
6.858: Hacking Bluetooth

Elaina Chai
echai@mit.edu

Ben Deardorff
bendorff@mit.edu

Cathy Wu
cathywu@mit.edu

09 December 2012

Abstract

After learning about and analyzing the security of Bluetooth, it was clear to
us that Bluetooth sniffing tools are still substandard compared to those available
for sniffing other types of wireless traffic like WiFi. This makes it harder for hack-
ers to develop exploits for Bluetooth devices but also makes it more difficult for
security researchers to realistically evaluate Bluetooth security. We decided that
the best way to address this problem is to continue development of the software
for the Ubertooth module, currently the most cost effective hardware device for
sniffing Bluetooth packets. In this paper, we highlight the fact that Bluetooth is
a widespread technology with real privacy and security implications. Furthermore,
we explore the current capabilities of using inexpensive open source software and
hardware to examine data from arbitrary Bluetooth devices. We have also imple-
mented piconet following in the Kismet-Ubertooth plugin, making it an even more
effective tool for future researchers in this area. Our implementation can be found
at https://github.com/cathywu/6858-kismet-ubertooth.

1

https://github.com/cathywu/6858-kismet-ubertooth

Introduction 2 of 28

1 Introduction

Bluetooth, since its inception in 1998, has become one of the most widely used short-
range wireless protocols and has quietly become a part of our everyday lives. It is heralded
for its convenience in connecting and exchanging information between devices such as cell
phone headsets, mobile phones, telephones, laptops, personal computers, printers, Global
Positioning System (GPS) receivers, digital cameras, video game consoles, and even faxes.
Unfortunately, Bluetooth still contains a large number of security vulnerabilities despite
the claims made by the Bluetooth Special Interest Group.

Despite known vulnerabilities, demonstrated hacks, and the decreasing cost of hack-
ing Bluetooth, the number of Bluetooth devices manufactured today continues to grow.
Currently, about 2 billion Bluetooth enabled devices are shipped each year, with mobile
phones make up the bulk of Bluetooth shipment numbers.

In this paper we highlight the fact that Bluetooth is a widespread technology with real
privacy and security implications. Furthermore, we explore the current capabilities of using
inexpensive open source software and hardware to examine data from arbitrary Bluetooth
devices. We have also implemented piconet following in the Kismet-Ubertooth plugin,
making it an even more effective tool for future researchers in this area. Our implementation
can be found at https://github.com/cathywu/6858-kismet-ubertooth.

In Section 2, we introduce the Bluetooth protocol. In Section 3, we discuss Bluetooth
security, including the security model, weaknesses, barriers to hacking, and existing hard-
ware sniffing tools. In Section 4 and 5, we discuss the tools we used and our implementation.
Finally, we discuss future work in Section 6, and we conclude in Section 7.

2 Bluetooth protocol

2.1 Pairing

Originally designed to be a humble cable replacement technology, Bluetooth is now a
wireless technology standard for exchanging data over short distances. Slave devices (e.g.

6.858: Hacking Bluetooth

https://github.com/cathywu/6858-kismet-ubertooth

Bluetooth protocol 3 of 28

Figure 1: Pairing process.

headset, keyboard) connect with master devices (e.g. phone, laptop) by a pairing process as
shown in Figure 1, in which device IDs are passed and a number of keys are generated. The
pairing process usually involves some level of user interaction (e.g. entering a PIN), which
is the basis for confirming the identity of the devices. Because of the user interaction, the
PIN is not transmitted over the wireless channel. An initialization key is then generated
from the PIN. The initialization key is used to agree upon a link key, which depends on
the type of communication desired. The link key is then used to generate the encryption
key.

6.858: Hacking Bluetooth

Bluetooth protocol 4 of 28

2.2 Frequency hopping

Bluetooth is more complicated than most wireless standards in that it does not stay on
any particular channel for long. In fact, 1600 times per second, Bluetooth hops between 79
1-MHz channels using a spread spectrum frequency hopping radio. A master can connect up
to 7 slave devices simultaneously; paired slave devices and the master device form a piconet,
wherein all the devices share a clock for synchronized communication. The devices in the
piconet all use the master’s information to stay in sync; the master’s device ID determines
the hopping pattern, and the master’s clock determines the phase in hopping pattern [9].
Each device ID maps to a unique hopping pattern.

Although spread-spectrum signals are more difficult to intercept, frequency hopping
is not designed to be a security mechanism. Rather, frequency-hopping spread spectrum
(FHSS) is highly resistant to narrowband interference, which is where Bluetooth operates
[23]. To further reduce interference from wireless LAN (Wi-Fi), which operates in the same
radio band, Bluetooth also implements Adaptive Frequency Hopping (AFH). Devices oper-
ating with AFH identify ”bad” channels that may cause interference and avoid them. These
”bad” channels are those that are presently occupied by a WLAN transmission. WLAN
devices typically do not change channels, but WLAN channels span multiple Bluetooth
channels [14]. These frequency hopping schemes are an inconvenience rather than a barrier
for Bluetooth hackers.

2.3 Device ID

The Bluetooth device ID (or Bluetooth Address BD ADDR) is a unique 48-bit number
used to identify each Bluetooth device, similar to Ethernet’s MAC address for a computer.
Unlike the MAC address, however, which is foregone for IP addresses at the higher layers of
communication, the BD ADDR is used throughout the Bluetooth protocol – for low-level
radio protocols, identity, authenication, and synchronization. Within a piconet, all devices
including slaves transmit using the master’s device ID.

The BD ADDR (Figure 2) consists of a 2-byte Non-significant Address Portion (NAP),
a 1-byte Upper Address Portion (UAP), and a 3-byte Lower Address Portion (LAP). As
the name suggests, the NAP is not used in any critical aspects of the Bluetooth protocol,

6.858: Hacking Bluetooth

Bluetooth protocol 5 of 28

Figure 2: Bluetooth address.

except in encrypting packets. Since the BD ADDR is so widely used, it is essential that
devices maintain its privacy by keeping its BD ADDR secret. Unfortunately, device IDs
are publically available via Bluetooth inquiries for devices in Discoverable Mode. Even
when not discoverable, all Bluetooth packets are sent with the LAP of the device (or of
the master if part of a piconet) in cleartext. There are also straightforward methods for
determining a device’s UAP, by either timing the gaps between packets or extracting a
cyclic redundancy check (CRC) code from a packet payload). Knowing the LAP and UAP
of a device allows for passive monitoring and attacks.

2.4 Forward error correction (FEC)

Forward error correction (FEC) is a technique used for controlling errors in data trans-
mission over unreliable or noisy communication channels. FEC uses an error-correcting
code (ECC) to encode messages in a redundant way. The purpose of FEC is to reduce the
number of retransmissions, not to provide security. A CRC (cyclic redundancy check) code
is added to each packet and used by the receiver to decide whether or not the packet has
arrived error free [1].

2.5 Data whitening

Before transmission, both the header and the payload of each packet are scrambled
with a data whitening word in order to randomise the data from highly redundant patterns
and to minimize DC bias in the packet. Whitening is a feature for signal transmission, not

6.858: Hacking Bluetooth

Bluetooth security 6 of 28

security. The scrambling is performed prior to the FEC encoding [2].

3 Bluetooth security

3.1 Bluetooth security model

3.1.1 Security goals

Three basic security services defined by the Bluetooth specification [20]:

• Authentication A goal of Bluetooth is the identity verification of communicating
devices based on their Bluetooth device IDs. This service provides an abort mech-
anism if a device cannot authenticate properly. Bluetooth does not provide native
user authentication.

• Confidentiality Another goal of Blueooth is to maintain the privacy of users and
devices. The intent is to prevent information compromise caused by eavesdropping
by ensuring that only authorized devices can access and view transmitted data.

• Authorization A third goal of Bluetooth is a security service developed to allow the
control of resources, which ensures that a device is authorized to use a service before
permitting it to do so.

3.1.2 Security mechanisms

Bluetooth implements its security goals by:

• Authorization (user inputs PIN) In a short range wireless network, there can
be no centralized, trusted party. Bluetooth offloads the question of authorizing com-
munication between devices to the user. The user initializes the access between
two devices by identifying and selecting the appropriate device by device name (e.g.
”Cathy’s Macbook Pro”, ”Keyboard01”), which maps directly to a device ID. The
user is next prompted to enter a PIN that displays on one device into the other device
or is instructed to follow special button presses.

6.858: Hacking Bluetooth

Bluetooth security 7 of 28

• Authentication (verify link key) During the initalization stage, the two devices
also agree upon a secret link key, derived from the PIN, and it is stored between ses-
sions. The authentication procedure (Figure 3), then, gives one device an opportunity
to verify its knowledge of the secret key, and thus its identity [3].

The Bluetooth authentication procedure is in the form of a ”challenge-response”
scheme. The two devices interacting in an authentication procedure are referred to
as the claimant and the verifier. The verifier is the Bluetooth device validating the
identity of another device. The claimant is the device attempting to prove its identity.
One of the Bluetooth devices (the claimant) attempts to reach and connect to the
other (the verifier). The steps in the authentication process are the following:

1. The claimant transmits its 48-bit address (BD ADDR) to the verifier.

2. The verifier transmits a 128-bit random challenge (RAND) to the claimant.

3. The verifier uses the cryptographic E1 algorithm (Bluetooth standard) to com-
pute an authentication response using the address, link key, and random chal-
lenge as inputs. The claimant performs the same computation.

4. The claimant returns the computed 32-bit signed response (SRES), to the veri-
fier.

5. The verifier compares the SRES from the claimant with the SRES that it com-
putes.

6. If the two SRES values are equal, the verifier will continue connection establish-
ment.

• Confidentiality (stream cipher encryption) Bluetooth can encrypt the packet
payload (Figure 4), using a stream cipher called E0. The cipher is stored temporarily
and re-synchronizes for every payload, whereby minimizing the effectiveness of cor-
relation attacks. As input, the E0 algorithm uses the master Bluetooth address, the
master real-time clock and the encryption key. The encryption key is derived from the
current link key, ciphering offset and a random number. Most Bluetooth encryption
schemes use a encryption key between and 1 and 16 bytes long. The master sends
the random number in plain text to the other devices before encryption is started.

6.858: Hacking Bluetooth

Bluetooth security 8 of 28

Figure 3: Authentication via verifying the link key [3].

The E0 algorithm delivers a key stream which is XOR-ed to the data that shall be
encrypted. Since the cipher is symmetric, decryption is handled in the same way.

Modern Bluetooth devices implement all three security services, but in order to provide
backwards compatibility and for performance considerations, each of these services are not
enforced. Different levels of security are more appropriate for different applications. For
example, pacemakers operating via Bluetooth should enforce more security features than
a stereo that is streaming music via Bluetooth. However, these security controls are not
always used appropriately.

3.2 Security assumptions

Bluetooth makes several assumptions about its security. It assumes that once a con-
nection established, the connection between devices will be permanently secure. It also
assumes that short range provides high security (an attacker is not nearby); the Bluetooth
range is typically 5-30m from the device. Additionally, Bluetooth authenticates per device,
assuming that all services and users on a particular device should follow the same security
policy.

6.858: Hacking Bluetooth

Bluetooth security 9 of 28

Figure 4: Confidentiality via stream cipher encryption [3].

3.3 Known Vulnerabilities and Attacks

The weakest part of the Bluetooth protocol is during the initial stages to set up the
connection, before encryption is fully utilized. Because of this, a great deal of the focus
of past Bluetooth attacks have been on taking advantage of the vulnerabilities in these
initial stages. This is in no small part due to the weak/lack of encryption used to secure
the pairing process, the lack of hopping during these stages, and the use of Discoverable
Mode.

3.3.1 Active Device Discovery: Inquiry Scanning

Because of the lack of a central server, Bluetooth devices need some other way to
discover each other existence without interfering with other devices. Such as meachanism
is described in the Bluetooth Specification as ’inquiry scanning’. When a master device,
such a laptop, is trying to find other devices in the area to connect to, it will broadcast
inquiry scan messages over multiple frequencies. Bluetooth slave devices, when they are in
a special mode called ’discoverable mode’, will respond with a inquiry response message.
This message will contain information necessary to initiate the pairing, which is in this case
is the Bluetooth address of the slave, and its device clock.

6.858: Hacking Bluetooth

Bluetooth security 10 of 28

Inquiry Scanning is a very vulnerable stage of the specification. The response messages
are sent over a wide range of frequencies and in plaintext, so an attacker would need to
know neither the keys nor the piconet attributes to capture the packet and discover the
BD ADDR and the device clock. If a device does not enforce encryption, then attacker can
potentially flood all the channels with packets with an approriate header to inject packets
into the victim device.

The information sent in this response message is all that is needed to construct a
piconet and de-whiten the packets. Even if the information is encrypted, the LAP is sent
in plain text, so the Bluetooth packets can still be captured and decrypted later.

3.3.2 Traditional Pairing Process

The Pairing process described above also contains known and well-explored vulnera-
bilties. Recall that the Pairing process employs two keys:

• Link Key: requires the PIN (usually 4 digits)

• Encryption Key: requires the Link Key, ciphering offset and a random number

The security of the Link Key rests on the PIN being secret. This assumption that the
PIN is secret is incredibly broken because even in the case the PIN is not the standard
’0000’ or ’1234’, most PIN’s are only 4 digits. That results in 104 possible PIN combina-
tions to choose from, making brute-force attacks very easy. From there, the data required
to generate the encryption key can be easily acquired, breaking the Confidentiality mech-
anism.

A very well-understood and common Bluetooth attack takes advantage of the vulner-
abilities in Discovery and Pairing processes. This attack focuses on forcing the devices to
disconnect by flooding the channels with packets indicating the slave has lost the key. This
forces the devices to redo the Pairing process, which the attacker can then observe and
obtain the link and encryption keys.

The ’Tradtional Pairing Process’ has since been succeeded in the Bluetooth Specifica-
tion v2.1 by a more secure protocol called Secure Simple Pairing. This protocol employs
Public Key Encryption instead of the PIN to generate the link key. Nevertheless the vul-

6.858: Hacking Bluetooth

Bluetooth security 11 of 28

nerability described is still a cause for concern because many devices support the protocols
described in the older Bluetooth Specifications for backwards compatability.

3.3.3 Known Attacks

These vulnerbilities allow a range of attacks to be easily carried out. Packet sniffing
is a major attack and of primary concern because of the sensitivity of the data that is
potentially passed via Bluetooth. Vulnerable Bluetooth keyboards could reveal sensitive
information such as passwords and credit card information. Another major attack is packet
injection. Knowing the piconet and the BD ADDR of the victim device goes a long way in
allowing an attacker to properly craft packets that will be captured and read by the victim
device.

Bluetooth is vulnerable to Man-in-the-middle attacks. In a 2010 paper by Haataja and
Toivanen, called ’Two Practical Man-In-The-Middle Attacks on Bluetooth Secure Simple
Pairing and Countermeasures’, the writers were able to carry out an attack in which they
jam all frequencies in order to trick the devices to assume that they have been disconnected.
The devices reinitiate the discovery and pairing process. During this phase, the writers
successfully use two Bluetooth modules to pose as the master and slave devices, thereby
making packet injection and packet authentication attacks possible. Such asn attack is not
protected by SSP either, becausethe weakness is not in the encryption mechanism, but in
how devices handle disconnections and reconnections. The victim devices are in reality
connecting to the attacking devices instead of to each other directly.

Another known attack is Car Whisperer, a project by the Trifinite group that sought
to expose the effect of the vulnerabilities described above. The purpose of the project
was to make car manufacturers aware of the inherent vulnerabilities in the Bluetooth sets
inside cars. This group discovered that not only were Bluetooth sets left in Discoverable
mode, but the Pairing Process was also vulnerable because the passkey, which was used
in these Bluetoot sets in the place of PIN’s, were left at their default values set by the
manufacturers. While standing on a bridge over a highway, the researchers were able to
use high-powered Bluetooth modules to connect to the Bluetooth modules in cars passing
beneath them. Once a connection was established, the researchers were able to inject audio
into the car’s speakers. They noted that attackers could also potentially eavesdrop on the

6.858: Hacking Bluetooth

Bluetooth security 12 of 28

car passengers.

Wireless modules are very draining on their hosts. For this reason, manufacturers like
to include some sort of ’sleep’ mode in their devices when it is not actively transmitting
packets. In 2008, a group at the University of Utah demonstrated in the paper ”Battery-
Draining-Denial-of-Service Attack on Bluetooth Devices”, an attack where they repeatedly
bombarded a Bluetooth device with malicious requests. This attack not only rendered the
device unusable, but heavily drained the battery resources. The only way to defend against
such an attack would be to operate the device in so-called ’silent’ mode, where the device
only listens to the network but under no circumstances responds to any requests. Even
operation under ’non-discoverable’ mode, would not stop the determined attacker, because
the attacker just need to attach the appropriate header (which can be gained via passive
listening) to the request mesasges for the victim device to accept the packet.

3.4 Potential Weaknesses

There are other parts of the Bluetooth specification that are intended to reduce in-
terference with other devices, and increase security. However they contain their set of
weaknesses, some of which are described below:

3.4.1 Non-Discoverable Mode

To mitigate the attacks described above, Bluetooth devices now usually feature a mode
called ’Non-Discoverable’ Mode, which default to. This simply means that the device will
not attempt to respond to inquiry request messages it sees. Devices will only enter Dis-
coverable mode when a special button is pressed on the device itself. After a timeout that
usually last for a few seconds, the device will change back to Non-discoverable mode.

This does not mean the device is safe. As long as the Bluetooth device is powered on
it still will accept packets being sent to it with the approprorpriately constructed header
(which just contains an error correcting code, a sequence to correlate data, and most
importantly, the LAP of the receiving device). This means that this device is still not safe
from attacks such as packet injection, as long as the attacker knows the correct LAP for

6.858: Hacking Bluetooth

Bluetooth security 13 of 28

the device.

3.4.2 Globally Unique BD ADDR

The BD ADDR, like the MAC address in your computer, is supposed to be globally
unique. This is particularly important in the Bluetooth protocol because it is used by
the Bluetooth devices to filter packets not intended for it. However, in 2005, researchers
at CSAIL found that this was not really the case. This is potentially a huge security
vulnerbility. An attacker could assemble a list of commonly used BD ADDR’s use a device
such as spooftooph, which allows the attacker to change the BD ADDR of his computer’s
Bluetooth module. He could iterate through a list of commonly used BD ADDR’s until
he starts finding packets. Now knowing the BD ADDR of a device nearby, he can then
proceed to launch attacks such as packet sniffing and packet injection.

3.5 What’s Tricky?

Unlike the 802.11 wireless module in most laptops, standard BROADCOM Bluetooth
modules do not support passive packet sniffing. Recall that any packets being sent to the
master device will contain the master’s LAP in its header. The master device uses this
information to filter out any packets not intended for it before sending it to the CPU. This
filtering is carried out on a very low level of the Bluetooth protocol stack.

This makes sniffing Bluetooth very tricky. To sniff any packet sent over a wireless
network, your receiver needs to be able to operate in so-called ’promiscuous’ mode. In this
mode, the receiver receives all the packets it can read without any regard of who it was
intended for, and sends it to the CPU. However, implementing ’promiscuous’ mode inside
Bluetooth, is both unnecessary and expensive from the viewpoint of the manufacturer.
Therefore the firmware and the hardware for general-purpose bluetooth modules simply
do not support this mode. In the rare case that the hardware can support promiscuous
mode, the firmware is usually closed-source. Making the necessary changes to the firmware
code to implement ’promiscuous’ mode would require extensive reverse engineering of the
firmware itself.

6.858: Hacking Bluetooth

Bluetooth security 14 of 28

3.6 Existing hardware solutions for sniffing Bluetooth

Because standard Bluetooth modules make it incredibly difficult to implement any
sort of packet sniffing, you would have to turn to more specialized hardware to do this.
Not supporting promiscuous mode is not only a hinderance to security researchers. It is
also a hinderance to developers trying to develop Bluetooth related hardware themselves, as
debugging is near impossible without some sort of sniffing feature or access to the lower level
information contained in the Bluetooth packet. Fortunately, this is enough of a problem
that a market for hardware solutions exists for doing just this exists:

3.6.1 FTS4BT

An example of a commercial platform for analyzing this lower-level information in real
time is the FTS4BT[7]. It is a hardware and software package created for sniffing and
debugging Bluetooth devices. It is an incredibly powerful platform, and the hardware is is
specially developed Bluetooth transceiver. Its big brother, the BPA 500, is about the size
of a traditional wi-fi router and claims it can support all adopted specifications, profiles and
protocols.

The FTS4BT would the be the ideal solution to start sniffing packets if it wasn’t for
the price. Unfortunately the market for these sort of hardware solutions is still a niche
market (though this may change as Bluetooth becomes even more popular), so commercial
solutions like the FTS4BT tend to be incredibly expensive, starting at a price point of
$10,000. This price keeps it firmly inaccessible to many hobbyist researchers.

3.6.2 USRP

A cheaper alternative to the FTS4BT was found. It was the Universal Software Radio
Peripheral [6], a hardware platform, which when used with the GNU Radio Project[8],
allowed for the user to implement radio projects very easily in software. It has the ad-
vantage of having a very large bandwidth, allowed the user to listen to multiple channels
simultaneously. Bluetooth security researchers Michael Ossmann and Dominic Spill, con-
sequently developed gr-bluetooth, a collection of tools to do things such as packet sniffing

6.858: Hacking Bluetooth

Bluetooth security 15 of 28

and following the piconet.

While the USRP is a significant step in the right direction for improving the affordabil-
ity of hardware solutions for sniffing Bluetooth, at $1000, it is still out of the price point
for many hobbyist security researchers. This resulted in a relatively limited community of
Bluetooth hackers and consequently, few projects investigating BLuetooth security. This
meant the Bluetooth security is actually in a state of ’security by obscurity’. Just because
you are not hearing about Bluetooth vulnerabilties all the time does not mean the vul-
nerbilities do not exist. Joshua Wright, a prominent Bluetooth Security Researcher and
co-author of the ’Hacking Wireless Exposed’ Series likes to state the following (and thus
consequently dubbed by his follwers as Wright’s Law)

“Security will not get better until tools for practical exploration of the attack surface
are made available.” -Joshua Wright [28]

3.6.3 Ubertooth One

Michael Ossmann sought to address the problem of the lack of affordable hardware
solutions. He saw no reason why tools such as the FTS4BT should be so expensive, though
he speculated it might just be due to a lack of competition. He decided to create his own
Bluetooth module with three key features:

• Hardware Support for Passive Packet listening

• Open Source Firmware and Software

• Cheap: Price of at most $100

He succeeded, and in 2010 announced his project ”Project Ubertooth”. The first version
of the hardware was dubbed ’Ubertooth Zero’.[21]

Since then, he has released a more powerful Class 1 version of the hardware called
”Ubertooth One”. While the hardware was released in 2011[25], the firmware and host
code still had to be fully developed, but now researchers had a hardware platform they
easily access and subsequently build upon. The code for the Ubertooth is still in an very
active and relatively premature stage of development, and so cannot be called a complete

6.858: Hacking Bluetooth

Exploration of tools 16 of 28

Figure 5: Ubertooth One Module [31]

Bluetooth sniffing solution yet. A goal of our project was to identify and thus develop code
for incomplete areas of this Open Source project.

4 Exploration of tools

In order to examine the current state of Bluetooth security we learned about and em-
ployed quite a few different tools, including a three Ubertooth modules, numerous bluetooth
devices, and various Open Source software tools for sniffing Bluetooth traffic or exploiting
Bluetooth devices. Our study and use of these tools made it clear that more development
needed to be done in order to make them good enough for effective Bluetooth vulnerability
testing.

6.858: Hacking Bluetooth

Exploration of tools 17 of 28

4.1 Hardware

Once we settled on using the Ubertooth, we had to see what the current hardware,
firmware, and software developed for it were capable of. Installing the tools that were
already developed by the Project Ubertooth team we were able to do the following:

• Passively detect Bluetooth devices, even when they were not in discoverable mode

• Detect the Upper Address Part (UAP) of Bluetooth devices (only the LAP is typically
sent in communications)

• Use the Ubertooth software to follow a single Bluetooth device as it hopped across
channels

• Passively capture Bluetooth traffic on one channel with a Kismet plugin and display
captured packets in Wireshark

These features allowed us to learn a lot more about how our Bluetooth devices were
communicating and were helpful for general Bluetooth device detection and traffic analysis,
but they were not quite sufficient to allow us to really test the possible vulnerabilities in the
Bluetooth scheme. We were still unable to capture Bluetooth traffic accross all channels
and display it in an easy to analyze format, force a connection with another Bluetooth
device, nor inject malicious packets. The next step we took was to test various software
packages that might be used in conjunction with the Ubertooth to develop sufficient sniffing
or exploit tools.

4.2 Software

We experimented with a number of software tools when analyzing Bluetooth security,
including, but not limited to the following:

4.2.1 Ubertooth Host Code

The Ubertooth host code written by the Project Ubertooth team for the Ubertooth
module consists of three primary tools: a wireless spectrum analyzer, ubertooth-follow

6.858: Hacking Bluetooth

Exploration of tools 18 of 28

(code for following a specific Bluetooth device and printing captured packets to the com-
mand line), and a Kismet-Ubertooth plugin that captures Bluetooth traffic across one
channel and formats and dumps it into a file for further anaylsis in Wireshark [25].

4.2.2 Kismet

Kismet is a wireless network detector and sniffer, which is most commonly used for
sniffing 802.11 wireless traffic [17]. However, we mainly used it in conjunction with the
Kismet-Ubertooth plugin to detect Bluetooth traffic. One of the best features of Kismet is
that it can save all packets captured in a .pcapbtbb file which can be opened in Wireshark
and easily analyzed.

4.2.3 Wireshark

We used Wireshark, a popular network protocol analyzer, for displaying the packets
we captured with the Kismet-Ubertooth plugin [32]. We have included a sample display
Wireshark display of Bluetooth packets captured with our modified version of the Kismet-
Ubertooth plugin (Figure 6).

4.2.4 Spooftooph

Spooftooph is a tool developed by JP Dunning, which uses the bluez library to allow
a user to spoof or clone their BD Address and device name [30]. We were hoping to
use this software to impersonate another device ina piconet and hijack a connection, but
unfortunately this was impossible without being able to decode the handshake packets
being sent between the current devices in the piconet or having a way to remotely force a
single device to disconnect. However, this does remain a very good tool for hiding one’s
own Bluetooth adapter to prevent potential adversaries from detecting your information or
targeting exploits directly at your BD Address.

6.858: Hacking Bluetooth

Exploration of tools 19 of 28

Figure 6: Sample Wireshark Display of Captured Bluetooth Packets.

4.2.5 Pwntooth

Pwntooth is another tool developed by JP Dunning, which is meant to automate
Bluetooth security pen-testing [26]. It is a collection of many smaller Bluetooth detection
and exploit tools, which can be run together to test the overall security of all Bluetooth
devices in the area or a specified Bluetooth device. Unfortunately, we found that the
majority of the Blueooth exploits used by the tool would only work when paired and
connected with a target device, which right now is only possible when the owner of the
targeted Bluetooth device accepts the connection.

4.2.6 HID Attack

The HID Attack, developed by Collin Mulliner, which allows an attacker to inject
keystrokes on a victim’s computer by pretending to be an HID Bluetooth device, is the
best functional Bluetooth exploit that we were able to find [13]. Similarly to Spooftooph,

6.858: Hacking Bluetooth

Exploration of tools 20 of 28

the HID attack makes use of hciconfig (based on the bluez library), to pretend to be a
different Bluetooth device, in this case a Bluetooth keyboard that the victim might want
to connect to. However, while this exploit was demonstrated to work, it only works for
HID hosts in server mode, using unsecure connections. Obviously, this makes it a not very
threatening type of attack, though it was interesting to see that it was possible to mimic
proprietary devices by using certain BD Address prefixes.

4.2.7 Tool dependencies

Most of these software tools, the Ubertooth module, and our laptops’ internal bluetooth
adapters rely on three main libraries, which we will discuss briefly below:

libusb Used by all Ubertooth host software and the Kismet-Ubertooth plugin to commu-
nicate with the Ubertooth hardware module.[19]

bluez The official Bluetooth protocol stack for Linux, which is used in various ways by
all of the different software tools we looked through and tested [4]. Most of the
programs we worked with used the bdaddress or hcitool packages which are built on
top of bluez, but some, including the Ubertooth host code and the code we wrote for
the Kismet-Ubertooth plugin, use HCI calls directly from the bluez library.

libbtbb The Bluetooth baseband library used by Project Ubertooth and gr-bluetooth,
which includes all of the code necessary to decode Bluetooth packets[18].

With these tools we were able to locate undiscoverable devices, examine packets intercepted
by the Ubertooth module (though it is still hard to interpret their actual content though
due to encryption and the fact that slave devices transmit with the master’s LAP, not
their own), mimic other devices by changing our BD Address and device name, and inject
keystrokes or otherwise exploit Bluetooth devices that we are already connected to. While
all of these actions are useful, they are not quite sufficient for really evaluating the security
of the Bluetooth protocol and implementation.

6.858: Hacking Bluetooth

Implementation 21 of 28

Even with these tools, we were still unable to remotely force a Bluetooth device in
a piconet to disconnect or to remotely force a connection with another Bluetooth device
without that device’s owner’s input,which rendered the majority of exploits useless. Most
of the limitations in the capabilities of these tools were due to the fact that is currently
not possible to use these software tools to capture and decode all traffic between two
connected Bluetooth devices which are channel hopping together, which is necessary for
developing software to undermine or force a connection. For that reason, we decided that
we work towards improving current tools for Bluetooth sniffing, so that future researchers
and developers will have all of the tools necessary to solve those problems.

5 Implementation

After familiarizing ourselves with the Bluetooth protocol and all of the tools we dis-
cussed above, we decided to work with the Kismet-Ubertooth plugin to make Bluetooth
sniffing easier and more informative. While the developers of the Ubertooth had al-
ready made it possible to follow a Bluetooth device during its channel hopping with their
ubertooth-follow tool, their Kismet plugin only scanned for Bluetooth traffic through one
channel. Additionally, the packets intercepted by ubertooth-follow are just printed to the
command line and cannot be as easily analyzed as those picked up by Kismet, which can
be viewed in Wireshark. Therefore, we decided to use the functionality of the Ubertooth
and its follow mode to implement channel hopping with a piconet in Kismet, so that fu-
ture developers in this area will have a better method by which to capture and analyze
Bluetooth traffic. Our implementation can be found at https://github.com/cathywu/6858-
kismet-ubertooth.

The first major hurdle in implementing this change was to actually understand how all
of Project Ubertooth’s code worked. After many hours of staring at control flow diagrams
and consulting the creators of Ubertooth, Dominic Spill and Michael Ossman, for support,
we developed a pretty good understanding of how the hardware, firmware, and software
built on top of the Ubertooth module interacts. Fortunately, for us, the firmware already
gave us the ability to do the channel hopping we wanted to do and the primary difficulty in

6.858: Hacking Bluetooth

https://github.com/cathywu/6858-kismet-ubertooth
https://github.com/cathywu/6858-kismet-ubertooth

Implementation 22 of 28

Figure 7: Kismet-Ubertooth Plugin Dependency Diagram.

6.858: Hacking Bluetooth

Future Work 23 of 28

implementing this new functionality in the Kismet-Ubertooth plugin would be to extend
the communication between the Kismet-Ubertooth plugin and the Ubertooth module, so
that it could actually follow a given device. The key aspects of this communication and
dependency chain are outlined in Figure 7. We implemented this communication by using
HCI calls from the bluez library to create a connection with the specified device, which
actually presented more problems than we expected, because HCI calls are blocking and
will cause the plugin to crash if they are not run in a separate thread from the capture
threads.

Using our modified version of the Kismet-Ubertooth plugin, we were able to effectively
follow along a piconet consisting of a laptop and a Bluetooth mouse. We were able to pick
up many more packets (and many more types of packets) than with the original plugin.
Figure 6 shows a sample display of Wireshark from a capture produced by our modified
Kismet-Ubertooth plugin.

6 Future Work

We next plan to prepare our modified Kismet-Ubertooth plugin to be merged into the
main development branch. More work can be done to make our implementation easy to
use. Right now joining a piconet with a specified Bluetooth device requires changing the
BD Address in the code because it is difficult to pass arguments to a Kismet plugin. We are
currently finishing up an implementation that allows the user to enter the BD Address on
the command line, storing it in a configuration file to be read by the plugin. An even better
alternative that we are working towards is to start the plugin in scan rather than follow
mode, to pick up multiple Bluetooth devices, and to allow the user to select the Bluetooth
device via the Kismet UI. Once we have made these changes the developers at Project
Ubertooth are looking to include our code in the main code base for the Kismet-Ubertooth
plugin.

In addition to our contributions, there are many possibilities for future research and
development in this area. We encourage future researchers to use our tool and to contribute
to Project Ubertooth, to enable a deeper analysis of the Bluetooth protocol and implemen-
tation weaknesses. Here are a few suggestions for areas in which more work can be done

6.858: Hacking Bluetooth

Future Work 24 of 28

in both the Kismet-Ubertooth plugin and in Bluetooth security hacking as a whole:

Implementing AFH for Kismet-Ubertooth plugin The next step in improving our
design would be to implement adaptive frequency hopping for the Kismet-Ubertooth
plugin, so that it can follow devices with AFH-enabled. Implementing AFH requires
determining the AFH map held by the host device, which can be rather difficult.
Luckily, the firmware for the Ubertooth module already handles most of the legwork
and it would only require a few modifications to add this functionality to the plugin.

Removing dependence on Bluez for piconet hopping A more difficult task in im-
proving the Kismet-Ubertooth plugin would be to remove it’s reliance on the bluez
library by allowing it to determine all HCI information directly from the Ubertooth
module. This is one of the tasks that the Project Ubertooth is looking to tackle at
some point and will require quite a bit of low level coding in the firmware and host
code of the Ubertooth to implement properly.

Enabling the use of multiple Ubertooth modules Looking further into the future,
developing the ability to use multiple Ubertooth modules for following different Blue-
tooth devices at the same time would be a major step in improving Bluetooth sniffing
capabilities. Getting this to work with the Kismet-Ubertooth plugin would require
intimate knowledge of the Kismet architecture.

Cracking Bluetooth encryption for decoding packets The long term goal of all of
this Bluetooth sniffing is of course the ability to decode and understand all of the
packets that are being transmitted. Finding a way to access the link key or encryption
key and fully decode traffic may be possible and future researchers should consider
whether or not these keys and encryption are actually secure.

Sending ”kill” packet to slave device in piconet The simplest Bluetooth exploit would
be to remotely cause a slave device to disconnect from the host, ideally without the
host knowing about it. This is also the first step in implementing any exploit that
takes advantage of a man in the middle attack.

Completely impersonating other Bluetooth device to hijack connection It remains
to be seen if this is fully possible, but we believe that future security testers in this
field may be able to achieve this level of exploitation against current Bluetooth im-

6.858: Hacking Bluetooth

Conclusion 25 of 28

plementations once the tools for the incremental steps leading up to it have been
developed.

7 Conclusion

Bluetooth is an extremely popular short-range wireless technology that still has many
security problems. Fortunately, many uses of Bluetooth devices today do not pose huge
privacy risks for its users. However, due to its ease of deployment and convenience, an
increasing number of serious applications such as keyboards and pacemakers are entering
the market; the privacy and potentially the life of Bluetooth users will then rest on the
security of Bluetooth. By implmenting piconet following in the Kismet-Ubertooth plugin,
we promote effective tools for analyzing Bluetooth security. As history has shown in the
development of WiFi security, we believe that the most effective means of communicating
the insecurities of Bluetooth is by making Bluetooth sniffing easily accessible to the general
public, thereby influencing manufacturers to care about the security of the devices they
produce.

6.858: Hacking Bluetooth

References 26 of 28

References

[1] Blankenbeckler, David. ”An Introduction to Bluetooth.” The Wireless Developer Net-
work. http://www.wirelessdevnet.com/channels/bluetooth/features/bluetooth.html

[2] ”Bluetooth.” Another URL. http://www.anotherurl.com/library/bluetooth research.htm

[3] ”Bluetooth Security.” Jabra.com. http://www.jabra.com/ /me-
dia/Documentation/Whitepapers/WP Bluetooth 50004 V01 1204.ashx

[4] ”Bluez: Official Linux Bluetooth protocol stack.” http://www.bluez.org/

[5] Cahce, Wright, and Liu. ”Hacking Wireless Exposed, 2nd Edition.” Mc-graw Hill, 2010.

[6] ”Ettus ResearchTM USRP.” https://www.ettus.com/product

[7] ”FTS4BTTM Bluetooth Protocol Analyzer and Packet Sniffer.”
http://www.fte.com/products/FTS4BT.aspx

[8] ”GNU Radio.” http://gnuradio.org/redmine/projects/gnuradio/wiki

[9] Gupta, Manoj. ”Bluetooth Baseband.” Palowireless Wireless Resource Center.
http://www.palowireless.com/bluearticles/baseband.asp

[10] Haataja, Keijo and Toivanen, Pekka Two Practical Man-In-The-
Middle Attacks on Bluetooth Secure Simple Pairing and Counter-
measures. WIRELESS COMMUNICATIONS, IEEE Vol 9 No 1 2010
http://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=05374082.

[11] Harte, L. and Luck, C.J. Introduction to Bluetooth 2nd Edition;
Technology, Market, Operation, Profiles, and Services. Althos, 2009.
http://www.althos.com/tutorial/Bluetooth-tutorial-sleep-modes.html.

[12] Herfurt, Martin ”Car Whisperer”. 2006.http://trifinite.org/trifinite stuff carwhisperer.html.

[13] ”HID Attack.” http://mulliner.org/bluetooth/hidattack.php

[14] Hodgdon, Charles. ”Adaptive Frequency Hopping for Reduced Interference be-
tween Bluetooth R© and Wireless LAN.” Ericsson Technology Licensing, 2003.

6.858: Hacking Bluetooth

http://www.wirelessdevnet.com/channels/bluetooth/features/bluetooth.html
http://www.anotherurl.com/library/bluetooth_research.htm
http://www.jabra.com/~/media/Documentation/Whitepapers/WP_Bluetooth_50004_V01_1204.ashx
http://www.jabra.com/~/media/Documentation/Whitepapers/WP_Bluetooth_50004_V01_1204.ashx
http://www.bluez.org/
https://www.ettus.com/product
http://www.fte.com/products/FTS4BT.aspx
http://gnuradio.org/redmine/projects/gnuradio/wiki
http://www.palowireless.com/bluearticles/baseband.asp
http://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=05374082
http://www.althos.com/tutorial/Bluetooth-tutorial-sleep-modes.html
http://trifinite.org/trifinite_stuff_carwhisperer.html
http://mulliner.org/bluetooth/hidattack.php

REFERENCES 27 of 28

http://www.design-reuse.com/articles/5715/adaptive-frequency-hopping-for-reduced-
interference-between-bluetooth-and-wireless-lan.html

[15] Huang, Albert and Rudolph, Larry. 2005. ”Bluetooth for Programmers”
http://people.csail.mit.edu/rudolph/Teaching/Articles/BTBook.pdf

[16] Kostakos, Vassilis. ”The privacy implications of Bluetooth.” In Proceedings of CoRR.
2008. http://arxiv.org/pdf/0804.3752.pdf.

[17] ”Kismet.” http://www.kismetwireless.net/

[18] ”Libbtbb - Bluetooth baseband library.” http://libbtbb.sourceforge.net/

[19] ”Libusb.” http://www.libusb.org/

[20] Nogales, I. ”Bluetooth Security Features.” 2006.
http://www.urel.feec.vutbr.cz/ra2008/archive/ra2006/abstracts/085.pdf

[21] Ossmann, Michael. ”Project Ubertooth: Building a Better Bluetooth Adapter”.
ShmooCon 2011. http://www.youtube.com/watch?v=KSd 1FE6z4Y

[22] Ossmann, Michael. ”Who Owns your Bluetooth?” ShmooCon, 2010.
https://www.youtube.com/watch?v=5Y9Nf9MrhY &playnext = 1&list =
PL10BC28403A7C1D7C&feature = results video

[23] Popovski, Petar, Hiroyuki Yomo, and Ramjee Prasad. ”Strategies for adaptive fre-
quency hopping in the unlicensed bands.” Wireless Communications, IEEE 13.6 (2006):
60-67. http://kom.aau.dk/ petarp/papers/DAFH-AFR.pdf

[24] Premnath, Sriram and Kasera, Sneha. ”Battery-Draining-Denial-of-
Service Attack on Bluetooth Devices”. University of Utah. 2008.
http://www.cs.utah.edu/ nandha/Abstract 2008.pdf

[25] Project Ubertooth, Getting Started. http://ubertooth.sourceforge.net/usage/start

[26] ”Pwntooth.” http://www.hackfromacave.com/pwntooth.html

[27] Spill, Dominic and Bittau, Andrea. ”BlueSniff:
Eve meets Alice and Bluetooth”. USENIX 2007.
http://static.usenix.org/event/woot07/tech/full papers/spill/spill html/

6.858: Hacking Bluetooth

http://www.design-reuse.com/articles/5715/adaptive-frequency-hopping-for-reduced-interference-between-bluetooth-and-wireless-lan.html
http://www.design-reuse.com/articles/5715/adaptive-frequency-hopping-for-reduced-interference-between-bluetooth-and-wireless-lan.html
http://people.csail.mit.edu/rudolph/Teaching/Articles/BTBook.pdf
http://arxiv.org/pdf/0804.3752.pdf
http://www.kismetwireless.net/
http://libbtbb.sourceforge.net/
http://www.libusb.org/
http://www.urel.feec.vutbr.cz/ra2008/archive/ra2006/abstracts/085.pdf
http://www.youtube.com/watch?v=KSd_1FE6z4Y
https://www.youtube.com/watch?v=5Y_9Nf9MrhY&playnext=1&list=PL10BC28403A7C1D7C&feature=results_video
https://www.youtube.com/watch?v=5Y_9Nf9MrhY&playnext=1&list=PL10BC28403A7C1D7C&feature=results_video
http://kom.aau.dk/~petarp/papers/DAFH-AFR.pdf
http://www.cs.utah.edu/~nandha/Abstract_2008.pdf
http://ubertooth.sourceforge.net/usage/start
http://www.hackfromacave.com/pwntooth.html
http://static.usenix.org/event/woot07/tech/full_papers/spill/spill_html/

REFERENCES 28 of 28

[28] Spill, Dominic. ”Discovering Bluetooth Devices”, 2012.
http://ubertooth.blogspot.com/2012/10/discovering-bluetooth-devices.html

[29] Spill, Dominic. ”Bluetooth Packet Sniffing Using Project Ubertooth”.ShmooCon, 2012
https://www.youtube.com/watch?v=HU5qi7wimAM

[30] ”SpoofTooph.” http://www.hackfromacave.com/projects/spooftooph.html

[31] ”Ubertooth One Module.” https://www.sparkfun.com/products/10573

[32] ”Wireshark.” http://www.wireshark.org/

6.858: Hacking Bluetooth

http://ubertooth.blogspot.com/2012/10/discovering-bluetooth-devices.html
https://www.youtube.com/watch?v=HU5qi7wimAM
http://www.hackfromacave.com/projects/spooftooph.html
https://www.sparkfun.com/products/10573
http://www.wireshark.org/

	Introduction
	Bluetooth protocol
	Pairing
	Frequency hopping
	Device ID
	Forward error correction (FEC)
	Data whitening

	Bluetooth security
	Bluetooth security model
	Security goals
	Security mechanisms

	Security assumptions
	Known Vulnerabilities and Attacks
	Active Device Discovery: Inquiry Scanning
	Traditional Pairing Process
	Known Attacks

	Potential Weaknesses
	Non-Discoverable Mode
	Globally Unique BD_ADDR

	What's Tricky?
	Existing hardware solutions for sniffing Bluetooth
	FTS4BT
	USRP
	Ubertooth One

	Exploration of tools
	Hardware
	Software
	Ubertooth Host Code
	Kismet
	Wireshark
	Spooftooph
	Pwntooth
	HID Attack
	Tool dependencies

	Implementation
	Future Work
	Conclusion

