
1) Buffer overflows
2) Baggy bounds checking
3) Integer overflows and KINT
4) Privilege separation and OKWS
6) OS Isolation and Capsicum
7) Sandboxing and Native Client
8) Networking and TCP/IP security
9) Network protocols and Kerberos
10) Web security, XSS, CSRF, Injection
11) Web apps, frameworks, Django
12) SSL, HTTPS, and ForceHTTPS



Least Privilege Principle
privilege separation, OS isolation, sandboxing

Sergio Benitez



Outline

• Least Privilege Principle

• Only give as much permission as needed

• Privilege Separation: OKWS

• OS Isolation: Capsicum

• Code Sandboxing: Native Client



Privilege Separation

• Independent functionalities...

• access independent data

• act as independent users

• have independent permissions

• explicitly communicate



OKWS: OKCupidWS

• Web dev. libraries and helper processes

• (Tries to) follow(s) least privilege principle

• Aims to implement privilege separation

• Using standard Unix stuff

• ZookWS follows it almost directly



Privilege Separation

• Independent functionalities...

• access independent data

• act as independent users

• have independent permissions

• explicitly communicate



OKWS

• Independent functionalities...

• access independent data (chroot)

• act as independent users (setuid/setgid)

• have independent permissions (chmod)

• explicitly communicate (rpc)

• are independent processes (fork)



OKWS Design

• OKLD: OK Launcher Daemon

• Runs as root, starts all processes, services

• OKD: OK Dispatcher

• Demultiplexes HTTP requests to services

• PubD, OKLogD: Pub/Logger Daemons

Divided into four processes. Only OKLD runs as root - it starts all other services. OKD 
receives all HTTP requests, figures out where to route them, and then sends them along to 
the proper service. PubD manages static items, like HTML templates, and LogD lets services 
log things.



Solid: RPC
Gray: HTTP
Dashed: “Parent of”
Dotted: SQL



OKD: Sets up its table of regexes, basically. Received 2 sockets for LD: logging, RPC.

Solid: RPC
Gray: HTTP
Dashed: “Parent of”
Dotted: SQL



OKLD: Reads config file, opens 2 socket pairs (HTTP, RPC), forks, chroot, cd, setuid/gid/list, 
execs, sends server HTTP and RPC sockets to OKD.

Solid: RPC
Gray: HTTP
Dashed: “Parent of”
Dotted: SQL



OKLD: Reads config file, opens 2 socket pairs (HTTP, RPC), forks, chroot, cd, setuid/gid/list, 
execs, sends server HTTP and RPC sockets to OKD.

Solid: RPC
Gray: HTTP
Dashed: “Parent of”
Dotted: SQL



OKLD: Reads config file, opens 2 socket pairs (HTTP, RPC), forks, chroot, cd, setuid/gid/list, 
execs, sends server HTTP and RPC sockets to OKD.

Solid: RPC
Gray: HTTP
Dashed: “Parent of”
Dotted: SQL



OS Isolation

• What OS mechanisms allowed isolation?

• ...allowed access control?

• fork, chroot, chmod, setuid, setgid

• Can we do better?

• Capsicum: Yes, with capabilities.



Access Control

• DAC: Discretionary Access Control

• User owns objects

• ...can specify permissions on those (ACL, Unix)

• MAC: Mandatory Access Control

• Objects are tagged (public, secret, top-secret)

• Users are cleared to certain tags

• Actions controlled by policies (secret -> public)



Capabilities

• Permissions are objects themselves

• Basically ‘tokens’ called ‘capabilities’

• Holder of token has capabilities

• Can pass them around, give them away, etc.

• To perform action, present token



Capsicum

• An API that brings capabilities to UNIX

• Aims to enforce compartmentalization

• Least privilege principle

• Two new primitives

• Capabilities

• Capability Mode

LPP = least privilege priciple



Capsicum: Capabilities

• A new type of file descriptor

• Wraps old file descriptor

• Create using ‘cap_new’

• Define permissions on wrapped fd

• 60 possible masks as of writing

• Can wrap: files, dirs, procs, net, devs



Capsicum: Sandbox

• Ability to ‘cap_enter’ ‘capability mode’ ‘

• Only access control via capabilities

• Creates a ‘clean’ environment

• IE, removes non-capsicum fds

• Restricts system calls

• Restricts namespace



DAC vs. Capabilities

• Capabilities enable delegation

• chroot after chrooting

• Capabilities enforce modularization

• Send capabilities around

• Permissions on everything

• Processes, networks, etc.



NaCl: x86 Sandbox

• Let’s sandbox native, x86 code!

• But can’t it do anything?

• Conceptually, two step process:

• 1) Verify code against validity rules

• 2) Enforce rules, prevent side effects



NaCl Components
• Inner Sandbox

• Validates each instruction

• Outer Sandbox

• Intercepts system-calls

• Runtime

• Safe API for external world access



Inner Sandbox

• Instruction level validation

• Four tenants of validation:

• No unsafe instructions (int, lds, etc)

• Memory access within sandbox

• Control flow integrity (jmp to code)

• Reliable disassembly (identify references)




