1) Buffer overflows
2) Baggy bounds checking
3) Integer overflows and KINT
4) Privilege separation and OKWS
6) OS Isolation and Capsicum
7) Sandboxing and Native Client
8) Networking and TCP/IP security
9) Network protocols and Kerberos
10) Web security, XSS, CSRF, Injection
11) Web apps, frameworks, Django
12) SSL, HTTPS, and ForceHTTPS




Least Privilege Principle

privilege separation, OS isolation, sandboxing

Sergio Benitez




Qutline

® | east Privilege Principle

® Only give as much permission as needed
® Privilege Separation: OKWS
® OS |solation: Capsicum

® Code Sandboxing: Native Client




Privilege Separation

® |ndependent functionalities...
® access independent data
® act as independent users
® have independent permissions

® explicitly communicate




OKWS: OKCupidWS

® Web dev. libraries and helper processes
® (Tries to) follow(s) least privilege principle
® Aims to implement privilege separation

® Using standard Unix stuff

® ZookWS follows it almost directly




Privilege Separation

® |ndependent functionalities...
® access independent data
® act as independent users
® have independent permissions

® explicitly communicate




OKWS

® |ndependent functionalities...

access independent data (chroot)

act as independent users (setuid/setgid)
have independent permissions (chmod)
explicitly communicate (rpc)

are independent processes (fork)




OKWS Design

® OKLD: OK Launcher Daemon
® Runs as root, starts all processes, services
e OKD: OK Dispatcher

® Demultiplexes HT TP requests to services

® PubD, OKLogD: Pub/Logger Daemons

Divided into four processes. Only OKLD runs as root - it starts all other services. OKD
receives all HTTP requests, figures out where to route them, and then sends them along to
the proper service. PubD manages static items, like HTML templates, and LogD lets services
log things.



okld

Solid: RPC

Gray: HTTP
Dashed: “Parent of”
Dotted: SQL



okd — okld

oklogd

OKD: Sets up its table of regexes, basically. Received 2 sockets for LD: logging, RPC.

Solid: RPC

Gray: HTTP
Dashed: “Parent of”
Dotted: SQL



pubd ——=—"1 okd — okld

oklogd

OKLD: Reads config file, opens 2 socket pairs (HTTP, RPC), forks, chroot, cd, setuid/gid/list,
execs, sends server HTTP and RPC sockets to OKD.

Solid: RPC

Gray: HTTP
Dashed: “Parent of”
Dotted: SQL



—

- 7
— -~ |
_—

— - 7’
SVC4q SVC, SVCs

oklogd

OKLD: Reads config file, opens 2 socket pairs (HTTP, RPC), forks, chroot, cd, setuid/gid/list,
execs, sends server HTTP and RPC sockets to OKD.

Solid: RPC

Gray: HTTP
Dashed: “Parent of”
Dotted: SQL




.y

\&

oklogd
~

OKLD: Reads config file, opens 2 socket pairs (HTTP, RPC), forks, chroot, cd, setuid/gid/list,
execs, sends server HTTP and RPC sockets to OKD.

Solid: RPC

Gray: HTTP
Dashed: “Parent of”
Dotted: SQL




OS Isolation

® What OS mechanisms allowed isolation?
® ..allowed access control?

® fork, chroot, chmod, setuid, setgid
® Can we do better?

® Capsicum:Yes, with capabilities.




Access Control

® DAC: Discretionary Access Control
® User owns objects
® ..can specify permissions on those (ACL, Unix)
® MAC: Mandatory Access Control
® Obijects are tagged (public, secret, top-secret)
® Users are cleared to certain tags

® Actions controlled by policies (secret -> public)




Capabilities

® Permissions are objects themselves
® Basically ‘tokens’ called ‘capabilities’
® Holder of token has capabilities
® Can pass them around, give them away, etc.

® Jo perform action, present token




Capsicum

® An API that brings capabilities to UNIX
® Aims to enforce compartmentalization
® | east privilege principle
® [wo new primitives
® Capabilities

® Capability Mode

LPP = least privilege priciple



Capsicum: Capabilities

® A new type of file descriptor
® Wraps old file descriptor
® Create using ‘cap _new’

® Define permissions on wrapped fd
® 60 possible masks as of writing

® Can wrap: files, dirs, procs, net, devs




Capsicum: Sandbox

® Ability to ‘cap_enter’ ‘capability mode’°
® Only access control via capabilities

® Creates a ‘clean’ environment
® |E, removes non-capsicum fds

® Restricts system calls

® Restricts namespace




DAC vs. Capabilities

® (Capabilities enable delegation
® chroot after chrooting

® (Capabilities enforce modularization
® Send capabilities around

® Permissions on everything

® Processes, networks, etc.




NaCl: x86 Sandbox

® | et’s sandbox native, x86 code!
® But can’t it do anything!?
® Conceptually, two step process:
® |) Verify code against validity rules

® 1) Enforce rules, prevent side effects




NaCl Components

® |nner Sandbox

® Validates each instruction
® Outer Sandbox

® [ntercepts system-calls
® Runtime

® Safe API for external world access




Inner Sandbox

® |nstruction level validation

® Four tenants of validation:
® No unsafe instructions (int, lds, etc)
® Memory access within sandbox
® Control flow integrity (jmp to code)

® Reliable disassembly (identify references)




Ben Bitdiddle i1s modifying OKWS to use Capsicum. To start each service, Ben’s okld forks, opens the
service executable binary, then calls cap_enter () to enter capability mode in that process, and finally
executes the service binary. Each service gets file descriptors only for sockets connected to okd, and for TCP
connections to the relevant database proxies.

3. [6 points]: Which of the following changes are safe now that the services are running under
Capsicum, assuming the kernel implements Capsicum perfectly and has no other bugs?
(Circle True or False for each choice.)

A. True / False It is safe to run all services with the same UID/GID.
B. True / False It is safe to run services without chroot.

C. True / False It is safe to also give each service an open file descriptor for a per-service directory
/cores/servicename.




