and the OTP
client. In the case of the prototype developed for this work, the
OTP client side component was implemented as a browser plug-
in, but it could be instantiated in a number of different ways as
well, including a stand-alone application or a background service.
Within the OTP client software, the algorithms that interact
directly with the OTP secrets were placed in an enclave. Figure 1
shows the overall architecture.

An example set of steps for installing the OTP plugin on the
client device and generating a shared key is described below:
1. The user requests a new account at a financial institution

(FI).
2. The FI asks the user to install a new browser plugin.
3. The user chooses to install the plugin.
4. The plugin launches and instantiates the OTP enclave.
5. The plugin contacts the FI server and asks for a new pre-

shared key.
6. The plugin authenticates the FI server using a protocol such

as TLS.
7. The FI server ensures that it is communicating with a valid

OTP enclave using mechanisms described in [2]. It can then
establish a trusted channel that terminates in the enclave.

8. To prove that a new account is being established for a valid
user, the user can be provided an authentication code
through an out-of-band channel such as a text message or
phone call.

OTP Server
(optional, can

be hosted by FI)
Client

SGX enabled system

Host OS/Browser

Enclave
OTP Token

OOTP Plug-in

Manageability Engine (ME)

Financial
Institution (FI)

ServerTrusted
Input Time

PAVP
HW

ve

Figure 1: OTP within an Enclave.

3

9. The user is prompted for the authentication code, which he
enters into the OTP plugin, which passes the code to the
enclave, which in turn passes the authentication code over
the trusted channel to the OTP server.

10. The OTP server has now verified that it is communicating
with a correct version of the OTP enclave, and that an
authorized user has requested a new account.

11. The OTP server can now generate a random OTP pre-shared
key. It will store this key locally in a secure fashion, and
associate the key with the user’s account.

12. This pre-shared key can now be sent to the OTP enclave via
the trusted channel that was established during the
attestation process. The OTP server and the OTP enclave
now possess the same pre-shared key.

13. The OTP enclave can now store the pre-shared key using the
sealing process described in [2]. As described in this paper,
the OTP pre-shared key can be encrypted and stored with a
key that is only known to the OTP enclave executing on the
same platform that initiated the OTP provisioning process.

14. At this point both the OTP server and the OTP client
enclave in the OTP plugin can securely access the same pre-
shared OTP key.

Once the pre-shared key has been established between the OTP
enclave and the OTP server, secure solutions can now use the
SGX enabled OTP as a second authentication factor following
the set of steps below:
1. A user begins the login process with her financial institution

using her browser with the installed OTP plugin.
2. The web page received by the browser contains an OTP

element which signals the OTP plugin to become active.
3. The OTP enclave and OTP server establish a secure channel

as described in the provisioning step previously.
4. The OTP server generates a random challenge value and

sends this to the OTP enclave over the secure channel.
5. The OTP enclave generates the OTP value by

cryptographically combining the challenge, the current time,
and the pre-shard key to produce the one-time password.

6. As the user completes the login procedure, the browser
plugin adds the computed one-time password to the set of
data that is sent to the FI.

7. The FI can now validate that the correct one-time password
was used during the login process.

3.1.4 Results
The OTP prototype described here prevents malicious software
from gaining access to the OTP pre-shared key, including
targeted attacks from malicious software with higher privilege.
This results in higher confidence that the authenticating service is
indeed communicating with a platform that was provisioned by
an authorized user.

To better ensure that the web service is indeed
communicating with a human user, additional techniques could
be used. Instead of sending the challenge directly to the OTP
enclave, the remote service could generate a bitmap containing a
visual representation of the challenge code, and encrypt this
before sending to the OTP enclave. The combination of the OTP
enclave and the OTP plugin could use Intel’s Protected Audio
Video Path (PAVP) technology [3] to securely render the bitmap
to the screen in a way that cannot be observed by software. The
user would then enter the challenge code when prompted by the
OTP plugin, thereby ensuring that a person is requesting the
transaction from an authorized system.

To harden the solution even further, a trusted input path
could be established between an input device and Intel’s
Manageability Engine (ME), part of the Intel® Active

Management Technology [4]. The ME could then establish a
secure channel to the OTP enclave, ensuring that no software
could observe the input entry. This solution could use a PIN
known only to the user, and cryptographically combined with the
pre-shared key, time, and challenge to compute the one-time
password.

3.2 Enterprise Rights Management
3.2.1 Overview
Enterprise Rights Management (ERM) is a technology that aims
to secure crucial elements of access and distribution of sensitive
documents, such as confidentiality, access control, usage policies,
and logging of user activities. While most existing solutions
focus on the protection of enterprise data, the need to enforce the
authorized use and dissemination of personal content such as
pictures and videos is becoming increasingly apparent. The same
technologies could be used for this purpose as well.

ERM protected applications typically run on off-the-shelf
client platforms and operating systems. Malware, including
viruses and rootkits, could compromise the ability of an ERM
application to protect its secrets and enforce its policies,
potentially resulting in the transparent loss of digital assets which
may remain undetected for a significant amount of time. One
example of such an attack is operation Aurora which affected
many large corporations [5]. Current solutions, which attempt to
protect ERM assets using encryption and access control
mechanisms, are vulnerable to several attacks. For example,
malware might steal document content and/or encryption keys
from application memory where it is processed; copy display
content from video frame buffers; or violate use policy (e.g., alter
time on the client machine to extend an expired document lease).
In a more advanced attack, if an attacker has physical possession
of a platform, he may be able to use memory snooping or cold
boot style attacks [6] to acquire the keying material for a valid
ERM solution. This would permit the attacker to create malware
which could use those stolen keys to effectively impersonate a
valid ERM client. Finally, an authorized consumer of enterprise
data may, in rare circumstances, wish to maliciously copy large
amounts of sensitive digital information, and could directly
modify the ERM solution to avoid logging and other forms of
detection. In the following sections, we describe an SGX
technology-based ERM architecture, focused on document
distribution, access control and viewing, that addresses these
critical vulnerabilities found in today’s systems.

3.2.2 Design Goals
The key design goals of our ERM architecture were to protect the
system against the following threats:
1. Document content and encryption key theft.
2. Platform and application identity spoofing.
3. Use policy and activity log tampering.
We focus on protecting the client in the ERM system, since client
applications tend to run on platforms that may not have the same
degree of control and security as enterprise servers. However, the
techniques described here can also be extended to protecting
resources on ERM servers.

4

3.2.3 Secure ERM Architecture
In this section, we describe the key components of our client-
server ERM architecture (see Figure 2). The trusted parts of the
client, which are hosted inside of an SGX protected enclave, are
responsible for operating on the assets of the application that
need protection. In the discussion that follows, we describe the
key components of our architecture and how they operate to
provide the level of security needed for various use cases in the
ERM domain.

The client authentication and session management module
authenticates the client platform and user to its counterpart in the
ERM server. Using SGX attestation capabilities, this module
generates a verifiable report of the client’s identity that is bound
to the platform by the CPU. The report also includes information
about the user running the ERM session. The server verifies the
report to ensure that it is communicating with an SGX-enabled
machine and validates (using a directory service such as Active
Directory) that the user is part of an organizational domain that is
authorized to access the ERM system on the specified platform.
The client and server engage in a one-time provisioning protocol
that results in application secrets being securely sealed to the
client platform, using SGX’s sealing capabilities. These secrets,
which can only be unsealed by the application that sealed it, are
used to establish secure sessions with the server in the future,
without the need for constantly proving the identity of the client
platform.

In our architecture, document use policy and encryption
keys are stored in the ERM database on the server. The document
owner specifies use policy and access control using the policy
engine that runs inside the enclave.

 The policy is then uploaded to the ERM database through
the secure communication channel between the client and server.
The protected document is encrypted within the enclave with a
randomly generated key which is stored on the server, and later
distributed to authorized Intel® SGX protected document
viewers. The encrypted documents themselves need not be
stored in the server database and can be disseminated to intended

recipients by various means (document repositories, email etc.).
An authorized user, upon receipt of an encrypted

document, can view it using the secure document reader
component of the client application, running inside an enclave.
The policy engine, after validating that the use policy
(downloaded securely from the server into the enclave) of the
document is compatible with the user operation (e.g., viewing),
also gets the document decryption key and transfers control to the
document reader component. The reader decrypts the document
inside the enclave, parses the content and generates page bitmaps
for rendering on the display device. Since the path between
application memory and the video frame buffer that holds the
bitmap before rendering is insecure, we use PAVP technology to
encrypt bitmaps using a symmetric key shared with the GPU on
the platform. The encrypted bitmaps are transferred to the
graphics hardware for rendering via standard graphics drivers.
Finally, the secure activity logger, also running inside the
enclave, records every user activity related to document viewing
and transmits it to the server where it is stored. This capability
enables features such as auditing of document access and non-
repudiation of user actions.

The untrusted part of the application, consisting of the GUI
and libraries used to avail of kernel services (e.g., file I/O, thread
management etc.), interface with the trusted part through well-
defined entry-points. The interface was designed to ensure that no
secrets from the trusted part are allowed to leak out to the
untrusted part, and the hardware/software protections of SGX
ensure that the secrecy and integrity of the data and code inside
the enclave-resident trusted part is maintained at all times.

The ERM server, which we assume to be secure in this
work, consists of the authentication and session management
module, a directory service for maintaining user and platform
information, and the database that stores information about
whitelisted client platforms; client-server session state; document
policies and keys; and user activity logs. All communication
between the server and authenticated clients is encrypted and also
offers integrity and replay protection to provide end-to-end
security for various use cases.

Figure 2: Key Components of Client-Server ERM Architecture

5

3.2.4 Implementation and Validation
We implemented a prototype ERM solution, starting with an
open source software library (MuPDF) for document viewing and
rendering, and adding modules for provisioning, authentication
and session management, policy enforcement, activity logging
and secure display for the client; the ERM server was completely
implemented from scratch. We implemented several attack
scenarios such as key stealing, policy modification, video frame
buffer scraping, and spoofing of application identity to attack the
provisioning protocol. Our experiments showed how SGX
technology enabled the application to withstand these attacks and
satisfy all its security objectives. The prototype successfully
passed two rounds of penetration testing by security experts in
the enterprise and government sectors.

We learned several lessons from our experience in building
the ERM application using SGX technology. Since we started
with existing open source software in our implementation, we
gained insight into performing a security analysis of the
application’s assets. This led to a refactoring of the application to
fit the untrusted/trusted partition that was required for SGX
enabling. Our work influenced the validation and enhancement of
the libraries and tools that facilitate SGX application
development. By carefully designing various modules, we were
able to develop several reusable security modules (provisioning,
authentication and session management) that were subsequently
used by other projects.

In Figure 3 below, we show a high level view of the Secure
Video Chat application which contains two SVC clients and a
server that are protected using SGX technology. The figure
illustrates the trusted components that are hosted inside the
enclave and the trusted channel between the SVC enclave and I/O
devices (e.g. camera, microphone, speaker and display).

3.3 Secure Video Conferencing
We will now examine how the security of a video conferencing
application can be hardened using SGX technology. With the
widespread availability of high network bandwidth and
inexpensive hardware for capturing video and audio on client
platforms, use of video chat, video conferencing and web
conferencing applications has become increasingly popular for
real time information sharing. This creates an opportunity for the
unauthorized capture and distribution of a video conferencing
stream by malicious individuals, or theft of valuable IP or
sensitive information in enterprise and government sectors. An
unauthorized entity or malware can intercept and steal the
Audio/Video (AV) stream during a video conferencing session.
Today’s secure video conferencing solutions provide strong
protection of sensitive content on the network through the use of
cryptographic methods. But with the migration of threats from
the network onto the computing platform, this level of security is
no longer sufficient to protect the AV stream as it is being
processed on the computing device. SGX allows a video
conferencing application to protect its assets on the platform and
enables strong participant authentication, thus mitigating a broad
range of threats that could compromise the secrecy and integrity

of the AV stream. Further, if the platforms contain input and
output (I/O) devices that present a strong identity and have
processing capability, a secure channel can be created between
the VoIP enclave and the I/O device. Thus we can protect the
AV input and output against an attack that compromises the
integrity of the I/O stack in order to steal the input from the
camera and microphone or the output to speaker and display
devices.

3.3.1 Threat Model for Video Conferencing
To understand the protection of a video conferencing application
using SGX, let us consider a two person Secure Video Chat
(SVC) application. The users first establish a call session using a
call initiation protocol such as Session Initiation Protocol (SIP),
after which the locally captured AV streams are transmitted using
a transport protocol such as Real Time Transport Protocol (RTP).
In a secure video chat, participant authentication occurs prior to
session setup with the help of a SVC server that checks the
identity of the participants. The AV streams are encrypted for
secure transmission using a protocol such as Secure Real Time
Transport Protocol (SRTP). The limitation of such a secure video
chat is that it is vulnerable to attacks such as the following:
1. Keys used for SRTP encryption can be stolen from the

application’s memory during processing.
2. The cleartext AV stream can be stolen from the

application’s memory during media stream processing or
SRTP decryption.

3. User identities can be spoofed, compromising participant
authentication.

4. Any policy, such as logging the call events, or not allowing
recording, etc., can be violated through modification of
application code that enforces such policies.

3.3.2 Secure Video Conferencing Architecture
In our lab experiment, we modified an open source video
conferencing application to use SGX and created a significantly
hardened video chat application. To develop the security
architecture, we first identified the adversaries and the threat
model for the video chat usage, and created a list of assets that
needed protection from the malware. We then analyzed an
existing video conferencing stack, and studied its operation to
understand the flow of control and secure assets. This enabled us
to modify the design of the stack with well-defined trusted and
untrusted components. The trusted components contained code
and data requiring confidentiality and/or integrity protection such
as SRTP keys, media streams, cryptographic operations, policy
enforcement logic etc. The untrusted components contained code
and data for interfacing with operating system services and
drivers. Since the OS components only handled content that was
encrypted, they were not required to be in the trusted part of the
application. The trusted components could be protected inside
one or more enclaves, though in our implementation we used a
single enclave to host all sensitive code and data. Using multiple
enclaves offers increased isolation amongst the trusted
components, especially if the components are developed by
multiple ISVs. The elements inside SVC’s trusted partition are:

6

1. Authentication: Responsible for authenticating the
participant to the SVC server, enabling the client to present
strong attestation data which is signed using CPU keys.
After successful authentication, secrets are provisioned to
the SVC enclave and sealed to it for use in subsequent
sessions, without requiring lengthy authentication and
provisioning each time.

2. Media Processing: Performs operations on media such as
software encoding/decoding, adaptive de-jittering, lip
syncing, and echo cancellation.

3. SRTP: Encryption and decryption of AV streams. SRTP
keys are protected inside this secure module.

4. Trusted I/O: Manages the secure transfer of audio and
video streams between the SVC enclave and the AV input
and output devices (camera, microphone, speaker, display).
This requires the availability of trusted I/O technology for
camera, microphone, speaker and display on the computing
device. In our experiment, we used Protected Audio and
Video Path (PAVP) technology available on Intel platforms
to protect audio and video output from the enclave to the
graphics device and to the HDMI speakers. Trusted input
will be included in future work.

5. Policy Engine and Call Logging: The code for enforcing
the policy governing the video chat must be hosted inside
the enclave to prevent a code modification attacks.

3.3.3 Results
We were successful in taking an open source video conferencing
stack and repartitioning it to use SGX and PAVP to create a
video chat application that had significantly increased protection
over currently available solutions. We conducted several security
penetration tests, where the SGX-enabled application
successfully withstood all tested high-privilege malware attacks.
In our experiment, we protected the audio and video output as
well, through integration of SGX and PAVP technologies, which
protects against attacks such as video buffer scraping. Our work
demonstrated how we could create secure channels between SGX
and trusted I/O devices to protect against attacks that target the
I/O stack.

The SVC architecture is applicable to VoIP applications
such as multi-party video conferencing, phone (audio) calls,

Instant Messaging (IM), texting, whiteboarding and web
conferencing. Software developers can map our design to their
existing implementations for creating SGX-hardened solutions.

4 Future Work
While we have shown how SGX can be used to mitigate many
types of attacks attempting to acquire confidential information
during runtime and at rest, there are many additional
opportunities.

4.1 Hardening Server Processing
Many security applications such as ERM and SVC rely on the
security of backend components that include one or more servers.
These servers perform, at a minimum, authentication and
distribution of initial secrets and could be involved in other
secure transactions such as information distribution policy,
storage of audit logs, etc. In our current work, we focused on
client security for various usages; however, future work is
intended to focus on the use of SGX for server security. This
includes interaction with various types of virtualization
technologies, workload migration between servers, and secure
cloud server provisioning techniques.

4.2 Trusted Input
All three of the use cases discussed in this paper would benefit
from improved security when transferring data from local input
devices to enclaves on the CPU. This includes input from
keyboards, touch screens, microphone, cameras, and others.
Future work will focus both on how individual input elements
can be extended in order to establish secure paths, as well as
opportunities to add secure input aggregation points to the
platform. This would continue to allow for low-cost input
devices while still maintaining control of confidential
information processing.

4.3 Improved tools
In creating the prototypes described in this paper, a robust
prototype SDK and set of development tools were used to
automatically generate the code required to seamlessly transition
between traditional untrusted application code, and SGX
protected enclaves. Additional enhancements would also be
beneficial, including the ability to see visual representations of

SVC Application – Sender

SRTP

Audio
Codec

Video
Codec

Enclave

Authentication Call Log

RTP SRTP

Audio
Codec

Video
Codec

Authentication Call Log

PAVPRTP

Enclave

SVC Application – Receiver

SVC Server

Figure 3: Secure Video Chat Application Structure

7

data flows into and out of enclaves to help ensure that the
appropriate data is being protected, without accidentally passing
sensitive information out of the enclaves. Additional
programming language extensions may also make the
development of secure software easier.
 Future work will evaluate how various enhancements
to development tools affect the secure software creation process
when utilizing SGX.

5 Related Work and Summary
Several other technologies also serve to protect critical code and
data. This section reviews these technologies and describes their
relation to SGX.

One related set of technologies include managed runtime
environments such as Oracle™ Java and Microsoft™ .NET. A
managed runtime environment (MRTE) can enforce security
policies pertaining to the managed code, and protect the integrity
and confidentiality of any code within the managed environment.
However, the MRTE must still trust any code with higher
privileges to protect its data. An MRTE can be used effectively
with SGX, allowing managed code to interact with trusted
services implemented in enclaves, or even potentially hosting the
entire MRTE itself within an enclave, but the MRTE alone
cannot provide the same confidentiality and integrity benefits.

Another software technique for protecting secrets is
utilizing tamper resistant software (TRS) [7]. TRS is a set of
techniques which serve to make it difficult to understand and to
change the logic flow of critical regions of software, and in many
cases help the software keep key secrets safe from observation by
unauthorized code. TRS techniques are quite complex for
developers to use and are constantly subjected to reverse-
engineering by motivated attackers. TRS generally also suffers
from significant performance degradation. SGX solves many of
the problems that necessitated the creation of TRS, while making
reverse engineering of the protection technique ineffective and
allowing developers to create trusted code modules using familiar
tools and processes.

Another scheme employed to create a more trusted
environment is the use of microkernels. A microkernel reduces
the total amount of code that executes with the highest privilege
and unfettered access to all application code and data. This, in
principle, can greatly reduce the attack surface. SGX can achieve
the same or better reduction in attack surface, without requiring
specific system architecture for the operating system, and can be
used in conjunction with microkernels as well.

Type 1 Virtual Machine Monitors can be used to create an
application hosting environment in an isolated virtual machine
(VM). For example, a secure VM could be created for financial
transactions, hosting an operating system which is separated from
the general purpose OS used for other activities. Isolation from
the general purpose operating system is certainly beneficial but
there are still significant challenges for an application that wishes
to maintain the confidentiality and integrity of its data. The
application must still trust the operating system and the VMM, as
well as the BIOS etc. This is a significant amount of code that
was most likely not written by the application developer.

A challenge to all software approaches is to be certain that
privileged software is trustworthy, For example, it is possible to
host one trustworthy microkernel or VMM inside of another VM.
To solve this problem, Trusted Platform Modules were
introduced. When used properly, the TPM can give a reliable
measurement of all of the software components in the stack
below the application via local or remote attestation. With
TPMs, normally the entire state of the platform is measured.

Improving upon the TPM, technologies such as the Intel®
Trusted Execution Technology (TXT) have been created to allow
the platform state to be reset and measured at a particular instant

in time, providing a dynamic root of trust measurement, rather
than relying software to take action based on measurements that
were recorded at some earlier point. This reset-then-measure
process allows a system to have a smaller trusted computing base
(TCB).

While TXT can limit the amount of platform infrastructure
code that needs to be measured, its typical use still includes a full
featured VMM and/or operating system as part of an
application’s trust boundary. The application developer may
need to trust a significant amount of external code.

Recognizing the challenges presented by the need to trust a
full operating system, CMU’s Flicker [8] loads a simple hosting
environment, reported to be as little as 250 lines of code that
executed with the primary operating system suspended. With
Flicker, an application could execute its untrusted functions in the
primary operating system and move its trusted functions to the
Flicker environment.

The Flicker approach has a few challenges. Firstly, Flicker
code runs with a very high privilege level (that of a VMM), so
other applications and the primary OS must intrinsically trust this
code. Secondly, in order to support long running trusted code,
Flicker infrastructure becomes a new type of scheduler,
responsible for scheduling the primary operating system and the
trusted applets. Thirdly, Flicker has performance issues related to
transitioning into and out of trusted code, in part due to
communication with the TPM and also the inability to execute
untrusted code on some cores while trusted code is executing on
others. Finally, using TXT for Flicker makes it unavailable for
its typical use: launching a trusted VMM after the platform has
been configured. With SGX, trusted and untrusted functions can
execute simultaneously on multiple cores. SGX does not require
communication with the TPM, and does not interfere with the use
of TXT for existing usages.

Overshadow [9] is another research approach to remove the
operating system from the TCB of an application. Overshadow
uses a virtualization layer to change the memory access
semantics to protect applications running in a primary operating
system. This approach also shares may design goals with SGX,
but requires the application provider to trust the VMM
implementation. It is also vulnerable to a hardware based attack,
where an adversary with physical control of the platform could
attain the encryption keys used by the VMM. SGX protects
against many types of physical attacks.

Flicker and Overshadow share many security goals with
SGX. One could imagine creating an application that takes
advantage of a Flicker or Overshadow type approach on
platforms without the SGX technology, and seamlessly makes
use of SGX capabilities on platforms which contain the feature.

6 Acknowledgements
The authors of this paper wish to acknowledge the contributions
of many people throughout Intel who dedicated countless hours
to defining, refining, and implementing hardware and software
prototypes of the SGX technology. We also wish to thank
software developers from within Intel and partner companies who
reviewed and helped refine the SGX software model.

Finally we wish to recognize the support of the United
States Department of Homeland Security and the United States
Air Force Academy in the design and prototyping of the ERM
and Secure Video Conferencing applications.i

Intel is a trademark of Intel Corporation in the U.S. and/or
other countries.

8

7 References

[1] F. McKeen, I. Alexandrovich, A. Berenzon, C. Rozas, H.

Shafi, V. Shanbhogue and U. Savagaonkar, "Innovative
Instructions and Software Model for Isolated Execution," in
Hardware and Architectural Support for Security and
Privacy (HASP), Tel Aviv, Israel, 2013.

[2] I. Anati, S. Gueron, S. P. Johnson and V. R. Scarlata,
"Innovative Technology for CPU Based Attestation and
Sealing," in Hardware and Architectural Support for Security
and Privacy (HASP), Tel Aviv, Israel, 2013.

[3] Intel Corporation, "Graphics - Blu-Ray Disc* playback with
the Intel(R) Graphics (FAQ)," [Online]. Available:
http://www.intel.com/support/graphics/sb/CS-
029871.htm#whatis. [Accessed 17 June 2013].

[4] Intel Corporation, "Intel(R) Active Management
Technology," [Online]. Available:
http://www.intel.com/content/www/us/en/architecture-and-
technology/intel-active-management-technology.html.
[Accessed 17 June 2013].

[5] McAfee Labs and McAfee Foundstone Professional Services,
"Protecting Your Critical Assets: Lessons Learned from
"Operation Aurora"," [Online]. Available:
http://www.mcafee.com/us/resources/white-papers/wp-
protecting-critical-assets.pdf. [Accessed 17 June 2013].

[6] J. A. Haldermen, S. D. Schoen, N. Heninger, W. Clarkson,
W. Paul, J. A. Clalandrino, A. J. Feldman, J. Appelbaum and
E. W. Felten, "Lest We Remember: Cold Boot Attacks on
Encryption Keys," 2008. [Online]. Available:
https://citp.princeton.edu/research/memory/. [Accessed 17
June 2013].

[7] D. Aucsmith, "Tamper Resistant Software: An
Implementation," in Proceedings of the First international
Workshop on information Hiding, London, 1996.

[8] J. M. McCune, B. Parno, A. Perrig, M. K. Reiter and H.
Isozaki, "Flicker: An Execution Infrastructure for TCB
Minimization," Proceedings of the ACM European
Conference on Computer Systems (EuroSys'08), March 2008.

[9] X. Chen, T. Garfinkel, E. C. Lewis, P. Subrahmanyam, C. A.
Waldspurger, D. Boneh, J. Dwoskin and D. R. Ports,
"Overshadow: a virtualization-based approach to retrofitting
protection in commodity operating systems. In Proceedings
of the 13th international conference on Architectural support
for programming languages and operating systems (ASPLOS
XIII)," New York, NY, USA, 2008.

INFORMATION IN THIS DOCUMENT IS PROVIDED IN
CONNECTION WITH INTEL PRODUCTS. NO LICENSE,
EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE,
TO ANY INTELLECTUAL PROPERTY RIGHTS IS
GRANTED BY THIS DOCUMENT. EXCEPT AS PROVIDED
IN INTEL'S TERMS AND CONDITIONS OF SALE FOR
SUCH PRODUCTS, INTEL ASSUMES NO LIABILITY
WHATSOEVER AND INTEL DISCLAIMS ANY EXPRESS
OR IMPLIED WARRANTY, RELATING TO SALE AND/OR
USE OF INTEL PRODUCTS INCLUDING LIABILITY OR
WARRANTIES RELATING TO FITNESS FOR A
PARTICULAR PURPOSE, MERCHANTABILITY, OR
INFRINGEMENT OF ANY PATENT, COPYRIGHT OR
OTHER INTELLECTUAL PROPERTY RIGHT.

A "Mission Critical Application" is any application in which
failure of the Intel Product could result, directly or indirectly, in

personal injury or death. SHOULD YOU PURCHASE OR USE
INTEL'S PRODUCTS FOR ANY SUCH MISSION CRITICAL
APPLICATION, YOU SHALL INDEMNIFY AND HOLD
INTEL AND ITS SUBSIDIARIES, SUBCONTRACTORS AND
AFFILIATES, AND THE DIRECTORS, OFFICERS, AND
EMPLOYEES OF EACH, HARMLESS AGAINST ALL
CLAIMS COSTS, DAMAGES, AND EXPENSES AND
REASONABLE ATTORNEYS' FEES ARISING OUT OF,
DIRECTLY OR INDIRECTLY, ANY CLAIM OF PRODUCT
LIABILITY, PERSONAL INJURY, OR DEATH ARISING IN
ANY WAY OUT OF SUCH MISSION CRITICAL
APPLICATION, WHETHER OR NOT INTEL OR ITS
SUBCONTRACTOR WAS NEGLIGENT IN THE DESIGN,
MANUFACTURE, OR WARNING OF THE INTEL PRODUCT
OR ANY OF ITS PARTS.

Intel may make changes to specifications and product
descriptions at any time, without notice. Designers must not rely
on the absence or characteristics of any features or instructions
marked "reserved" or "undefined". Intel reserves these for future
definition and shall have no responsibility whatsoever for
conflicts or incompatibilities arising from future changes to them.
The information here is subject to change without notice. Do not
finalize a design with this information.

No computer system can provide absolute security under all
conditions. Built-in security features available on select Intel®
processors may require additional software, hardware, services
and/or an Internet connection. Results may vary depending upon
configuration. Consult your system manufacturer for more
details.

Intel®, the Intel® Logo, Intel® Inside, Intel® Core™, Intel®
Atom™, and Intel® Xeon® are trademarks of Intel Corporation
in the U.S. and/or other countries. Other names and brands may
be claimed as the property of others.

Copyright © 2013 Intel® Corporation
__

i The Department of Homeland Security (DHS) sponsors
the Center of Innovation at the United States Air Force
Academy, which conducts research for educational
purposes. The United States Air Force Academy and DHS
sponsored the production of this material under United
States Air Force Academy agreement number FA7000-11-
2-0001. The U.S. Government is authorized to reproduce
and distribute reprints for Governmental purposes
notwithstanding any copyright notation thereon.

The views and conclusions contained herein are
those of the authors and should not be interpreted as
necessarily representing the official policies or
endorsements, either expressed or implied, of The United
States Air Force Academy or the U.S. Government.

