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Abstract 
There are two strategic and longstanding ques@ons about cyber risk that organiza@ons largely 
have been unable to answer: What is an organiza@on's es@mated risk exposure and how does 
its security compare with peers? Answering both requires industry-wide data on security 
posture, incidents, and losses that, un@l recently, have been too sensi@ve for organiza@ons to 
share. Now, privacy enhancing technologies (PETs) such as cryptographic compu@ng can enable 
the secure computa@on of aggregate cyber risk metrics from a peer group of organiza@ons 
while leaving sensi@ve input data undisclosed. As these new aggregate data become available, 
analysts need ways to integrate them into cyber risk models that can produce more reliable risk 
assessments and allow comparison to a peer group. This paper proposes a new framework for 
benchmarking cyber posture against peers and es@ma@ng cyber risk within specific economic 
sectors using the new variables emerging from secure computa@ons. We introduce a new top-
line variable called the “Defense Gap Index” represen@ng the weighted security gap between an 
organiza@on and its peers that can be used to forecast an organiza@on’s own security risk based 
on historical industry data. We apply this approach in a specific sector using data collected from 
25 large firms, in partnership with an industry ISAO2, to build an industry risk model and provide 
tools back to par@cipants to es@mate their own risk exposure and privately compare their 
security posture with their peers.   
 
  

 
1 Authors listed in alphabe1cal order. Weitzner and Wu were supported, in part, by NSF grant Collabora1ve 
Research: DASS: Legally Accountable Cryptographic Compu1ng Systems (LAChS) Award Number: 21315415. 
Reynolds was supported by MIT’s Future of Data Ini1a1ve, MIT’s FinTech@CSAIL, and MIT’s Machine Learning 
Applica1ons @CSAIL. 
2 The data was collected from 25 large firms in the United States with combined annual revenues of USD 23 billion. 
Due to the sensi1ve nature of the results, we are keeping the name of the ISAO undisclosed in this version of the 
paper. 
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Introduc.on 
There are two strategic and longstanding ques@ons about cyber risk that organiza@ons largely 
have been unable to answer: What is an organiza@on's es@mated risk exposure and how does 
its security compare with peers? Answering both requires industry-wide data on security 
posture, incidents, and losses that, un@l recently, have been too sensi@ve for organiza@ons to 
share. 
 
Un@l now, firms have been unable to assess their own cyber risk posture with reference to 
larger risk paderns. This means that firms have been unable to forecast their own cyber risk 
because they lack the tools to learn about the frequency and magnitude of adacks in their own 
sector and the defensive posture of their peer group. Some of this data has been narrowly 
available to insurers, but even insurance providers and brokers lack data on core data such as 
actual economic losses (in contrast with insured losses) that are necessary to accurately forecast 
cyber risk. This lack of data leaves organiza@ons struggling to answer basic ques@ons about the 
magnitude of their own cyber risk and how they compare with other organiza@ons in their peer 
group.  
 
This comes at a @me when government regula@ons increasingly require organiza@ons to 
evaluate and monitor their cyber risk and the effec@veness of security controls. For example, 
the newly revised FTC Safeguards Rule in the United States requires organiza@ons, now 
extending beyond just financial services, to conduct security risk assessments that “must be 
wriden and must include criteria for evalua@ng those risks and threats.”(“FTC Safeguards Rule: 
What Your Business Needs to Know” 2022). The New York State Department of Financial 
Services recently issued a rule requiring covered en@@es to confirm that they have devoted 
adequate resources to cover expected risk (NYDFS 2023). In Europe, Ar@cle 21 of the European 
Union’s Network and Informa@on Security Direc@ve (NIS 2) mandates that organiza@ons have 
“policies on risk analysis and informa@on system security” as well as “policies and procedures to 
assess the effec@veness of cybersecurity risk-management measures”(EU 2022).  
 
It is not just governments pukng new demands on organiza@ons to produce cyber risk 
assessments and track the effec@veness of controls. The US Na@onal Associa@on of Corporate 
Directors (NACD) produced a 2023 Director’s Handbook on Cyber-Risk Oversight that calls for 
management to “deliver reports that are benchmarked, so directors can see metrics in context 
to peer companies or the industry” (NACD 2023). In addi@on, the NACD says directors should 
obtain cyber risk assessments and informa@on about cyber-risk exposure in economic terms 
(NACD 2023). 
 
While there are clear policy requirements for organiza@ons to evaluate the effec@veness of 
controls and compare themselves to peers, the ability to do so must be called into ques@on 
without access to the key external data about their peers that they would need to so effec@vely. 
This could change though as new cryptographic techniques open access to aggregated cyber 
security data within a par@cular industry.  
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Cryptographic computa@on tools, a type of privacy enhancing technology or PETS, facilitate new 
data sources within an industry that can be used to benchmark and model risk. A subset of PETs 
known as “encrypted data processing tools” or “cryptographic compu@ng” allow aggregated 
results to be computed from encrypted cyber security posture, incident, and loss data without 
requiring organiza@ons to disclose the individual inputs. These secure computa@on approaches 
are used to develop cybersecurity benchmarks that can be used by individual firms for private 
comparisons (de Castro et al. 2020).  
 
The introduc@on of secure computa@on techniques for data analy@cs opens access to data sets 
that were never available before, par@cularly at the sector level among a group of peers. 
Organiza@ons can now share sensi@ve informa@on into a computa@on without the risk of 
revealing or disclosing sensi@ve, proprietary, or embarrassing data to anyone. This exci@ng 
development introduces a new set of modeling possibili@es using a richer data set but one that 
has smaller data coverage. 
 
In general, secure data aggrega@on techniques in the cybersecurity sector produce aggregated 
data on security posture, control failures, incident frequencies, and losses. The available 
mathema@cal analy@c tools include sums, averages, and high-level visibility into the overall data 
distribu@on of the variables. Individual inputs and more detailed data are not available as a 
feature of these techniques to protect the privacy and security of the underlying data. Given 
these new developments, there is a need for modified cyber risk frameworks that can ingest 
and use these smaller but richer data sets.  
 
One of the most exci@ng developments is the ability to aggregate data on security posture and 
incidents at the sector level. Focusing on the industry level allows a group of similar firms facing 
similar threats to essen@ally pool informa@on to understand and compare against the relevant 
peer group. From a modeling perspec@ve, focusing on a peer group with common threats, 
similar incident frequencies, and comparable loss amounts opens new analy@cal possibili@es for 
holding certain elements constant across the group and exploring the impact of control 
adop@on and security posture on risk es@mates. 
 
In this paper we propose a modified cyber risk modeling framework that incorporates newly 
available securely aggregated data. We introduce a new top-line variable in a standard cyber 
risk model called the “Defense Gap Index” that measures how a firm’s devia@on from the 
average security posture, based on historical industry data of the peer group, impacts an 
organiza@on’s own security risk. We show further how to construct this gap measurement from 
the outputs of secure data aggrega@ons done within a specific sector. Figure 1 introduces the 
proposed risk model that uses data collected from the sector to es@mate the probability of a 
significant event in a given year (P), the average observed financial losses in the peer group (L), 
and now the gap index that relates control devia@ons from the group average to changes in risk 
outcomes.  
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Figure 1: PLG = R 

 

We apply this approach in a specific sector, in partnership with an industry ISAO3, using actual 
data collected from 25 large firms with combined revenues of over USD 23 billion. The result is a 
general risk model for the industry and new private benchmarking tools for individual firms that 
allow them to answer the two outstanding ques@ons – 1) what is my organiza@on’s es@mated 
cyber risk and 2) how does it compare to the peer group? 
 
Related work 
Cyber risk modeling approaches 
Some of the earliest work on what we now call cyber risk modeling was focused on the risk of 
data processing. In the 1970s, Courtney posited that risk to electronic data processing systems 
can be summarized with two elements – a statement of impact from a “difficulty” and the 
probability of encountering that difficulty (Courtney 1977). Nearly 50 years later, the basic 
formula for calcula@ng risk is s@ll widely used, although with different names.  
 
The widespread adop@on of computers throughout the business world in the 1990s and the 
growth of Internet connec@vity later in the decade and throughout the 2000s highlighted the 
need for new informa@on security protec@ons. Markets responded and new risk transfer 
op@ons in the form of cyber insurance appeared from companies such as Chubb, AIG, Lloyds, 
and Marsh (Gordon, Loeb, and Sohail 2003). In 2003, Gordon, Loeb, and Sohail published a 
framework for using insurance for cyber risk management that assesses risks, deploys security 
controls to mi@gate some of the risk, and transfers remaining financial risk via insurance 
(Gordon, Loeb, and Sohail 2003). Researchers began exploring the decision-making process for 
businesses to transfer cyber risk via insurance (Mukhopadhyay et al. 2005). Around the same 
@me, researchers began ques@oning whether the insurance market for cyber insurance was 
actually sustainable given the correla@ons among losses, the lack of actuarial data, and the 
difficulty of substan@a@ng claims (Wang and Kim 2009b; 2009a; Böhme 2005; Baer and 

 
3 The data was collected from 25 large firms in the United States with combined annual revenues of USD 23 billion. 
Due to the sensi1ve nature of the results, we are keeping the name of the ISAO undisclosed in this version of the 
paper. 
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Parkinson 2007). The ques@on of cyber insurability remains an important research area (Biener, 
Eling, and Wirfs 2015).  
 
A new line of cyber risk research emerged in the early 2010s focusing on data breaches and the 
number of lost records to compare and quan@fy cyber incidents (Ayyagari 2012; Edwards, 
Hofmeyr, and Forrest 2016). Since the financial impact of data breaches were not available 
outside of insurance providers, researchers adempted to use the number of records exfiltrated 
as part of incident as a way to compare and quan@fy cyber breach (OECD 2013; Wheatley, 
Maillart, and Sornede 2016). The approach proved difficult because different records have 
different value and some of the quan@fica@on methods such as looking for changes in market 
capitaliza@on tended to revert to the tradi@onal growth path over @me. Recent work is re-
exploring the poten@al to es@mate the value of data by es@ma@ng the value individuals put on 
access to their computer files (Cartwright, Cartwright, and Xue 2021). 
 
Later in the 2010s, cyber risk modeling began splikng into two camps – those with access to 
large data sets such as insurance providers, and individual organiza@ons that needed to 
understand and manage their own risk. Insurance providers such as brokers and underwriters 
arguably have access to the most detailed data on frequencies, and losses, but lack informa@on 
on security posture within an organiza@on.  
 
Individual organiza@ons have a much beder understanding of their own security posture than 
their insurers do (asymmetric informa@on), but they lack vital informa@on about the broader 
cybersecurity landscape and informa@on on incidents in their own sector that are valuable for 
forecas@ng their own risk. Since quan@ta@ve data is largely unavailable to individual firms, they 
rely heavily on heat maps and other qualita@ve measures to evaluate and address their cyber 
risk (Fink et al. 2009; Staheli et al. 2014; Jiang et al. 2022). 
 
In the mid 2010s, two influen@al books appeared targe@ng individual organiza@ons looking to 
quan@fy their own risk. Freund and Jones developed a bodom-up cyber risk modeling 
framework called Factor Analysis of Informa@on Risk (FAIR) that has the same top-level 
structure as the model proposed by Courtney in 1977 (Courtney 1977; Freund and Jones 2014). 
The FAIR approach expands this into a taxonomy and ontology for building cyber risk models 
and quan@fying cyber risk within a firm based on its own internal data and informa@on that can 
be gleaned from other sources (Freund and Jones 2014). Around the same @me, Hubbard and 
Seiersen published a popular book en@tled, “How to Measure Anything in Cybersecurity Risk” 
(Hubbard and Seiersen 2016). Both approaches target risk analysts in individual firms and rely 
heavily on stochas@c methods such as Monte Carlo simula@ons to es@mate an organiza@on’s 
cyber risk.  
 
At present, industry is moving toward risk quan@fica@on methods, and governments are making 
this a requirement in certain sectors, but the lack of external data sources remains a significant 
challenge.  
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Cryptographic compu6ng 
Beginning in the 2010s and con@nuing into the 2020s, new privacy-enhancing technologies such 
as cryptographic compu@ng began emerging that permit the collec@on, processing, analysis and 
sharing of informa@on while protec@ng the confiden@ality of the underlying data (OECD 2023). 
Advances in cryptography and expanding computa@onal power unlocked the poten@al to do 
secure computa@ons using homomorphic encryp@on that can compute func@ons over 
encrypted data (Abbe, Khandani, and Lo 2012; Asharov et al. 2012).  
 
This has the poten@al to make new data sets available to researchers that were previously too 
sensi@ve to share into data aggrega@ons. The technology is s@ll developing but various use 
cases have emerged from double auc@ons in Denmark (Bogetou et al. 2009), linking private 
data sets in Estonia (Bogdanov et al. 2016), protec@ng privacy in genome studies (Kamm et al. 
2013), simula@ng electricity trading markets (Abidin et al. 2016) to es@ma@ng the gender wage 
gap using private wage data (Lapets et al. 2019). Current applica@ons include privacy-preserving 
inventory matching systems for the banking sector (Polychroniadou et al. 2023) and distributed 
private adribu@on for adver@sing (Case et al. 2023).  
 
In 2020, a cryptographic compu@ng plavorm from MIT called SCRAM (Secure Cyber Risk 
Aggrega@on and Measurement) ran a secure mul@-party computa@on to collect security 
posture, losses, and incident frequencies from six firms to produce new cyber security metrics 
that could be used for modeling in the future (de Castro et al. 2020). This was the first @me that 
cryptographic compu@ng was used to calculate previously unavailable cyber risk metrics. Now 
that the tools are available, the industry needs models that can use them.  
 
In the cybersecurity context, we recommend encryp@ng data in transit and at rest, but assume 
that data must be decrypted during use. Cryptographic compu@ng plavorms are exci@ng 
because they bridge this final gap and allow the data to stay encrypted while in use.   
 
Data 
Mul@-party computa@on and encrypted data processing rely primarily on the ability to calculate 
sums over encrypted data (Abbe, Khandani, and Lo 2012). In the cyber risk context, sums are 
useful for coun@ng the total number of incidents, arriving at a sum of total monetary losses, and 
coun@ng the number of organiza@ons that adopt a specific security control at a specific maturity 
level. The secure computa@on ingests values from a specific loca@on (vector) within an 
encrypted spreadsheet that is contributed by a par@cipa@ng organiza@on. Each of the encrypted 
elements is summed across the peer group and the resul@ng output (a new matching vector) is 
decrypted and contains the sum of each item in the input vector. 
 
These sums can then be used to calculate averages for the group simply by dividing by the 
number of par@cipants contribu@ng data. Averages can be used for calcula@ng the frequency of 
incidents and the average losses associated with an incident. Averages are typically calculated in 
post processing of the results data. 
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Another important data output from the computa@ons are binary flags that are used for 
coun@ng specific elements or crea@ng distribu@ons of variables across a set of data ranges. For 
example, binary flags are used to count the number of incidents that have a total monetary loss 
that falls between a specific range of values. These counts can then be combined to build a 
rough histogram of loss quar@les or quin@les that are then used to build the new gap index 
variable.  
 
It is worth no@ng that individual records are not visible in computa@on results. Researchers 
cannot do tradi@onal data cleaning on submided data, but data checks are implemented with a 
verified checksum before data can be uploaded into the computa@on plavorm. The lack of 
visibility into individual inputs can lead to some imprecision in modeling the losses, for example, 
but this is the cost of increased privacy that is given to the input data.  
 
ISAO study: For this paper, we securely collect data from 25 members of a single ISAO using the 
MIT SCRAM plavorm. The 25 organiza@ons have combined annual revenue of over USD 23 
billion. The collected data includes a ra@ng of the maturity level of 22 controls in an 
organiza@on, the number of incidents with losses larger than $5,000 between January 2021 and 
June 2023, informa@on on which control failures are responsible for reported losses, and the 
total financial loss amount of security incidents during the relevant period. Specific details 
about the variables produced by the resul@ng computa@on are provided in the list below.   
 

- Maturity level (22 variables): Average maturity level for each of 22 controls across the 
peer group (self-reported). Based on the Ransomware Readiness Index where all 
controls are drawn from the White House Execu@ve Order on Improving the Na@on’s 
Cybersecurity, and the White House Memo to Corporate Execu@ve and Business Leaders 
on Ransomware from 2021 (Spiewak, Reynolds, and Weitzner 2021).  

- Quar:le flags – Maturity levels (88 variables): Count of maturity ra@ngs for 22 controls 
over 4 poten@al responses (Not implemented, par@ally implemented, largely 
implemented, fully implemented). This provides a distribu@on of maturity levels across 
the par@cipants.  

- Incident count (1 variable): Sum of the number of incidents across the peer group 
during the relevant period 

- Control failures (22 variables): Count of the @mes individual controls failed leading to 
incidents with financial losses. Par@cipants submikng an incident can implicate up to 5 
failed controls as responsible for the reported financial loss.  

- Financial costs – total (1 variable): Sum of the total financial costs across all incidents in 
USD. 

- Financial costs – by control (22 variables): Data on the adributed costs of incident 
failures to for each of the 22 controls in USD. Data losses for a single reported incident 
are distributed evenly across all implicated controls in that incident.  

- Quin:le flags – losses (5 variables): Count of the number of incidents in each of five 
financial loss bands in USD. (1k-5k, 5k-50k, 50k-500k, 500k-5m, >5m) 
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These data are then used to build each of the components of the industry risk model and 
underpin the private tools that firms can use to compare their own security posture and risk to 
the peer group.  
 
Models and results 
This modeling sec@on details two modeling approaches that take advantage of the aggregated 
results for the sector. The first develops the PLG=R model and builds a new defense gap index 
(G) that captures the rela@onship between weighted security control devia@ons from the peer 
group and risk exposure.  The second modeling sec@on uses the same aggregated results to 
build an industry risk es@mate and loss exceedance curve using a Monte Carlo simula@on.  
 
Sectoral risk modeling approach 1: PLG = R 
 
The PLG = R model can be re-wriden as follows to represent an organiza@on’s own risk rela@ve 
to its peers.   
 
Equa:on 1 	 𝑷#𝑷𝒆𝒆𝒓𝒔 ∗ 𝑳&𝑷𝒆𝒆𝒓𝒔 ∗ 𝑮𝑶𝒘𝒏 =	𝑨𝒏𝒏𝒖𝒂𝒍𝑹𝒊𝒔𝒌𝑶𝒘𝒏	

Equa:on 2	 	 𝑷#𝑷𝒆𝒆𝒓𝒔 ∗ 𝑳&𝑷𝒆𝒆𝒓𝒔 ∗ 𝟏 = 	𝑨𝒏𝒏𝒖𝒂𝒍𝑹𝒊𝒔𝒌𝑷𝒆𝒆𝒓𝒔	

Where:  
 
P = Probability of an incident. Calculated as the average annual incident rate across the peer 
group. Once P is derived, it is held constant across the peer group under the assump@on that 
similar firms face similar threats and defend similar assets.   
L = Average financial loss amount per incident across the peer group. Once L is derived, it is also 
held constant over the peer group.  
G = Defense Gap Index mul@plier. The gap index represents how weighted security posture 
devia@ons from the peer average affect risk forecasts. The calcula@on of G is defined in detail in 
the following sec@ons.  
Annual Risk = The forecasted annual financial risk (expected value). 
 
Equa@on 1 and Equa@on 2 above include a measure of frequency (P) of incidents and their 
impact (L) but introduce a new top-line element called the Defense Gap Index (G). The key 
innova@on of the Defense Gap Index is that it uses actual loss data from the peer group, control 
failure adribu@ons, and the average security posture of the peer group to es@mate the 
rela@onship between weighted devia@ons from the average security control maturi@es of the 
peer group and changes in risk outcomes. This gives firms an empirically grounded means of 
predic@ng risk in the future to support investment decisions and can help enable regulators to 
set expecta@ons for reasonable security posture. 
 
In the well-known modeling approach Factor Analysis of Informa@on Risk (FAIR), Freund and 
Jones capture the strength of security controls as “Resistance Strength” under the “Loss 
Frequency” category (Freund and Jones 2014). Control strength has an indirect effect on the 
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model via the level of vulnerability the firm faces that impacts the frequency of successful 
adacks.  
 
Since our core interest is understanding how changes in security posture affect cyber risk 
forecasts, our proposed model elevates differences in security posture from the peer group to a 
top line element in the risk model alongside probability and loss. The func@onality of the 
Defense Gap Index is aligned with the goals of the variable “SecT“ in Mukhopadhyay et al’s 
CRAM model (Mukhopadhyay et al. 2019), but it is calculated differently and named as a “gap” 
index to capture the dynamic that higher scores of the variable relate to higher risk.  
 
P and L are both derived from the secure computa@on as averages and represent the average 
probability of a significant incident for the peer group and the average monetary loss across all 
reported incidents.  
 
In each step of the model explana@on, we will use real-world data derived from the secure data 
collec@on done with 25 firms from a single ISAO. This allows us to illustrate the process while 
producing actual risk metrics and results for the sector.  
 
ISAO data results from the secure computa@on:  

- Average control maturity level: 78% (high level, between largely and fully implemented) 
- Number of incidents: 4 
- P = 0.064 incidents per year per organiza@on 
- L = $145,000 average loss per incident 
- G = 1 since this represents the average baseline weighted security of the peer group. In 

other words, the average security posture has no devia@on from itself and is assigned a 
mul@plier of 1. 

- R = $9,280 average annual cyber risk per firm (computed from PLG) 
- Total losses: $580,000  
- Implicated control failures: 5 controls implicated across the total $580,000 of losses 

 
Defense Gap Index (G)  
At a high level, the Defense Gap Index acts as a mul@plier that amplifies or reduces forecasted 
risk levels based on an organiza@on’s weighted devia@ons from the security control maturity 
averages of the peer group. The weights for specific controls are allocated based on actual 
financial losses adributed to control failures reported by members of the peer group.4 Once 
individual control weights are assigned, the next step takes actual loss magnitudes contributed 
by the group and maps them to net weighted devia@ons from the group average. Large 
observed losses are assigned to large nega@ve devia@ons (poorer security), while small 
observed losses are assigned to posi@ve devia@ons from the average (beder security). Next, we 
fit a func@on to the observed data points (including the known group average). This func@on is 

 
4 If an organiza1on reports an incident, they must assign responsibility for the incident to specific control failures. 
They can implicate up to 5 control failures per incident. The reported loss amount is divided equally across all 
implicated controls.  
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then used to calculate the Defense Gap Index mul@plier (G). Using the gap index mul@plier 
formula, organiza@ons can privately input their own security posture to obtain a personalized 
Defense Gap Index mul@plier (G) that goes into the PLG=R model to calculate their own risk.  
 
Once the computa@on is complete and the Defense Gap Index calcula@on is parameterized, 
par@cipants are sent the group values for P and L along with the Defense Gap Index formula. 
This allows them to privately do their own in-house risk modeling and answer the two 
outstanding ques@ons of what is an organiza@on's es@mated risk exposure and how does its 
security compare with peers? 
 
Figure 2 below provides a broad overview of the modeling approach where data from private 
computa@ons in the first horizontal sec@on feed into calcula@ons of the Defense Gap Index in 
the second sec@on. Finally, individual organiza@ons can privately compute their own Defense 
Gap Index mul@plier using their own security posture and use it for internal risk modeling. The 
five steps for modeling the Defense Gap Index mul@plier are provided below and are populated 
with real-world data obtained from the computa@on with 25 members of an ISAO.  
 
Figure 2: Summary of the sectoral risk modeling approach 

 

The next five steps explain how to derive the Defense Gap Index formula using data from the 
secure computa@on.  
 
Step 1: Allocate overall category weights between controls groups with and without losses  
 
In this first step, researchers building the industry model decide how much importance to place 
on control failures that lead to losses, the “loss group”, compared to controls that are not 
implicated in loss events, the “no-loss group”. Three possible weigh@ng op@ons are:  
 

- Op@on 1: Equal weigh@ng for all controls (unweighted) 
- Op@on 2: Weigh@ng based on the alloca@on of losses across implicated control failures 
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- Op@on 3: Weigh@ng based on correla@ons of actual losses (or lack of losses) and security 
control maturity 

 
Ideally the alloca@on of weights should be done using correla@ons between losses (and the lack 
of losses) and security control maturity while controlling for endogeneity. At present, the tools 
for allowing Op@on 3 are s@ll under development, so this sec@on describes how Op@on 2 is 
produced. This second op@on requires that some of the overall weight is assigned among 
controls implicated in failures, and the remainder is allocated across controls that have no 
associated losses. We start by considering an 85% (implicated) / 15% (non-implicated) split of 
the weights but then adjust to make sure that the smallest implicated weight is larger than any 
non-implicated weight.  
 
ISAO result: We use a slightly modified data split of 75%/25% because of the wide loss range 
between the largest and smallest implicated control. We want to ensure the smallest implicated 
weight is larger than the non-implicated weights. Also, the rela@vely small number of implicated 
control failures (5) means addi@onal weight should be added to the non-implicated controls.  
 
Step 2: Allocate individual control weights within loss and no-loss groups 
The second step allocates weights across individual controls in the loss and no-loss groups ( 
Figure 3). We assign controls in the “loss group” a high propor@on of the total weight (e.g. 75%) 
and then the sub-weights of individual controls within the group are pro-rated based on the 
magnitude of losses assigned to each by the peer group. Sub-weights in the no-loss group are 
assigned as an equal distribu@on of the remaining weight (e.g. 25%).  
 
ISAO result: There were 5 implicated controls with loss amounts in the ISAO data collec@on. The 
5 implicated controls are assigned a combined 75% of the weight, while 17 non-implicated 
controls receive an equal share of the remaining 25%. The weights in the implicated group vary 
widely from 42% of the total weight assigned to “Evaluate employee skills” down to 1.9% of the 
weight assigned to “Deploy Mul@factor Authen@ca@on”. The full breakdown is available in (Table 
2 in the Annex. These are all based on observed losses which ranged from largest amount of 
$325,000 adributed to employee skills to the smallest amount of $15,000 on MFA. Employee 
skills and training were the two largest loss areas followed by controls related to backup and 
then MFA. The remaining 17 controls each received an equal weight of 1.5%.  
Figure 3 provides a breakdown of the ISAO weigh@ng.  
 
Figure 3: ISAO weights applied to controls with and without a\ributed losses 
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75% of the total weight is assigned 
propor@onately to the 5 controls with 
adributed losses based on the size of 
the observed financial impact. 
Example:  n = 5, weights vary from 
42.0% to 1.9%. 
 
25% of the total weight is assigned 
equally across all 17 non-implicated 
controls. 
Example: n = 17, weights are all 1.5% 
 

 
 
Step 3: Net weighted security control devia:on and boundaries 
The third step uses the weights produced in Step 2 to create a net weighted devia@on formula 
that individual organiza@ons will use to calculate their own weighted security control devia@ons 
from the peer group. The group average and control weights are calculated in Step 2 above. The 
general equa@on is given in below:  
 
Equa:on 3  

𝑁𝑒𝑡𝑊𝑒𝑖𝑔ℎ𝑡𝑒𝑑𝐷𝑒𝑣𝑖𝑎𝑡𝑒 = ∑ ((𝑂𝑤𝑛𝑀𝑎𝑡𝑢𝑟𝑖𝑡𝑦(/𝐺𝑟𝑜𝑢𝑝𝐴𝑣𝑒𝑟𝑎𝑔𝑒())
(*+ ∗ 𝐶𝑜𝑛𝑡𝑟𝑜𝑙𝑊𝑒𝑖𝑔ℎ𝑡()    

 
Where:  

OwnMaturity = The organiza@on’s own control maturity for control n 
GroupAverage = The average maturity level for control n across the peer group  
ControlWeight = The control weight assigned to control n in Step 2 

 
In this step, the industry model developers determine a set of devia@on boundaries that will be 
used to model the high and low ranges of observed losses. For example, the relevant ranges to 
consider could be 30% above and 30% below the group average, where having a net weighted 
security control devia@on that is 30% below the average would correspond to the highest range 
of losses reported by the peers. The lowest range of losses are then assigned to net weighted 
security control devia@ons that are beder than the peer average. Clearly there is some art 
involved in determining these ranges, but we have found +/- 30% to be a good set of modeling 
ranges in mul@ple sectors. In the future it should be possible to calculate the correla@ons 
between losses (and the lack of losses) and net weighted security control devia@on to produce 
beder es@mates.  
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ISAO result: We select a maximum range of +/- 30% for the net weighted security devia@on 
range to represent our best es@mate of the weighted security varia@ons across the sector.5  
 
Step 4: Create a model fi_ng observed loss data to the net weighted devia:on for controls 
The fourth step evaluates and models the distribu@on of actual observed losses over the net 
weighted security control devia@on boundaries defined in Step 3. We assume a non-linear, 
exponen@al model. We also assume that higher security (posi@ve net weighted varia@on) 
corresponds to lower losses and vice versa (Eling and Wirfs 2019). The largest observed losses 
map to the lowest security levels (e.g. 30% below average) and the smallest losses to the higher 
security levels (e.g. up to 30% above average). The average loss and the average security level, 
which represent the averages of the peer group, correspond to a Defense Gap Index mul@plier 
(G) of 1 and are used as one of the observa@ons. Since individual losses are not visible, loss 
ranges in quar@les or quin@les provide the relevant data points for fikng the loss func@on. 
There is no precise way to place individual loss points from a range, but op@ons include using 
the maximum, average, midpoint, or minimum as the representa@ve point in the quar@le. The 
average loss amount and average security level (corresponding to a Defense Gap Index of 1) are 
both known and serve as the grounding point for the model es@ma@on.   
 
ISAO result: The ISAO computa@on reveals four incidents reported by three firms spread over 
two quin@les. We calculate the loss model in this step by using the three observed loss amounts 
plus the computed average loss to build the loss model. The two incidents from the same firm 
are only visible to us as a single loss amount range which complicates interpre@ng the bands. 
The total losses across all incidents amount to $580,000. Two firms report losses between 
$50,000 and $500,000 and a third firm reports losses between $5,000 and $50,000.  
 
For the higher loss quin@le (50k-500k), we use $450,000 as the top end loss and assign it to a 
net weighted devia@on of -30%. We arrive at the $450,000 number by subtrac@ng away the 
bodom quar@le’s single highest loss ($50,000) from all reported losses ($580,000). We also 
know that the second firm’s loss in the high quar@le is larger than the upper limit of the smaller 
quar@le ($50,000) so that can be subtracted as well – leaving us with $480,000. We used a 
slightly smaller $450,000 value to reflect the ambiguity around the actual loss amounts.   
 
We know the average loss ($145,000) at the average level of security (net weighted security 
control devia@on of 0). Finally, we assume the single loss in the lower quin@le is close to the top 
of the range at $50,000 for an organiza@on that has 15% beder security than the average. These 
three available points provide us with enough data to es@mate a curve that traverses through 
the average for the peer group in Figure 4. 
 

 
5 The maximum range is allowed to surpass 100% because weights on individual controls can vary considerably. In 
the ISAO case here, 42% of the total weight is assigned to one control (evalua1ng employee skills) so significant 
devia1ons of this single control can have large effects. 
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Figure 4: Producing the Gap index scalar 

 

 
The resul@ng gap index model is:  
 
Equa:on 4  𝑫𝒆𝒇𝒆𝒏𝒔𝒆𝑮𝒂𝒑𝑰𝒏𝒅𝒆𝒙 = 𝑮 =	𝒆,𝟒.𝟕𝟗𝟔∗𝑵𝒆𝒕𝑾𝒆𝒊𝒈𝒉𝒕𝒆𝒅𝑫𝒆𝒗𝒊𝒂𝒕𝒆 

 
Where:  
DefenseGapIndex = the Defense Gap Index mul@plier (G) to be used in the equa@on P*L*G = R 
NetWeightedDeviate = the net weighted security control devia@on from the peer group’s 
average control maturity. 
 
Compu3ng private results 
Once the Defense Gap Index formula in Equa@on 4 is established and values for P and L are 
known from the computa@on results, organiza@ons can now use the model to privately 
calculate their risk and compare their security posture and risk to their peers.6 The equa@ons 
and process for each are described in this sec@on.  
 
Q1: What is our organiza6on’s es6mated risk exposure?  
The process a par@cipa@ng organiza@on uses to forecast their own risk exposure is seamless and 
automated via a spreadsheet once the secure computa@on results are available, but we step 
through the process in detail here.  

 
6 Par1cipa1ng organiza1ons receive a results spreadsheet with detailed dashboards that only requires them to 
insert their own private values that were originally contributed into the secure computa1on that then populates all 
the dashboards.  
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The first step is calcula@ng the organiza@on’s own risk exposure and comparing it to the peer 
group. This is done using Equa@on 3 to calculate its own net weighted security devia@on (x).  
The results Equa@on 3 are then used in Equa@on 5 to calculate the organiza@on’s own Defense 
Gap Index value (Gown).  Equa@on 5 should already include the derived constant value for the 
peer group that was calculated earlier for the en@re group in Equa@on 4. Finally, the 
organiza@on inserts Gown from Equa@on 5 into the two following risk equa@ons, holding P and L 
constant, to obtain a forecast of its own annual cyber risk in monetary terms (Equa@on 6) and a 
forecasted incident size (Equa@on 7) in the case of an event. P and L are derived in the original 
secure computa@on and provided for the par@cipants along with the DerivedConstant from the 
gap index modeling. 
  
Equa:on 3 
𝑁𝑒𝑡𝑊𝑒𝑖𝑔ℎ𝑡𝑒𝑑𝐷𝑒𝑣𝑖𝑎𝑡𝑒 = ∑ ((𝑂𝑤𝑛𝑀𝑎𝑡𝑢𝑟𝑖𝑡𝑦(/𝐺𝑟𝑜𝑢𝑝𝐴𝑣𝑒𝑟𝑎𝑔𝑒())

(*+ ∗ 𝐶𝑜𝑛𝑡𝑟𝑜𝑙𝑊𝑒𝑖𝑔ℎ𝑡()    
 
Equa:on 5  𝑮𝑶𝒘𝒏 = 	𝑮𝒂𝒑𝑰𝒏𝒅𝒆𝒙𝑫𝒆𝒇𝒆𝒏𝒔𝒆 = 𝒆𝑫𝒆𝒓𝒊𝒗𝒆𝒅𝑪𝒐𝒏𝒔𝒕𝒂𝒏𝒕∗𝑵𝒆𝒕𝑾𝒆𝒊𝒈𝒉𝒕𝒆𝒅𝑫𝒆𝒗𝒊𝒂𝒕𝒊𝒐𝒏 

Equa:on 6 	 	 𝑨𝒏𝒏𝒖𝒂𝒍𝑹𝒊𝒔𝒌𝑶𝒘𝒏 = 𝑷#𝑷𝒆𝒆𝒓𝒔 ∗ 𝑳&𝑷𝒆𝒆𝒓𝒔 ∗ 𝑮𝑶𝒘𝒏	

Equa:on 7	 	 𝑭𝒐𝒓𝒆𝒄𝒂𝒔𝒕𝒆𝒅𝑰𝒏𝒄𝒊𝒅𝒆𝒏𝒕𝑺𝒊𝒛𝒆𝑶𝒘𝒏 =	𝑳&𝑷𝒆𝒆𝒓𝒔 ∗ 𝑮𝑶𝒘𝒏	

	
Q2a: How does our risk compare with our peers?  
Once the organiza@on knows its own forecasted annual risk and incident size, analysts can 
compare these results with the average results from the peer group. Equa@on 8 and Equa@on 9 
compare the annual risk of the own firm with its peers, while Equa@on 10 and Equa@on 11 with 
the peer group on annual risk and forecasted incident sizes.  
 
Equa:on 8	 𝑨𝒏𝒏𝒖𝒂𝒍𝑹𝒊𝒔𝒌𝑶𝒘𝒏 = 𝑷#𝑷𝒆𝒆𝒓𝒔 ∗ 𝑳&𝑷𝒆𝒆𝒓𝒔 ∗ 𝑮𝑶𝒘𝒏	

Equa:on 9 	 𝑨𝒏𝒏𝒖𝒂𝒍𝑹𝒊𝒔𝒌𝑷𝒆𝒆𝒓𝒔 = 𝑷#𝑷𝒆𝒆𝒓𝒔 ∗ 𝑳&𝑷𝒆𝒆𝒓𝒔 

 
 
Equa:on 10 	 𝑭𝒐𝒓𝒆𝒄𝒂𝒔𝒕𝒆𝒅𝑰𝒏𝒄𝒊𝒅𝒆𝒏𝒕𝑺𝒊𝒛𝒆𝑶𝒘𝒏 =	𝑳&𝑷𝒆𝒆𝒓𝒔 ∗ 𝑮𝑶𝒘𝒏	

Equa:on 11 	 𝑭𝒐𝒓𝒆𝒄𝒂𝒔𝒕𝒆𝒅𝑰𝒏𝒄𝒊𝒅𝒆𝒏𝒕𝑺𝒊𝒛𝒆𝑷𝒆𝒆𝒓𝒔 =	𝑳&𝑷𝒆𝒆𝒓𝒔		

 
Q2b: How does our security posture compare with our peers?  
The next ques@on that can be answered with the data is how the organiza@on’s own security 
posture compares with its peers.  
 
There are two ways analysts can compare their organiza@on’s own security posture with peers 
in the sector (Figure 5). The first is using standard benchmarking tables outputs from the secure 
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computa@on which provide the average maturity across the peer group for each control and a 
distribu@on of responses (not / par@ally / largely / fully implemented).  
 
Analysts can also use the weighted controls lists that have been informed by actual losses across 
the group to accommodate control priori@za@on. The net weighted security control devia@on 
measure provides a weighted comparison against the average (value of 1) of the peer group. For 
example, a net weighted devia@on score of 0.75 implies that the organiza@on’s security posture 
is 25% lower than the sector’s peer average auer weigh@ng each control by observed losses.  
 
Figure 5: Security posture comparison (unweighted and weighted controls) 

 

 
 
 
ISAO results for the industry 
 
Equa:on 12	 𝑨𝒏𝒏𝒖𝒂𝒍𝑹𝒊𝒔𝒌𝑷𝒆𝒆𝒓𝒔 = 𝑷#𝑷𝒆𝒆𝒓𝒔 ∗ 𝑳&𝑷𝒆𝒆𝒓𝒔 = 𝟎. 𝟎𝟔𝟒 ∗ $𝟏𝟒𝟓, 𝟎𝟎𝟎 = $𝟗, 𝟐𝟖𝟎	 

Equa:on 13 𝑭𝒐𝒓𝒆𝒄𝒂𝒔𝒕𝒆𝒅𝑰𝒏𝒄𝒊𝒅𝒆𝒏𝒕𝑺𝒊𝒛𝒆𝑷𝒆𝒆𝒓𝒔 =	𝑳&𝑷𝒆𝒆𝒓𝒔 = $𝟏𝟒𝟓, 𝟎𝟎𝟎		

 
ISAO results for a par@cular firm 
 
Equa:on 14 𝑮𝑶𝒘𝒏 = 	𝑮𝒂𝒑𝑰𝒏𝒅𝒆𝒙𝑫𝒆𝒇𝒆𝒏𝒔𝒆 = 𝒆,𝟒.𝟕𝟗𝟔∗𝑵𝒆𝒕𝑾𝒆𝒊𝒈𝒉𝒕𝒆𝒅𝑫𝒆𝒗𝒊𝒂𝒕𝒊𝒐𝒏 

Equa:on 15 𝑨𝒏𝒏𝒖𝒂𝒍𝑹𝒊𝒔𝒌𝑶𝒘𝒏 = 	𝟎. 𝟎𝟔𝟒 ∗ $𝟏𝟒𝟓, 𝟎𝟎𝟎 ∗	𝑮𝑶𝒘𝒏	

Equa:on 16 𝑭𝒐𝒓𝒆𝒄𝒂𝒔𝒕𝒆𝒅𝑰𝒏𝒄𝒊𝒅𝒆𝒏𝒕𝑺𝒊𝒛𝒆𝑶𝒘𝒏 = 	$𝟏𝟒𝟓, 𝟎𝟎𝟎 ∗ 𝑮𝑶𝒘𝒏 

 
Using the ISAO results from the equa@ons above, we illustrate how forecasted risk increases or 
decreases with changes in the net weighted security control devia@on through the Defense Gap 
Index mul@plier (G). Figure 6 shows annual expected risk based on varia@ons in an ISAO 
member’s defense posture. The average risk derived in Equa@on 12 of $9,280 per year for the 
average level of protec@on reflects the “fair price” for an insurance premium based on the 
incidents reported by the 25 firms over 2.5 years. However, if a member organiza@on has 
substan@ally lower levels of control implementa@on, its forecasted annual loss could be over 
five @mes the average, or $49,723 as shown in Figure 6. At the other end of the control maturity 
spectrum, an organiza@on with 35% higher weighted maturity will only suffer a forecasted 
average annual loss of $1,732, which is roughly one fiuh lower than the average.  
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In insurance parlance, this fair price is the equivalent of the expected loss for the pool, but does 
not include other internal costs, external costs, economic profit needs, and capital costs that the 
insurance provider incurs to run its business. This means that the actual premium would need 
to be somewhat higher than the calculated expected loss for the insurance company to operate. 
The “fair price” calcula@on also assumes that all costs would be covered in the case of an 
incident, but that is typically not the case as there are exclusions and deduc@bles that lead to 
less than full coverage. The “fair price” calcula@ons are imprecise, but they s@ll provide a good 
star@ng point for organiza@ons in the peer group to evaluate insurance offers.  
 
Figure 6: Annual cyber risk forecasts by net weighted security control devia:on from group 

 

 
Figure 7 shows the same trend but forecasts the financial impact of an individual security 
incident based on the net weighted security devia@on rela@ve to the ISAO industry average. An 
organiza@on with the average security posture could expect an incident size of $145,000 when 
there is a successful adack. However, organiza@ons with a weighted net security gap that puts it 
30% below average would expect an incident to cost $778,917 – nearly 5 @mes the average.  
 
Figure 7: Forecasted incident sizes by net weighted security control devia:on from group 
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Sectoral risk modeling approach 2: Monte Carlo simula6ons & loss exceedance curves 
Monte Carlo simula3ons 
The peer data on losses can also be used in a Monte Carlo simula@on at the peer group level to 
forecast the probability that the loss from a single cyber incident will be above a certain 
threshold. This requires an understanding of the distribu@on of financial losses across the group 
that can be gleaned from the secure computa@on loss quin@les. Eling and Wirfs use insurance 
data to study the costs of cyber events and find two categories of losses – the first they call the 
“cyber risks of daily life” with frequent but low financial losses, and the second that they call 
“extreme cyber risks” that are infrequent but have high associated losses (Eling and Wirfs 2019). 
One of their key findings is that the two categories of cyber events have different distribu@ons 
and should be modeled separately.  
 
Following this approach, we set up a Monte Carlo simula@on based on the observed loss 
categories across the peer group. A mean, distribu@on, and probability are assigned to the large 
but infrequent loss category, and a different mean, distribu@on, and probability are assigned to 
the small but frequent loss category.  
 
Our ISAO data show a poten@al cluster of one or two incidents in the $50,000 low end range 
and another poten@al cluster of incidents in the higher quin@le in the $450,000 range. The 
computa@on results were ambiguous about the number of incidents in each quin@le, so we will 
assume a 75% low end and 25% high end distribu@on that we have seen in other sectors. We 
model them separately within the same Monte Carlo simula@on.7 The Monte Carlo that selects 
losses distributed around $50,000 for 75% of the @me and around $450,000 for the remaining 
25% of the @me (Table 1). We fladen the distribu@ons by increasing the standard devia@ons for 
each of the categories to roughly correspond with the +/- 30% net weighted security devia@on 
scores discussed earlier. The high distribu@on has a larger rela@ve standard devia@on indica@ng 
that losses at the high end will vary more than losses at the low end.  
 
Table 1: Monte Carlo inputs based on observed data 

Variable Low distribu@on High distribu@on 
Mean $50,000 $450,000 
Standard devia@on $25,000 $300,000 
Probability 75% 25% 

 
The Monte Carlo simula@on selects a random value 10,000 @mes that follows the distribu@ons 
shown in Table 1 and represents the average security level for the group. For 75% of the @me, 
that random value comes from the low distribu@on, and for 25% of the @me from the high 
distribu@on. The results of the 10,000 itera@ons are then classified by their loss amount to 
provide a distribu@on of possible losses. In Figure 8, the Y axis shows the count of results in a 
specific range, and the X -axis shows the corresponding monetary loss.  
 

 
7 Spreadsheet equa1on: IF(RAND()<0.75,NORMINV(RAND(),50000,25000),NORMINV(RAND(),450000,300000)) 
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The mean and spread of each distribu@on are determined by the observed data in the loss 
categories, but standard devia@ons are typically large and flat to cover the broad range of 
poten@al losses. The probability of a loss falling in either of the distribu@ons should largely be 
set by the observed data but can be augmented with other known industry loss data if available. 
It is easier to introduce external data for this approach because no measure of the affected 
organiza@on’s security posture is required to place the loss in context. 
 
Using the seeds from the peer group data collec@on, the next stop is running a Monte Carlo 
simula@on with 10,000 or more instances. Random loss values cannot be nega@ve, so any 
nega@ve values are bodom censored at zero. This simula@on represents expected losses based 
on the average security level for the peer group and is not tailored to a specific firm.  
 
ISAO Results: The distribu@on emerging from Monte Carlo simula@on using ISAO data is shown 
in Figure 8. clear peak is visible around $75,000 at the low end, while the distribu@on of high 
losses is thin and rela@vely flat around $500,000.  
 
Figure 8: ISAO Monte Carlo simula:on of random loss values 

 
Note: Random values in the distribu@on cannot be nega@ve and are bodom censored at zero. 

Loss exceedance curves 
The results of the Monte Carlo simula@on can be used to build loss exceedance curves (also 
known as complementary cumula@ve distribu@on func@ons) that are commonly used in 
catastrophic risk modeling to describe the probability that a certain loss value will be exceeded 
in a predefined future @me period (Grossi, Kunreuther, and Windeler 2005). Loss exceedance 
curves have also been adopted in cyber risk modeling to convey the probability that the losses 
from large cyber incident will exceed a given amount (Hubbard and Seiersen 2016), (Sokri 
2019), (Humphreys 2021). They are useful for risk managers and governance boards charged 
with managing the organiza@on’s overall risk. 
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In the context of cyber risk governance, an organiza@on’s leadership may want to know whether 
the organiza@on can handle the financial losses of a large incident and the probability that a 
single significant loss event will exceed a certain amount.  
 
The loss data derived from secure computa@ons is put into a Monte Carlo simula@on whose 
outputs are use to create loss exceedance curves. We use a model based on (Hubbard and 
Seiersen 2016) and (Humphreys 2021) which shows the probability that a large incident will be 
above a certain loss threshold (Equa@on 17).  
 
Equa:on 17  𝑳𝒐𝒔𝒔𝑬𝒙𝒄𝒆𝒆𝒅𝒂𝒏𝒄𝒆𝑪𝒖𝒓𝒗𝒆 = 𝟏 − 𝑭𝑳(𝒍) = 𝒑(𝑳𝑴𝑪 > 𝒍) 

 
Where:  
FL is the cumula@ve distribu@on func@on of losses 
LMC is the random variable of the loss from the Monte Carlo (real numbers).  
l (lowercase) is the poten@al loss amount 
In this implementa@on, the loss variable LMC represents the size of a single incident. 
 
Figure 9 shows the ISAO peer group’s loss exceedance curve based on the Monte Carlo 
simula@on above. The results show that in 97% of cases, the cost of a significant incident will be 
over $10,000. The probabili@es fall as the losses increase so that the probability of having a loss 
over $500,000 falls to 12%, and the probability of having a loss over $1,000,000 is only 1%. It is 
important to note that this simula@on may only be representa@ve for the peer group and not 
the en@re sector due to selec@on bias issues.  
 
Figure 9: ISAO imputed loss exceedance curve  
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Limita.ons of the work 
These cyber risk models making use of secure computa@on results will improve our understand 
on risk and produce beder es@mates. Yet, there are several limita@ons to this research 
approach. First, the data that is used in the secure computa@ons is self-reported by the 
organiza@ons themselves. Although every effort is made to educate the par@cipants about 
evalua@ng control maturi@es and es@ma@ng loss amounts, the self-reported data is likely to 
have variability that limits the precision of the results. In the future, automated data collec@ons 
of specific variables could help minimize this challenge. 
 
The risk modeling process, and the produc@on of the Defense Gap Index in par@cular, require a 
bit of art mixed with science to locate and map reported loss ranges to net weighted devia@ons 
from the peer average. We understand that the process is imprecise, but we believe that 
perfec@on should not be the enemy of the good and having a small amount of actual data to 
model cyber risk for a peer group is beder than having no data at all. 
 
The number of organiza@ons that can poten@ally par@cipate in a computa@on is limited to a 
single sector, so there will be fewer incidents that are available for modeling then would be 
possible using firms from a variety of sectors. We also need a large representa@ve sample from 
the sector to get results that reflect the state of the sector as a whole. Our strategy of limi@ng 
the research to one sector at a @me allows us to hold P and L constant and evaluate changes in 
the Defense Gap Index (G) and how they affect risk. Broadening to the en@re economy would 
certainly increase the number of incidents that could be used to model, but the assump@on 
that P and L remain constant would be much more difficult to make. 
 
The secure data collec@ons likely suffer from some selec@on bias. Any organiza@ons that is a 
member of an ISAO and is willing to invest @me par@cipa@ng in a secure data collec@on for 
understanding cyber risk beder is also likely to be among the most proac@ve in defending their 
data and networks. The 25 firms from the ISAO that par@cipated in the study were somewhat 
surprised by the loss results. They expected much larger losses than were reported by the 
group, and several par@cipants suggested that the issue may be due to selec@on bias. As a 
result, inferences related to the findings of the ISAO risk modeling should be limited to the 
profile of leading firms in the sector with regards to their security. 
 
Policy implica.ons 
The crea@on of the new defense gap index has important implica@ons for policy making. First, it 
provides a valuable tool for organiza@ons to calculate their cyber risk and compare it against 
their peer group in a way that has never been possible before. Second, it introduces a 
quan@fica@on methodology for priori@zing security controls based on actual losses and control 
failures reported by the peer group – providing clear guidance to policymakers on areas of 
par@cular need and targets for policy aden@on. Third, the defense gap index provides a holis@c 
view of an organiza@on’s cyber security posture rela@ve to its peers in the sector. Fourth, the 
gap index provides a baseline security posture for an industry that can be tracked over @me to 
understand the sector’s evolving security landscape. 
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This research shows that there are methods for calcula@ng cyber risk metrics and models for 
specific sectors that can take advantage of new data coming from secure aggrega@ons. These 
new secure computa@onal techniques have opened a rich set of metrics that can be used to 
gauge the risk profile of a specific economic sector and allow organiza@ons within that sector to 
compare themselves to their peers. Government efforts to bring together peer groups to jointly 
and securely aggregate cyber risk data could help policy makers and the organiza@ons 
themselves obtain a much beder understanding of cyber risk throughout the sector. 
 
One of the key challenges in cyber risk modeling is a lack of standardized defini@ons and terms 
that are used across the industry. Un@l now, there has been limited effort to standardize the 
terminology since the data was previously too sensi@ve to share. But this is changing, and 
governments working with industry groups and academic researchers can play a role in helping 
standardize the defini@ons and terms we use for cyber risk modeling. 
 
One of the key findings emerging from the ISAO data and backed up by other literature is that 
improving security for organiza@ons that are significantly below the peer average can have an 
outsized effect rela@ve to the investment. These firms with the lowest security levels offer the 
largest return on security investment because of the observed non-linearity of security losses. 
 
Another related finding is that focusing interven@ons first on security control failures associated 
with the largest losses will likely have a larger return on investment and aden@on. Governments 
should priori@ze research into uncovering beder informa@on about the effec@veness of controls 
to guide their own security investments and priori@es. 
 
Conclusions & future work 
The goal of this research is providing new models and data to answer two key ques@ons that 
organiza@ons have struggled to answer. What is an organiza@on's es@mated risk exposure? How 
does the security of an organiza@on compare with its peers in the sector?  
 
We provide the tools to answer each of these ques@ons through the key innova@on in this 
paper - a new variable called the Defense Gap Index in the top line of the risk model. The Gap 
Index works as a mul@plier to increase or decrease forecasted risk for an individual firm based 
on the net weighted distance of its own security posture from the average security posture of 
the peer group. These comparisons are made possible using cryptographic computa@on tools.  
 
This modeling approach provides new tools to individual organiza@ons to forecast and 
benchmark their risk, but also allows policymakers to compare aggregate security levels across 
sectors. In the paper we apply the model to a data collec@on across 25 large firms in single 
sector to produce a benchmark for the industry and create powerful new tools for the 
par@cipants to privately compute their own results.  
 
Using data derived from a secure mul@-party computa@on, we can develop a risk model for an 
ISAO sector and provide modeling tools to the par@cipa@ng firms to forecast their own risk 
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based on their unique security posture, and then compare themselves to their peers. The model 
proposed in this paper is used for a secure data collec@on with an ISAO to build benchmarks of 
security posture, and risk models for the industry and individual firms. 
 
Future research in this area should expand to addi@onal sectors using similar methods so that 
the results could be compared to one another. Another area for future research would be 
developing new methods for introducing external data from outside the peer group into the 
modeling process for the Defense Gap Index. 
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Annex 
 
Table 2: Observed losses and prorated control weights for the Gap Index (defense)  

 

Control 
Observed  

losses 

Equal  
control  
weights 

Prorated control weights 
by losses: 

75% prorated across losses 
25% equally across non-

losses 
5a. Eval employee skills $325,000 4.5% 42.0% 
5b. Deliver regular training $90,000 4.5% 11.6% 
6b. Test backups $75,000 4.5% 9.7% 
6d. Store backups offline $75,000 4.5% 9.7% 
1a. Deploy MFA $15,000 4.5% 1.9% 
2a. Deploy EDR $0 4.5% 1.5% 
2b. Hunt malicious activity $0 4.5% 1.5% 
3a. Encrypt in transit $0 4.5% 1.5% 
3b. Encrypt at rest $0 4.5% 1.5% 
4a. Remove sharing barriers  $0 4.5% 1.5% 
4b. Threat intelligence $0 4.5% 1.5% 
6a. Regular backups $0 4.5% 1.5% 
6c. Protect backups $0 4.5% 1.5% 
7a. Timely updates & patching $0 4.5% 1.5% 
7b. Centralized patch system $0 4.5% 1.5% 
7c. Risk-based patching $0 4.5% 1.5% 
8a. Codify incident response plan $0 4.5% 1.5% 
8b. Test incident response plan $0 4.5% 1.5% 
8c. Maintain incident response plan $0 4.5% 1.5% 
9a. External pen testing $0 4.5% 1.5% 
9b. Red team exercises $0 4.5% 1.5% 
10a. Network segmentation $0 4.5% 1.5% 

 
 
 
 


