
6.858 Project: One Time Chat

Jake Barnwell, Andres Perez, Miles Steele

https://github.com/mlsteele/one-time-chat

December 2015

1 Abstract

One Time Chat is a chat service that aims to be
information-theoretically secure. Specifically, we
propose a chat service that is built on top of a
randomly-generated one-time pad. Furthermore, we
explore limitations to this model, why one-time pad
encryption isn’t typically used in practice, and how
we aim to resolve these issues.

2 Introduction

Users typically look to public-key cryptography for
secure communication. While public-key cryptogra-
phy is widely used and is sufficiently secure in prac-
tice, it is not information-theoretically secure. The
assumption behind the security of public-key cryp-
tography is that factorizing integers is thought to
be a computationally hard problem. However, this
complexity has not been proven, and there are no
gaurantees that this presumed one-way function will
not be broken in the future.

Fortunately, encryption using a one-time pad
has been proven to be completely information-
theoretically secure (under the right circumstances).
We propose a chat service that is built upon a large1

one-time pad, allowing two (or more) users to se-
curely communicate with each other with guaranteed
confidentiality and integrity.

2.1 Usage of a One-time Pad

Suppose Alice wants to send Bob a message. In order
to guarantee to both Alice and Bob that her message
m1 will be securely2 transmitted to Bob using a one-
time pad, they must first agree on a secret pad p1.
After Alice prepares the message, she encrypts her
message by computing the ciphertext c1 = m1 ⊕ p1,

1 In practice, one that will last a lifetime.
2 that is, in a manner in which no other user will be able

to infer the content of the message

where ⊕ is the bit-wise XOR operator. Bob, when he
receives the ciphertext c1, can compute the original
message m1 = c1 ⊕ p1.

This pad p1 cannot be reused, and must be imme-
diately destroyed. Reusing any bits from p1 breaks
the one-time assumption about the pad.

2.2 Drawbacks of the One-time Pad

Though the one-time pads offers, in theory, com-
pletely secure communication, care must be taken to
implement and use the system correctly. There are
three primary issues with one-time pads that must
be addressed appropriately to ensure security:

1. The pad must be made up of random bits
of data. If the pad’s bits are not truly ran-
dom, then an adversary could obtain informa-
tion about the message by observing the ci-
phertext. Pseudo-random number generators
(PRNGs) are not sufficient for creation of one-
time pads, since PRNGs rely heavily or entirely
on deterministic functions; even very chaotic
functions, like Mersenne twisters, are easily dis-
mantled if an adversary can pinpoint a seed.

2. The users may never reuse the same pad bits.
Suppose two messages m1 and m2 are encrypted
using the same pad p, resulting in c1 and c2,
respectively. Then, we find that

c1 ⊕ c2 = p⊕m1 ⊕ p⊕m2 = m1 ⊕m2

Since an adversary knows both c1 and c2, she
clearly knows m1 ⊕ m2, which means that she
has information about both messages. This is
not secure.

3. Each time a message is encrypted with a pad,
the pad must be the same length as the message.
In other words, before two users can communi-
cate with each other, they must have already es-
tablished a shared pad that is of sufficient length
to encrypt all of their intended messages.

1

Together, these three issues make one-time pads less
preferred for encryption than other more popular
schemes, even though one-time pads are information-
theoretically secure.

3 Design

We believe that much of the inconvenience of using
one-time pads can be solved by generating and shar-
ing a pad that is long enough to encrypt all messages
that a user could feasibly send in her lifetime. We
hypothesize that a pad on the order of 1 terabyte
(TB) in size would be enough to encrypt every text
message for the rest of her life. 3

Our design involves two users4 meeting in person
and generating a pad from a local source of random-
ness, e.g. UNIX’s /dev/random. We have noticed
in practice that this can take a while, but the wait
is well worth it, and users could certainly find ways
of occupying themselves while the pad is generated.
Users then (securely) transfer the generated pad to
their local storage device, and part ways.

At this point, the users can store their shared one-
time pad on hardware devices and communicate us-
ing our chat system. Since both users share the same
stream of random bits, they can achieve perfect secu-
rity under certain threat model assumptions, as long
as they synchronize the use of the pad.

3.1 Definitions

We define the following terms:

• User Person using the chat service.

• Client Command line interface and chat soft-
ware, typically run on a computer.

• Device Separate entity that stores the pad and
other data; in our case, a Raspberry Pi or, for
proof of concept, emulated on the computer.

• Server Message-Relay Server that ferries mes-
sages between clients.

• Pad Very large one-time pad: shared random
bits between two users, and associated meta-
data. Stored on the device.

• Pad segment Some small portion of the pad,
used to help encrypt a message.

3 See Section 5 for details.
4 “Group chat” (i.e. chat among three or more users) is im-

plemented as a simple extension on top of two-way secure chat
(see Section 6.4). To send a message to a “group,” the client
just interprets it as multiple commands to send a message to
single contacts.

• Secrecy Inability for an attacker to guess any
bits of a message.

• Integrity Inability for an attacker to forge or
modify a message without the receiver knowing.

• Security Catch-all phrase used to declare both
secrecy and integrity.

• RNG Random number generator. A service
that (somehow) generates random numbers.

• HRNG Hardware random number generator.
An RNG service that uses hardware input to
help generate “truly” random data.

3.2 Goals

One Time Chat has been designed to address several
specific goals that we have decided are important.
We enumerate our goals below:

• Confidentiality: Messages sent from user A to
user B should only be viewable by users A and
B.5 More strongly, an attacker should not be
able to infer any amount of information about
the message, except for possibly its length.

• Integrity: The receiver of a message should be
able to know, with an extremely high probabil-
ity, if an attacker (e.g. a man in the middle)
modifies the message that is received. Further-
more, the receiver must be able to know, with
an extremely high probability, that the message
originated from who she thinks it did.

• Security Against Malicious Server: A ma-
licious chat server should not be able to drop,
modify, or replay packets without the receiver
knowing.

• Security Against Malicious Client: If the
user is running the chat client on a malicious
computer, it is possible that the the malicious
computer can eavesdrop (e.g. with a keylogger)
on the plaintext message typed by the user ryin,
modify the message and/or recipient[s], or drop
the message entirely before it is even encrypted
or sent over the network. Besides these infrac-
tions, the client must not be able to modify the
encrypted message (once it is encrypted), or be
able to read any part of the user’s pad whatso-
ever. Furthermore, any infraction made by the
malicious client at this point must not negatively
impact the security of future messages sent by
the user via non-compromised clients.

5 Or, in the case of a group message, by exactly the users
in the group.

2

Similarly, the malicious client may read the de-
crypted message from a received packet, or mod-
ify the sender tag, since the message will likely
be shown on the screen of the client to the user.
Besides this, the client should not be able to read
or know any bits of either user’s pad, nor nega-
tively impact the security of future messages re-
ceived by the user via non-compromised clients.

3.3 Non-Goals

• Availability: We do not provide any guaran-
tees or solutions for availability of One Time
Chat. Though it is very important for a chat
service to have a high up-time, we did not con-
sider it necessary to show this proof of concept
in our chat system. We are certain that if an
adversary, or group of adversaries, tried hard
enough, they could DOS our server and deny
access to users.

• Server Security: The security of the server
is not that relevant to this project. There are
most likely several bugs and vulnerabilities in
the server code, leaving it open to attacks of
various kinds. This is not an issue, and indeed
aligns with our assumptions that a server may
be malicious, malformed, or just not very reli-
able.

4 Threat Model

We assume that the server has bugs and vulnera-
bilities, is susceptible to attacks, and is generally un-
trusted. The server may drop or modify packets of its
choosing. While we do allow for the possibility of the
server dropping or modifying every single packet, we
typically assume that it relays a reasonable amount
of messages untarnished.6 We can even assume that
the server logs every packet that is sent through it;
can store them indefinitely; can distribute them to
other users, adversaries, servers, or clients; and re-
play these packets at a later point to try to get them
decrypted, somehow.

We allow for the possibility that certain clients the
user uses are untrusted, but not all of them. We
recognize that a malicious client can still read a user’s
incoming or outgoing plaintext messages, since the
user types on the client computer and reads messages
on the screen. However, when a user is on a malicious

6 For example, if Bob never receives a message from Alice,
it is difficult for Bob to know if the server is dropping all of
Alice’s packets or if she just never sent him anything.

client, future and past messages are not vulnerable,7

only current ones transmitted via the current client.

We assume that the device itself is fully trusted,
and is not malicious. Furthermore, the connection
between the device and the client is private.

The pad, located on the device, is randomly gen-
erated using an RNG service. We assume the pad is
kept secure (only the two relevant users have access
to it), and that no one else knows anything of the
bits of the pad, except for possibly its length.

If the device is physically compromised (e.g. stolen
by an adversary) or the secrecy of the pad is broken,
we do not guarantee the security of any messages,
past, present, or future. This should be obvious: af-
ter all, the pad is the secret key between the users.

The RNG service that creates the pad is trusted,
and is truly random.8 It is not pseudo-random.
Lastly, we assume there is a way to securely trans-
mit the pad data to the device, if the pad was not
generated on the device.

We assume that the correct use of One-time Pads
is information-theoretically secure in its secrecy but
provides no integrity guarantees of its own.

The SHA256-based HMAC is assumed to be a
computationally hard to reverse. If this assumption
is broken, our system still preserves secrecy. We are
not sure whether our system still guarantees the in-
tegrity of messages if HMAC is broken. See Sec-
tion 5.2 for details.

Besides the one-time pad and SHA256-based
HMAC, we do not rely on other encryption schemes.
As such, we are allowed to assume that such encryp-
tion schemes are broken.

5 Encryption

In order to securely send a message from Alice to
Bob, Alice’s device encrypts and signs the message,
resulting in what we call a package. A package is
defined according to the following scheme (where ||

7 For example, if a malicious server logged several previ-
ous (encrypted) messages while both users were using non-
malicious clients, and Alice was now using a malicious client,
the server might send those encrypted packets to the malicious
client to try to get them decrypted. Even if the server never
sent those stored packets to the recipient, One Time Chat has
systems in place to protect against this attack.

8 Even with the HRNG there may still be biases, but treat
it to be unpredictable in our analysis.

3

means concatenation):

package := index || (pbody ⊕ body)

body := ciphertext || tag
ciphertext := ptext ⊕message

tag := HMAC(pkey, ciphertext)

The lengths of the components are as follows:

|message| = |ciphertext|+ |ptext|
|body| = |pbody|
|tag| = 32 bytes

|pkey| = 16 bytes

A package is composed of an index, and a body.
The index allows the user receiving the package to in-
fer from where in the pad to construct pad segments
ptext, pbody, pkey. The index also allows flexibility in
the system to drop packages, without desyncronizing
the use of the pad. The body is our way of encrypting
a message and providing integrity to the packet.

Our system requires 2 · |message| + 48 bytes of
pad to encrypt and securely send a message (see Sec-
tion 5). With the (very generous) assumption that
an average text message is 100 bytes (i.e. 100 charac-
ters long), if a user had a 1 TB pad, she could could
send over 150000 such texts per day for the next 80
years.9

With modern technology, this is not an unreason-
able amount of storage. A cursory search online
reveals that a 64 GB USB drive can be found for
roughly $20. Anyone who is genuinely concerned
about security would likely be willing to spend that
much or more for a lifetime guarantee of secure com-
munication.

The rest of this section aims to explain why we
think this scheme accomplishes our goals.

5.1 Confidentiality

It is impossible to deduce message given

(message⊕ ptext)

as long an adversary has not obtained ptext, and it
is impossible to deduce body from

(body ⊕ ptext)

9 Alternatively, she could choose to send up to 4 or 5 Vlad
the Impaler articles per day.

Since our threat model assumes an adversary does
not have access to the pad, it is impossible for an ad-
versary to know what message and body are. We do
not care to provide confidentiality of index, because
this piece of information does not reveal critical in-
formation.

5.1.1 Resistance to Snooping Attack

If an attacker can intercept all network traffic be-
tween two clients, she should not be able to recover
the original message. We can support this guaran-
tee even under the assumption that the sha256-based
HMAC we use for integrity is completely broken.

5.2 Integrity

We argue that body provides integrity of the package.
An adversary knows where in package the ciphertext
lies (though she doesn’t know what ciphertext is
since it is encrypted with part of pbody). Since
one-time-pad encryption is malleable, adversaries
know that flipping bits in ciphertext will flip bits
in message. For this attack we assume a worst case
in which the attacker knows the full plain text of the
message and the message is only 1 bit long. How-
ever, if an adversary doesn’t change tag, then with
high probability the user would be able to tell that
ciphertext has been changed, because the modified
ciphertext would fail to have the same HMAC. We
assume, however, that the HMAC we use is hard to
fake without a known key.

For the adversary to fool the receiver, she would
have to change the tag as well. Because the adversary
doesn’t know the private key, pkey, of the HMAC, we
believe an adversary wouldn’t be able to to forge the
tag. Furthermore we know that if decryption suc-
ceeds then the sender is who we think she is because
the chances that the pad segments will align is small.

5.2.1 Pad Non-re-use

In any one-time-pad based scheme, it is vitally im-
portant that each bit in the pad is only used to en-
crypt once, ever. Our system defends against pad
re-use by having the device manage which bits have
been used to encrypt and decrypt during the lifetime
of the pad. Because the same pad is stored on two
devices, it is critical to make sure that even if the de-
vices cannot communicate, they do not encrypt mes-
sages with the same bits as each other. This is why
we divide the initial pad in half and dedicate each
half for sending from one device (see Section 6.1).

4

6 Implementation

One Time Chat is implemented using three
separately-running python programs. The client
software runs on a laptop or desktop which the user
places a reasonable amount of trust in. It hosts the
chat UI and communicates with the user, pad de-
vice, and server. The pad device holds the one time
pad data for the user and her contacts, as well as
relevant metadata. It communicates through a pri-
vate, secure channel with the client. The message
relay server is an untrusted server used to transfer
messages between clients. See Figure 1.

Figure 1: System Diagram

6.1 Pad Structure and Storage

The pad data for a pair of users is stored in
two files in the device’s file system. Suppose
two users, Alice and Bob, have set up a shared
pad (see Section 6.2 for details on pad genera-
tion) to communicate with each other. Alice’s de-
vice stores two files: alice.bob.random.store and
alice.bob.random.metadata; Bob has oppositely
named files.

The store file (alice.bob.random.store)
stores the randomly-generated pad bits.
Alice and Bob’s store files are identical
(i.e. alice.bob.random.store is equal to
bob.alice.random.store).

Whenever pad segments are requested to help en-
crypt/decrypt a message, handler code stored on the
device interfaces with the store files to retrieve the
appropriate pad bits.

The metadata file alice.bob.random.metadata

stores certain information about the pad, the con-
tact, and how many bits of the pad have been used
for encryption and decryption:

uid User ID of user

rid User ID of contact

store filename Filename of the random store

metadata filename Filename of this metadata
file

n bytes Total number of shared pad bytes

rservice Service used to generate the bytes
(random or urandom). In practice this should
always be random.

split index Index dividing the two halves of the
pad

direction Direction of encryption (1 means en-
crypt starting at index 0 and moving forward,
-1 means encrypt starting at index n bytes -

1 and moving backwards).

encrypt index Index of pad to start encrypt-
ing from the next time a pad segment is re-
quested

decrypt log A log of all decryption requests
the device has seen; each decryption request is
of the form i-j which signifies that pad segment
from i to j was requested to decrypt.

decrypt max Maximum index for a pad seg-
ment that has been requested for a decryption.
Note that if direction is 1, you decrypt back-
wards (since your contact has direction -1), so
this is actually a minimum.

n eles Number of fields in this metadata, in-
cluding this one.

checksum Hash to help ensure the metadata
wasn’t accidentally modified. Not intended to
protect against a malicious adversary.

The reason we split the pad into two is so that
messages can be sent from Alice to Bob and from
Bob to Alice asynchronously: if Alice sent mA with
index iA to Bob, while at the same time Bob sent
message mB to Alice with index iB , then if both
users were reading from the same portion of the pad,
there could be interference: both could, for example,
try to use the same portion of the pad to encrypt,
which breaks the security of a one-time pad. By
splitting up the pad, each user has a dedicated set of
bits to send (encrypt) from, and the recipient knows
where in the pad to decrypt from when she see an
incoming message from the sender.

Alice encrypts from index 0 moving forward in the
top half of the pad (the index delimiting two halves
is stored by the split index field), and Bob en-
crypts from index n bytes - 1 moving backward in
the bottom half the pad. Similarly, when Alice de-
crypts a message (from Bob), she reads Bob’s half of
the pad, in reverse; and when Bob decrypts a mes-
sage, he reads Alice’s half of the pad in the forward
direction. See Figure 2 for a helpful diagram.

The reason we have the encryption directions mov-
ing in opposite directions towards the center of the
pad is so that the split index can be appropriately

5

Figure 2: Pad Layout. In this diagram, the
function signatures are encrypt(sender,receiver)

and decrypt(sender,receiver,index). Hence,
encrypt(a,b) means that a is sending to b and
needs to encrypt, decrypt(a,b,i) refers to when b

receives the message from a and wants to decrypt it,
starting at index i.

modified if, for example, Bob has run out of encryp-
tion pad but Alice still has half of hers. However,
this feature has not been implemented in the current
version.

Obviously, Bob’s and Alice’s metadata files differ.
Each keeps track of messages it has been asked to
decrypt, as well as what is the next index of the pad
it should use to encrypt.

For example, if Alice has just received a new pad
and has requested a pad segment of length 10, the
device checks the direction and encrypt index of her
metadata (and sees that they are 1 and 0, respec-
tively), and returns pad[0:10], and then updates
the encrypt index to 10 so it knows where to start
the next time.

When Bob receives the encrypted message
(also included is the requested index, i.e. a
decryption index), he checks his metadata file
to see what direction and which half the pad
to look at, and then requests the pad segment
pad[decrypt index:decrypt index+len(msg)].
The range of indices is stored into the decrypt log,
and decrypt max is updated.

The decryption log and max indexes are stored to
help detect dropped packets and replay attacks.

6.2 Pad Generation

We use the /dev/random service to generate the ran-
dom bits of our pads. Because random tries to gen-
erate bits based on stored entropy, it often blocks
while waiting for more entropy, making it very slow
to generate more than a few hundred bytes of data.
To remedy this situation, we have purchased a hard-
ware RNG (HRNG) device, a USB device that helps
seed random by generating randomness based on the
emissions between two physical diodes. Even then,
number generation is very slow for more than several
megabytes. However, other more expensive HRNG
devices would be much faster.

Note that for development and debugging, we of-
ten used urandom since it is much faster.

Figure 3 shows an example of generating an (inse-
cure) pad from urandom.

Figure 3: Generating A Pad

6.3 Device (Pad Device)

The pad device is a device dedicated to storing and
mediating access to the one time pad data for a user
andher contacts. Each user has one device which she
is responsible for keeping safe. A user initializes her
device with a shared pad for each contact she wishes
to communicate with.

Ideally, a Raspberry Pi would be used to run the
device code and connect to the client computer via
an ethernet cable. We were able to make this work
for awhile, but had so much trouble with it that we
chose to emulate the device software on the same
computer as the client software for development pur-
poses. While this eliminates the security benefits of
having a dedicated device, the proof of concept still
stands. The code is still implemented in such a way
that it is easy to run it on a separate device. For
analysis, we assume that the users are utilizing the
separate Raspberry Pi device.

6

6.3.1 Packaging and Unpackaging

The pad device is responsible for encrypting and de-
crypting messages. The encryption and decryption
methods are in device/crypto.py with some tests
in device/test crypto.py. See Section 5 for the
details of the encryption scheme. The cryptography
implementation relies on a simple XOR function and
on Python’s built-in sha256-based HMAC from the
hmac module.

The two crypto functions used by the device are
package and unpackage which, when given (as argu-
ments) message data and pad data, secure and un-
lock messages. For transport convenience, packaged
messages (i.e. encrypted and signed messages) are
encoded in base64 when being transported between
the device and client.

The signatures of the package and unpackage

functions are below:

package (index , message ,
p text , p body , p tag key)

unpackage (package ,
p text , p body , p tag key)

where p text, p body, and p key are different (con-
secutive) segments from the pad.

6.3.2 Confirmation

A malicious client might get a connection to the pad
device. In this case, to ensure that the device doesn’t
use or release pad bits that it shouldn’t, a touch-
screen on the Raspberry Pi is used to ask the user
whether it is okay to use pad bits to encrypt and
decrypt messages; see Figure 4 for an example of
this. (The touchscreen and software is controlled by
the device so it is assumed to be trustworthy.) This
allows the user to have full control of the pad bits
that are used in the chat; a user can choose to de-
cline if, for example, the message says that the client
is requesting 500 bytes of pad when the user had
typed a short message like “hello.” This also makes
malicious-client-based brute force attacks nearly im-
possible.

This confirmation dialogue is certainly an incon-
venience to the user, but it is a trade-off for security
that we think a security-conscious user would be will-
ing to make.

6.3.3 RPC Interface

The client communicates with the pad device via an
HTTP server running on the device. The server
is not accessible to the internet, but is available

Figure 4: Confirmation dialog on device screen.

through the ethernet cable, or as a local service when
running on the same machine as the client.

The RPC server is an HTTP server which has a
client that can be used as if it were a normal python
module from the client. Arguments and return values
are sent as JSON. This RPC server currently allows
two exposed methods, package and unpackage, with
signatures as follows:

package (s r c u id , ds t u id , p l a i n t e x)
unpackage (s r c u id , ds t u id , package)

These methods are responsible for asking the user
for confirmation, getting pad data from pad storage,
feeding it to the crypto functions, and returning the
result. Any unexpected errors that occur are hidden
from the client so that in the case of a programming
error on the device, no sensitive information is leaked
through errors.

6.3.4 Logging

The device logs suspicious occurrences in a device-
local log file. All log entries have a time-stamp and
description of the error as well as additional infor-
mation about the messages involved.

Any time the message integrity check fails (i.e. due
to a mismatched HMAC), the event is logged.

If a message is received which uses a pad index
that was used before, this event is logged on the de-
vice (in addition to instructing the client to display
a warning); See Figure 5 for an example of this.

If a pad index appears to have been skipped, the
event is logged (in addition to instructing the client
to display a warning).

This log exists on the device and hence cannot be
tampered with maliciously. It is inaccessible from
anywhere that is not the client. The hope is that a
security-conscious user would frequently review this
log. Additionally, this log could provide some help
in forensics and damage analysis in the event of a
known compromise.

7

Figure 5: Reused Pad Warning shown on Client

6.4 Chat Client

The chat client presents a command line interface
to the user for sending and receiving messages. It
communicates with the device to request encryption
and decryption, and exchanges encrypted messages
with a relay server. Figure 6 shows a use case of the
client.

To start the client a user gives it as parameters the
URL of the chat server, the URL of the device RPC
channel, and her username.

Figure 6: Example Client Use

The messaging-related client commands are listed
below.
Send a message to a contact:

send [target] [message]
Send to multiple contacts:

ms user1,user2,... [message] (multisend)
Define a group alias:

group [groupname] user1,user2,...
Send message to users in a group:

gs [groupname] message
Receive messages: Press enter.

6.5 Message Relay Server

The relay server is an untrusted server which relays
messages between chat clients. It is implemented as a
simple HTTP server with a single table for messages.

The server is not designed to be secure at all, but
to be the minimum to demonstrate that the rest of
the system could work. It serves over HTTP with
no authentication at all. This is consistent with our
threat model of not trusting the server, but if One
Time Chat were to be effectively used, then a server
with additional security measures would be required.
The implementation is in server/server.py and
stores messages for delivery in server/database.db.

The server provides the following endpoints for
clients:

/ check : Make sure s e r v e r i s up .
/ send : Send a message between us e r s .
− s ende r u id
− r e c i p i e n t u i d
− contents

/ getmessages : Get messages f o r a user .
− r e c i p i e n t u i d
− s t a r t r e f

Each message is assigned a reference number which
clients keep track of in order to fetch only messages
they have not seen before from the server. The latest
ref is fetched from the server each time the client
starts.

7 Conclusion

At the end of the day, we have implemented our own
chat service, and our own cryptography. In other
words, we have broken the first rule of cryptogra-
phy, which is don’t write your own cryptography. As
we iterated through the design of our protocol we
learned how subtle details in protocol could lead to
compromises in confidentiality and integrity. As it
stands, we believe our system is fairly secure under
our threat model, and that our approach in shar-
ing a large pad on a secure device is a step towards
information-theoretically secure communication.

8

	Abstract
	Introduction
	Usage of a One-time Pad
	Drawbacks of the One-time Pad

	Design
	Definitions
	Goals
	Non-Goals

	Threat Model
	Encryption
	Confidentiality
	Resistance to Snooping Attack

	Integrity
	Pad Non-re-use

	Implementation
	Pad Structure and Storage
	Pad Generation
	Device (Pad Device)
	Packaging and Unpackaging
	Confirmation
	RPC Interface
	Logging

	Chat Client
	Message Relay Server

	Conclusion

