
Baggy bounds with LLVM

Anton Anastasov Chirantan Ekbote Travis Hance

6.858 Project Final Report

1 Introduction

Buffer overflows are a well-known security problem; a simple buffer-overflow bug can often lead to
a security vulnerability letting an adversary execute arbitrary code. There are many approaches
attempting to mitigate this danger. One approach is baggy bounds checking, which we discussed
in class. Baggy bounds checking was first described in [1], whose authors implemented it using
the Phoenix compiler framework. Our project was to implement baggy bounds checking using the
LLVM compiler infrastructure. LLVM provides an intermediate representation (IR) that can be
targeted as a back-end for any high-level language. LLVM also provides a framework for devel-
opers to write passes (typically optimizations although that is not the primary use for us) which
transform LLVM IR. Finally, the LLVM code can be compiled down to machine code for a specified
architecture. We use the LLVM pass framework to write a transformation which inserts baggy
bounds instrumentation into code.

For this project we focused on 32-bit architecture and used the 6.858 Linux VM image.

2 Implementation

2.1 LLVM passes

We instrument a program with baggy bounds checking by applying several transformation passes
to its IR:

• baggy-globals - Insert code to initialize global state variables like the baggy size table

• baggy-save-locals - Ensure that objects allocated on the stack are aligned to SLOT SIZE bound-
aries and insert code to update their entries in the baggy size table

• baggy-rewriter - Rewrite calls to unsafe libc functions (like strcat and strcpy) to use baggy
bounds aware wrappers for those functions instead

• baggy-pointers - Instrument all pointer arithmetic to use baggy bounds checking and insert
a branch to the slow path function if the bounds check fails. Additionally, perform bounds
checking before LLVM intrinsics like llvm.memset

1

Listing 1: A simple implementation of memset
1 void *memset(void *ptr , int value , size_t num)

2 {

3 size_t i;

4 unsigned char c = (unsigned char)value;

5 unsigned char *buf = (unsigned char *)ptr;

6

7 for (i = 0; i < num; i++) {

8 buf[i] = c;

9 }

10

11 return ptr;

12 }

Listing 2: LLVM IR generated for memset
1 define i8* @memset(i8* %ptr , i32 %value , i32 %num) {

2 entry:

3 %ptr.addr = alloca i8*, align 4

4 %value.addr = alloca i32 , align 4

5 %num.addr = alloca i32 , align 4

6 %i = alloca i32 , align 4

7 %c = alloca i8 , align 1

8 %buf = alloca i8*, align 4

9 store i8* %ptr , i8** %ptr.addr , align 4

10 store i32 %value , i32* %value.addr , align 4

11 store i32 %num , i32* %num.addr , align 4

12 %0 = load i32* %value.addr , align 4

13 %conv = trunc i32 %0 to i8

14 store i8 %conv , i8* %c , align 1

15 %1 = load i8** %ptr.addr , align 4

16 store i8* %1 , i8** %buf , align 4

17 store i32 0, i32* %i , align 4

18 br label %for.cond

19

20 for.cond: ; preds = %for.inc , %entry

21 %2 = load i32* %i , align 4

22 %3 = load i32* %num.addr , align 4

23 %cmp = icmp ult i32 %2 , %3

24 br i1 %cmp , label %for.body , label %for.end

25

26 for.body: ; preds = %for.cond

27 %4 = load i8* %c , align 1

28 %5 = load i32* %i , align 4

29 %6 = load i8** %buf , align 4

30 %arrayidx = getelementptr inbounds i8* %6 , i32 %5

31 store i8 %4 , i8* %arrayidx , align 1

32 br label %for.inc

33

34 for.inc: ; preds = %for.body

35 %7 = load i32* %i , align 4

36 %inc = add i32 %7 , 1

37 store i32 %inc , i32* %i , align 4

38 br label %for.cond

39

40 for.end: ; preds = %for.cond

41 %8 = load i8** %ptr.addr , align 4

42 ret i8* %8

43 }

To understand how our transformation passes work, consider Listing 1, which shows a very
simple implementation of the memset function. Listing 2 shows the LLVM IR that is generated
for the memset function. This IR is then fed to our transformation passes which insert the code

2

necessary to perform baggy bounds checking. A key feature of the LLVM IR is the getelementptr
instruction, which can be seen on line 30 of Listing 2. All pointer arithmetic and array accesses
use this instruction to get a pointer the requested location of memory. This useful feature made
it much easier for us to find and properly instrument all the pointer arithmetic in a program.
Figure 1 shows the control flow graph (CFG) of the memset function before and after performing
baggy bounds instrumentation.

In addition to the transformation passes, we also provide a static library that implements various
functionality that is necessary for baggy bounds checking:

• Initialization code to perform tasks like moving the stack to the bottom half of memory and
updating all stack references

• Start files that call our initialization code very early in the program’s execution

• A userspace page fault handler that allocates pages for the size table as needed

• The slow path function responsible for handling pointers that may be out of bounds

• Baggy bounds aware wrappers to unsafe libc functions

• A baggy bounds aware memory allocator

2.2 Memory allocator

By design, baggy bounds checking relies on a buddy allocator that rounds up dynamic allocations
to the nearest next power of two. Storing the size of a memory allocation in baggy size table

requires 5 bits on a 32-bit architecture, because it’s sufficient to store the binary logarithm of
the allocation size. Similarly to [1], we chose a SLOT SIZE of 16 bytes, and have one byte in
baggy size table per slot. Our buddy allocator follows the one in the paper closely, but has one
distinct feature. We wanted to implement fast and resource-efficient dynamic memory allocator.
Achieving both properties requires coalescing free buddy blocks of size 2p into a single free block
of size 2p+1, which guarantees good external memory fragmentation.

However, this design change necessitates keeping track of one additional bit per memory allo-
cation that denotes if the block is free or not. Since storing the binary logarithm of the allocation
size requires only 5 bits, we use one of the three unused bits in each entry of baggy size table

to signify if the corresponding slot is free or not without modifying the memory overhead of baggy
bounds checking.

2.3 Build procedure

We tested our pass with some test programs in C++ with the clang front-end to compile the
source code to LLVM. In principle, we could have used any language with an LLVM front-end. See
Figure 2. For a C++ file program.cpp, we use clang to compile to the intermediate program.ll.
We then apply our own pass (e.g., using the LLVM tool opt) to construct another LLVM file
program.bg.ll. Here, we use the ".bg" substring to indicate that it has the special baggy bounds
arithmetic. Finally, we can use an LLVM back-end for the target architecture to construct a
standard object file program.bg.o. Then we can link that with our library baggylib.a to get an
ELF executable program.bg.out. The final linking step provides our special memory allocator.

3

entry

for.cond

T F

for.body for.end

for.inc

entry

for.cond

T F

for.body for.end

baggy.check

T F

baggy.resume

baggy.slowPath

for.inc

Figure 1: Control flow graph for the memset function before (left) and after (right) baggy bounds
instrumentation

4

program.out

program.ll

program.o

program.out

baggylib.a

linking

program.out

program.ll

program.bg.ll

baggy bounds pass

program.bg.o

program.bg.out

baggylib.a

linking

Figure 2: The left shows a “standard” build which links against the baggylib.a archive to use our
memory allocator but does not use the special baggy bounds arithmetic. The right shows the build
process with our baggy bounds pass in the middle.

3 Application: Zoobar webserver

To verify that our instrumented code properly defends against attacks, we compiled the unmodified
zoobar web server from lab 1 with baggy bounds checking and then attempted to use the exploits
we developed in lab 1 on the server. The following table summarizes our findings:

Exploit Error Type Allowed code execution

2a SIGSEGV No
2b LIBC No
3 LIBC No
4a SIGSEGV No
4b LIBC No

None of the exploits were able to execute arbitrary code on the web server. Instead one of three
possible bounds checking errors was returned by the server in every exploit. The SIGSEGV error
type indicates that a pointer to out-of-bounds memory was de-referenced while the LIBC error
type indicates that an out-of-bounds access was detected in the wrapper for a libc function. The
third error type, SLOWPATH, which was not triggered by our exploits indicates that a computed
pointer was more than SLOT SIZE / 2 out-of-bounds.

4 Performance and benchmarks

We tested the performance of our implementation on a set of memory intensive benchmark pro-
grams. In particular, we implemented matrix multiplication of square matrices, three variations of

5

Figure 3: Execution time for a set of benchmark programs using the buddy allocator and baggy
bounds, normalized by the execution time using the system allocator without instrumentation.

quick sort with pointer implementation, indices implementation and STL’s vector-based implemen-
tation, a program that makes updates and queries to a dynamic tree, and a program that results in
many calls to baggy.slowPath. Our findings can be seen in Figure 3. We observe a performance
degrade from 50% up to 2.5x, which is comparable to [1].

4.1 Optimizations

Since LLVM provides a framework and libraries for writing compiler optimizations, there is a very
large space of possibilities for static analyses and optimizations. For example, if we can prove that
a pointer will only be accessed safely, then we do not have to instrument its arithmetic operations
with the baggy bounds arithmetic.

As proof-of-concept, we implemented one very simple optimization. Note that in some cases,
there is no need to save the pointer sizes in the baggy size table. For example, we do not have
to load the size of an allocation from the baggy size table more than once for the same pointer (or
for pointers derived from that pointer). Standard common subexpression elimination (CSE) can
eliminated redundant memory loads in some cases, but we can do even better with the additional
knowledge we have about the semantics of the baggy size table.

Furthermore, if a function allocates an array on the stack but never passes the a pointer to
it (or any pointer derived from it) to another function, it does not have to save the size in the
baggy size table at all. Some careful static analysis is required to determine when this is safe,

6

but it is mostly a matter of following the uses of the the variable and looking for “dangerous” ones
(e.g., stores and function calls).

We implemented more sophisticated version of the baggy-pointers and baggy-save-locals

passes which use these ideas to avoid unnecessary loads and stores. The improvements are small
but noticeable, as can be seen in Figure 3.

References

[1] P. Akritidis, M. Costa, M. Castro, and S. Hand. Baggy Bounds Checking: An Efficient and
Backwards-Compatible Defense against Out-of-Bounds Errors. Proceedings of the 18th confer-

ence on USENIX security symposium, pages 51-66, 2009.

7

