
Department of Electrical Engineering and Computer Science

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

6.858 Spring 2017

Quiz I Solutions

Mean 49.7 Median 49.5 Standard deviation 12.2 Kurtosis -0.45

0

5

10

15

20

0 20 40 60 80
score (max: 80)

st
ud

en
ts

0

5

10

15

20
count

1

I Paper reading questions

1. [4 points]:

Which of the following attacks are prevented in Google’s design primarily by encrypting data at rest
(on disk)?

A. Engineers gaining access to customer data. Answer: False; decrypted when on.

B. Adversaries gaining access to customer data by physically stealing disks from a storage server. Answer:
True.

C. Adversaries gaining access to customer data by exploiting vulnerabilities in application code such as
the calendar service. Answer: False; decrypted when running.

D. Adversaries passively monitoring network traffic between Google’s data centers. Answer: False; data
not at rest.

2. [4 points]:

Which of the following are reasonable arguments for deciding when to use phone-based two-factor
authentication or a hardware token like RSA SecurID?

(Circle True or False for each choice.)

A. True / False The phone offers better usability, since the user need not carry a separate device.
Answer: True.

B. True / False The phone offers significantly stronger security, since it has a more powerful processor
that can compute a more CPU-intensive hash function. Answer: False; hash function should always
be strong.

C. True / False The phone offers significantly stronger security, since it can display longer one-time
password codes (RSA SecurID displays just 6 digits). Answer: False; short cycle makes # digits
irrelevant.

D. True / False The phone offers weaker security, since the OS kernel may have bugs that allow other
applications to tamper with the two-factor authenticator app. Answer: True.

2

3. [4 points]:

According to Paul Youn, if security was the absolute top goal for Airbnb, what should the company do?

A. Enable two-factor authentication for all customers. Answer: False.

B. Check the user’s name against a valid credit card before opening an account. Answer: False.

C. Implement real-time fraud analytics. Answer: False.

D. Shut down the company’s web site. Answer: True.

4. [4 points]:

Which of the following applications could be supported under Ryoan?
(Circle True or False for each choice.)

A. True / False Ryoan could support a video transcoding service, which returns a video re-encoded at
a different resolution. Answer: True.

B. True / False Ryoan could support a tax preparation service which stored the user’s tax data for past
years to simplify filling in next years’ taxes. Answer: False; cannot store data.

C. True / False Ryoan could support an encrypted email service that allowed users to send encrypted
messages to one another. Answer: False; no communication between users.

D. True / False Ryoan could support a survey application, where each user submits his or her survey
results to an application running on Ryoan, and at the end of the survey, the Ryoan application releases
a summary of survey results. Answer: False; no aggregation across users.

3

II Buffer overflows

Consider the following code snippet:

int foo(int x) {
int a;
int *p;
void (*bar)(int);
char buf[16];

p = &a;
bar = &somefunc;
gets(buf);
*p = 0;
bar(a);

}

The stack layout of foo is as follows:

0x7fff0120: return address
0x7fff011c: saved ebp
0x7fff0118: variable a
0x7fff0114: variable p
0x7fff0110: variable bar
0x7fff0100: variable buf

Recall that gets does not stop at zero bytes.

There are several possible solutions, and you do not need
to use every aspect of the code snippet in your solution.

5. [10 points]:

What input should an adversary provide to function foo to invoke unlink("x.txt")? Assume the
code for unlink lives at address 0x40a01234.

Answer:
"x.txt" + \0 + "A"*10 + 0x40a01234 + 0x7fff0114 + 0x7fff0100.
p must be a valid pointer so *p doesn’t crash. Alternatively, overflow return address with &unlink,
and place &"x.txt\0" above unlink’s return address without breaking bar or p in the process.

4

III Baggy bounds checking

Consider the following code snippet:

struct foo {
int a;
int b;
int c;
char d[12];

};

struct foo *p;
p = malloc(sizeof(struct foo));

char *buf = p->d;
buf += N;
printf("0x%x\n", buf);

N is a constant integer value (positive or negative), between -1024 and 1024. Assume the program is running
under Baggy bounds checking with slot_size=16, that the size of an int type is 4 bytes, and that the
compiler does not insert any padding into the struct.

6. [6 points]:

Suppose N = 18, and malloc() returns 0x10203040. What does the program print?

Answer: 0x10203040 + 3*4 + 18 = 0x1020305e.

7. [6 points]:

The program prints 0x9001005a. What was N? Hint 1: there is only one correct answer. Hint 2: recall
that Baggy manipulates certain bits in pointers for bookkeeping.

Answer: High bit indicates out-of-bounds. Since a % slot_size >= slot_size/2, underflowed
from 0x10010060, so we have 0x60 + 12 + N = 0x5a. N is -18.

5

IV OKWS / lab 2

Ben Bitdiddle wants to implement HTTP request pipelining in zookws, to avoid the overhead of setting up a
new TCP connection for each request. HTTP pipelining works as follows:

• When the client has multiple requests to the same server, it sends them back-to-back over the same
TCP connection.

• The server sends responses to these requests in order, over the same TCP connection.

• The client uses the Content-Length: header in each response to determine when one response ends
and the next response begins.

8. [10 points]:

Describe the changes that would have to be made to zookws to implement HTTP request pipelining.
Your design should ensure that responses received by the client come from the correct service. That is,
a compromised service should not be able to provide responses for requests to other services.

Hint: think about how a client determines where one response ends and the other begins, and think
about what a malicious service might do to confuse the client. Once you add HTTP pipelining, can one
service manipulate a connection also used by another service to send its response?

Answer: zookd reads requests from client sockets, passes request contents to correct service, reads
response, checks Content-Length, and relays back to client. It is important that services do not have
access to socket descriptor!

6

V Trusted hardware

Intel SGX attestation for an enclave works by maintaining an append-only log of events since the creation of
the enclave. The log receives 4 kinds of events, each corresponding to an instruction that the creator of the
enclave can invoke:

• ECREATE(start_address, end_address) when the enclave is first created.

• EADD(page_address) when a page is added to the enclave. The contents of the page have already
been initialized prior to EADD by the enclave’s creator, but the contents of the page are separately
attested to using the next instruction.

• EEXTEND(address, data) ensures that the 256-byte region of memory at address contains data.
This allows the creator of an enclave to prove that the enclave’s initial pages contain expected data.

• EINIT when the enclave has been fully initialized and cannot be changed from outside of the enclave.

Ben Bitdiddle writes some pseudocode to check an attestation generated from an Intel SGX enclave, as
follows:

def verify(log, prog):
prog holds the program we expect to be loaded
if log[0] != { "opcode": "ECREATE", "create_start": prog.start, "create_end": prog.end }:
return False

if log[-1] != { "opcode": "EINIT" }:
return False

for logent in log[1:-1]:
if logent["opcode"] == "EADD":
if logent["add_start"] < prog.start || logent["add_end"] >= prog.end:
return False

elif logent["opcode"] == "EEXTEND":
if prog.code[logent["extend_addr"] : logent["extend_addr"]+256] != logent["extend_data"]:
return False

else:
return False

return True

Assume that the contents of log are properly cryptographically authenticated, so that only a legitimate Intel
SGX processor could have produced the log.

7

9. [6 points]:

Describe an attack by which an enclave creator can fool Ben’s verifier into returning True but actually
create an enclave that does not contain the expected program prog.

Answer: EADD malicious code without calling EEXTEND.

8

VI Native Client

Ben Bitdiddle is implementing Software Fault Isolation for his Bentium processor, following the approach
described in the Native Client paper. As far as the Native Client design is concerned, his processor is identical
to the 32-bit x86 CPU considered by the Native Client designers.

Ben makes one mistake in his verifier: his verifier forgets to treat nacljmp as a single instruction during
verification, and instead treats it as two instructions (AND $0xffffffe0, %eax and JMP *%eax) that
comprise it.

For your reference, here are some Bentium instruction encodings (equivalent to 32-bit x86):

Encoding Instruction
0f 05 SYSCALL
83 e0 e0 AND $0xffffffe0, %eax
ff e0 JMP *%eax
eb XX JMP to XX bytes past the start of the next instruction

(i.e., XX=00 is effectively a no-op)
b8 AA BB CC DD MOV $0xDDCCBBAA, %eax (load constant into %eax)

10. [10 points]:

On the next page, write a program (i.e., the literal bytes that make up the program’s executable code)
that would pass Ben’s verifier but that invokes the SYSCALL instruction at runtime. Assume the
program starts executing at the beginning of your byte sequence, which gets loaded at the absolute
address 0x00010000 (i.e., 64 KBytes). You should not need more than the 20 bytes that we have
provided space for.

Here is an example of the syntax which you should follow in writing your answer:

Syntax example:
Offset Byte value Instruction
0x00 83
0x01 e0 AND $0xffffffe0, %eax
0x02 e0
0x03 ff JMP *%eax
0x04 e0
0x05 0f SYSCALL
0x06 05
0x07 eb JMP back to start of SYSCALL
0x08 fc (4 bytes back; 0xfc is -4)

9

Offset Byte value Instruction
0x00
0x01
0x02
0x03
0x04
0x05
0x06
0x07
0x08
0x09
0x0a
0x0b
0x0c
0x0d
0x0e
0x0f
0x10
0x11
0x12
0x13
0x14

Answer:

MOV $0x0001000d, %eax b8 0d 00 01 00
JMP +3 eb 03
AND $0xffffffe0, %eax 83 e0 e0
JMP *%eax ff e0
MOV $0x0000050f, %eax b8 0f 05 00 00

10

VII Capsicum

Ben Bitdiddle wants to run a virus scanner on all of Ben’s binary files in /home/ben/bin on his computer.
Ben is worried the virus scanner might be malicious, and might try to read other files in Ben’s home directory,
or modify Ben’s binary files. However, Ben is running FreeBSD on his computer, which supports Capsicum.

11. [6 points]:

What is the simplest way for Ben to isolate the virus scanner using Capsicum so as to prevent the virus
scanner from accessing other files in Ben’s home directory or modifying any of Ben’s binary files? Be
precise; describe both how the isolation is set up prior to running the virus scanner, and how the virus
scanner must run once isolated.

Answer: Wrap in program that opens file descriptor for /home/ben/bin, creates a capability with
mask = CAP_READ | CAP_LOOKUP, calls cap_enter(), and then uses fexec to execute virus scan-
ner.

11

Separately, the virus scanner developer is worried that the scanner code might be buggy, in that it might have
buffer overflows that can be exploited when the virus scanner processes a specially crafted input file. This
makes the virus scanner developer worried that, after the virus scanner encounters one specially crafted file,
it might not report viruses it finds in other files.

12. [6 points]:

Describe how the virus scanner developer can avoid this problem using Capsicum. Even if one input
file triggers a buffer overflow and arbitrary code execution in the virus scanner, the virus scanner
should continue to scan other files. Your changes should not require changing your answer above;
these changes should be implementable by the virus scanner developer without requiring the user (i.e.,
Ben) to do anything different.

Answer: pdfork for each file, limiting new process to only two capabilities, read capability for file,
and write capability for output pipe.

12

VIII 6.858

We’d like to hear your opinions about 6.858. Any answer, except no answer, will receive full credit.

13. [2 points]: Are there things you’d like to see improved in the second half of the semester?

Answer: Lecture:
5x In-lecture questions jump all over the place. 4x Spend more time discussing implementation details,
specific code. 3x Record lecture videos. 2x Another industry guest lecture like Paul’s. Notes or video
for guest lectures. More organized lecture notes.

Content:
6x Discuss exploits in the wild. Moving to higher-level systems papers.

Paper reading:
4x More background on papers/systems, especially OS-level stuff. 4x Paper summary to know what
to look for in a paper. 2x Post FAQs / answers for student questions. 2x More assignments based
on papers, to prepare for quiz; ideally with coding. Move the 10pm question deadline later. Online
true/false reading questions to help read a paper. There’s too much reading. Clearly answer the reading
question during lecture. A forum for discussing papers.

Labs:
3x More background for labs (e.g., recitations). 2x More independent thinking in labs, less busy work.
2x Auto-grade submissions, or at least run some basic checks on submit. 2x Faster lab grading. Better
lab checking code. More feedback on lab grades. Enforce intermediate lab deadlines. More attack-
oriented labs. Remind to fill in answers.txt in lab. Clarify points for extra credit in lab assignments.

Office hours / recitations:
More office hours. Office hours later in the evening. More recitation videos like Ben’s.

Quiz:
More lab-focused exam. Quiz review session. Quiz too long.

14. [2 points]: Is there one paper out of the ones we have covered so far in 6.858 that you think we
should definitely remove next year? If not, feel free to say that.

Answer: 17.5x Ryoan (some specifically pointed out the Intel paper was bad and should be decoupled
from Ryoan). 10x Cloud Terminal. 3.5x OKWS (2x replace with more modern privilege-separated
server design). 2.5x Capsicum. 2x Android (1x bad reading question, 1x not that deep). 2x Confused
deputy. 1x Google overview. 0.5x Baggy. 0.5x -1x Password alternatives (half vote against, one vote to
definitely keep).

End of Quiz

13

