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Apple designed the iOS platform with security at its core. Keeping information secure 
on mobile devices is critical for any user, whether they’re accessing corporate and customer 
information or storing personal photos, banking information, and addresses. Because 
every user’s information is important, iOS devices are built to maintain a high level of 
security without compromising the user experience. 

iOS devices provide stringent security technology and features, and yet also are easy to 
use. The devices are designed to make security as transparent as possible. Many security 
features are enabled by default, so IT departments don’t need to perform extensive  
configurations. And some key features, like device encryption, are not configurable, so 
users cannot disable them by mistake. 

For organizations considering the security of iOS devices, it is helpful to understand 
how the built-in security features work together to provide a secure mobile computing 
platform. 

iPhone, iPad, and iPod touch are designed with layers of security. Low-level hardware 
and firmware features protect against malware and viruses, while high-level OS features 
allow secure access to personal information and corporate data, prevent unauthorized 
use, and help thwart attacks.

The iOS security model protects information while still enabling mobile use, third-party 
apps, and syncing. Much of the system is based on industry-standard secure design 
principles—and in many cases, Apple has done additional design work to enhance 
security without compromising usability.

This document provides details about how security technology and features are 
implemented within the iOS platform. It also outlines key elements that organizations 
should understand when evaluating or deploying iOS devices on their networks.

• System architecture: The secure platform and hardware foundations of iPhone, iPad, 
and iPod touch. 

• Encryption and Data Protection: The architecture and design that protects the user’s 
data when the device is lost or stolen, or when an unauthorized person attempts to 
use or modify it. 

• Network security: Industry-standard networking protocols that provide secure 
authentication and encryption of data in transmission. 

• Device access: Methods that prevent unauthorized use of the device and enable it 
to be remotely wiped if lost or stolen. 

iOS is based on the same core technologies as OS X, and benefits from years of  
hardening and security development. The continued enhancements and additional 
security features with each major release of iOS have allowed IT departments in  
businesses worldwide to rapidly adopt and support iOS devices on their networks. 
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Security architecture diagram of iOS provides 
a visual overview of the different technologies 
discussed in this document.



Entering DFU mode
DFU mode can be entered manually by  
connecting the device to a computer using 
the 30-pin Dock Connector to USB Cable,  
then holding down both the Home and 
Sleep/Wake buttons. After 8 seconds have 
elapsed, release the Sleep/Wake button while 
continuing to hold down the Home button.  
Note: Nothing will be displayed on the screen 
when in DFU mode. If the Apple logo appears, 
the Sleep/Wake button was held down for too 
long. Restoring a device after entering DFU 
mode returns it to a known good state with 
the certainty that only unmodified Apple-
signed code is present.
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The tight integration of hardware and software on iOS devices allows for the validation 
of activities across all layers of the device. From initial boot-up to iOS software installation 
and through to third-party apps, each step is analyzed and vetted to ensure that each 
activity is trusted and uses resources properly.

Once the system is running, this integrated security architecture depends on the integrity 
and trustworthiness of XNU, the iOS kernel. XNU enforces security features at runtime 
and is essential to being able to trust higher-level functions and apps. 

Secure Boot Chain
Each step of the boot-up process contains components that are cryptographically 
signed by Apple to ensure integrity, and proceeds only after verifying the chain of 
trust. This includes the bootloaders, kernel, kernel extensions, and baseband firmware.

When an iOS device is turned on, its application processor immediately executes code 
from read-only memory known as the Boot ROM. This immutable code is laid down 
during chip fabrication, and is implicitly trusted. The Boot ROM code contains the Apple 
Root CA public key, which is used to verify that the Low-Level Bootloader (LLB) is signed 
by Apple before allowing it to load. This is the first step in the chain of trust where each 
step ensures that the next is signed by Apple. When the LLB finishes its tasks, it verifies 
and runs the next-stage bootloader, iBoot, which in turn verifies and runs the iOS kernel. 

This secure boot chain ensures that the lowest levels of software are not tampered 
with, and allows iOS to run only on validated Apple devices.

If one step of this boot process is unable to load or verify the next, boot-up is stopped  
and the device displays the “Connect to iTunes” screen. This is called recovery mode. 
If the Boot ROM is not even able to load or verify LLB, it enters DFU (Device Firmware 
Upgrade) mode. In both cases, the device must be connected to iTunes via USB and 
restored to factory default settings. For more information on manually entering recovery 
mode, see http://support.apple.com/kb/HT1808.

System Software Personalization
Apple regularly releases software updates to address emerging security concerns; these 
updates are provided for all supported devices simultaneously. Users receive iOS update 
notifications on the device and through iTunes, and updates are delivered wirelessly, 
encouraging rapid adoption of the latest security fixes.

The boot process described above ensures that only Apple-signed code can be installed 
on a device. To prevent devices from being downgraded to older versions that lack the 
latest security updates, iOS uses a process called System Software Personalization. If 
downgrades were possible, an attacker who gains possession of a device could install an 
older version of iOS and exploit a vulnerability that’s been fixed in the newer version.  

System Architecture
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iOS software updates can be installed using iTunes or over-the-air (OTA) on the device. 
With iTunes, a full copy of iOS is downloaded and installed. OTA software updates are  
provided as deltas for network efficiency.  

During an iOS install or upgrade, iTunes (or the device itself, in the case of OTA software 
updates) connects to the Apple installation authorization server (gs.apple.com) and 
sends it a list of cryptographic measurements for each part of the installation bundle 
to be installed (for example LLB, iBoot, the kernel, and OS image), a random anti-replay 
value (nonce), and the device’s unique ID (ECID).

The server checks the presented list of measurements against versions for which 
installation is permitted, and if a match is found, adds the ECID to the measurement 
and signs the result. The complete set of signed data from the server is passed to 
the device as part of the install or upgrade process. Adding the ECID “personalizes” 
the authorization for the requesting device. By authorizing and signing only for known 
measurements, the server ensures that the update is exactly as provided by Apple.

The boot-time chain-of-trust evaluation verifies that the signature comes from Apple 
and that the measurement of the item loaded from disk, combined with the device’s 
ECID, matches what was covered by the signature.

These steps ensure that the authorization is for a specific device and that an old iOS  
version from one device can’t be copied to another. The nonce prevents an attacker from 
saving the server’s response and using it to downgrade a user’s device in the future.

App Code Signing
Once the iOS kernel has booted, it controls which user processes and apps can be run. 
To ensure that all apps come from a known and approved source and have not been 
tampered with, iOS requires that all executable code be signed using an Apple-issued 
certificate. Apps provided with the device, like Mail and Safari, are signed by Apple. 
Third-party apps must also be validated and signed using an Apple-issued certificate. 
Mandatory code signing extends the concept of chain of trust from the OS to apps, 
and prevents third-party apps from loading unsigned code resources or using self-
modifying code. 

In order to develop and install apps on iOS devices, developers must register with 
Apple and join the iOS Developer Program. The real-world identity of each developer, 
whether an individual or a business, is verified by Apple before their certificate is 
issued. This certificate enables developers to sign apps and submit them to the App 
Store for distribution. As a result, all apps in the App Store have been submitted by an 
identifiable person or organization, serving as a deterrent to the creation of malicious 
apps.  They have also been reviewed by Apple to ensure they operate as described 
and don’t contain obvious bugs or other problems. In addition to the technology 
already discussed, this curation process gives customers confidence in the quality of 
the apps they buy.

Businesses also have the ability to write in-house apps for use within their organization 
and distribute them to their employees. Businesses and organizations can apply to 
the iOS Developer Enterprise Program (iDEP) with a D-U-N-S number. Apple approves 
applicants after verifying their identity and eligibility. Once an organization becomes a 
member of iDEP, it can register to obtain a provisioning profile that permits in-house 
apps to run on devices it authorizes. Users must have the provisioning profile installed 
in order to run the in-house apps. This ensures that only the organization’s intended 
users are able to load the apps onto their iOS devices.
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Unlike other mobile platforms, iOS does not allow users to install potentially malicious 
unsigned apps from websites, or run untrusted code. At runtime, code signature checks 
of all executable memory pages are made as they are loaded to ensure that an app 
has not been modified since it was installed or last updated.

Runtime Process Security
Once an app is verified to be from an approved source, iOS enforces security measures 
to ensure that it can’t compromise other apps or the rest of the system. 

All third-party apps are “sandboxed,” so they are restricted from accessing files stored 
by other apps or from making changes to the device. This prevents apps from gathering 
or modifying information stored by other apps. Each app has a unique home directory 
for its files, which is randomly assigned when the app is installed. If a third-party app 
needs to access information other than its own, it does so only by using application 
programming interfaces (APIs) and services provided by iOS.

System files and resources are also shielded from the user’s apps. The majority of 
iOS runs as the non-privileged user “mobile,” as do all third-party apps. The entire OS 
partition is mounted read-only. Unnecessary tools, such as remote login services, aren’t 
included in the system software, and APIs do not allow apps to escalate their own 
privileges to modify other apps or iOS itself.

Access by third-party apps to user information and features such as iCloud is controlled 
using declared entitlements. Entitlements are key/value pairs that are signed in to an 
app and allow authentication beyond runtime factors like unix user ID. Since entitle-
ments are digitally signed, they cannot be changed. Entitlements are used extensively 
by system apps and daemons to perform specific privileged operations that would 
otherwise require the process to run as root. This greatly reduces the potential for 
privilege escalation by a compromised system application or daemon. 

In addition, apps can only perform background processing through system-provided 
APIs. This enables apps to continue to function without degrading performance or 
dramatically impacting battery life. Apps can’t share data directly with each other; 
sharing can be implemented only by both the receiving and sending apps using  
custom URL schemes, or through shared keychain access groups.

Address space layout randomization (ASLR) protects against the exploitation of memory 
corruption bugs. Built-in apps use ASLR to ensure that all memory regions are random-
ized upon launch. Additionally, system shared library locations are randomized at each 
device startup. Xcode, the iOS development environment, automatically compiles 
third-party programs with ASLR support turned on.

Further protection is provided by iOS using ARM’s Execute Never (XN) feature, which 
marks memory pages as non-executable. Memory pages marked as both writable and 
executable can be used only by apps under tightly controlled conditions: The kernel 
checks for the presence of the Apple-only “dynamic-codesigning” entitlement. Even 
then, only a single mmap call can be made to request an executable and writable page, 
which is given a randomized address. Safari uses this functionality for its JavaScript 
JIT compiler.
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The secure boot chain, code signing, and runtime process security all help to ensure 
that only trusted code and apps can run on a device. iOS has additional security features 
to protect user data, even in cases where other parts of the security infrastructure have 
been compromised (for example, on a device with unauthorized modifications). Like 
the system architecture itself, these encryption and data protection capabilities use layers 
of integrated hardware and software technologies.

Hardware Security Features
On mobile devices, speed and power efficiency are critical. Cryptographic operations 
are complex and can introduce performance or battery life problems if not designed 
and implemented correctly.

Every iOS device has a dedicated AES 256 crypto engine built into the DMA path 
between the flash storage and main system memory, making file encryption highly 
efficient. Along with the AES engine, SHA-1 is implemented in hardware, further reducing 
cryptographic operation overhead.

The device’s unique ID (UID) and a device group ID (GID) are AES 256-bit keys fused 
into the application processor during manufacturing. No software or firmware can 
read them directly; they can see only the results of encryption or decryption opera-
tions performed using them. The UID is unique to each device and is not recorded by 
Apple or any of its suppliers. The GID is common to all processors in a class of devices 
(for example, all devices using the Apple A5 chip), and is used as an additional level of 
protection when delivering system software during installation and restore. Burning 
these keys into the silicon prevents them from being tampered with or bypassed, and 
guarantees that they can be accessed only by the AES engine. 

The UID allows data to be cryptographically tied to a particular device. For example, 
the key hierarchy protecting the file system includes the UID, so if the memory chips 
are physically moved from one device to another, the files are inaccessible. The UID is 
not related to any other identifier on the device.

Apart from the UID and GID, all other cryptographic keys are created by the system’s 
random number generator (RNG) using an algorithm based on Yarrow. System entropy 
is gathered from interrupt timing during boot, and additionally from internal sensors 
once the device has booted.

Securely erasing saved keys is just as important as generating them. It’s especially  
challenging to do so on flash storage, where wear-leveling might mean multiple  
copies of data need to be erased. To address this issue, iOS devices include a feature 
dedicated to secure data erasure called Effaceable Storage. This feature accesses the 
underlying storage technology (for example, NAND) to directly address and erase a 
small number of blocks at a very low level.  

Encryption and Data 
Protection



Erase all content and settings 
The “Erase all content and settings” option in 
Settings obliterates all the keys in Effaceable 
Storage, rendering all user data on the device 
cryptographically inaccessible. Therefore, it’s 
an ideal way to be sure all personal informa-
tion is removed from a device before giving 
it to somebody else or returning it for service. 
Important: Do not use the “Erase all content 
and settings” option until the device has been 
backed up, as there is no way to recover the 
erased data. 
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File Data Protection
In addition to the hardware encryption features built into iOS devices, Apple uses 
a technology called Data Protection to further protect data stored in flash memory 
on the device. This technology is designed with mobile devices in mind, taking into 
account the fact that they may always be turned on and connected to the Internet, 
and may receive phone calls, text, or emails at any time.

Data Protection allows a device to respond to events such as incoming phone calls 
without decrypting sensitive data and downloading new information while locked. 
These individual behaviors are controlled on a per-file basis by assigning each file to 
a class, as described in the Classes section later in document.

Data Protection protects the data in each class based on when the data needs to be 
accessed. Accessibility is determined by whether the class keys have been unlocked. 

Data Protection is implemented by constructing and managing a hierarchy of keys, 
and builds on the hardware encryption technologies previously described.

Architecture overview
Every time a file on the data partition is created, Data Protection creates a new 256-bit 
key (the “per-file” key) and gives it to the hardware AES engine, which uses the key to 
encrypt the file as it is written to flash memory using AES CBC mode. The initialization 
vector (IV) is the output of a linear feedback shift register (LFSR) calculated with the 
block offset into the file, encrypted with the SHA-1 hash of the per-file key.

The per-file key is wrapped with one of several class keys, depending on the circum-
stances under which the file should be accessible. Like all other wrappings, this is  
performed using NIST AES key wrapping, per RFC 3394. The wrapped per-file key is 
stored in the file’s metadata.

When a file is opened, its metadata is decrypted with the file system key, revealing 
the wrapped per-file key and a notation on which class protects it. The per-file key 
is unwrapped with the class key, then supplied to the hardware AES engine, which 
decrypts the file as it is read from flash memory.

The metadata of all files in the file system are encrypted with a random key, which is 
created when iOS is first installed or when the device is wiped by a user. The file system 
key is stored in Effaceable Storage. Since it’s stored on the device, this key is not used 
to maintain the confidentiality of data; instead, it’s designed to be quickly erased on 
demand (by the user, with the “Erase all content and settings” option, or by a user or 
administrator issuing a remote wipe command from a Mobile Device Management 
server, Exchange ActiveSync, or iCloud). Erasing the key in this manner renders all files 
cryptographically inaccessible.



Passcode considerations 
If a long password that contains only  
numbers is entered, a numeric keypad  
is displayed at the Lock screen instead  
of the full keyboard. A longer numeric  
passcode may be easier to enter than a  
shorter alphanumeric passcode, while  
providing similar security.

Creating strong Apple ID passwords
Apple IDs are used to connect to a number  
of services including iCloud, FaceTime, and 
iMessage. To help users create strong  
passwords, all new accounts must contain  
the following password attributes:
• At least eight characters
• At least one letter
• At least one uppercase letter
• At least one number 
• No more than three consecutive  

identical characters
• Not the same as the account name
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File Contents
File Metadata

File Key

File System Key

Class Key

User Passcode

Device UID

The content of a file is encrypted with a per-file key, which is wrapped with a class key 
and stored in a file’s metadata, which is in turn encrypted with the file system key. The 
class key is protected with the hardware UID and, for some classes, the user’s passcode. 
This hierarchy provides both flexibility and performance. For example, changing a file’s  
class only requires rewrapping its per-file key, and a change of passcode just rewraps  
the class key.

Passcodes
By setting up a device passcode, the user automatically enables Data Protection. 
iOS supports four-digit and arbitrary-length alphanumeric passcodes. In addition to 
unlocking the device, a passcode provides the entropy for encryption keys, which are 
not stored on the device. This means an attacker in possession of a device can’t get 
access to data in certain protection classes without the passcode. 

The passcode is “tangled” with the device’s UID, so brute-force attempts must be 
performed on the device under attack. A large iteration count is used to make each 
attempt slower. The iteration count is calibrated so that one attempt takes approximately 
80 milliseconds. This means it would take more than 5½ years to try all combinations 
of a six-character alphanumeric passcode with lowercase letters and numbers, or 
2½ years for a nine-digit passcode with numbers only.

To further discourage brute-force passcode attacks, the iOS interface enforces escalating 
time delays after the entry of an invalid passcode at the Lock screen. Users can choose 
to have the device automatically wiped after 10 failed passcode attempts. This setting is 
also available as an administrative policy through Mobile Device Management (MDM) 
and Exchange ActiveSync, and can also be set to a lower threshold.
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Classes
When a new file is created on an iOS device, it’s assigned a class by the app that creates 
it. Each class uses different policies to determine when the data is accessible. The basic 
classes and policies are as follows: 

Complete Protection 
(NSFileProtectionComplete): The class key is protected with a key derived from the 
user passcode and the device UID. Shortly after the user locks a device (10 seconds, 
if the Require Password setting is Immediately), the decrypted class key is discarded, 
rendering all data in this class inaccessible until the user enters the passcode again. 

The Mail app implements Complete Protection for messages and attachments. App 
launch images and location data are also stored with Complete Protection.

Protected Unless Open 
(NSFileProtectionCompleteUnlessOpen): Some files may need to be written while 
the device is locked. A good example of this is a mail attachment downloading in the 
background. This behavior is achieved by using asymmetric elliptic curve cryptography 
(ECDH over Curve25519). Along with the usual per-file key, Data Protection generates 
a file public/private key pair. A shared secret is computed using the file’s private key 
and the Protected Unless Open class public key, whose corresponding private key is 
protected with the user’s passcode and the device UID. The per-file key is wrapped 
with the hash of this shared secret and stored in the file’s metadata along with the 
file’s public key; the corresponding private key is then wiped from memory. As soon 
as the file is closed, the per-file key is also wiped from memory. To open the file again, 
the shared secret is re-created using the Protected Unless Open class’s private key and 
the file’s ephemeral public key; its hash is used to unwrap the per-file key, which is 
then used to decrypt the file.

Protected Until First User Authentication 
(NSFileProtectionCompleteUntilFirstUserAuthentication): This class behaves in 
the same way as Complete Protection, except that the decrypted class key is not 
removed from memory when the device is locked. The protection in this class has 
similar properties to desktop full-disk encryption, and protects data from attacks 
that involve a reboot.

No Protection
(NSFileProtectionNone): This class key is protected only with the UID, and is kept 
in Effaceable Storage. This is the default class for all files not otherwise assigned to a 
Data Protection class. Since all the keys needed to decrypt files in this class are stored 
on the device, the encryption only affords the benefit of fast remote wipe. If a file is 
not assigned a Data Protection class, it is still stored in encrypted form (as is all data 
on an iOS device).

The iOS Software Development Kit (SDK) offers a full suite of APIs that make it easy for 
third-party and in-house developers to adopt Data Protection and ensure the highest 
level of protection in their apps. Data Protection is available for file and database APIs, 
including NSFileManager, CoreData, NSData, and SQLite.



Components of a keychain item
Along with the access group, each keychain 
item contains administrative metadata (such 
as “created” and “last updated” time stamps). 
It also contains SHA-1 hashes of the attributes 
used to query for the item (such as the 
account and server name) to allow lookup 
without decrypting each item. And finally, it 
contains the encryption data, which includes 
the following:
• Version number
• Value indicating which protection class 

the item is in
• Per-item key wrapped with the protection 

class key
• Dictionary of attributes describing the 

item (as passed to SecItemAdd), encoded 
as a binary plist and encrypted with the 
per-item key

The encryption is AES 128 in GCM (Galois/
Counter Mode); the access group is included 
in the attributes and protected by the GMAC 
tag calculated during encryption.
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Keychain Data Protection
Many apps need to handle passwords and other short but sensitive bits of data, such 
as keys and login tokens. The iOS keychain provides a secure way to store these items.

The keychain is implemented as a SQLite database stored on the file system in the 
No Protection class, while its security is provided by a different key hierarchy that 
runs parallel to the key hierarchy used to protect files. There is only one database; 
the securityd daemon determines which keychain items each process or app can 
access. Keychain access APIs result in calls to the securityd framework, which queries 
the app’s “keychain-access-groups” and the “application-identifier” entitlement. Rather 
than limiting access to a single process, access groups allow keychain items to be 
shared between apps. 

Keychain items can only be shared between apps from the same developer. This is 
managed by requiring third-party apps to use access groups with a prefix allocated to 
them through the iOS Developer Program. The prefix requirement is enforced through 
code signing and provisioning profiles. 

Keychain data is protected using a class structure similar to the one used in file Data 
Protection. These classes have behaviors equivalent to file Data Protection classes, but 
use distinct keys and are part of APIs that are named differently.

Availability File Data Protection Keychain Data Protection

When unlocked NSFileProtectionComplete kSecAttrAccessibleWhenUnlocked

While locked NSFileProtectionCompleteUnlessOpen N/A

After first unlock NSFileProtectionCompleteUntilFirstUserAuthentication kSecAttrAccessibleAfterFirstUnlock

Always NSFileProtectionNone kSecAttrAccessibleAlways

Each keychain class has a “This device only” counterpart, which is always protected 
with the UID when being copied from the device during a backup, rendering it useless 
if restored to a different device.

Apple has carefully balanced security and usability by choosing keychain classes that 
depend on the type of information being secured and when it’s needed by the OS.  
For example, a VPN certificate must always be available so the device keeps a continuous  
connection, but it’s classified as “non-migratory,” so it can’t be moved to another device. 

For keychain items created by iOS, the following class protections are enforced:

Item Accessible

Wi-Fi passwords After first unlock

Mail accounts After first unlock

Exchange accounts After first unlock

VPN certificates Always, non-migratory

VPN passwords After first unlock

LDAP, CalDAV, CardDAV After first unlock

iTunes backup When unlocked, non-migratory

Voicemail Always

Safari passwords When unlocked

Bluetooth keys Always, non-migratory

Apple Push Notification Service Token Always, non-migratory

iCloud certificates and private key Always, non-migratory

iMessage keys Always, non-migratory

Certificates and private keys installed by Configuration Profile Always, non-migratory

SIM PIN Always, non-migratory



Components of a keybag
A header containing:
• Version (set to 3 in iOS 5)
• Type (System, Backup, Escrow, or iCloud 

Backup)
• Keybag UUID
• An HMAC if the keybag is signed
• The method used for wrapping the class 

keys: tangling with the UID or PBKDF2, 
along with the salt and iteration count

A list of class keys:
• Key UUID
• Class (which file or keychain Data Protection 

class this is)
• Wrapping type (UID-derived key only;  

UID-derived key and passcode-derived key)
• Wrapped class key
• Public key for asymmetric classes
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Keybags

The keys for both file and keychain Data Protection classes are collected and  
managed in keybags. iOS uses the following four keybags: System, Backup, Escrow,  
and iCloud Backup.

System keybag is where the wrapped class keys used in normal operation of the 
device are stored. For example, when a passcode is entered, the NSFileProtectionComplete  
key is loaded from the system keychain and unwrapped. It is a binary plist stored 
in the No Protection class, but whose contents are encrypted with a key held in 
Effaceable Storage. In order to give forward security to keybags, this key is wiped 
and regenerated each time a user changes a passcode. The System keybag is the 
only keybag stored on the device. The AppleKeyStore kernel extension manages the 
System keybag, and can be queried regarding a device’s lock state. It reports that the 
device is unlocked only if all the class keys in the System are accessible, having been 
unwrapped successfully. 

Backup keybag is created when an encrypted backup is made by iTunes and stored 
on the computer to which the device is backed up. A new keybag is created with 
a new set of keys, and the backed-up data is re-encrypted to these new keys. As 
explained earlier, non-migratory keychain items remain wrapped with the UID-derived 
key, allowing them to be restored to the device they were originally backed up from, 
but rendering them inaccessible on a different device. 

The keybag is protected with the password set in iTunes, run through 10,000 iterations 
of PBKDF2. Despite this large iteration count, there’s no tie to a specific device, and 
therefore a brute-force attack parallelized across many computers can be attempted 
on the backup keybag. This threat can be mitigated with a sufficiently strong password. 

If a user chooses to not encrypt an iTunes backup, the backup files are not encrypted 
regardless of their Data Protection class, but the keychain remains protected with a 
UID-derived key. This is why keychain items migrate to a new device only if a backup 
password is set.

Escrow keybag is used for iTunes syncing and Mobile Device Management (MDM). 
This keybag allows iTunes to back up and sync without requiring the user to enter a 
passcode, and it allows an MDM server to remotely clear a user’s passcode. It is stored 
on the computer that’s used to sync with iTunes, or on the MDM server that manages 
the device.

The Escrow keybag improves the user experience during device synchronization, 
which potentially requires access to all classes of data. When a passcode-locked device 
is first connected to iTunes, the user is prompted to enter a passcode. The device 
then creates an Escrow keybag and passes it to the host. The Escrow keybag contains 
exactly the same class keys used on the device, protected by a newly generated key. 
This key is needed to unlock the Escrow keybag, and is stored on the device in the 
Protected Until First User Authentication class. This is why the device passcode must 
be entered before backing up with iTunes for the first time after a reboot.

iCloud Backup keybag is similar to the Backup keybag. All the class keys in this keybag 
are asymmetric (using Curve25519, like the Protected Unless Open Data Protection class), 
so iCloud backups can be performed in the background. For all Data Protection classes 
except No Protection, the encrypted data is read from the device and sent to iCloud. 
The corresponding class keys are protected by iCloud keys. The keychain class keys are 
wrapped with a UID-derived key in the same way as an unencrypted iTunes backup. 
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In addition to the measures Apple has taken to protect data stored on iOS devices, 
there are many network security measures that organizations can take to safeguard 
information as it travels to and from an iOS device.

Mobile users must be able to access corporate information networks from anywhere  
in the world, so it’s important to ensure they are authorized and that their data is  
protected during transmission. iOS uses—and provides developer access to—standard 
networking protocols for authenticated, authorized, and encrypted communications. 
iOS provides proven technologies and the latest standards to accomplish these security 
objectives for both Wi-Fi and cellular data network connections.

On other platforms, firewall software is needed to protect numerous open communication  
ports against intrusion. Because iOS achieves a reduced attack surface by limiting listening 
ports and removing unnecessary network utilities such as telnet, shells, or a web server, 
it doesn’t need firewall software. Additionally, communication using iMessage, FaceTime, 
and the Apple Push Notification Server is fully encrypted and authenticated.

SSL, TLS
iOS supports Secure Socket Layer (SSL v3) as well as Transport Layer Security (TLS v1.1, 
TLS v1.2) and DTLS. Safari, Calendar, Mail, and other Internet applications automatically 
use these mechanisms to enable an encrypted communication channel between the 
device and network services. High-level APIs (such as CFNetwork) make it easy for 
developers to adopt TLS in their apps, while low-level APIs (SecureTransport) provide 
fine-grained control.

VPN
Secure network services like virtual private networking typically require minimal setup 
and configuration to work with iOS devices. iOS devices work with VPN servers that  
support the following protocols and authentication methods:

• Juniper Networks, Cisco, Aruba Networks, SonicWALL, Check Point, and F5 Networks 
SSL-VPN using the appropriate client app from the App Store. These apps provide user 
authentication for the built-in iOS support. 

• Cisco IPSec with user authentication by Password, RSA SecurID or Cryptocard, and 
machine authentication by shared secret and certificates. Cisco IPSec supports VPN 
On Demand for domains that are specified during device configuration. 

• L2TP/IPSec with user authentication by MS-CHAPV2 Password, RSA SecurID or 
Cryptocard, and machine authentication by shared secret.

• PPTP with user authentication by MS-CHAPV2 Password and RSA SecurID or Cryptocard. 

Network Security
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iOS supports VPN On Demand for networks that use certificated-based authentication. 
IT policies specify which domains require a VPN connection by using a configuration 
profile. 

For more information on VPN server configuration for iOS devices, see  
http://help.apple.com/iosdeployment-vpn/.

Wi-Fi 
iOS supports industry-standard Wi-Fi protocols, including WPA2 Enterprise, to provide 
authenticated access to wireless corporate networks. WPA2 Enterprise uses 128-bit 
AES encryption, giving users the highest level of assurance that their data remains  
protected when sending and receiving communications over a Wi-Fi network  
connection. With support for 802.1X, iOS devices can be integrated into a broad  
range of RADIUS authentication environments. 802.1X wireless authentication  
methods supported on iPhone and iPad include EAP-TLS, EAP-TTLS, EAP-FAST,  
EAP-SIM, PEAPv0, PEAPv1, and LEAP.

Bluetooth
Bluetooth support in iOS has been designed to provide useful functionality without  
unnecessary increased access to private data. iOS devices support Encryption Mode 3, 
Security Mode 4, and Service Level 1 connections. iOS supports the following Bluetooth 
profiles:

• Hands-Free Profile (HFP 1.5)
• Phone Book Access Profile (PBAP)
• Advanced Audio Distribution Profile (A2DP)
• Audio/Video Remote Control Profile (AVRCP)
• Personal Area Network Profile (PAN)
• Human Interface Device Profile (HID)

Support for these profiles varies by device. For more information, see  
http://support.apple.com/kb/ht3647.
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iOS supports flexible security policies and configurations that are easily enforced and 
managed. This enables enterprises to protect corporate information and ensure that 
employees meet enterprise requirements, even if they are using devices they’ve  
provided themselves.

Passcode Protection
In addition to providing the cryptographic protection discussed earlier, passcodes  
prevent unauthorized access to the device’s UI. The iOS interface enforces escalating 
time delays after the entry of an invalid passcode, dramatically reducing the effective-
ness of brute force attacks via the Lock screen. Users can choose to have the device 
automatically wiped after 10 failed passcode attempts. This setting is available as an 
administrative policy and can also be set to a lower threshold through MDM and 
Exchange ActiveSync. 

By default, the user’s passcode can be defined as a four-digit PIN. Users can specify a 
longer, alphanumeric passcode by turning on Settings > General > Passcode > Complex 
Passcode. Longer and more complex passcodes are harder to guess or attack, and are 
recommended for enterprise use.

Administrators can enforce complex passcode requirements and other policies using 
MDM or Exchange ActiveSync, or by requiring users to manually install configuration 
profiles. The following passcode policies are available:

• Allow simple value
• Require alphanumeric value
• Minimum passcode length
• Minimum number of complex characters
• Maximum passcode age
• Passcode history
• Auto-lock timeout
• Grace period for device lock
• Maximum number of failed attempts

For details about each policy, see the iPhone Configuration Utility documentation at 
http://help.apple.com/iosdeployment-ipcu/.

Configuration Enforcement
A configuration profile is an XML file that allows an administrator to distribute configu-
ration information to iOS devices. Settings that are defined by an installed configuration 
profile can’t be changed by the user. If the user deletes a configuration profile, all the 
settings defined by the profile are also removed. In this manner, administrators can 

Device Access
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enforce settings by tying policies to access. For example, a configuration profile that 
provides an email configuration can also specify a device passcode policy. Users won’t 
be able to access mail unless their passcodes meet the administrator’s requirements.

An iOS configuration profile contains a number of settings that can be specified:

• Passcode policies
• Restrictions on device features (disabling the camera, for example)
• Wi-Fi settings
• VPN settings
• Email server settings
• Exchange settings
• LDAP directory service settings
• CalDAV calendar service settings
• Web clips
• Credentials and keys
• Advanced cellular network settings

Configuration profiles can be signed and encrypted to validate their origin, ensure 
their integrity, and protect their contents. Configuration profiles are encrypted using 
CMS (RFC 3852), supporting 3DES and AES-128.

Configuration profiles can also be locked to a device to completely prevent their 
removal, or to allow removal only with a passcode. Since many enterprise users  
personally own their iOS devices, configuration profiles that bind a device to an MDM 
server can be removed—but doing so will also remove all managed configuration 
information, data, and apps.

Users can install configuration profiles directly on their devices using the iPhone 
Configuration Utility. Configuration profiles can be downloaded via email or  
over-the-air using an MDM server.

Mobile Device Management
iOS support for MDM allows businesses to securely configure and manage scaled iPhone 
and iPad deployments across their organizations. MDM capabilities are built on existing  
iOS technologies such as Configuration Profiles, Over-the-Air Enrollment, and the Apple  
Push Notification service. Using MDM, IT departments can enroll iOS devices in an 
enterprise environment, wirelessly configure and update settings, monitor compliance 
with corporate policies, and even remotely wipe or lock managed devices. For more 
information on Mobile Device Management, visit www.apple.com/business/mdm.

Device Restrictions
Administrators can restrict device features by installing a configuration profile.  
The following restrictions are available:

• Allow app installs
• Allow use of camera
• Allow FaceTime
• Allow screen capture
• Allow voice dialing
• Allow automatic sync while roaming
• Allow in-app purchases
• Force user to enter store password for all purchases
• Allow multiplayer gaming
• Allow adding Game Center Friends
• Allow Siri
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• Allow Siri while device is locked
• Allow use of YouTube
• Allow use of iTunes Store
• Allow use of Safari
• Enable Safari autofill
• Force Fraudulent Website Warning
• Enable JavaScript
• Block pop-ups
• Accept cookies
• Allow iCloud backup
• Allow iCloud document sync
• Allow Photo Stream
• Allow diagnostics to be sent to Apple
• Allow user to accept untrusted TLS certificates
• Force encrypted backups
• Restrict media by content rating

Remote Wipe 
iOS devices can be erased remotely by an administrator or user. Instant remote wiping  
is achieved by securely discarding the block storage encryption key from Effaceable  
Storage, rendering all data unreadable. Remote wiping can be initiated by MDM, 
Exchange, or iCloud. 

When remote wiping is triggered by MDM or iCloud, the device sends an acknowledg-
ment and performs the wipe. For remote wiping via Exchange, the device checks in 
with the Exchange Server before performing the wipe.

Users can also wipe devices in their possession using the Settings app. And as  
mentioned, devices can be set to automatically wipe after a series of failed  
passcode attempts.



Conclusion

A Commitment to Security
Each component of the iOS security platform, from hardware to encryption to device 
access, provides organizations with the resources they need to build enterprise-grade 
security solutions. The sum of these parts gives iOS its industry-leading security features, 
without making the device difficult or cumbersome to use.

Apple uses this security infrastructure throughout iOS and the iOS apps ecosystem. 
Hardware-based storage encryption provides instant remote wipe capabilities when a 
device is lost, and ensures that users can completely remove all corporate and personal 
information when a device is sold or transferred to another owner. For the collection of 
diagnostic information, unique identifiers are created to identify a device anonymously.

Safari offers safe browsing with its support for OCSP, EV certificates, and certificate veri-
fication warnings. Mail leverages certificates for authenticated and encrypted email by 
supporting S/MIME. iMessage and FaceTime provide client-to-client encryption as well.

The combination of required code signing, sandboxing, and entitlements in apps  
provides solid protection against viruses, malware, and other exploits that compromise 
the security of other platforms. The App Store submission process works to further  
protect users from these risks by reviewing every app before it’s made available for sale.

Businesses are encouraged to review their IT and security policies to ensure they are 
taking full advantage of the layers of security technology and features offered by the 
iOS platform. 

Apple maintains a dedicated security team to support all Apple products. The team  
provides security auditing and testing for products under development as well as 
released products. The Apple team also provides security tools and training, and  
actively monitors for reports of new security issues and threats. Apple is a member  
of the Forum of Incident Response and Security Teams (FIRST). For information  
about reporting issues to Apple and subscribing to security notifications, go to  
apple.com/support/security.

Apple is committed to incorporating proven encryption methods and creating modern 
mobile-centric privacy and security technologies to ensure that iOS devices can be 
used with confidence in any personal or corporate environment.
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Address space layout  
randomization (ASLR)

A technique employed by iOS to make the successful exploitation of a software bug 
much more difficult. By ensuring memory addresses and offsets are unpredictable, 
exploit code can’t hard code these values. In iOS 5, the position of all system apps 
and libraries are randomized, along with all third-party apps compiled as position-
independent executables.

Boot ROM The very first code executed by a device’s processor when it first boots. As an integral 
part of the processor, it can’t be altered by either Apple or an attacker.  

Data Protection File and keychain protection mechanism for iOS. It can also refer to the APIs that apps 
use to protect files and keychain items.

DFU A mode in which a device’s Boot ROM code waits to be recovered over USB. The 
screen is black when in DFU mode, but upon connecting to a computer running 
iTunes, the following prompt is presented: “iTunes has detected an iPad in recovery 
mode. You must restore this iPad before it can be used with iTunes.” 

ECID A 64-bit identifier that’s unique to the processor in each iOS device. Used as part of 
the personalization process, it’s not considered a secret.

Effaceable Storage A dedicated area of NAND storage, used to store cryptographic keys, that can be 
addressed directly and wiped securely. While it doesn’t provide protection if an  
attacker has physical possession of a device, keys held in Effaceable Storage can be 
used as part of a key hierarchy to facilitate fast wipe and forward security.

File system key The key that encrypts each file’s metadata, including its class key. This is kept in  
Effaceable Storage to facilitate fast wipe, rather than confidentiality.

GID Like the UID but common to every processor in a class.

iBoot Code that’s loaded by LLB, and in turn loads XNU, as part of the secure boot chain.    

Keybag A data structure used to store a collection of class keys. Each type (System, Backup, 
Escrow, or iCloud Backup) has the same format:
• A header containing:

– Version (set to 3 in iOS 5)
– Type (System, Backup, Escrow, or iCloud Backup)
– Keybag UUID
– An HMAC if the keybag is signed
– The method used for wrapping the class keys: tangling with the UID or PBKDF2, along 

with the salt and iteration count
• A list of class keys:

– Key UUID
– Class (which file or keychain Data Protection class this is)
– Wrapping type (UID-derived key only; UID-derived key and passcode-derived key)
– Wrapped class key
– Public key for asymmetric classes

Glossary
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Keychain The infrastructure and a set of APIs used by iOS and third-party apps to store and 
retrieve passwords, keys, and other sensitive credentials.

Key wrapping Encrypting one key with another. iOS uses NIST AES key wrapping, as per RFC 3394.

Low-Level Bootloader (LLB) Code that’s invoked by the Boot ROM, and in turn loads iBoot, as part of the secure 
boot chain.

Per-file key The AES 256-bit key used to encrypt a file on the file system. The per-file key is 
wrapped by a class key and is stored in the file’s metadata.

Provisioning profile A plist signed by Apple that contains a set of entities and entitlements allowing apps 
to be installed and tested on an iOS device. A development provisioning profile lists 
the devices that a developer has chosen for ad hoc distribution, and a distribution  
provisioning profile contains the app ID of an enterprise-developed app.

Tangling The process by which a user’s passcode is turned into a cryptographic key and 
strengthened with the device’s UID. This ensures that a brute-force attack must be 
performed on a given device, and thus is rate limited and cannot be performed in 
parallel. The tangling algorithm is PBKDF2, which uses AES as the pseudorandom 
function (PRF) with a UID-derived key.

UID A 256-bit AES key that’s burned into each processor at manufacture. It cannot be read 
by firmware or software, and is used only by the processor’s hardware AES engine. 
To obtain the actual key, an attacker would have to mount a highly sophisticated 
and expensive physical attack against the processor’s silicon. The UID is not related 
to any other identifier on the device including, but not limited to, the UDID.

XNU The kernel at the heart of the iOS and OS X operating systems. It’s assumed to be 
trusted, and enforces security measures such as code signing, sandboxing, entitlement 
checking, and ASLR.

Yarrow A cryptographically secure pseudorandom number generator algorithm. An implemen-
tation of Yarrow in iOS takes entropy generated by various system events and produces 
unpredictable random numbers that can be used, for example, as encryption keys.
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