Bitcoin Network Data Tools, v0.5

Ivan Brugere

Laboratory for Computational Population Biology, University of Illinois at Chicago
Jan 05 2013

This code is unlicensed and unsupported; attribution is appreciated.
0. Acknowledgement:

We use tools developed by Martin Harrigan (github.com /harrigan/bitcointools),
which extends Gavin Andresen's bitcointools
(github.com/gavinandresen /bitcointools)

We also port and extend code by Harrigan and form a 'user network' according
to the strategy in "An Analysis of Anonymity in the Bitcoin System" (Reid and
Harrigan, 2011; http://arxiv.org/abs/1107.4524).

1. Overview:

Bitcoin (bitcoin.org) is a digital, cryptographically secure currency. Transactions
between public-key "addresses" maintained in a distributed, verified public
ledger form a transaction network that can be studied by network scientists.
This code processes binary-format Bitcoin .dat files generated by the Bitcoin
client (bitcoin.org, tested on v0.5.3.1 or lower) into human-readable flat-file
formats, retaining all available information. Furthermore, we provide a data
model to facilitate storage and querying in a relational database.

2. Bitcoin transaction overview:

The bitcoin digital currency allows users to securely prove ownership of a
portion of coins that cascade through the network as a chain of re-assigned
ownership transactions over time.

A transaction on the bitcoin network is a many-to-many function, executed by a
user who has ownership to (potentially many) outputs of previous transactions;
the user takes this owned value and writes ownership to (potentially many)
output nodes (users, represented by addresses in the network).

Figure 1 (see also: “example_transactions.png”) illustrates a chain of
transactions in the network.

TransactionA } Transaction C Transaction D

Input ‘ Input ’ | Input Input F
Output (100) (ch:nu;su»‘w; Output (101)) }/

Transaction B

| Input

Output (101)

Reference

Input
(generation)

Output (50) fe—

1

Figure 1: An example transaction chain. Transaction C is a transaction of two inputs and
two outputs. A user owns the outputs from Transaction A and Transaction B, and signs this
combined value (150) to two outputs. Because the network reclaims any unassigned value
from the inputs, change is often assigned back to the user (source:
en.bitcoin.it/wiki/File:Transaction.png).

3. File output description:

We generate the following files, with the included row specification:

pubkey _list.txt: [public_key_string]
transactionkey_list.txt: [transaction_key_string]

userkey_list.txt: [public_keyi,public_key:,...,public_keyx]
user_edge_inputs.txt: [transaction_keysestransaction_key;s,...transaction_keyi|
user_edge_inputs_public_keys.txt: [transaction_keysezpublic_keyi,public_keyi]

user_edges.txt: [transaction_keysey, user_keyfom, user_key:., date, value]

»n u

The first group of files, (“pubkey_list.txt”, “transactionkey_list.txt”) contains the
lengthy text keys for public keys (i.e. “1EnHwdiKxvTE5AzcSnZqS52mMcHSLtCLwH”) and
transaction keys (i.e. “sdc77144dcf46a7f76e369d406481e857be9e95b21375935832a5bed4e23633b”).
Each ‘key’ field is a line number (starting at 1) to index into the appropriate list
file. Using this, information on a public key or specific transaction can be queried
on sites such as blockchain.info.

4.

»n o«

The second group of files (“userkey_list.txt”, “user_edge_inputs.txt”,
“user_edge_inputs_public_keys.txt”) organizes the ‘user’ information, where a
‘user’ is a grouping of public keys inferred from public keys combined as inputs
into a single transaction (meaning the user owns the private key to each
address). This method is described in (Reid and Harrigan, 2011). Briefly, we
create a graph where two public keys have an edge if they have been used as
inputs in a single transaction. The connected components of this graph are
‘users’. Each line in “userkey_list.txt” is one of these components (a grouping of
public keys). The files “user_edge_inputs.txt” and
“user_edge_inputs_public_keys.txt” record the transaction keys, and public keys
used as input to “this” transaction (see Figure 1).

The third group of files (“user_edges.txt”) is the primary network data file. The
files “user_edges.txt”, “user_edge_inputs.txt”, and
“user_edge_inputs_public_keys.txt” share a transaction key field which allows

them to be joined on.
See the relational model diagram “bitcoin_relational.pdf” summarizing these files.
Python code execution:

The included Python scripts use only core packages and have been tested on
Python 2.7, with Bitcoin dat files generated by the official client, version v0.5.3.1.
The code executes on a log of 46.9M transactions (dated Jan 03 2013) with a
memory footprint under 10GB, and completing in less than 4 hours, (memory is
cheap, but still this could be improved by using non-core packages like NumPy).

The main shell script “process_bitcoin_network_runner.sh” can be configured
with your paths and desired output filenames. The two primary paths needing
set by the user are the file output path (“file_path”), and “lib_path” the path to
Martin Harrigan’s branch of bitcointools
(https://github.com/harrigan/bitcointools), which handles the extraction of the
binary files to raw text output (as of Jan 03 2013, about 7.5GB of transaction
data).

