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1 Introduction

Millions of people use Zoom to learn, connect with friends and family, collaborate with
colleagues, and deliver vital services. Zoom users deserve excellent security, and Zoom is
working to provide these protections in a transparent and peer-reviewed process. This doc-
ument describes the cryptographic protocols powering several Zoom products and features,
both upcoming and already released.

We are actively engaging in a process of consultation with multiple stakeholders, including
clients, cryptography experts, and civil society. As we receive feedback, we will update this
document to reflect changes in roadmap and cryptographic design.

1.1 Outline

In Section 2, we start by providing some context on the Zoom platform and discussing the
goals and limitations of our approach.

Many of our most secure offerings, including end-to-end encryption (E2EE), require Zoom
client devices to have cryptographic keys whose secret components are not available to
Zoom servers. Section 3 describes these keys, how they are managed by Zoom clients,
and how we use sigchains to bind keys from a user’s devices to that user’s account and
identifiers.

In Section 4, we propose a key transparency architecture that will force Zoom servers to be
consistent about each user’s identity, empowering Zoom client devices to monitor their own
identities and detect any attempts at impersonation. In Section 5, we describe how users
can leverage external identity providers to certify their own keys, allowing communication
partners to independently verify them without relying on Zoom. Both of these mechanisms
reduce the need for fingerprints and security codes to achieve authentication.

The following sections introduce the cryptographic protocols powering Zoom Mail Service
(Section 6), Meetings (Section 7) and Phone (Section 8).

1.1.1 E2E Encryption for Zoom Meetings

Before version1 4.0, this document was titled “E2E Encryption for Zoom Meetings,” as
it focused primarily on the Meetings product, for which it proposed an incrementally
deployable four-phase roadmap to strong end-to-end security and identity. Since then, we
have deployed the first phase of the roadmap and expanded the use of end-to-end encryption
and other advanced cryptography to more Zoom products, such as Phone and Email. To
better describe these new developments, we moved away from a chronological presentation
in favor of an evergreen document that describes the cryptographic design behind each
product.

1Previous versions available at https://github.com/zoom/zoom-e2e-whitepaper/
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2 Background and Security Goals

Zoom offers a comprehensive communications platform consisting of a variety of products,
including Zoom Team Chat, Zoom Phone, Zoom Mail Service, Zoom Whiteboard, and
Zoom Meetings.

For users of these products, Zoom provides software for desktop and mobile operating
systems and embeds software in Zoom Room devices. In this document, when we refer
to “Zoom clients” or simply “clients,” we include all these various forms of packaging.
Crucially, these are systems to which we can deploy cryptographic software. In contrast,
some Zoom products can also be accessed through other systems which are unable to
support custom cryptographic protocols, or cannot offer the same level of security when
doing so. For example, users can join a meeting by dialing in from a landline phone (with
no cryptography support), or from their web browsers (which can perform cryptography,
but make it easy for the server to surreptitiously provide tampered cryptographic code).

Our goal is to provide the best security protections across all of these devices, mindful of the
constraints that each environment poses, and without compromising the easy and seamless
experience that our customers expect. When analyzing the security of our products, we
consider a wide range of potential adversaries, namely:

Outsiders: Individuals who are not authorized to access specific information or data
streams (such as everyone who is not mentioned as a sender or recipient in a given
email thread, or everyone except the participants of a specific meeting), and do not
have access to non-public information related to it (e.g., user passwords, meeting
passwords, IDs, SSO systems). These attackers may monitor, intercept, and modify
network traffic, but do not have privileged access to Zoom’s infrastructure.

Participants: Zoom users who are authorized to participate in a specific communication
or have been granted access to some information: for example, meeting participants
who can access a meeting, because they know the meeting’s ID and password or
exercise other qualifying credentials.

Insiders: Those who develop and maintain Zoom’s server infrastructure and its cloud
providers, as well as attackers who have gained (even partial) access to this infras-
tructure.

Against these adversaries, colluding or working independently, we seek the following secu-
rity goals:

Confidentiality: Only authorized participants should have access to the contents of end-
to-end encrypted communications. If the Zoom product supports removing users from
encrypted communication channels, then those users should no longer have access to
those communications after they are removed.

Integrity: Those who are not authorized participants should have no ability to corrupt
those end-to-end encrypted communications.
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Abuse Prevention: When authorized participants engage in abusive behavior, there is
an effective mechanism to report them to Zoom’s safety team, to help prevent further
abuse.

Broadly speaking, end-to-end encrypted products aim to achieve confidentiality and in-
tegrity goals even against insiders: we aim to detect, and if possible, prevent any violations
of these properties. While prevention is preferable, we stress that even detection can be a
powerful deterrent: it allows users to monitor their communications and quickly move to
limit any damage, while demonstrating our commitment to be transparent about breaches.

All Zoom products also have many server-driven security and access control mechanisms,
including transport-layer encryption, meeting passwords, and granular user and account
level permissions. While these are not meant to protect against insiders with privileged
access to our infrastructure (and are not the focus of this document), they are highly
effective against outsiders.

2.1 Limitations

Our encryption protocols offer strong guarantees for our customers. However, as with any
security system, there are limitations to our approach. There are certain classes of attacks
and threats that we deem out of scope, including:

Metadata and traffic analysis: Insiders and outsiders may learn information about
the timing, duration, and bandwidth usage patterns of end-to-end encrypted com-
munications, as well as the list of participants and IP addresses.

Software flaws: Zoom’s client code or the third-party libraries it links against can
have bugs, or worse, intentional backdoors. Zoom’s binary build procedures might
become compromised. In these cases, there are no good cryptographic guarantees we
can make. Zoom relies on extensive analyses by independent third party auditors to
reassure customers in this domain.

Third party compromise: We leverage third-party Single Sign-Ons (SSOs) and Identity
Providers (IDPs) to independently vouch for the identity of Zoom’s users. Doing so
moves the trust away from Zoom and to identity providers that many of Zoom’s
enterprise users already trust for sensitive identity operations. Where we do rely on
SSOs and IDPs, the additional security guarantees they offer might be lost due to
attacks on their infrastructure.

Denial of service: The encryption architecture does not offer any guarantees about
availability of the service. Insiders can always refuse service to a specific user, in-
cluding when they try to perform security critical operations such as revoking a
compromised key to prevent further data from being encrypted and thus exposed.

In addition, we note that many Zoom products have rich feature sets and work on multiple
platforms. Some of these features and use cases are incompatible with our security guar-
antees. For example, Zoom Mail Service can be used to send and receive emails from other
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email services that do not support end-to-end encryption (see Section 6.3). Or, dial-in
phones can be used to join Zoom Meetings, but do not support end-to-end encryption.
E2E security of the type described in this document is not possible in settings where Zoom
products interface with these existing standards. Moreover, users can access some Zoom
products through their web browser, and without installing Zoom’s client. Supporting
E2EE for web users poses certain challenges: secure, long-term storage for cryptographic
private keys might be unavailable; and worse, malicious web servers could serve backdoored
source code to web clients with little chance of detection. We intend to participate in the
web standards development process to facilitate the creation of browsers upon which we
could offer dependable E2E security.

We will further comment on the specific properties and limitations for each of the products
and features described in this whitepaper in their respective sections.

3 User Identity and Key Management

As part of an overarching end-to-end encryption solution, we introduce the concept of cryp-
tographic identity to Zoom. This allows Zoom users to ensure they are communicating only
with the intended parties across many Zoom products, and helps prevent impersonation
and “meddler-in-the-middle attacks” (MitM)2. End-to-end encryption is only as secure as
the ends: if Alice thinks she is talking to her coworkers, but instead her competitors are
participating in the meeting (perhaps with their video off) or there is a MitM, encryption
will not be sufficient to protect her. Zoom aims to give users helpful and trustworthy
information to evaluate the identity of users they interact with.

This section describes how we define and represent a user’s identity to the people they
interact with on Zoom, as well as how we enforce that these identities are consistent over
time and cannot be tampered with.

3.1 Non-Cryptographic Identity at Zoom

Zoom organizes its users into accounts. Accounts can be held by individual people, busi-
nesses or institutions, and they consist of one or more users: if Example Corporation uses
Zoom, then each Example Corporation employee would be a Zoom user belonging to the
Example Corporation account. Each user can have more than one device (e.g., a computer
or a phone) on which they can use Zoom products.

Each account is part of a cloud infrastructure that hosts the data relating to the account
and its users, such as email addresses and login information. Some Zoom users are in the
Zoom commercial cloud; there is also a Zoom for Government cloud for U.S. government
employees and contractors, as well as separate white-labeled private Zoom instances, each
with their own cloud. Zoom products generally support cross-cloud communication, though
there may be some limitations.

2“Meddler-in-the-middle attack” is also known as “man-in-the-middle attack.”
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Zoom users authenticate to Zoom in a variety of ways. Users can log in using their email
address and a password, or via an OAuth or SAML-based flow with an external Identity
Provider (IDP) that has been set up for their account. In all of these cases, an email address
is used as a unique user identifier. If the account settings allow it, users can change their
email address or authentication method.

Some Zoom products, such as meetings, do not require individuals to sign in as a Zoom user
in order to participate, unless configured otherwise. Users can join a meeting by clicking a
link or by entering the meeting ID and password in the app.

The identity information displayed for a given user depends on the Zoom product, product-
specific settings, account settings, and whether the viewer is in the same account or a dif-
ferent account. Identity information may include name, job title, company, phone number,
and email address. Users may be able to modify their identity information, though account
administrators can restrict their users to approved names. This identity information, and
mechanisms that control changes to it, are controlled by the Zoom servers and cannot be
independently verified by clients.

Zoom products may provide mechanisms to enforce access control: for example, meetings
support meeting passwords, the waiting room feature, and the ability to restrict the meeting
to users in the host’s account or users whose emails have a specific domain name. These
features are enforced by the Zoom servers, so they can be circumvented if the server is
compromised. They also do not prevent one member of an account from impersonating
another member of the same account, and they may not give users enough information to
make access control decisions themselves: for example, whether to admit an attendee from
a meeting’s waiting room.

3.2 Cryptographic User Identity

The cryptographic identity of a Zoom user consists of two components. The first component
is a set of human-readable identifiers unique to each user and the account they belong to.
This allows users to be identified by displaying their email addresses and information about
their Zoom accounts to other users. Second, each user’s identity includes the set of devices
(and their cryptographic keys) controlled by that user. We describe a device model that lets
us reason about how a user’s devices and keys change over time, and helps us formalize the
concept of trust between devices. The device model allows a user’s devices to communicate
amongst themselves in addition to securely communicating with other users. When a
device, logged in for a given user, is first used for a feature requiring cryptographic identity,
it automatically generates encryption and signing key pairs, a process called provisioning.
These device key pairs will then be used to negotiate additional encryption key pairs shared
between the users’ devices.

The components of a user’s identity can change over time, and it is important to keep
track of these changes so that they are auditable. For this purpose, we introduce a data
structure called a signed hashchain, or sigchain.

Finally, the device model is reflected in the user interface. Users are notified when new
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devices are added, and are able to revoke devices that are lost, stolen, or no longer used.

3.3 Displaying Identity

Note: Displaying cloud identifiers and ADNs is not currently available. We plan to release
them in future updates.

This section describes how we could display the identity of a Zoom user to others in various
products. Because cryptographic keys are not easy to read, compare, or keep track of, we
only show human-readable identifiers in the user interface. A user’s set of identifiers consists
of three components:

1. A Cloud Identifier, which represents the cloud infrastructure a user’s information is
hosted on (omitted if the user is on the Zoom commercial cloud)

2. An Account Domain Name (ADN), which identifies the account that the user is part
of, where applicable

3. An email address, which can be used to distinguish individual users within the account

Here are a few examples of how a user’s identifiers can be displayed to another user:

John Smith
example.com (jsmith@example.net)

The display name, “John Smith,” is freely
chosen and not authenticated. example.com
is the ADN. Note that the email domain,
example.net, can differ from the ADN.

Lucy Lee
example.org (lucy.lee@example.org)
GOV

Since the example.org company works with
the US government, their identities and keys
are hosted on the separate Zoom for Govern-
ment Cloud, and this is noted in the UI.

Anna Smith
example.com

Anna might decide not to disclose her email
address but still be identified as a member
of the example.com account. In this case,
although the user’s email address would not
be revealed, their devices’ long-term crypto-
graphic public keys could be leveraged by a
determined attacker to ascertain when they
have interacted with the same device mul-
tiple times, even when the display name is
altered.
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Richard Roe Users can use some Zoom products as guests
and display no identifying information to
other users, other than the freely-chosen dis-
play name. Since they generate fresh long-
term keys each time, the aforementioned
tracing attack is not possible.

Mike Doe
(mike.doe@example.com)

Mike is associated with an email address but
not an ADN.

3.3.1 Identifying Accounts

Note: ADN support is not currently available. We plan to release it in a future update.

Accounts on Zoom can be optionally identified using a domain name, which we call the
Account Domain Name (ADN). Domain names make good identifiers because they are
unique (while for example two companies with the same name might exist in two countries),
and many users are already familiar with them. We will allow internationalized domain
names (IDNs) to be used as ADNs, but to prevent homograph attacks, the UI will show the
Punycode representation by default and the rendered domain name only on mouse hover.

An account administrator may choose one of the account’s existing Associated Domains
as the ADN, or Zoom can provide a new dedicated subdomain. Associated Domains is
an existing Zoom feature where a Zoom account can be associated with multiple domain
names. To do so, the account administrator has to prove ownership of the domain name
to Zoom, e.g., by adding a specific DNS record, adding a header tag to the home page, or
hosting a file at a specific location on the domain.

Only a single account at a time can use a domain name as their ADN. Account adminis-
trators are allowed to change their ADN if needed.

3.3.2 Identifying Users

Zoom users are also identified by email address. Emails (unlike names) are unique, and they
sometimes represent people better than the legal name held in a company’s HR system.
Most users already have email addresses they are associated with, such as the one they use
to log in. Zoom Mail Service (see Section 6) also issues users a dedicated email address
upon signup. For Zoom Mail Service users, the email address used as identifier will be their
Zoom Mail Service address. We may support associating multiple email addresses per user
in the future.

In some cases, users will be able to change the email associated with themselves. When
a user Alice changes their email from support@example.com to alice@example.com, for
example, other users that interacted with Alice are not notified of this change. However,
if a new user Bob takes over Alice’s old email support@example.com and associates it
with his existing user, then people who interacted with support@example.com when it
was associated with Alice will get a prompt explaining that support@example.com is now
associated with a new user. These notifications are supported by the Contact Sync feature
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(planned for a future release); see Section 3.9.

3.4 Multi-Device Support

Zoom users often have several devices that they use Zoom on: their work computer, per-
sonal computer, mobile phone, and so on. Each of these devices stores long-term signing
and encryption keys (called device keys), which it uses to secure communications and data
across a variety of Zoom products. To obtain a rigorous concept of identity, we formalize
the set of a user’s device keys as well as the ways this set can change over time, a crucial
step towards achieving the goal of linking a user’s identifiers with their device keys.

Users have three main operations to change their set of valid devices:

1. DeviceAdd, which adds a new device to the set. The new device generates a new
long-term signing key, which is used directly in some Zoom products (such as E2EE
meetings) and also to sign statements about the set, and an encryption key, which
can be used to communicate with other devices.

2. DeviceRevoke, which revokes the validity of a previously-added device. Revoked de-
vices are still recorded as part of the set for auditing purposes, but new signatures
from their keys are no longer considered valid, and the encryption keys they have
access to are rotated as soon as possible.

3. BatchApprove, which indicates that an existing device considers all devices added to
the set until this BatchApprove event legitimate and trustworthy. This operation is
signed by the approving device’s key.

Ensuring that each user has a single set of devices that is consistent over time serves
several purposes. For the user themselves, it ensures that all of their devices know about
each other, so they can be notified when a new device gets added and quickly react if their
user account has been compromised.

A user’s set of devices is also of interest to other users they interact with, because not all
devices associated with a user may be trusted equally. If Bob is in a meeting with Alice’s
work computer today, he can trust the connection (i.e., that there is no MitM) by either
checking the security code or by noticing that Alice’s public key is the same as was used in
all past interactions Bob had with Alice. This way, Bob only has to trust that there was no
MitM the first time the connection was established, and from that assumption deduce that
all communications where Alice has the same public key are also secure. This assumption
is commonly referred to as Trust-On-First-Use (TOFU). If tomorrow, Bob meets with
Alice’s new mobile phone, Bob might not trust its key as much as her work computer’s: a
malicious server could have added it, or a hacker could have stolen Alice’s Zoom password.
It’d be unfortunate if Alice and Bob had to recheck their security code. By performing a
BatchApprove operation from her work computer, Alice can indicate that all of her other
devices are trusted, so Bob (who trusts the public key on Alice’s work laptop) can use the
signed BatchApprove statement to extend his trust to Alice’s new mobile phone’s key.
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BatchApprove links induce a trust graph over a user’s set of devices, where each device
represents a node and each BatchApprove adds an edge from the device performing the
approval to all non-revoked devices introduced after that device. We call each connected
component in this graph an approval class, and we assume devices in the same approval
class trust each other. When a Zoom user provisions a new device, they’ll have access to
their complete device list and so will be able to revoke any that are unrecognized, lost, or
stolen. Because of this, we assume that later devices implicitly trust the validity of earlier
ones.

Consider the following scenario:

1. Bob provisions Device a

2. Bob provisions Device b

3. Bob provisions Device c

Bob’s graph is disconnected: he has 3 separate devices and 3 different approval classes. c
does implicitly trust b, but we don’t consider them part of the same approval class as the
trust is not mutual.

4. Bob logs onto b and performs a BatchApprove

This operation partially connects Bob’s trust graph. b trusts c (the device provisioned
after b). Now, there are only two approval classes: one with a and one with b and c.

5. Bob provisions Device d

6. Bob logs onto c and performs a BatchApprove

Now, c trusts d. Because b already trusted c, we know that b trusts d as well, even though
it never made this claim explicitly.

7. A malicious server provisions Device e in order to impersonate Bob

8. Bob logs onto a, revokes e since it’s unrecognized, and performs a BatchApprove

Having all of Bob’s devices know about each other allows Bob to take action if his account is
compromised. After he revokes e, all of Bob’s devices, as well as the users he communicates
with on Zoom, know not to trust statements signed by e’s device key. Figure 1 summarizes
Bob’s trust graph after these steps.
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Figure 1: Device approval graph, where nodes are devices and edges are approvals.

3.4.1 Per-User Keys

One application of the trust graph is to facilitate per-user keys (PUKs): a set of keys
shared between all of a user’s devices, rotated on device addition or revocation.

In each DeviceAdd or DeviceRevoke operation, devices generate a new PUK seed. The
PUK seed is encrypted for each unrevoked device’s device key: devices implicitly trust all
older devices (otherwise, they would revoke them). Each seed is associated with a number
called a PUK generation, which starts at 1 and increments every time the seed rotates. All
devices within an approval class share the same set of known PUK seeds.

From each PUK seed, devices generate subseeds, symmetric subkeys, and asymmetric
subkeys for various applications such as email and voicemail.

Symmetric PUKs facilitate syncing encrypted data between a user’s devices. Devices use
the latest per-user key to encrypt all content, but previous per-user keys are still useful for
decrypting older data. In the above example, if f is provisioned, it doesn’t yet have access
to older PUKs; only the one it just created. But if an older device performs a BatchApprove
that includes f , it will also encrypt all the PUK seeds it knows about for the devices it’s
approving, which means f can now decrypt data encrypted with keys created before f was
introduced.

Asymmetric encryption PUKs can be used to encrypt data for other users. If Alice encrypts
a piece of content for Bob using his most recent asymmetric PUK, Bob can read the content
on all devices added before the content was encrypted, as well as all the devices added
afterwards, as long as those devices have been approved by an earlier one. The public keys
corresponding to the asymmetric keys derived from the PUK seed are published in the
user’s sigchain (Section 3.5.3).

To generate a set of PUKs, devices:

1. Generate a new 32-byte secret seed

2. Use HKDF on the seed to generate different 32-byte keys:

(a) private X25519, context "Zoombase-2-ClientOnly-KDF-PerUserX25519"

(b) email seed, context "Zoombase-2-ClientOnly-KDF-PerUserEmailSeed"
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i. private X25519 for email, context
"Zoombase-2-ClientOnly-KDF-PerUserEmailX25519"

(c) voicemail seed, context "Zoombase-2-ClientOnly-KDF-PerUserVoicemailSeed"

i. private X25519 for voicemail, context
"Zoombase-2-ClientOnly-KDF-PerUserVoicemailX25519"

(d) symmetric, context "Zoombase-2-ClientOnly-KDF-PerUserSymmetricKey"

See Appendix B for a deeper analysis of multi-device configurations and the guarantees we
can achieve given these rules. In summary, a newly-added device will immediately be able
to send and receive new encrypted content that is accessible from all devices. Approving
a device will give that device access to past encrypted content. If a device is revoked, that
device is unable to decrypt any content encrypted after the revocation.

Note that if a device is self-revoked, the necessary key rotation might not happen immedi-
ately if there are no other suitable devices online to perform it. Before the key rotation is
completed, we rely on the server to enforce that the revoked device does not access further
user data, including ciphertexts sent both before and after the revocation, by no longer
accepting the per-device authentication tokens and signatures using the keys the device
owns. This is not a cryptographic guarantee and relies on the server’s honesty, and also
does not cover any content already in the device’s memory before revocation.

3.5 Consistent Identities With Sigchains

Both accounts and users have states that change over time. An account can change its
identity provider or its ADN, and a user can change their email address or add and remove
devices.

We need to keep track of states that change over time in a way that is auditable. To do
so, we describe the sequence of changes in a data structure called a signed hashchain, or
sigchain.

Once a client learns of a sigchain, the only changes to this chain that will be considered
valid are extensions of the sequence. Since changes cannot be “forgotten,” the Zoom server
cannot rewrite history.

Still, this model doesn’t force the Zoom server to be consistent across different devices it
talks to. We will add a transparency layer called the Zoom Transparency Tree (Section 4)
to ensure that the Zoom server must present the same information about sigchains to all
users.

3.5.1 Sigchains

A sigchain is a sequence of statements (called links), where each link includes a collision-
resistant hash of the previous link. These links can be thought of as state transitions that
modify an object (the sigchain state). For a user sigchain, the sigchain state contains the
list of active devices, the list of revoked devices, the trust graph, and the list of email
addresses and accounts historically associated with the user.
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In order to accept a transition as valid, clients check that it satisfies several conditions,
including that:

1. The link is of a known type.

2. The link has the correct fields for that type.

3. The transition is admissible given the current state.

4. The link correctly includes the hash of the previous link.

5. Some links require cryptographic signatures by the devices authorizing the transition
to be considered valid. In these cases, the signatures are encoded as part of the links
to compute link hashes.

Examples of admissibility rules for a user sigchain include that a device can only be revoked
if it was active in the previous state, and that signatures over revocation links must be by
a device that was active in the previous state.

Since each of the links in a sigchain contains a hash of the previous link, the hash of the last
link is a compact commitment to the entire sigchain state. Each sigchain link also contains
an incrementing sequence number. We refer to an object consisting of the sigchain type,
the last link’s sequence number, and the last link’s hash as the sigchain tail :

{

"sigchainType": "User",

"lastSequenceNumber": 15,

"lastLinkHash": "484ad7..."

}

When clients want to update their view of a sigchain from the server, they can just query
for the new links and ensure that the first new link contains a previous hash matching the
cached tail.

Note that the examples of objects in this document are encoded in JSON and simplified
for ease of exposition. The actual implementation may use different application encodings
and data structures.

Different applications require different levels of access to sigchains. For example, although
a user should be able to fully audit the history of past email addresses stored in their
sigchain, meeting participants might only need to see the most recent one to display it in
the UI. For this reason, rather than being directly encoded, sensitive information on a
sigchain link is stored as a commitment: rather than alice@example.com, a sigchain link
could contain

COMMIT(alice@example.com) = HMAC(randomKey, alice@example.com).

The server gives all users the entire sigchain link so that they can check that its signatures
and hashes are valid, but only Alice’s devices will receive the plaintext email addresses
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and 32-byte random keys corresponding to previous email addresses. COMMIT can also be
used to selectively delete parts of links such as device names: a server can throw away the
random HMAC key as well as the plaintext data, and the signature over the link will still
verify.

3.5.2 Overview of Sigchain Types

Zoom devices, users, and accounts are each internally identified by unique immutable
identifiers called deviceID, userID, and accountID respectively. The deviceID is generated
randomly for each new device, while the userID and accountID are assigned by the server.

Each device, user, and account is also associated with more user-friendly (but mutable)
identifiers: respectively, device names, email addresses, and ADNs.

Representing these different components and their relationships requires different types of
sigchains:

1. User sigchains store, for each userID, information related to that user’s identity, such
as the user’s email address, accountID, and the set of their devices and their trust
relationships.

2. Email sigchains store, for each email address, the associated userID.

3. Account sigchains store, for each accountID, both the ADN and identity provider
associated with the account.

4. ADN sigchains keep track of, for each domain name, the accountID to which the
domain is associated.

5. Membership sigchains keep track of, for each accountID, the userIDs within the ac-
count.

Note that some of the information stored on these sigchains is redundant: for example, a
mapping between an email and the corresponding userID is recorded both in a user sigchain
and in an email sigchain. This is necessary so that the server cannot claim that two separate
userIDs are associated with the same email address at the same time. Accordingly, some
operations will cause multiple chains to be updated at the same time.

As detailed earlier, every Zoom user is part of an account. As potential optimizations, if this
account only has a single user and doesn’t have an ADN, then that user’s sigchain might
not mention their accountID, and there would be no corresponding account or membership
sigchains until the account either gets another user or an ADN.

3.5.3 User Sigchains

User sigchains record changes to a user’s identity. There are several types of user sigchain
links, each representing a different way to change a user’s identity.
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EmailChange. As mentioned in Section 3.3, users can set and change the email addresses
that will be displayed for or used to communicate with other users. Two users can switch
email addresses, but the server will prove that two users do not have the same email address
at the same time. An EmailChange link will have the following fields:

{

"sigchainType": "User",

"linkType": "EmailChange",

"sequenceNumber": 10,

"prev": "484ad7...",

"cloudName": "commercial",

"userID": "ebc0d2...",

"emailChange": COMMIT({

"email": "alice@example.com",

"emailChainSequenceNumber": 5

})

}

The first six fields are common to every sigchain link. sequenceNumber is an incrementing
counter that starts from 1 for the first link, prev is the (canonical) hash of the previous
link in the chain (in this case, the one with sequence number 9), and cloudName specifies
which cloud the sigchain belongs to.

Every user sigchain link also specifies the userID.

Here, the email field specifies the new email address to be associated with this user, which
supersedes any previous email. Every time an EmailChange link associates this user with a
new email, the email sigchain for that email address is also extended with a corresponding
UserIDChange link referring to this user’s userID, and the sequence number of that link is
reported in this link as emailChainSequenceNumber.

Because the Zoom website can be used to change one’s email address, EmailChange links
do not have any signatures (i.e., they can be inserted into sigchains by the Zoom server).

AccountChange. Users can also transfer between accounts, similarly to how they can
switch emails.

{

"sigchainType": "User",

"linkType": "AccountChange",

...

"accountChange": COMMIT({

"accountID": "c2d8aa...",

"membershipChainSequenceNumber": 12,

"additionIndex": 5

})

}
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Since multiple users can be added to a membership sigchain in a single link, additionIndex
specifies the corresponding position in that link. If a user is removed from an account, the
accountChange section specifies accountID null and the other two fields are omitted.

Since Zoom servers are allowed to move users between accounts, AccountChange links do
not have any signatures.

DeviceAdd. A device addition link specifies the long-term public device keys for the
new device and a human-readable name:

{

"sigchainType": "User",

"linkType": "DeviceAdd",

...

"deviceID": "ebc0d2...",

"deviceName": COMMIT({

"name": "Alice’s Work Smartphone",

"version": 1

}),

"deviceType": "PHONE",

"deviceEd25519PublicKey": "ce8564...",

"deviceX25519PublicKey": "ad7913...",

"userEmailX25519PublicKey": "f40b66...",

"userVoicemailX25519PublicKey": "d600fc...",

"userX25519PublicKey": "c2cce1...",

"revokeDeviceIDs": [

"ac98ad...",

...

]

}

This link specifies a device identifier (unique among the devices associated with this user),
a signing public key, an encryption public key, as well as a device name and type. Note that
the device name is hidden by a commitment, because users other than the owner of the
chain do not need to see it. In order to support reusing names, the device name includes an
incrementing version component, which will be visible in the user interface. Device names
allow the user to have a human-readable, unambiguous way to distinguish their devices.

The link also specifies the new per-user key public keys. The encryptions of the new PUK
seeds for older devices are not represented within the sigchain link, but are sent separately
to the server, which propagates them to the older devices.

After the user adds a new device, they can immediately use it to revoke any existing
undesired devices, which justifies our claim that later devices should trust the validity of
earlier (unrevoked) ones.

To ensure that users know the corresponding device private key, each DeviceAdd link re-
quires a signature by deviceEd25519PublicKey.
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UserRoot. This link should always be the first link in a user’s sigchain, and can only
appear as such. It is equivalent to a DeviceAdd and specifies all the same kinds of infor-
mation about the user’s first device, but can also include emailChange and accountChange
fields, which convey similar information as the corresponding sigchain links. Including
these fields here allows us to reduce the overall number of sigchain links.

DeviceRename. Users can change their device names if desired. This change is signed
with the device’s public key.

DeviceRevoke. When a device is stolen, lost, or no longer used for Zoom, the user
should revoke it. If one of the user’s valid devices performs the revocation, it will also
rotate the PUKs and sign this link to guarantee integrity of the new key. If instead the
revocation is done through the Zoom website, the PUK cannot be rotated and no signature
is made. After a device signing key is revoked, it can no longer be used to sign sigchain
links.

DeviceKeyRotate. If a user suspects their device was temporarily compromised, or if
they have institutional key rotation policies, they might want to rotate their device keys
and PUKs. This operation keeps the same deviceID but chooses new signing and encryption
keys, as well as a new set of PUKs, and uploads encryptions of each PUK secret known
to the device for the new encryption key so that the old encryption key can be safely
discarded. This link is signed by the device’s previous public key in addition to the new
key. As with DeviceRevoke links, the old signing device key cannot sign further sigchain
links.

BatchApprove. A BatchApprove link lets a device indicate that it trusts the validity of
all devices created after that device until the point in the sigchain where the BatchApprove
link appears. To reduce the number of sigchain links, the user can also specify a list of
devices to revoke within this link. The link can specify a new set of PUKs, and this is
required if any devices are being revoked. This link is signed by the approving device, and
can be used to construct a trust graph as described in Section 3.4.

DeviceAddAndApprove. This link is equivalent to a fused DeviceAdd and BatchApprove,
but allows us to reduce the overall number of sigchain links and also guarantee that in-
termediate states of some operations can’t appear on the sigchain. It is posted by an
existing device, the approver, but also specifies a device identifier, name, and keys for a
new device. Uniqueness of the new device’s identifier, name, and keys are enforced just
like in DeviceAdd. This link implies that the approver trusts all devices created up to and
including the device being added by this link. Signatures from both the approver and the
new device are required.

Zoom Cryptography Whitepaper Page 20



© Zoom Video Communications, Inc. CC BY-SA 4.0

PerUserKeyRotate. If a device notices that a device revocation (either a self revoca-
tion, or one from the website) has occurred after the most recent PUK was generated, the
device will perform another PUK rotation using a PerUserKeyRotate link. This guarantees
that even if the revoked device was compromised, this newest PUK is still confidential. For
personal storage, staleness is not an issue, as any device trying to encrypt data will first
rotate the per-user keys. But if other users are encrypting data for a compromised PUK
and the server cooperates, data could be readable by a revoked device. This link is signed
by the device that is rotating the PUK.

3.5.4 Email Sigchains

Users can change their email over time. It is important that at any specific point in time,
each email corresponds to a unique user, so that Zoom users can be unequivocally identified.
Also, users should be able to audit whether at any point their email has been associated
with another user. We record the mapping between an email and the corresponding userIDs
in an email sigchain. These sigchains only have one kind of link, UserIDChange.

{

"sigchainType": "Email",

"linkType": "UserIDChange",

...

"email": COMMIT("alice@example.com"),

"userIDChange": COMMIT({

"userID": "ebc03d...",

"userChainSequenceNumber": 9

})

}

The userChainSequenceNumber refers to the position in the user sigchain of the correspond-
ing EmailChange link (or the initial UserRoot link).

Since users can change their email on the Zoom website, this link does not require any
signatures.

3.5.5 Account Sigchains

Account sigchains consists of two kinds of links, which record the identity provider and
ADN that each account is using. IDPUpdate links contain the domain name of the IDP
(say examplecorp.generic-idp.com). IDPs should not use the same domain for multiple
accounts to prevent equivocation of their attestations.
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{

"sigchainType": "Account",

"linkType": "IDPUpdate",

...

"accountID": "abef02...",

"idpDomain": "examplecorp.generic-idp.com"

}

ADNChange links associate an ADN with the account. Only the latest ADNChange link is
considered valid, and each one corresponds to an AccountIDChange link in the appropriate
ADN sigchain. If an account is no longer using an ADN, the adnChange section specifies
ADN null and the other field is omitted.

{

"sigchainType": "Account",

"linkType": "ADNChange",

...

"accountID": "abef02...",

"adnChange": COMMIT({

"adn": "example.org",

"adnChainSequenceNumber": 9

})

}

Links in account sigchains do not require any signatures.

3.5.6 ADN Sigchains

ADN sigchains track which accountID a specific Account Domain Name is associated with.
There is only one type of link, AccountIDChange, which corresponds to and points to an
ADNChange link in the account sigchain for the appropriate accountID:

{

"sigchainType": "ADN",

"linkType": "AccountIDChange",

...

"adn": "example.org",

"accountIDChange": COMMIT({

"accountID": "873c34...",

"accountChainSequenceNumber": 29

})

}

Links in ADN sigchains do not require any signatures.
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3.5.7 Membership Sigchains

Membership sigchains record changes to the set of users which are part of each account.
They have a single type of link, ChangeMembers:

{

"sigchainType": "Membership",

"linkType": "ChangeMembers",

...

"accountID": "19aebb...",

"added": [

COMMIT({

"userID": "db2f1c...",

"userChainSequenceNumber": 9,

}),

...

],

"removed": [

COMMIT({

"userID": "9ae3d2...",

"userChainSequenceNumber": 4

}),

...

]

}

Each link can add or remove multiple users. Each user is hidden behind a commitment so
that it is possible to prove that an individual user is part of an account without also leaking
the userIDs of the other members that are being added as part of the same link. Hiding
the userIDs of the users being removed from the account would potentially make it harder
to prove that a user is indeed still a member of a specific account without opening all the
commitments. We will solve this problem in the future by leveraging the transparency
layer, but until then, clients will not rely on these sigchains, although the server will start
keeping track of them.

Links in membership sigchains do not require any signatures.

3.6 Sigchain Fingerprints

A sigchain fingerprint summarizes a user’s sigchains. It is constructed as a hash of the
user’s user sigchain and account sigchain tails (note that this includes the user’s present
and past email addresses, as well as the current ADN due to the reference in the account
sigchain). Sigchain fingerprints are useful in two contexts: to verify new devices before
approving, and to verify the keys used to communicate with other users.

During the device addition and approval process, a malicious insider has the opportunity
to conduct a MitM attack. After the new device is added, the insider creates a copy of the
user’s sigchain but replaces the keys in the final DeviceAdd link with keys controlled by

Zoom Cryptography Whitepaper Page 23



© Zoom Video Communications, Inc. CC BY-SA 4.0

the attacker, using the same device name. The forged copy is served to older devices while
the honest sigchain is served to the new device. When the older device sees the approval
interface, only the device name is shown, and so the user may be tricked into accepting the
server’s device unintentionally (which would imply sharing all previously encrypted data
with the attacker). However, in this case the two devices would necessarily display different
fingerprints (as they bind to sigchains containing different keys, and the hash is collision
resistant). Users concerned about MitM attacks can check, before approving new devices,
that the fingerprint shown on the approving device matches the one from the device(s)
they intend to approve. This ensures that an attacker cannot interfere with the process
and gain access to historical encrypted data.

Sigchain fingerprints are also useful when communicating with other users. For example,
when a user emails another user for the first time, a malicious server could potentially swap
out the intended user’s sigchain for an entirely fabricated sigchain with devices controlled
by the server. In these contexts, the user interface will allow users to verify the other user’s
sigchain fingerprint before sending the encrypted message. This process requires the two
users to securely communicate out-of-band (for example, in-person). The sender can check
that the fingerprint they see in their client matches the recipient’s fingerprint to ensure the
message can be decrypted only by the intended recipient. Similarly, the recipient can do
the same for the sender to verify that the message came from the expected sender and was
not altered.

In the user interface, fingerprints are represented in hexadecimal. Users can always view
their own fingerprint from the Zoom client, and Zoom products will show the fingerprints
of other users in specific scenarios where it is useful.

3.7 Backup Keys

A backup key acts as a “virtual device” that can be added to a user’s sigchain. Instead of
corresponding to an actual device, it is simply represented as a string of letters and digits,
such as

ZR30 4D11 5HJM RJG2 6H75 78DH B0VS 4KSF.

The first four characters are used as a key identifier and are not considered private. Backup
keys have at least 128 bits of private entropy, as well as built-in error correction to tolerate
small copy-pasting mistakes.

From a trusted device’s Zoom client, a user can generate a backup key and add it as a new
“device” to the user’s sigchain with a DeviceAddAndApprove link. The backup key string is
used to derive a seed using sodium’s [8] argon2id, which is then used to derive the device’s
signing and encryption keys. Like normal devices, backup keys can be revoked.

3.7.1 Account Recovery

In the case that a user loses all their devices, they can log onto another device and enter
their backup key to write a BatchApprove link to the user’s sigchain that originates from
the backup key. This gives the new device access to all the old PUKs that the backup key
had access to.
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3.7.2 Using Backup Keys for Escrow

Note: Escrow using backup keys is not currently available. Users can still manually
generate backup keys and send them to their IT administrator out of band.

Organizations using Zoom may wish to have access to E2E communications involving their
members, to protect against data loss or to support legal retention and discovery. We
refer to solutions that give such organizations cryptographic access as escrow. While we
are building a more usable and robust escrow solution, backup keys can initially provide
the minimal necessary functionality: users can generate backup keys and send them to
their IT department for safekeeping. When escrow is enabled for an account, users in that
account are notified before they are allowed to continue use of Zoom products. Each user
receives notice that their data is being escrowed the first time they access their Zoom Mail
Service email on one of their devices. The user should verify the escrow administrator’s
sigchain fingerprint before continuing, after which the user’s client automatically sends an
end-to-end encrypted email with a backup key to their account administrator.

3.8 Client Key Management

3.8.1 Storing Secret Keys on Device

Clients persist device key pairs indefinitely until a DeviceRevoke or DeviceKeyRotate occurs.
Device keys are never transmitted to any other device or the server. They may sometimes
be lost after a disk corruption or operating system reinstall. In this case, the user must go
through the provisioning process once again as a new device would.

Long-term device keys are stored in the local operating system’s keychain (where available),
but with some added protection for two Zoom users using the same OS account. Before
storing keys in the local OS-provided keychain, we encrypt them using a key-wrapping key
stored by the server and specific to each user and each device. When a user revokes their
device, they will delete the keychain entry and the server will delete the corresponding
key. This also guarantees that keys cannot be recovered from a backup of a device that
has since been revoked. If two users are using the same computer, the key-wrapping key
prevents one user from being able to access the other’s keys.

We use the committing AEAD scheme CtE1 [10] to prevent the server from supplying
malicious key-wrapping keys. On provisioning, after generating the device encryption and
signing key pairs, the client will encrypt each secret key k as follows:

1. Generate a 32-byte random string KWK and request the server to store it persis-
tently associated with the user and device.

2. Define Context← "Zoombase-1-ClientOnly-KDF-SecretStore".
3. Compute C ← CtE1-Enc(K=KWK,H=Context,M=k), where H is the associated

data parameter for the underlying AEAD, and store it in the system keychain.

For CtE1, we use HMACSHA256 as the commitment function and libsodium [8]’s
crypto aead chacha20poly1305 ietf as the AEAD.
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We emphasize that this feature will not protect against an insider who also has access to
a user’s device (for example, by colluding with another user using the same device). It
will also not prevent different users of the same device from installing malware to steal the
other user’s keys.

3.8.2 Device Management Interface

We offer a dedicated UI to manage devices that are part of the user’s sigchain, available
in the Zoom client’s settings. Upon visiting this device list, clients ask the Zoom server
for the latest sigchain tail and process any new links in order to make sure that the view
is up-to-date. The device list contains all active devices (which can be used to participate
in E2EE communications) and revoked devices (which can no longer be used), indicating
their device name and type based on the sigchain;3 it also has the user’s own fingerprint
and the user’s current and past email addresses (if any). Users can revoke devices from
this view. If a device realizes that it is revoked (by processing updates to its own sigchain,
for example as part of a periodic refresh or because of a server notification), it will delete
all private ephemeral and long-term keys as well as sensitive data, and then log itself out.

When the user first uses a feature that requires sigchains from one of their devices, that
device generates a new set of device keys and adds them to the first link in the user’s
sigchain. From then on, the user’s other devices (existing and future) will also generate
their own keys and extend the chain; each time, the user is prompted to review the device
list and revoke any devices that are unrecognized, lost, stolen, or no longer used.

In addition, after provisioning each new device, the user gets notifications on their old
devices asking them to approve or revoke any new untrusted devices. This list might
include devices that are already revoked but are still new from the perspective of the old
device. Users also get notifications regarding changes made to their email address.

Once the Zoom Transparency Tree (Section 4) is deployed, Zoom servers and insiders will
not have the ability to, e.g., suppress notifications in order to hide a malicious device
addition or email change.

3.9 Highlighting Untrusted Devices with Contact Sync

Note: Contact Sync is not currently available. We plan to release it in a future update.
The description here is specific to E2EE Meetings (Section 7), but similar guarantees can
be extended to other products.

Even with a strong concept of identity, impersonation attacks are still possible in meetings.
If Bob’s coworker, Alice, has the email alice@company.org, Bob might not realize if he
joins a meeting with an impersonator using al1ce@company.org, especially if the imper-
sonator has their video turned off. Or if a hacker stole Alice’s username and password,

3The list may also include some information about devices that is not directly stored on the sigchain
and that we rely on the server to report honestly. For example, it may include the earliest time of any
E2E-encrypted communication decryptable by each device, determined as the time at which the oldest
device in its approval class was added.
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they could provision a new device and pretend to be Alice. We’d like to have a TOFU-style
UI feature to let Bob know if it’s the first time he’s seeing a device in a meeting—but we
also don’t want to bother Bob for his first meeting with Alice on every new device that
Alice makes, which could lead to alert fatigue. Specifically, we want to provide warnings
when Bob is in a meeting with a device that is not approved by a device that Bob has
seen before. We’d also like Bob to share his meeting history between his devices securely
so they all have the latest information.

Each device maintains, for every other user that it has been in a meeting with, a record
containing that user’s user sigchain tail, the time of their first meeting together, and the
total number of E2EE meetings they were in together. These records are updated after
each meeting as appropriate, though they are only updated when either

1. The meeting has less than 25 participants and the device has been in the meeting
with the participant for over 10 minutes

2. The participant has been speaking for over 30 seconds

In order for the meeting history to be shared across devices, clients periodically send
encrypted meeting records to the server. Records are individually encrypted with the
latest PUK, signed with the device key, and tagged with t = HMAC(k, userID), where k is
a key derived from the PUK. The server stores a mapping between (deviceID, t) and the
encrypted record, which the clients can update as necessary. When the client learns of a
new PUK, records and tags are updated to use the new PUK lazily.

The records are encrypted to minimize the privacy loss in case they are leaked (Zoom
servers already learn who is participating in which meeting). Because the tag is generated
deterministically, these records would reveal if two of Alice’s devices had meetings with
the same user (but not which user), given that both devices used the same per-user key.
However, we find this tradeoff acceptable as it allows for a more efficient synchronization.
Further, the server has the ability to rollback a device’s record at any time, but doing so
could only cause additional warnings.

When joining a meeting, clients generate tags for each other participant using each known
PUK and request the server to send any corresponding records. Any record signed by a
revoked device is not considered. Given this data, we can provide warnings for each device
in a meeting:

1. If the device has been seen before, or if the device is trusted by a device that has
been seen before as indicated by the trust graph, display the number of meetings
with this user in the last month.

2. Otherwise, if the device is untrusted but the user has been seen before, display “This
is the first time you are talking to this device of this person.”

3. Otherwise, display “This is the first time you are talking to this person.”

Note that devices may not have access to all the per-user keys used to encrypt records,
which could result in extraneous warnings. For example, imagine Alice provisions Zoom
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on her phone and has a meeting with Bob. Then, Alice provisions Zoom on her laptop
and has another meeting with Bob without approving the laptop from the phone. In this
case, Alice’s laptop does not have the PUK used by Alice’s phone to encrypt the record,
so there will be another warning for Bob in the second meeting.

Though Contact Sync warnings improve Zoom users’ security, alert fatigue can make the
warnings less useful. If a user’s contacts regularly fail to approve new devices with earlier
ones, or if the server does not properly sync records of prior communication, users can grow
accustomed to the warnings and possibly ignore them in the event of a real attack. Even
without an attack, excessive warnings make for a suboptimal and tiresome user experience.

3.10 Compromise Prevention for Device Provisioning

Note: The features in this section are not currently available. We plan to release them
in future updates.

With the ZTT (see Section 4), we have a mechanism for users to detect sigchain corruptions
after-the-fact. For instance, if an insider adds a new device onto Alice’s sigchain to im-
personate her in a meeting while she is offline, Alice will detect the attack after she comes
back online, since the attacker had to commit the malicious change to Alice’s sigchain to
the ZTT. Ideally, Alice could prevent unauthorized device additions from happening in the
first place. Note that users whose identities are vouched for by a trusted third-party IDP
(Section 5) already have good protections as long as their IDP is not compromised. We
want to offer a strong alternative to all users that does not rely on external parties.

Recall that users currently login to Zoom via SSO, OAuth, or simple username and pass-
word. Their devices’ keys are authenticated by multiple signatures: a self signature, an
optional approval signature by an older device (Section 3.4), a signature by Zoom (as part
of the inclusion in the ZTT, once it is deployed), and an optional attestation from the IDP.

Further validations of the device keys are possible. For example, users can sign new devices
with existing devices at the time they are first added (as opposed to in a later approval),
potentially through a QR-code-based flow similar to the one Keybase has now. One device
shows a QR code of a random session key, and the other scans the QR code; this establishes
an end-to-end secure tunnel between the two devices that a compromised server cannot
interfere with. Over this tunnel, devices can exchange public keys and cross-sign each
other.

Alternatively, organizations can set up policies that require an IT administrator to sign off
on device additions. The new user device can display the hash of its public key in QR code
form. The IT administrator can scan it, signing the new device with their administrator’s
signing key.

Devices without the required signatures might be prevented from signing on behalf of the
user or rotating the user’s PUKs, thus denying them access to any content encrypted for
the user. They might also trigger extra UI warnings to other participants when joining
meetings, or even be excluded from meetings marked “high security.”
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3.11 Security Properties

The identity and key management system described in this section is leveraged by multiple
Zoom products, and it provides some lower level security properties that these products
build upon.

First, we note that the secret keys corresponding to any device public keys included in
any sigchain are known only to the device that generated them (unless an attacker has
somehow gained access to the device’s memory or storage): secret keys never leave the
device,4 and are only used to perform encryption and signing. A consequence is that
ciphertexts/signatures for/by each of the device keys can only be decrypted/created by
the device that generated these keys. An exception is backup keys, which are shown once
to the user as text strings that can be written down and sometimes sent to the user’s account
administrators as an escrow mechanism (after the user receives notice). In this case, our
guarantees depend on these keys being kept securely by the user and their administrator,
and not being available to an attacker.

Similarly, consider any valid user sigchain. The secret keys corresponding to any per-user
public key that appears in that sigchain are only known to any devices that were added
but not revoked before the per-user key was added to that sigchain, plus any devices that
were added afterwards and approved by one of those devices (as recorded in each device’s
own view of the user’s sigchain).

Also, note that the Zoom server cannot force any devices to forget identity updates like
device revocations: when receiving sigchains, devices only accept new sigchain links that
extend the ones they are already aware of.

3.11.1 MitM Between a User’s Devices

These properties allow us to obtain strong guarantees about the confidentiality of the
data that is encrypted for a user’s device keys and PUKs. For example, consider any
ciphertext (such as an email draft) encrypted for a given per-user key whose secret key is
only known to a set of uncompromised devices controlled by the corresponding user. In
order to obtain the plaintext, an adversary (even an insider) would have to either break
the encryption scheme, compromise one of the user’s current devices or backup keys, or
trick the user into using one of their devices to approve a maliciously-controlled device (so
that the existing device encrypts the PUK secrets for the malicious one). A cautious user
would only approve an additional device on their sigchain in a situation where they expect
such a request: for example, after they sign in on Zoom for the first time on a new device.
An insider could take this as an opportunity to attempt a MitM attack, by lying about
the new device’s public key to the old device. However, outsiders cannot perform this
attack: even if the attacker had access to the user’s credentials, the attacker would have to
add an extra additional device and cannot replace the old one from the approval modal.
Comparing the sigchain fingerprints as known to the approving device and the new device
before confirming approval also prevents insiders from performing this attack. Because the
sigchain is an append-only data structure, comparing fingerprints after approval would still

4Except possibly when the user voluntarily sends crash reports to Zoom. We try to minimize this risk,
but cannot exclude it.
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allow the user to detect the attack, providing evidence of server compromise/misbehavior
and allowing the user to mitigate its effects.

In the future, the Zoom Transparency Tree will offer (assuming trusted auditors) an auto-
mated and transparent way to ensure that devices have a consistent view of all sigchains
and public keys such that checking fingerprints before device approvals will no longer be
critical.

3.11.2 MitM Between Different Users

Another class of attacks involves an MitM between the sender and recipient of an encrypted
communication. An insider might lie to the sender about the recipient’s sigchain and PUKs
or add a malicious device to the recipient’s sigchain, causing the sender to encrypt for a
key controlled by the attacker. These attacks can be prevented or detected by checking
fingerprints, and can in many cases be detected after-the-fact with minimal user burden
by leveraging the ZTT.

Consider an adversary compromising one of the recipient’s devices or backup keys, thus
obtaining their secrets. With access to the device, an attacker could obtain all of the
recipient’s data, both locally cached and stored by the server (at least until their session
expires). If the user discovers the compromise, they could revoke this device and rotate their
keys, preventing further data leakage. However, if the attacker also compromises (even at a
later point) the Zoom server infrastructure, they might attempt a more subtle attack: when
a sender requests this recipient’s sigchain, the server could provide a legitimate but stale
version of this chain, i.e., one that does not include the device revocation and the subsequent
rotation. This attack can be prevented by comparing fingerprints. However, detecting this
compromise using fingerprints is not that straightforward: the sender and recipient would
have to ensure that they agree on their views of the recipient’s sigchain at the time the
message was encrypted and sent, rather than at the time of the fingerprint comparison.
Assuming all clients have synchronized clocks, one way to achieve this would be to have
each sigchain link include a timestamp. Each client would remember the last time they
updated their view of any sigchain and refuse to accept new links for that sigchain that
have an earlier timestamp. In order to be tolerant to time misconfigurations, we currently
do not enforce these properties, but we are considering them for future updates.

Eventually, the ZTT might also ensure, under similar time synchronization assumptions,
that everyone’s view of all sigchains is not only consistent, but also relatively up-to-date,
i.e. that any attempt to withhold updates beyond some reasonable tolerance bound is
detected. This will ensure that the server is not able to trick senders into encrypting for
out-of-date keys unnoticed.

3.11.3 Integrity

Ensuring that all devices have a consistent view of a user’s sigchain and that no extra-
neous devices have been added to it (by comparing fingerprints or relying on the ZTT
and monitoring one’s own sigchain) also helps with integrity guarantees. Users can en-
sure communications haven’t been tampered with by checking that they are signed by
devices belonging to the claimed author. However, as above, in some cases the evidence
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of compromise might be less conclusive: if the sender signs a message using a device’s
signing key, and later revokes that device (for example, because the device was lost or
compromised), the recipient has no way to tell if the message was signed before or after
the revocation/compromise. The user interface may communicate this potential risk to the
recipient so that they can confirm the integrity of any sensitive communications with the
sender out-of-band, or ask them to resend the message with an up-to-date key.

3.11.4 Security Limitations

While our concept of identity provides strong security guarantees, there are still attacks it
won’t be able to prevent.

An attacker who is able to register a new device in the system on behalf of a non-consenting
user, whether by stealing the user’s credentials or compelling the server, will be able to
read data that is E2E-encrypted to the targeted user after the compromise (but not before,
as explained above), as it will be able to add a new compromised PUK to the user’s chain,
which might be used by other users to encrypt messages intended for the recipient before
the recipient has had a chance to come online to review and revoke the new device. This
attack can also be prevented if the sending user compares fingerprints out-of-band with
the potentially compromised recipient(s) before encrypting for the new PUKs, or detected
by comparing fingerprints (possibly implicitly through the ZTT) after the fact.

When one of a user’s devices is revoked, the per-user public encryption keys for that
user become stale and should be rotated as soon as possible. When another of the user’s
devices comes back online, they will pick new encryption key pairs, publish the public keys
in a new sigchain link, and encrypt the secret portions for all the user’s devices that are
still active. If one of the user’s devices is revoking another one, key rotation can happen
immediately. However, in case of self-revocation or revocation from the web or by an
account administrator, if none of the other user’s devices are online, this rotation might be
delayed. Any data encrypted to this user during this period would be using an encryption
key known to a revoked device, and we rely on the server to enforce that the revoked device
can no longer access user data. An attacker who both compromised a revoked device and
had read access to the server might thus be able to decrypt this data. Although the
attack window seems limited and hard to exploit in practice, this is a limitation of the
current design. Similarly, when a key is revoked and rotated out, we do not re-encrypt old
ciphertexts for the new key, and rely on the server for access control to the ciphertexts.

3.11.5 Privacy Limitations

From a privacy perspective, in addition to the identifiers displayed in the user interface, our
solution provides some limited extra information about a user to other users they interact
with: the sigchains reveal the history of the user’s devices, including when they were added
and revoked (but not their names, which are protected behind a commitment), as well as
which device was used to sign any specific E2E-encrypted communication. Similarly, the
number of times that a user changes their email address or account is visible (but not the
previous emails or account IDs). Moreover, since the server might report the timestamps
of sigchain statements (and, once deployed, the ZTT will also necessarily reveal the same
information), time correlations between different statements might be exploited to infer,

Zoom Cryptography Whitepaper Page 31



© Zoom Video Communications, Inc. CC BY-SA 4.0

for example, that two users swapped their email addresses. While this information is not
displayed in the user interface, the client needs this data to perform the sigchain validation
and therefore a motivated attacker might extract such information. We believe that this
is acceptable; it is similar to the security code change warnings in applications like Signal
and WhatsApp.

Note that sigchains are not publicly available and are subject to server-side access control:
they are provided as needed to users. For example, if Bob is a Zoom Mail Service user and
knows Alice’s email address, they can ask the server for the sigchain associated with that
address in order to encrypt an email. We currently rate limit requests for users’ sigchains
and other personal data as a partial mitigation for this leakage.

In the future, we are considering a different mechanism that allows the server to offer
“randomized” versions of a user’s encryption keys, in a way that trades the opportunity
to check a user’s fingerprints (while still being able to detect impersonation after the fact)
for increased privacy.

4 Transparency Tree

Note: The Zoom Transparency Tree is not currently available. We plan to release it in a
future update.

In this section, we describe a mechanism that expands the authentication guarantees from
Sections 3 and 5 to ensure that all Zoom users have a consistent view of each others’ devices
and keys.

Imagine an insider, Mallory, who wants to eavesdrop on a meeting between honest users
Alice and Bob, who have never interacted on Zoom before and haven’t checked the meeting
leader security code. To succeed in this attack, Mallory could instruct the Zoom server to
lie to Alice about Bob’s keys and to Bob about Alice’s keys, replacing them with keys she
controls. If Bob’s client is the only one to see the fake key for Alice, and similarly Alice’s is
the only client who gets the fake key for Bob, then such an attack would be hard to detect
after the fact.

Some possible countermeasures for such attacks require trusted external entities or manual
validation steps (such as checking the security codes described in Section 7.7) that poten-
tially have to be performed out-of-band. Instead, we will be able to detect equivocation
by Zoom servers and identity providers while minimizing active checking by the user.

To do so, we will ensure that Zoom servers provide the same mapping between user accounts
and public keys to all clients, sign such a mapping, and are held accountable for these signed
statements. This way, in order to compromise a single meeting, Zoom would have to lie
not only to Alice about Bob’s keys (and vice versa), but also to every other Zoom user
about those keys, including lying to Bob about his own keys. Bob’s client can thus easily
review the list of his devices and discover any suspicious activity. External auditors will
routinely verify that the server’s mapping is consistent over time.
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Thus, key fingerprint comparisons and other related warnings can be demoted in the user
experience, to be replaced with targeted security alerts (which we expect never to be
triggered). Key security becomes virtually invisible to the user.

4.1 Zoom Transparency Tree

The idea that there should be a single and consistent mapping between an identity and its
public keys has already been explored successfully to solve similar issues. Most notably,
Certificate Transparency [12] limits the damage that a compromised certificate authority
can do by signing fake TLS certificates. It does so by requiring that all signed X.509
certificates must be submitted to a publicly auditable log before being accepted by browsers.
Industry projects such as Key Transparency [1] and Keybase [2] (which is now part of
Zoom) and academic works such as SEEMless [7] and CONIKS [13] have explored applying
a similar approach to individual users’ identities for messaging applications, with Keybase
being the only instance in production use today, as far as we know. However, all the existing
solutions in this space that we are aware of do not currently match Zoom’s security and
privacy requirements while offering usability features like multi-device support.

We build on prior work to design a new mechanism tailored to Zoom’s use cases: the Zoom
Transparency Tree (ZTT). The ZTT is backed by a Merkle tree as used by Keybase, but
with privacy-preserving path-lookup features as in CONIKS. This data structure offers
a key-value store interface where key-value pairs, once inserted, cannot be removed or
altered. The state of the structure can be summarized by a small commitment, and lookup
queries can be accompanied by a short proof that they are consistent with the commitment.
Whenever a client is given a signed sigchain statement (as introduced in Section 3.5) about
another user’s identity or their keys, this statement is accompanied by an inclusion proof
in the ZTT.

4.2 Integration Details

4.2.1 ZTT Auditing

The design of the ZTT requires auditing to verify the structure of the tree. Zoom will
partner with independent external auditors which (in a privacy-preserving way) ensure
that the append-only property of the ZTT is respected.

Clients query the auditors to ensure that their view of the ZTT’s commitment has been
audited and is consistent with everyone else’s. If the client can reach the auditor and
detects a fork in the ZTT, they can send the auditor the forked and signed commitments
in addition to the warning, so that the auditor can disclose the inconsistency. If Zoom
clients cannot reach any of the auditor servers, they will signal a degraded encryption
level.

We will publish code so that interested parties can also audit the ZTT.

Additionally, organizations using Zoom will be able to review updates to the ZTT and
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track their employees’ device changes.

4.2.2 Provisioning

When provisioning a new device, the client ensures that the sigchain statement is included
in the ZTT by first sending it to the Zoom servers and then querying the ZTT to check
that the sigchain update has been included.

4.2.3 Self-Audit and Refresh

Periodically, the user’s client should ask the server for an updated ZTT commitment,
ensure that this commitment is consistent with past data, possibly verify it with external
auditors, and review the user’s sigchain for any new statements. If new keys are added to
the sigchain, the client should ask the user to review the changes. If the user notices an
unexpected change, they may be prompted to change their password or talk to their IT
department.

4.2.4 Validating User Identity

Because we only trust keys stored within the ZTT, users can verify that each others’ public
keys are included in the ZTT, before proceeding with using the keys.

4.2.5 Contact List Updates

The contact lists that users accumulate, described in Section 3.9, can also be stored in the
ZTT. The immutability guarantees that the ZTT provides means that Alice can note an
update to Bob’s identity in the client installed on her phone, and Zoom is obliged to relay
that update to her desktop client.

4.3 Security Properties

Though the ZTT allows an equivocating server to be detected, we rely on the user to
validate device additions. Users might be offline or might be ignoring notifications and
therefore compromises might not be detected, or only detected after an attack.

The ZTT requires external auditors to provide security guarantees. If the auditors are not
honest, or have poor uptime, this can limit the ability to detect server misconduct. We can
mitigate this risk by relying on multiple auditors or implement partial auditing by clients.

5 Identity Provider Attestations

Note: Identity Provider Attestations are not currently available, and planned for a future
update.
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Accounts that have an ADN and an identity provider5 (IDP) will be able to have the
IDP vouch for the identity of their users in a way that other Zoom users can independently
verify. This mechanism restricts the ability, even for Zoom insiders, to impersonate account
members. Many organizations already trust an IDP for authentication purposes, so this
feature does not increase the attack surface or require additional trust in the IDP.

In order for clients to be able to verify identity attestations by an external IDP, we need
two components:

1. A way for clients to determine the IDP associated with a Zoom account (that cannot
be tampered with by the Zoom servers)

2. A mechanism for IDPs to issue—and for clients to verify—a signed attestation that
binds a user’s email address to their set of devices and keys

5.1 Associating Accounts with Identity Providers

In order to associate an account to its IDP, we will rely on TLS. Accounts with ADNs will
host a JSON object at the root of the subdomain idp-config.well-known. of the ADN,
e.g., https://idp-config.well-known.example.org.

The JSON object contains a field with key us.zoom.idp.<CLOUD NAME> whose value points
to the unique domain that the IDP has reserved for this account. For example, if example.org
is using generic-idp.com as their identity provider and has an account hosted on the Zoom
commercial cloud, the object might look like:

{

"us.zoom.idp.commercial": "examplecorp.generic-idp.com"

}

Specifying the cloud in the field name allows to support ADNs configuring different IDPs
for different clouds. Note that since accounts are expected to change their IDP rarely,
clients can cache this mapping aggressively.

If the endpoint does not return a valid response, clients will assume there is no IDP and
not display any identifiers for this user. Because Zoom will proxy client connections to
ADNs to avoid leaking the IP addresses of Zoom clients to external parties, a malicious
Zoom server (or network attackers) can convince clients that a certain account is not using
an IDP by e.g., returning a timeout error or a DNS NXDOMAIN message. We believe
that this is the right tradeoff for the following reasons:

1. Configuring the IDP via subdomains offers flexibility for the account admins. For
example, the account admin can delegate the idp-config.well-known subdomain to

5Compatible identity providers will need to support a custom extension of the OpenID Connect (OIDC)
protocol which we describe below.

Zoom Cryptography Whitepaper Page 35



© Zoom Video Communications, Inc. CC BY-SA 4.0

the IDP, which can obtain a TLS certificate for the subdomain and host the required
JSON file. The only technical action required by the account admin would be adding
a DNS record for the subdomain.

2. Once deployed, our transparency layer (Section 4) will ensure that if the server tam-
pers with an account’s ADN or IDP, the misbehavior will be detected through au-
diting of the account and ADN sigchains.

5.2 IDP Attestations

IDP attestations will be generated and verified according to the OpenID Connect (OIDC)
protocol. OIDC is an extension of the widely used OAuth 2.0 authentication protocol, an
industry standard that many IDPs and Single Sign-On providers already support. OIDC
provides a standardized format, the ID token, to express claims about identities and their
attributes. It also specifies how users can request attestations for their own identity and
verify ones obtained from other users.

We will customize the protocol by

1. Introducing an additional attribute "zoom-identity-snapshot" to the ID token in
order to encode the state of a user’s identity on Zoom. IDPs will keep track of the
latest value of this attribute for every account user.

2. Specifying how this attribute can only be updated by the authorized user, and not
by any other user or entity, including Zoom servers.

3. Specifying how ID tokens about a specific user identity can be validated by other
users.

Our modified OIDC ID token (which will also be referred to as an IDP attestation) is a
signed JSON Web Token (JWT) data structure which contains claims about a user’s Zoom
identity. The payload might look like the following:

{

"iss": "https://examplecorp.generic-idp.com", // issuer

"name": "Alice Henderson", // optional

"email": "alice@example.com", // optional

"zoom-identity-snapshot": "409788...",

"exp": 1311281970 // expiration time

"iat": 1311280970, // issue time

[...]

}
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The token contains an issuer field which identifies the OIDC issuer of the token (the
IDP). In order for Zoom clients to accept an identity claim, the issuer field must match
the domain that associates the IDP with the account (in our example, as returned by
https://example.org/.well-known/idp-config). name and email are marked as op-
tional to allow users to certify that they are part of a specific account without disclosing
exactly which member they are. iat and exp define the validity of the token.

The zoom-identity-snapshot field encodes the state of a user’s identity. As explained
in Section 3.5, clients keep track of these states using sigchains. An identity snapshot will
encode the user sigchain tail (which itself commits to the userID); however, the identity
provider can treat this attribute as an opaque string and does not need to check its validity.

5.3 Updating Snapshots

Users who successfully sign into Zoom using OAuth 2.0 receive an access token from the
IDP which can be used to access protected resources. This access token will also be used
to read and update their own zoom-identity-snapshot attribute. To ensure that only an
authorized user on a Zoom native client is able to update the identity snapshot stored by
the IDP, the Identity Snapshot protocol requires IDPs to:

1. Introduce a new OAuth scope update-zoom-identity which is required to update
the snapshot.

2. Only issue access tokens with the update-zoom-identity scope for requests that use
PKCE and have set the redirect URI to a fixed custom URI intended to refer to the
native Zoom desktop and mobile applications: us.zoom://idp auth.

With the custom URI redirect, we trust the operating system and browser to redirect to
the native Zoom app and not to a website in a browser: such a website might be serving
malicious JavaScript from a compromised web server that could hijack the authorization
flow. PKCE is an OAuth 2.0 extension that prevents other apps installed on the user’s
device from intercepting the authorization code. The Zoom app will not share the resulting
“write” access token with anyone else, including the Zoom server, but read-only access to
snapshots can be extended to all access tokens, including those issued to browser sessions.

We realize that the protections given to write ID tokens depend on the security of the
underlying platform including the user’s browser, their OS and their hardware, but we
intend these protections to be best effort measures.

Whenever devices make updates to their user sigchain, they submit the latest sigchain tail
to their IDP. In the event where a device successfully makes a sigchain update with the
Zoom server but fails to update the IDP, the next device that comes online will notice the
new sigchain links and update the IDP itself, but only after the user has reviewed the new
links for potentially malicious device additions.
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5.4 Validating IDP Attestations

IDP attestations can be validated like standard OIDC ID tokens in the Authorization Code
Flow [3] with a few modifications. Users will:

1. Verify that the IDP in the iss field of the JWT matches the JSON hosted at the
ADN’s idp-config.well-known. subdomain. This ensures that the IDP is autho-
rized to sign on behalf of the account ADN (as specified in Section 5.1).

2. Use OpenID Connect Discovery (e.g., make a request to
https://examplecorp.generic-idp.com/.well-known/openid-configuration)
to ensure that the key used to sign the JWT is valid.

3. Validate the JWT, including checking its signature and expiration date.

4. Validate that the email and snapshot match the user sigchain provided by the Zoom
server. When used in E2EE meetings, users will accept attestations that do not cover
the latest sigchain tail as long as the new links since the IDP’s snapshot do not revoke
the device currently being used in the meeting. If the new links change the user’s
email or account, then the user will be shown without identifiers.

Note that the fetched attestation may be shared with and validated by anyone, so it doesn’t
include the aud field.

5.5 Security Properties

Users in accounts with an IDP that supports our protocol receive particularly strong secu-
rity guarantees. Because clients rely on the account’s ADN (and not the Zoom server) to
determine the IDP, a Zoom insider cannot impersonate these users unless the IDP or TLS
itself is compromised. The Zoom proxy or network attackers can potentially trick a user
into believing that another user’s account’s ADN does not have an associated IDP, but in
this case, the user will appear without an email address or ADN.

6 Encryption for Zoom Mail Service

Zoom Mail Service is a Zoom-hosted product that allows users to send and receive emails.
In this section, we describe the cryptographic design behind Zoom Mail Service, and how
it supports end-to-end encryption where possible. In particular, given the lack of a modern
and widely adopted end-to-end encrypted email standard,6 and the desire to leverage the
strong identity properties and the multi-device key management architecture described in
the rest of this document, we only offer end-to-end encryption for emails sent between two

6Though some open protocols exist, such as PGP, they have limited adoption and ease of use, a frag-
mented ecosystem, and frequent security vulnerabilities.
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Zoom Mail Service users (who have provisioned their clients to generate the required keys).
Emails from external providers are encrypted at rest with client-controlled per-user keys
as soon as possible after they are received, and the server deletes any unencrypted copy of
emails to external providers after they are successfully processed.

Zoom Mail Client also supports external email providers, but here we only analyze the
security of the product when leveraging our own Zoom Mail Service.

Note: Implementing end-to-end encryption in Zoom Mail Service is an ongoing process,
and not all planned features and functionality in our design will be available as of version
5.12.8. This section describes the overall plan for the cryptographic design of Zoom Mail
Service and identifies limitations that remain as of the current release.

6.1 Encrypted Email Protocol

In this section, we describe the protocol that clients and the Zoom Mail Service server can
use to encrypt and decrypt emails. The encryption format supports optional signatures
over the emails: clients will sign all the emails they send to other Zoom Mail Service users
using their device keys, while emails encrypted by the server (for example, those from
external email providers) are not signed. For cryptographic purposes, an email consists
of a sequence of opaque byte strings, which we call pieces; these may include the email
body itself (which contains a MIME tree structure and email headers such as lists of “To”
and “CC” email addresses) and attachments (we encrypt and treat pieces separately to
allow, e.g., downloading attachments separately on demand). In addition, an email has a
(possibly empty) BCC header string which lists the email addresses of any BCC recipients.
The BCC header string is visible to the sender but not to recipients, and is used by the
server for routing purposes.

To encrypt an email for one or more Zoom Mail Service users, the sender or Zoom server
uses the following procedure:

1. Encrypt each piece with a fresh uniformly random 32-byte key (different for each
piece) using Cake-AES.7 Collect each key and the SHA-256 hash of each ciphertext8

into a list called the manifest. Then, encrypt the manifest itself using Cake-AES
with another fresh uniformly random 32-byte key, called the shared symmetric
key.

2. Compute the HMACSHA256 of the BCC header string with a random 32-byte commit-
ment key to produce the BCC commitment.

3. Generate a random Curve25519 ephemeral sender private and public key.

7Cake-AES is a custom encryption format built on top of AES-GCM. Its ciphertexts commit to both
the key and plaintext used to produce them, and it supports random-access decryption and large ciphertext
sizes. See Appendix C for details.

8As an optimization, when forwarding or replying to an email containing an attachment, clients reuse
the same ciphertext, key and hash related to the attachment in the new email to avoid having to download,
re-encrypt and re-upload the attachment. The additional leakage is acceptable, given that the server could
likely figure that the attachment is the same based on context and attachment size.
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4. For each recipient (including the sender themselves):

(a) Resolve the recipient’s email address (using sigchains) into a recipient user ID
and their email PUK (a public per-user Curve25519 key advertised in the recipi-
ent’s sigchain, derived as described in Section 3.4.1). Compute a Diffie-Hellman
shared secret between this key and the ephemeral sender private key.

(b) Using SHA-256, hash the following information into the recipient-associated
digest: all user IDs and public keys used by the sender and recipient, the hash
of the manifest ciphertext, the BCC commitment, and other context such as the
version number. The BCC commitment is only used by the sender to verify and
display the BCC header string in their own outbox.

(c) If the sender is a Zoom Mail Service user, then using Ed25519, sign this hash
with the sender’s private device signing key. (If the Zoom server is encrypting
an email, omit this signature.)

(d) Using HMACSHA256, derive a key from the recipient-associated digest and the
Diffie-Hellman shared secret.

(e) Using XChaCha20-Poly1305 with this key, encrypt the shared symmetric key
and, if it exists, the signature over the recipient-associated digest to produce a
recipient box ciphertext.

5. Sign the list of recipient-associated digests (including BCC recipients) with the sender’s
private device signing key to produce the recipient list signature. The recipient list
signature is only used by the sender’s client to verify the email’s recipients in their
own outbox, and is not sent to recipients.

6. Send all ciphertexts, the BCC commitment and key, the recipient list signature, and
the ephemeral sender public key to the server, along with the BCC header string and
the other headers needed to route the email.

There are several use cases where the sender needs to give the server access to the email
contents, which we detail below. To handle these cases, the sender follows the above
procedure except that they create an additional recipient box using a fresh random public
key as the recipient key and reveal the corresponding secret key to the server. This preserves
the authenticity guarantees of E2E encryption for the other recipients, and also allows the
sender to upload the encrypted email body and any attachments only once. In addition,
the sender sets a flag in the email manifest indicating that the email is not end-to-end
encrypted, which clients use to display the encryption type in the UI.9

When the server receives an email from a sender, it checks that the sender is logged in
to an active device. It then puts a copy of the email in each recipient’s inbox and a copy
in the sender’s “sent” folder. Each recipient’s copy only contains their own recipient box
ciphertext and, except for the sender’s copy, doesn’t contain the BCC header string, the
BCC commitment key, or the recipient list signature. Although the sender’s copy omits
other recipients’ box ciphertexts, it must retain the user ID and PUK generation of all
other recipients to allow the recipient list signature to be verified. If there are any external

9We trust the sender to report this flag honestly. A malicious sender could modify their client to tamper
with this flag, but doing so would only harm their own emails’ privacy.
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recipients (such that the email is no longer E2EE), the server is able to decrypt the email
and forward it to the external recipients.

Upon receipt of an email, the recipient follows these steps. Note that this includes senders
viewing emails from their “sent” folder.

1. If a signature is present, load the signer’s user sigchain to check that the sender signing
key is valid. If the key is not the signing key of some device on the sigchain, decryption
returns an error. Clients allow messages signed by revoked devices because the email
could have been legitimately sent from the device before it was revoked, and rely on
Zoom servers to prevent revoked devices from sending further messages. In future
releases, messages signed by revoked devices will be highlighted in the user interface,
so that users can be especially cautious. (Note that we allow unsigned messages even
if the sender’s email address is known to be using Zoom Mail Service: for example,
the sender might have sent this specific email from a different email service before
migrating their address to Zoom Mail Service. Such emails are indicated as not
E2E-encrypted.)

2. If the email being viewed was sent by the current user, assert that the BCC header
string, the BCC commitment key, and the recipient list signature are all present.
Verify the commitment, then recompute all recipient-associated digests and verify the
signature. The BCC header and recipient list are now trusted and can be displayed
in the UI.

3. Independently compute the recipient-associated digest and the Diffie-Hellman share
between the recipient’s key and the sender’s ephemeral public key. Using that hash
and share, derive the key to decrypt the recipient box ciphertext and get the signature
over the recipient-associated digest and shared symmetric key. Verify the signature.

4. Using the shared symmetric key, decrypt the manifest ciphertext to get a list of piece
keys and piece ciphertext hashes.

5. On demand, fetch each piece ciphertext, verify its hash, and decrypt it with its piece
key.

Recipients do not receive or verify public keys for other recipients, but do see their email
addresses in the “To” and “CC” headers.

6.2 Emails to Users without Devices

Some users may have a Zoom Mail Service account, but not have logged in on any devices
or generated any keys yet. We say that these users are “pre-provision.” For example,
the IT team of an organization might create user accounts for every new hire before their
start date. We wish to allow pre-provision users to receive emails, but these emails cannot
be end-to-end encrypted because the users don’t yet have keys. Instead, when emailing
a pre-provision user, the sender flags the email as not E2EE and shares a decryption key
with the server, as described earlier. The server stores these emails for the user until they
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create their first device, at which point the server decrypts and re-encrypts those emails
for the user’s first email PUK. Since the server performs the final encryption, these emails
will not be signed by the original sender.

Pre-provision users are different from users who do have a sigchain, but whose devices are
all revoked. The Zoom client doesn’t allow sending emails to such users.

6.3 Emails to and from External Users

Zoom Mail Service users may send or receive emails from external users who aren’t using the
same platform. Such emails cannot be E2E-encrypted, as this encryption is not compatible
with external mail providers; the server must see the email contents while receiving from
or sending to external email providers using standard protocols. We nevertheless wish to
provide the strongest feasible security guarantees.

When Zoom Mail Service servers receive emails from external users, they follow essentially
the same procedure as a Zoom Mail Service sender to encrypt the email for each recipient’s
most recent PUK, except that they omit the sender public signing key and corresponding
signatures, as previously described. After encryption, any plaintext copies of the incom-
ing email are deleted in order to prevent later memory compromise from violating email
confidentiality.

When sending an email that includes external recipients, clients flag the email as not E2EE
and share a decryption key with the server, as described earlier. The server uses this key
to decrypt the email and relay it to the external recipient using standard email protocols.

We also offer password-protected (sometimes called “expiring” or “access restricted”) emails
as a more secure option when emailing external recipients. The client freshly samples a
high-entropy key (which we call a password), then creates an additional recipient box by
encrypting the shared symmetric key for that password. Both the ciphertext and the
password are sent to the server.

In lieu of the plaintext email contents, Zoom Mail Service sends a link to a Zoom-hosted web
page to the recipient. The fragment10 component of the link contains both the password
and the recipient-associated digest (Section 6.1). After sending the email to the recipient,
Zoom Mail Service erases the password from its memory and storage.

When the recipient’s browser visits the link, the JavaScript on the web page validates the
provided ciphertext against the recipient-associated digest, then decrypts the email client-
side using the password. Neither the password nor the plaintext email contents are sent
back to the Zoom servers.

Additionally, senders set an expiration time after which password-protected emails are
automatically deleted by the Zoom server.

Password-protected emails offer several security benefits. The recipient’s (and any inter-

10The fragment of a link is the part after the #, which is not sent to the server when the user visits the
link.
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mediate) email servers never process email contents directly, limiting exposure, and all
requests to visit the link can be logged by Zoom. If the Zoom server’s storage is compro-
mised after it sends such an email and deletes the password, the email ciphertext remains
undecryptable. This does not rule out an active attack where a compromised server waits
for the recipient to visit the link and serves them malicious JavaScript to obtain the pass-
word. However, this attack could only happen before the email expires and the ciphertext
itself is deleted. We consider this an acceptable tradeoff given the convenience it provides
to the recipient, who is not required to install additional software.

6.4 Mailing Lists

Zoom Mail Service supports mailing lists but, at the moment, membership is entirely
managed by the server, and we do not support end-to-end encrypted emails to these lists.
When a client sends an email to a mailing list, the server obtains the plaintext and re-
encrypts it for each member of the mailing list individually (as for emails from external
senders). The re-encryption is the same as for emails that came from an external sender.
We will continue to improve this design in the future.

6.5 Calendar Email Integration

Zoom Mail supports integration with other Zoom products. For example, Zoom Calendar
Service may notify users over email when they are invited to an event. These emails will
only be encrypted at rest, like emails from external services, rather than E2E-encrypted;
they will be clearly indicated as such in the UI.

6.6 Encrypting Non-Email Data

Zoom Mail Service users can also have sensitive information in their user accounts that
don’t directly correspond to any email they sent or received. These include custom labels,
folder names, and email signatures. The Zoom Mail Client encrypts all of this information
for the user’s own most recent email PUK, but the server still learns metadata such as the
fact that two emails are in the same folder.

Email drafts are encrypted and decrypted in essentially the same way as they would be when
they are sent/received, except that the sender does not create recipient box ciphertexts for
recipients (other than themselves) until the email is actually sent.

6.7 Security Properties

Zoom Mail Service shares the goals, threat model, and limitations of Section 2 with the
other products outlined in this document. In this case, we stress that Zoom servers get
access to email metadata such as message size, send time, recipient list, number of attach-
ments, attachment sizes, information on threading (e.g., whether an email is a response
to a previous email), and in some cases (e.g., when replying or forwarding), whether two
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emails share the same attachment. Moreover, in future releases user reporting of poten-
tially inappropriate content may share decrypted email content with Zoom servers, though
this functionality is not available as of version 5.12.8.

The email encryption format is key-committing (each ciphertext, even if maliciously gen-
erated, can only be decrypted to a single plaintext) and guarantees both confidentiality
and integrity, assuming the key material is kept private and correctly authenticated. Guar-
antees related to keys are inherited from the underlying key management architecture, as
detailed in Section 3.11 (with the caveats below). For example, an attacker with read-
only access to the Zoom server infrastructure and without access to any of the recipient’s
devices cannot violate the confidentiality of E2EE email contents, or of non-E2EE emails
whose processing has been completed (i.e. that have been sent out11 or encrypted for the
recipient’s keys) before the compromise began.

The user interface around fingerprints is still under active development (as of version 5.12.8,
the product is still in beta). The current release only offers partial detection and prevention
mechanisms against active attacks, which we are working to strengthen in the very near
future. There is currently no way to mark that a fingerprint has been verified out-of-band
so that the user gets notified when the corresponding sigchain changes. The guarantee that
we offer is the following. Assume a user looks at a recipient’s fingerprint (by hovering on
their name/email address) while in the compose window, and then hits “Send” without
closing the compose window between the two operations. If so, the client enforces
that the email will be encrypted using the latest email PUK that is part of the sigchain
corresponding to the recipient fingerprint that the user saw. If the sigchain is updated
before the user hits the “Send” button, the send operation will fail so that the user has
the opportunity to check the updated fingerprint. We stress that this mechanism does not
work if the user closes the window between seeing the fingerprint and sending the email,
which may occur when continuing composing from a draft, or across different emails sent
to the same recipient. We deem this an acceptable temporary solution until we are able
to offer comprehensive support for remembering “trusted” fingerprints and notifications of
fingerprint changes. We will continue to develop a more robust and feature-rich experience
around fingerprints and change notifications, as well as more automated solutions such as
those involving the ZTT to reduce the burden on the user.

Lastly, while it is possible for the sender to check a recipient’s fingerprint before sending,
there is currently no intuitive way for recipients to check the fingerprint of the sender of a
given email to verify the claimed authorship. Support for this use case is also upcoming.

Beyond key management, Zoom Mail Service does not make any guarantees regarding the
following security properties:

• Deniability (as ciphertexts are signed with the sender’s own device keys).

• Authentication of email threading, ordering, or the relationship between forwarded
messages (i.e. unrelated emails could be displayed as if belonging to the same thread
or out of order, some emails might be hidden, and any quoted text in a reply or

11Here we are only considering attacks to the Zoom infrastructure, excluding attacks to the external
recipient’s email account or on the mail delivery infrastructure beyond Zoom servers.
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forwarded email can be altered by the responder/forwarder).

• Authentication that an email has a particular label or is in a folder (e.g., whether an
email has been “read”).

• Rollback attacks on label/folder names or other encrypted non-email data (the server
can always “undo” a rename by re-supplying the old signed ciphertext instead of the
updated one).

• Forward secrecy (users cannot delete key material related to, e.g., a single specific
email).

• Post-compromise security. We offer partial guarantees: encryption keys are rotated
as soon as possible after a device is explicitly revoked, and ciphertexts encrypted
after the rotation cannot be decrypted using the old keys.

We will prioritize improving on these issues depending on customer feedback.

6.7.1 Spam Detection and Content Monitoring

Confidentiality and integrity are not the only aspect of email security; some encrypted
emails could contain spam, viruses, phishing messages, or other undesirable content. By
design, Zoom servers cannot scan E2E-encrypted emails for such threats. Since sending
E2EE emails requires a paid subscription, we expect abuse to be very limited. Moreover,
even if the contents are inaccessible, user reporting and metadata-based techniques, such
as rate limiting by account or IP address, can block or detect some abusive behavior.
In addition, emails from external email addresses will be subject to server-side content
analysis, including virus scanning and spam filtering using standard tools, as well as SPF,
DMARC, DKIM and STS enforcement.

7 Encryption for Zoom Meetings

This section describes the cryptographic design that powers Zoom Meetings. We offer two
types of encryption for Meetings: enhanced encryption encrypts the meeting stream with
a key which is available to the Zoom server infrastructure, allowing for features such as
cloud recording and live captioning, as well as the opportunity to dial into a meeting from
a mobile or landline phone. End-to-end encryption, on the other hand, ensures that only
the clients of the participants who are in the meeting have access to the meeting key. This
offers stronger security and privacy, but lacks all the features that require the server to be
able to decrypt meeting contents.

7.1 Zoom Meetings

A Zoom meeting is initiated by a designated individual, who we will refer to as the host. The
host has the ability to configure meetings, notify participants, select meeting passwords,
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and control meeting functions while a meeting is in progress. The host’s configured policies
(e.g., whether meeting participants may share their screens by default) are applied to the
meeting. The host need not be present for the entire duration of a meeting: if “Join Before
Host” is enabled, individuals can begin a meeting before the host joins. Similarly, a host
can appoint one or more additional individuals as co-hosts and can leave the meeting under
the control of a replacement host.

Each Zoom meeting involves up to 1,000 participants. Meetings are identified externally
by a short meeting identifier (the meeting ID), known to the Zoom infrastructure, which
each participant must possess as a precondition for joining a meeting.

During meeting setup/scheduling, users can select enhanced or end-to-end encryption.
This option cannot be changed once the meeting starts, and all participants receive a clear
indication of the type of encryption during the meeting.

Zoom meetings also feature several access control mechanisms, among which are:

• A shared meeting password, which can be selected by the host at the time the meeting
is configured.

• A “Waiting Room” feature, in which the host (and replacement host) has the ability
to manually approve entry of participants throughout the course of a live meeting.
Participants are identified by a name of their choosing.

• A mechanism by which meeting participants must register prior to the meeting.
• A setting to limit attendees of a meeting to those who are signed-in and authenticated

members of certain domains.

We stress that these mechanisms are powered by the server, and might be circumvented
by insiders.

7.2 Enhanced Encryption

When a Zoom client gains entry to a Zoom meeting with enhanced encryption, it gets
a 256-bit per-meeting key (MK) generated by the Zoom server, which retains the key to
distribute it to participants as they join. During meetings, each participant might produce
different data streams such as audio, video and screen sharing. Since Zoom client version
5.0, each stream consists of UDP packets that are encrypted (in both enhanced and end-
to-end encrypted meetings) using AES-GCM with a unique per-stream key, derived from
the meeting key and a (non-secret) stream identifier using HMAC.

Those packets are relayed and multiplexed via one or more Multimedia Routers (MMR)
in Zoom’s infrastructure. The MMR servers do not decrypt these packets to route them,
and use the per-meeting key only to provide the special features (such as PSTN dial-in and
Cloud Recording) as detailed below. There is also no mechanism to re-key a meeting.

If a PSTN or SIP client is authorized to join, the MMR provides the per-meeting encryption
key to specialized connector servers in Zoom’s infrastructure. These servers act as a proxy:
they decrypt and composite the meeting content streams in the same manner as a Zoom
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client and then re-encode the content in a manner appropriate for the connecting client.
Zoom’s optional Cloud Recording feature works similarly, recording the decrypted streams
and hosting the resulting file in Zoom’s cloud for the user to access. In the current design,
Zoom’s infrastructure brokers access to the meeting key.

This design provides confidentiality and authenticity for all Zoom data streams by pro-
viding encryption between Zoom client endpoints and the servers. However, it does not
provide end-to-end key management. In meetings using enhanced encryption, a passive ad-
versary who has access to the memory of the relevant Zoom servers may be able to breach
confidentiality, by observing the shared meeting key, deriving session keys, and decrypting
all meeting data. Zoom meetings with enhanced encryption, as well as virtually every other
cloud product, rely on securing the server infrastructure in order to achieve overall security;
end-to-end encryption, using keys at the endpoints only, allows us to reduce reliance on
the security of the Zoom infrastructure.

7.3 End-to-End Encryption

Our end-to-end encryption design eliminates Zoom servers’ role in generating (and con-
trolling access to) the meeting key, shifting this responsibility to the participants’ Zoom
clients. No secret key material or unencrypted meeting contents will be provided to Zoom
infrastructure servers, except in specific cases where this sharing is explicitly authorized
by meeting participants (e.g., to support abuse reporting).

In end-to-end encrypted meetings:

• “Join Before Host” and Cloud Recording cannot be enabled.
• All participating clients must run the official Zoom client software; it is not possible

to join using dial-ins, web browsers, or legacy Zoom-enabled devices.
• Participants can see a “meeting leader security code” that they can use to verify that

no one’s connection to the meeting is being tampered with. The host can read this
code out loud, and all participants can check that their clients display the same code.

7.3.1 Security Goals

Zoom Meetings shares the goals, threat model, and limitations of Section 2 with the other
products outlined in this document. Specific to Zoom Meetings, we additionally deem in-
meeting impersonation attacks to be out of scope: a malicious but otherwise authorized
meeting participant colluding with a malicious server can masquerade as another authorized
meeting participant.

There are also several legacy standards and platforms that E2E encryption for Zoom Meet-
ings is not compatible with. For example, dial-in phones or SIP/H.323 devices can be used
to join Zoom Meetings, but these devices cannot be modified to support end-to-end encryp-
tion and require meeting content to be decrypted and re-encoded in an “end” in Zoom’s
data center. The E2E security guarantees described in this section do not apply to meetings
that support such features.
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7.4 System Components

Our end-to-end encryption protocol assumes the following components:

Identity management system. The system depends on the existence of a Zoom ID
management system that will be responsible for distributing cryptographic public
keys generated by individual clients. This server will bind keys to Zoom user accounts
where possible, and will also support clients who do not have explicit Zoom identities.

Signaling channel. The system will make use of a signaling channel to distribute crypto-
graphic messages between participants in a meeting. Currently, meeting participants
route control messages on TLS-tunnels over TCP, through the MMRs. TLS is ter-
minated at Zoom’s servers. This channel is suitable for our needs.

Bulletin board. Participants in the channel can post cryptographic messages to a
meeting-specific “bulletin board,” where all other participants can see them. This
abstraction can be implemented over the signaling channel. The server controls the
bulletin board, as it controls the signaling channel itself, and therefore can tamper
with it.

Meeting leader. The protocol requires that, at all times, one of the participants plays
the role of the meeting “leader.” This client will have the responsibility of generating
and updating the shared meeting key, and to distribute this key and other meeting
metadata to the other participants. Zoom servers will select the leader, and replace
them with a new one if the current one leaves. Note that the meeting leader role
is different from the meeting host, who can authorize and kick out participants and
has administrative control over meeting functionality. Before version 5.11.3, clients
enforce that the leader is always the host, and this will still be the case in most
meetings; however, newer clients allow the server to assign these roles independently
to support functionality like E2EE Breakout Rooms, which do not have a dedicated
host.

7.5 Cryptographic Algorithms

All meeting data sent over UDP gets encrypted with AES in GCM mode [9]. Key derivation
uses the HKDF algorithm [11]. For public key encryption and signing, we rely on Diffie-
Hellman over Curve25519 [4] and EdDSA over Ed25519 [5]. We use the interface and
implementation of the NaCl [6]-inspired libsodium library [8], as detailed below.

7.5.1 Signing

For signing, we use libsodium’s EdDSA implementation directly:

• Sign.KeyGen generates a key pair (vk , sk) (via crypto sign keypair).
• Sign.Sign takes as input a context string Context and a message M and outputs a “de-

tached” signature Sig over SHA256(Context)||SHA256(M) (via crypto sign detached).
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• Sign.Verify takes as input a detached signature Sig, a context string Context, and a
message M ; it outputs true on verification success and false on failure (via crypto -

sign verify detached).

7.5.2 Authenticated Public-Key Encryption

Authenticated public-key encryption also uses libsodium. Note that in encryption and
decryption, we derive shared keys and use them to encrypt/decrypt the message as separate
steps, firstly so we can cache the derived keys, and secondly because libsodium does not
expose a function that directly supports using associated data in public-key encryption,
only in symmetric encryption.

Box.KeyGen
Input: None
Output: an encryption key pair (pkBox, skBox)

To generate a key pair:

1. Return (pkBox, skBox) as generated by crypto box keypair.

Box.Enc
Input: Sender’s secret key skSBox and receiver’s public key pkRBox, a context string ContextKDF,
a second context string Contextcipher, metadata Meta, and a message M .
Output: a ciphertext C

To encrypt:

1. Generate a 192-bit random string RandomNonce.
2. Compute K ′ ← crypto box beforenm(pkRBox, sk

S
Box), which is the DH key-exchange

of the public key pkRBox and the private key skSBox.
3. Compute K ← HKDF(K ′,ContextKDF), using an empty HKDF salt parameter. (K

may be cached for this key pair and context.)
4. Compute D ← SHA256(Contextcipher)||SHA256(Meta).
5. Compute C ′ ← crypto aead xchacha20poly1305 ietf encrypt(M,D,RandomNonce,

K), which computes XChaCha20-Poly1305 over the plaintext M with the symmet-
ric key K, the associated data D, and the nonce RandomNonce.

6. Output C ← (C ′,RandomNonce).

Box.Dec
Input: Receiver’s secret key skRBox and sender’s public key pkSBox, a context string ContextKDF,
a second context string Contextcipher, metadata Meta, and a ciphertext C.
Output: a message M , or error

To decrypt:

1. Parse C as (C ′,RandomNonce).
2. Compute K ′ ← crypto box beforenm(pkSBox, sk

R
Box).

3. Compute K ← HKDF(K ′,ContextKDF), using an empty HKDF salt parameter. (K
may be cached for this key pair and context.)
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4. Compute D ← SHA256(Contextcipher)||SHA256(Meta).
5. Compute M ← crypto aead xchacha20poly1305 ietf decrypt(C ′, D,RandomNonce,

K). If decryption fails, output error. Otherwise output M .

7.6 Join/Leave Protocol flow

Each client needs a device signing key pair to join E2EE meetings: we denote the public
verification key as IVK , and the secret signing key as ISK .

Once sigchain-backed identity for meetings (Section 7.10) is available, devices will directly
use their signing key pairs as advertised in the user’s sigchain. Until then, each device
generates a dedicated IVK/ISK pair using Sign.KeyGen on their first login. In all cases,
these signing keys are securely stored as described in Section 3.8.1.

If the user is joining as a guest or is not logged in, this key pair is freshly generated for
every meeting and never recorded in the sigchain. This prevents other participants from
tracing them across meetings by noticing when a long-term key is reused.

We assume each meeting is identified by its unique meetingID, as in the current system.
Each meeting gets its own “bulletin board” that’s accessible to everyone who has server-
gated access to the meeting. The server clears it when the meeting ends. Note that
meetings can be ended then later restarted, and a meeting ID can refer to a standing or
repeating meeting.

From a cryptographic perspective, the server is free to tamper with all values posted on
the bulletin board. In Section 7.11, we describe further that a malicious server that sends
stale messages from a previous meeting incarnation can at best deny service, which it can
do regardless.

Figure 2 describes the basic flow of a leader admitting a participant into the meeting.

7.6.1 Server Key Certificate Chains

When a client i joins a meeting, the Zoom server signs a statement SigiServer indicating
that the client’s userID, hardwareID, and IVK are authorized. userID and hardwareID are
non-cryptographic identifiers used by the Zoom server to distinguish between users and
devices.

We’ll use certificate pinning to strengthen the security of the server signature. Zoom clients
will ship with a DigiCert root certificate and they will only trust certificates authorized
for a specific Zoom domain via a certificate chain originating from the DigiCert root.
Hardware Security Modules (HSMs) are used to manage keys for an internal intermediate
CA, which will in turn attest to the servers’ signing keys. Server keys are valid for a week
and are rotated daily. In order to detect certificate revocation in the event of CA or server
compromise, clients require stapled OCSP responses on the intermediate certificates they
receive.

These signatures help protect against MitMs injecting users into the meeting. This feature

Zoom Cryptography Whitepaper Page 50



© Zoom Video Communications, Inc. CC BY-SA 4.0

Bob (participant) Zoom MMR Zoom Keyserver Alice (host)

IVKA

SigiServer = Signature over
meetingUUID, userID, IVK i

SigAServer

(pkB , skB) = Box.KeyGen()
bundleB ← (SigBServer,SigB , pkB)

(pkA, skA) = Box.KeyGen()
bundleA ← (SigAServer,SigA, pkA)

bundleAbundleA

IVKB

SigBServer

bundleB bundleB

Generates random
meeting key MK

MK encrypted
for Bob

MK encrypted
for Bob

Encrypted
A/V

Encrypted
A/V

Figure 2: Protocol flow diagram for a leader accepting a participant into the meeting

was released in Version 5.7.0 (see Appendix A).

7.6.2 Participant Key Generation

When any participant i joins the meeting, whether before or after it starts, and whether
the leader or not, it performs the following operations:

1. Generates new public-key ephemeral encryption key pair: (pk i, sk i) = Box.KeyGen().
2. Queries the Zoom infrastructure for the server-generated meetingUUID for this in-

stance of this meeting; this is server-generated per-meeting-instance randomness
that the individual participants cannot control.

3. Computes Bindingi ← (meetingID‖meetingUUID‖i‖hardwareID‖IVK i‖pk i).
4. Defines Context← "Zoombase-1-ClientOnly-Sig-EncryptionKeyAnnouncement".
5. Computes Sigi ← Sign.Sign(ISK i,Context,Bindingi)
6. Stores sk i for the duration of the meeting.
7. Posts Sigi and pk i to the bulletin board, so that all participants can see it.
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7.6.3 Leader Join

When the leader joins the meeting meetingID, they:

1. Fetches meetingUUID from the Zoom infrastructure.
2. Generates a symmetric 32-byte seed MK using a secure random number generator.
3. Gets the full list of participants I from the MMR.
4. For each participant i ∈ I, it runs the “Participant Join (Leader)” subroutine for i.

Each MK has an associated sequence number mkSeqNum, starting at 1 and incrementing
whenever the key changes as described in Section 7.6.6.

7.6.4 Participant Join (Leader)

Given a leader ` and a participant i joining meeting meetingID on hardwareID, the leader:

1. Fetches IVK i from the key server.
2. Fetches Sigi and pk i from the meeting’s “bulletin board.”
3. Computes Bindingi ← (meetingID‖meetingUUID‖i‖hardwareID‖IVK i‖pk i).
4. Defines Contextsign ← "Zoombase-1-ClientOnly-Sig-EncryptionKeyAnnouncement".
5. Verifies the signature: Sign.Verify(IVK i, Sigi,Contextsign,Bindingi).
6. If verification fails, it aborts.
7. Computes Meta← (meetingID‖meetingUUID‖`‖i).
8. Defines ContextKDF ← "Zoombase-1-ClientOnly-KDF-KeyMeetingSeed".
9. Defines Contextcipher ← "Zoombase-1-ClientOnly-Sig-EncryptionKeyMeetingSeed".

10. Computes C ← Box.Enc(sk `, pk i,ContextKDF,Contextcipher,Meta, (MK,mkSeqNum)).

11. Posts (i, C) to the “bulletin board.”

7.6.5 Participant Join (Non-Leader)

When participant i joins meeting meetingID, it performs the reverse of the above procedure:

1. Fetches IVK ` from the Key server for the leader `.
2. Fetches Sig` and pk ` from the meeting’s “bulletin board.”
3. Fetches (i, Ci) from the “bulletin board.”
4. Fetches the meetingUUID from the server.
5. Computes Binding` ← (meetingID‖meetingUUID‖`‖hardwareID‖IVK `‖pk `).
6. Defines Contextsign ← "Zoombase-1-ClientOnly-Sig-EncryptionKeyAnnouncement".
7. Verifies the signature: Sign.Verify(IVK `,Sig`,Contextsign,Binding`).
8. If verification fails, it aborts.
9. Computes Meta← (meetingID‖meetingUUID‖`‖i).

10. Defines ContextKDF ← "Zoombase-1-ClientOnly-KDF-KeyMeetingSeed".
11. Defines Contextcipher ← "Zoombase-1-ClientOnly-Sig-EncryptionKeyMeetingSeed".
12. Decrypts (MK,mkSeqNum)← Box.Dec(sk i, pk `,ContextKDF,Contextcipher,Meta, C).
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Now all participants have access to the shared meeting key MK, and can encrypt and
decrypt meeting streams accordingly. Participants use an additional HKDF step to derive
different subkeys for different message types (e.g. chat, video), mixing in a distinct flag
for the message type and also the meetingID, the meetingUUID, and the ID of the message
sender.

7.6.6 Key Rotation

At any point later in the meeting, the leader can generate a new 32-byte value MK′. The
leader performs steps 10-11 of “Participant Join (Leader)” for all participants, with the
updated MK′ value. All participants see the rekey signal on their signaling channel, and
perform step 12 of “Participant Join (Non-Leader).” Each participant ensures mkSeqNum
in the ciphertext sent by the leader is greater than the previously known mkSeqNum;
otherwise the key rotation is ignored.

Participants should not immediately encrypt using the new meeting key; they should wait
about 2 seconds, to ensure all participants smoothly transition over. All encrypted UDP
packets are prefaced with the 4-byte mkSeqNum, so participants know which version to use
for decryption.

The leader should trigger a rekey whenever a participant enters or leaves the meeting,
but not more than every 15 seconds (to prevent thrashing). As an important security
measure, users joining the meeting never get to see keys that are more than 15 seconds
old, since otherwise they could view encrypted in-meeting chats deep into the meeting’s
past. Similarly, users who leave a meeting might be able to decrypt meeting content sent
in the next 15 seconds (or up to a couple of minutes if the server is suppressing messages
to prevent the leader from rotating the key). But likewise this rekeying strategy shouldn’t
delay a user from joining a meeting.

It’s important to note each MK is independently generated, so knowing the previous MK
provides no information about the subsequent MK′.

7.6.7 Leader Participant List

A meeting leader maintains a “leader participant list” (LPL) tabulating all the users in the
meeting. For each user currently in the meeting, the LPL keeps track of a hash over their
Bindingi, which includes their IV Ki, pki, userID, and hardwareID, as well as their display
name. For users who have left the meeting, the LPL tracks only their userID, hardwareID,
IVK i, and display name.

The LPL is used to drive the participant list in the user interface, which records both users
currently in the meeting and those who have left. It is possible that race conditions during
leader changes (caused by a bad network or a malicious server) could prevent some meeting
participants from being reflected in the “left” section of the participant list.

Initially, the participant list only identifies users through their self-selected display name
and profile picture. Changes to participant’s display names are relayed by the server to
the leader, who includes them in the LPL, so a compromised server can change the display
names of any meeting participant. As such, display names should not be relied on to
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establish the participants’ identities. Later, we will introduce a strong notion of identities
to address these limitations.

The LPL is represented as a sequence of operations such as adding a user to the meeting, or
noting when a user has left. Every time there is such an operation, the leader increments a
counter v representing the total number of operations and signs over a data structure (called
a link) containing the counter, the hash of the previous link, and the current operation.
If there are more than 20 links in the chain, the leader can coalesce all the previous links
into a smaller number of links. The old links are then deleted in order to save space.

Leaders post a signature over the latest link to the bulletin board whenever membership
changes, and broadcast it over the signaling channel at designated “heartbeat intervals”:

Sign.Sign (ISK `,Context, (Binding`‖SHA256(LPLv)‖v‖t‖mkSeqNum))

Where Context is "Zoombase1-ClientOnly-Sig-LeaderParticipantList", t increments
on every send, v increments whenever the LPL changes, and mkSeqNum increments on
every MK rotation.

By replaying the sequence of operations in the bulletin board, the other participants can
reconstruct the current list of participants, so they know who to rekey for if the leader
drops out and they become the new leader. Evil servers might try to withhold updates
the leader makes here, to hide when bad actors are kicked out. As such, the leader also
sends a low bandwidth “heartbeat” over the signaling channel. Heartbeats should go out
at least every 10 seconds. All participants observe and verify these heartbeats, and if they
fail to receive ten heartbeats in a row, they should drop out of the meeting.

When a leader does drop out of a meeting, the Zoom server picks a new leader arbitrarily
and sends a signal to participants indicating that the leader has changed. The new leader
then coalesces the chain as described above, and other participants verify that the new
leader is present in the new LPL.

For users in the meeting, clients remember the mapping between (userID, hardwareID) and
hash over the corresponding Bindingi, and ensure that the hash remains stable across new
links and leader changes. If a user leaves the meeting, it is enforced that any user who
rejoins with the same userID and hardwareID must have the same IVK i, but not necessarily
the same pk i. These guarantees persist only over the course of a single meeting.

7.6.8 Locked Meetings

Hosts and co-hosts have the ability to lock and unlock the meeting. While a meeting is
locked, no new users will be admitted into the meeting. In non-E2EE meetings, the server
performs all access control, but locked E2EE meetings will offer stronger guarantees.

When the leader presses the “Lock Meeting” or “Unlock Meeting” buttons in the user
interface, their client adds a corresponding link to the LPL. Other participants’ clients
show that the meeting is locked only when it is set in LPL; the server does not have the
ability to influence this part of the user interface. When a locked meeting becomes unlocked
(as indicated by the LPL), all participants’ user interfaces display a prominent warning
indicating the change.
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Note that due to the tolerances in propagating the LPL, the server might prevent a partici-
pant from learning that the host has locked a meeting by withholding the relevant link and
selecting a new host within 100 seconds. This would result in either a meeting partition or
warnings about the unlocking for any participant who had received a link that locked the
meeting.

While the meeting is locked, the leader’s client will refuse to send the meeting key to any
new participants who request to join. However, if a user leaves and then rejoins with
the same IVK (as is recorded in the LPL), the leader allows them to rejoin. This lets
participants who drop out due to network issues automatically reconnect even while the
meeting is locked.

If the leader changes while the LPL indicates that the meeting is locked, participants ensure
that the new leader was in the previous LPL. If not, they drop out of the meeting. The
new leader can then copy over the locked bit and the list of participants from the old LPL
into the new link.

Co-hosts are also able to lock and unlock the meeting. They do this by sending a signed
message to the leader via the bulletin board. The leader ensures that the co-host is really a
member of the current LPL before processing the change, and trusts the server to identify
whether each participant is actually a co-host. Since the server also has the ability to select
a new meeting host among existing participants of a locked meeting, this change does not
significantly degrade the security of the meeting. In order to prevent replays, co-hosts
sign over the latest LPL link hash, and leaders ensure that this matches their view of the
LPL before accepting. If the LPL changes before the co-host’s message was received and
processed, the co-host tries again.

From a security perspective, once a participant learns that the meeting is locked and checks
that all current participants are trustworthy (e.g., via a meeting leader security code check),
they can be sure that no unintended parties have or will have access to the meeting until
an “unlocked meeting” warning is displayed.

These additional guarantees for locked E2EE meetings were added in Zoom client version
5.6.0 (see Appendix A).

7.6.9 Meeting Teardown

At the end of the meeting, or when leaving a meeting early, all participants should discard
all meeting keys, all keys derived from those meeting keys, and the ephemeral DH private
keys sk i they generated when they joined.

The intent here is to provide forward secrecy. That is, if an adversary can record all
encrypted messages relayed between Zoom clients during the meeting, and can later recover
all keys stored on a user’s device after the meeting ends, they still cannot recover the
meeting data.
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7.7 Meeting Leader Security Code

If all participants can verify the authenticity of the leader’s public key (IVK `), they are
safe from MitM attacks. The Zoom client exposes the following “meeting leader security
code” in the security tab:

Digits(SHA256(SHA256("Zoombase-1-ClientOnly-MAC-SecurityCode")||SHA256(IVK `)))

Digits extracts a string of 39 decimal digits from a SHA-256 hash, representing just over
129 bits of information. This representation is more human-readable and more interna-
tionalizable than the full hexadecimal hash. Crucially, every Zoom client in the meeting
independently computes these codes from the IVK ` used in the handshake protocol. The
length of the code is long enough to protect against second pre-image attacks. The leader
reads out the meeting leader security code, after which everyone in the meeting in turn
does the same thing. If the code does not match, the participant should speak up in the
meeting, and the leader should rotate the meeting key by kicking them out; they may be
allowed to rejoin and try again. By having the leader go first, participants verify that they
all agree both on which of them is the leader, and on their IVK `. Both properties are
necessary to detect MitM attacks.

If deep fake technology12 is a concern, or the participants do not know each other in
advance, this verification can also happen over a different out-of-band secure channel.

Non-leader participants see a notification prompting them to re-perform the security code
checks whenever the meeting leader changes. These additional checks prevent a compro-
mised Zoom server from changing the meeting leader over the course of a meeting without
being detected.

We considered other approaches to the meeting leader security code, such as mixing more
of the handshake data into the displayed code. While more mixins would be more robust
to attacks that try to confuse participants by mixing members from different meetings, we
see a UX advantage of “one leader, one code.”

7.8 E2E Encryption for Breakout Rooms

The Breakout Rooms feature allows splitting a Zoom meeting into multiple sub-meetings.
The host can assign participants to rooms, or allow them to choose the room that they
want to join, and can broadcast chat messages to all breakout rooms at once. While
main meeting participants (including the host) do not have access to meeting content from
breakout rooms that they are not a participant of, the host does receive some metadata
about the “activity status” of participants in each breakout room to help them monitor
engagement, including for example whether participants have their video on, are using
reactions, or sharing their screen.

12We use “deep fakes” to refer to manipulated and/or fabricated audio/video data that uses synthetic
media techniques to replace the likeness of one person with another. Using a “deep fake” (especially in
real-time) of a meeting participant could potentially deceive others about the identity of that participant.
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In E2EE meetings, we implement Breakout Rooms by having each room function as its
own independent meeting, with its own leader, participant list, and sequence of meeting
keys. As users leave the main meeting and join a breakout room, both meetings rotate
their keys. In addition, after they join a breakout room, participants are also re-added by
the leader to the main meeting so that they can keep decrypting messages broadcast by
the main meeting host. Since they continue to have access to the meeting key, breakout
room participants are still part of the main meeting LPL, but the participants panel of the
meeting UX indicates that they are “In a breakout room.” If the main meeting is locked,
participants are still able to go in and out of it to join breakout rooms, as the leader of the
main meeting will let them back in given that they keep the same IVK (as explained in
Section 7.6.8).

Users in a breakout room can check the security codes with the breakout room leader
to ensure that there are no MitM attacks on the breakout room itself. Since there is
no cryptographically enforced relationship between the main meeting and breakout rooms,
such as the fact that the assignments of people to rooms reflect the intentions of the meeting
host, breakout room participants should also make sure that other participants in their
breakout room are expected to be there before discussing sensitive matters (as in regular
meetings). However, breakout room participants cannot see the main meeting’s leader
security code, and are not notified if the leader of the main meeting changes while they are
in a breakout room. Therefore, an active insider could add a breakout room participant to
a different main meeting when they try to rejoin it after entering a breakout room. Then,
the attacker could broadcast messages to that participant which would appear to come
from the original host of the main meeting (this would work even if the main meeting were
locked). As such, users worried about active attacks from insiders should be suspicious of
broadcast messages received while in a breakout room.

An attacker might also try to join an unlocked main meeting and immediately go to a
breakout room to avoid being identified by having to turn their camera on or being asked to
check security codes. The attacker could use the same display name and picture of another
meeting participant, either one who recently left the meeting or one that the attacker has
kicked out themselves (by controlling the network or the Zoom infrastructure). In this
case, the same participant name would appear twice as “left” and “In a breakout room” in
the participant list, which may be hard for other participants or the leader to spot. While
analogous attacks are possible even when breakout rooms are not in use, they might be
harder to recognize and act on in this scenario: for example, participants in a breakout room
do not get a video tile in the gallery view. We recommend that all meeting participants
carefully monitor the participant list, and that hosts lock their meeting whenever possible.

Finally, when participants leave a breakout room to rejoin the main meeting, an insider
might trick them into joining a different main meeting than the original one (even if the
latter were locked). As such, when switching between the main meeting and breakout
rooms, all participants should recheck leader security codes.

In future updates, we plan to further strengthen the guarantees offered by this feature, by
not making participants leave and then rejoin the main meeting when entering or exiting
breakout rooms, and having breakout room participants enforce that other participants
of their breakout room are also listed in the main meeting’s participant list. This will
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better mitigate the risks above, and require less trust in the Zoom server when using E2EE
Breakout Rooms.

7.9 Abuse Management and Reporting

If a user experiences abusive behavior and wishes to report it to Zoom’s Trust and Safety
team, they simply upload the unencrypted data normally collected in an abuse report (e.g.,
a description of the abuse and some portion of the meeting content) to Zoom for review.
This protocol is imperfect, since it potentially could allow a bad meeting participant to
“frame” an honest meeting participant for abuse that didn’t happen. For the same reason,
it allows an actual abuser to disavow uploaded evidence of their abuse. We think for now,
the framing behavior is rare and only possible with access to good “deep fake” technology.

Future refinements are possible. Participants could sign their outgoing video streams,
and other participants will only allow meetings to proceed if all streams are appropriately
signed. This change would defeat the two attacks above, but with major drawbacks:

Performance: Signing and verifying individual UDP video streams is expensive in terms
of bandwidth and computation. More research is required to make this change prac-
tical.

Repudiation: Honest participants might not want an indelible record that they said
something. They might understandably want to treat meetings as ephemeral in
accordance with their standard data retention practices.

Given these challenges, we will revisit our decisions at a later date as we gain more opera-
tional experience with the current proposal.

7.10 E2EE Meetings with Cryptographic Identity

Note: This feature is not currently available. We plan to release it in a future update.

Our E2E key agreement protocol provides passive security to E2E Zoom meetings. In the
future, we will leverage cryptographic identity to combat MitM attacks.

The server signature as described in Section 7.6.1 will also include the sigchain tails for the
corresponding user, email, account, and ADN sigchains.

In the “Participant Key Generation” procedure of Section 7.6.2, the signed Bindingi will
be extended to include the corresponding user, email, account, and ADN sigchains. This
ensures that the server cannot equivocate the user’s own account. If the account uses an
IDP, the client will fetch and include an attestation from the IDP in the binding as well
(see Section 5).

In a meeting, Alice’s client verifies Bob’s sigchains and IDP attestation (if applicable)
before Alice’s client displays identifiers for Bob in the UI. To do so, Alice’s client fetches
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Bob’s user sigchain (which includes IVK i), email sigchain, account sigchain, ADN sigchain,
and IDP attestation. Alice’s client verifies the server signature of the binding, checks
that Bob’s latest sigchain is consistent with any previous retrievals of Bob’s sigchain, and
verifies the IDP attestation by connecting to the ADN and verifying the IDP signature.
Meeting participants’ clients may perform these checks asynchronously during a meeting,
but the meeting may be configured to require that the host completes this verification before
the host performs the key exchange with a joining participant. For example, requiring
this verification before key exchange can help increase the security of meetings that are
restricted to users in specified accounts. Details about how users’ identities are displayed
in meetings (such as in the meeting room, participant list, and waiting room) are described
in Sections 3.3 and 3.9.

The Zoom server will provide access control to ensure that sigchains are visible to other
meeting participants only for a short duration after a meeting begins. If Alice has never
been in a meeting with Charlie, Charlie will have no information regarding Alice’s sigchain’s
contents, length, or update frequency.

We stress that seeing a specific user identity in the participant list of a meeting does
not imply that the corresponding user has chosen to participate in the meeting or is still
actively participating, but only that that user could potentially have access to the encrypted
meeting contents. A malicious insider could either trick the leader into including a user
in the participant list (when the user is not actually present in the meeting), or hide the
fact that a participant has left a meeting (so that other users are convinced they are still
participating). All such participants would still trigger Contact Sync warnings as detailed
in Section 3.9, and clients will remember their identities for future meetings. We believe
that preventing these issues would add too much complexity and overhead to the protocol.

7.11 Security Properties for E2EE Meetings

The Identity Management System, Bulletin Board and Signaling Channel as enumerated
in Section 7.4 are deployed by Zoom, and protect against outsiders using TLS. Attackers
classified as insiders by our threat model could monitor or meddle with these components.
An insider monitoring such components (a passive attack) would expose meeting metadata,
which is stated as a limitation of our designs in Section 2.1, but would not otherwise
compromise the confidentiality of the meeting.

We prevent outsiders from joining meetings through passwords, waiting rooms, and the
other non-cryptographic server-enforced access control features described in Section 7.1.
TLS and encryption of the meeting streams protect the confidentiality and integrity of the
meeting against outsiders who might control the participants’ network.

Within the same meeting, the encrypted streams sent by each participant are protected
against replay attacks by using encryption nonces as counters. Even across different meet-
ings, the streams cannot be replayed thanks to the fact that participants delete all the
ephemeral keys once a meeting is over (which also guarantees forward secrecy).

We aim to minimize the damage that an active insider can perform without being detected.

Zoom Cryptography Whitepaper Page 59



© Zoom Video Communications, Inc. CC BY-SA 4.0

First, an insider can force participants to drop out of a meeting, as well as partition them
into separate meetings, each with its own leader, and add extra participants circumventing
all the above server-enforced features. Our protocol ensures that the meeting leader will be
able to detect any participant obtaining access to meeting encryption keys by monitoring
the participant list for unexpected entries (for example, by recognizing the participants’
faces in their video streams). Detecting unauthorized participants can be challenging in
large meetings or in certain views, such as when the leader is sharing their screen. In the
future, a stronger notion of identity will be leveraged to highlight potential eavesdroppers
in the UI, such as those outside of the host’s organization or guest users.

A leader’s view of the “active” participants list shows everyone who is in the meeting (i.e.,
everyone who has been given the current meeting key, or the next one if a key rotation is
in progress). If the host observes the same user leaving the meeting four or more times,
the participant list will reflect the number of observed leaves. This alert helps participants
notice when an attacker repeatedly joins and leaves a meeting rapidly, which would allow
the attacker to learn most of the meeting keys but remain in the “left” column for the
majority of the meeting. Due to the distributed nature of the system, this view of the
participant list can be slightly out-of-date, both for the leader and for the other participants,
but will eventually converge if there is a long enough span without participant churn. Some
race conditions, such as participants quickly joining and leaving a meeting while the meeting
leader is changing, might also cause participants who left a meeting to not be reflected in
the “left” section of the participant list. This is necessary to guarantee a smooth meeting
experience under poor network conditions. Heartbeat messages ensure that a key is rotated
in a timely manner after an unwelcome participant has been removed from the meeting.

An active attacker can also try to perform a MitM attack against the meeting. This class
of attacks is mitigated by the meeting leader security code, which should be re-checked
every time a participant joins or rejoins the meeting (including when moving in and out
of breakout rooms), or whenever the meeting leader security code changes as indicated by
a UI notification. We stress that, as discussed in Section 7.8, when in an E2EE meeting
using Breakout Rooms, participants should be skeptical of broadcast messages from the
meeting host and should carefully monitor the participant list of the main meeting.

7.11.1 Areas to Improve

While E2E meetings offer strong security properties to Zoom users, there are still oppor-
tunities for improvement, both in the key agreement layer and in the identity layer.

Meddler-in-the-Middle. The meeting leader security code and phone security code
mechanisms above are countermeasures for the classic MitM attack, wherein Bob
isn’t actually connecting to Zoom, he’s connecting to Eve who is proxying his com-
munications. But our solution isn’t perfect. First off, it can be defeated by deep fake
technology; second, it’s clunky from a UX perspective; and third, in meetings the
leader may have to perform the ceremony multiple times with any users joining the
meeting late. Sigchain-backed identities (Section 7.10) and the ZTT (Section 4) will
provide better security.
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Anonymous Eavesdropper. An adversary, in conjunction with a malicious Zoom
server, types in a name of their choosing, turns off video, mutes their microphone and
just observes. Checking security codes and cryptographic identity can help address
this problem partially.

Impersonation Attacks Within the Meeting. Even if Alice and Bob are both autho-
rized to be in the meeting, if Alice has the help of a malicious server, she can inject
audio/video for Bob. Charlie would have no way of knowing that Bob’s stream was
being faked.

8 Encryption for Zoom Phone

Zoom Phone is a cloud phone system, in which Zoom Phone users are assigned phone
numbers and can call other Zoom Phone users, as well as other telephone landline and
mobile numbers. As with Zoom Meetings using enhanced encryption, all Zoom Phone
calls are encrypted in transit between client endpoints and the server, but not in an end-
to-end manner: a passive adversary with Zoom server access may be able to decrypt the
data streams. To increase the guarantees for Zoom Phone users and reduce reliance on
the server, we offer the ability to upgrade an ongoing Zoom Phone call to use end-to-end
encryption.

8.1 E2EE Zoom Phone Calls

The design of E2EE for Zoom Phone has very similar goals, threat models, and limitations
as in Zoom Meetings. We wish to prevent even insiders with access to Zoom servers
from compromising the confidentiality and integrity of E2E-encrypted Zoom Phone calls.
Like Zoom Meetings, Zoom Phone has many features that are not compatible with strong
cryptographic guarantees, such as dialing in from PSTN phones. Such features will be
disabled when E2E is enabled.

At the moment, we only support E2EE for calls between up to two Zoom Phone clients in
the same account, which greatly simplifies the protocol.

8.1.1 Join/Leave Protocol

E2EE Zoom Phone calls leverage the key management system from Sections 3.4 and 3.8,
and the same cryptographic primitives as Zoom Meetings (described in Section 7.5). Zoom
Phone calls are identified with CallSessionID instead of meetingID and meetingUUID.

To join an E2E call, participants ask for signed statements from the Zoom server over their
ID and long-term key, just as in Zoom meetings (described in Section 7.6.1). They also
generate per-call ephemeral DH keys (pk i, sk i), sign them with their device keys (similar
to Section 7.6.2), and send the key and signature to the other participant.

The call is encrypted with a shared meeting key obtained from the DH key exchange of
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the clients’ ephemeral keys (using the participants’ UIDs and the CallSessionID as context).
Since the set of participants is fixed, the key does not rotate and does not have a sequence
number, and there is also no Leader Participant List, heartbeats, or any analogue of the
“locked meeting” feature. Participants still fetch each other’s long-term public keys from
the key server. Instead of the bulletin board, the server simply offers an interface for the
two callers to message each other. At the moment, the only way to have an E2EE Zoom
Phone call is to upgrade an in-progress call to use E2EE. When upgrading to E2EE, each
client first sends its own signed ephemeral key, and when it receives the other party’s key
material, it responds with an explicit acknowledgement message. Once it receives the other
party’s acknowledgement, the client can start encrypting its own call stream.

8.1.2 Phone Security Code

To defend against MitM attacks, Zoom Phone provides a “phone security code” that has a
similar format to the meeting leader security code (Section 7.7), but that is derived from
the ephemeral public keys of both parties. Since the set of participants is fixed, there is no
concern about this code changing too frequently. The security code is computed as

Digits(SHA256(Context||pkCaller||pkCallee||CallSessionID)),

where Context is the string "Zoombase-2-ClientOnly-KDF-PhoneSecurityCode". The
user who initiated the call is designated the Caller, and the other user is the Callee.

8.2 Advanced Encryption for Voicemail

Zoom Phone users may receive voicemail sent from either mobile and landline phones
using PSTN, or other Zoom Phone clients. By default, voicemail messages are received
and recorded by Zoom servers, who encrypt them at rest with keys controlled by the Zoom
infrastructure.

We also offer Advanced Encryption for Voicemail (AEV) as a more secure alternative:
Zoom servers still receive and record the voicemail themselves, but they encrypt it for
keys known only to the intended recipient’s devices. We accomplish this using a voicemail-
specific PUK subkey, as described in Section 3.4.1. Accordingly, AEV-encrypted voicemails
can only be accessed by the devices belonging to the intended recipient with access to the
PUK, i.e. devices created before the voicemail was generated, or (transitively) approved
by such a device. We do not support retrieving these voicemail messages from PSTN, the
Zoom website, or generic desk phone/SIP devices.

Voicemails encrypted with AEV use a simplified version of the email encryption scheme
(Section 6.1). Voicemail ciphertexts include the audio recording as the only encrypted
piece, and there is always only a single (non-BCC) recipient. Email addresses are omitted
as they are not relevant in the voicemail context, and there are no signatures as, even when
sent among Zoom Phone users, it is the Zoom servers that are performing the recording
and encryption.
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8.2.1 Security Properties

The security properties of AEV largely follow from those of the key management layer that
it is built upon, as detailed in Section 3.11. In particular, a malicious insider cannot decrypt
any AEV-encrypted voicemail messages recorded before its compromise began (unless it
also corrupts a device to obtain the necessary decryption keys). Key rotations happen as
soon as possible when the set of devices changes and ensure that revoked devices cannot
decrypt future voicemails, while we rely on the server to withhold past ciphertexts.

We stress that, even if Zoom Phone servers delete plaintext voicemail messages as soon as
possible after encryption (and cannot perform decryption afterwards), they have temporary
access to the voicemails during recording, and therefore AEV has inherently weaker guar-
antees than end-to-end encryption. In addition to the confidentiality limitations, voicemail
recipients cannot independently verify, and therefore rely on the Zoom servers for, the
integrity of the voicemail recording (i.e. that it wasn’t tampered with) and of any meta-
data such as the recording time, claimed author, intended recipient and their respective
phone numbers. This is unavoidable at least in the PSTN case, as this technology does not
support encryption natively. We are considering offering E2EE voicemail between Zoom
Phone users in the future. Moreover, we note that the above metadata is not encrypted
with per-user keys, and remains available to the server to provide the service even after
the audio recording is not.

Since Zoom servers are performing the encryption and keeping track of everyone’s keys, fin-
gerprints are not displayed when sending or listening to an AEV voicemail message (but the
user interface distinguishes between messages using standard and AEV encryption). Fin-
gerprint verification is still useful during device approvals to prevent an attacker (including
a recently compromised server) from gaining access to previously encrypted voicemails.
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A Release Schedule

This appendix details which Zoom client versions first support the features described in
this document.

Version 5.4.0 E2EE Meetings (Section 7), except for Locked Meetings (Section 7.6.8),
Server Key Certificate Chains (Section 7.6.1), Breakout Rooms (Section 7.8), and support
for sigchain-backed identity (Section 7.10).

Version 5.6.0 Locked Meetings (Section 7.6.8).

Version 5.7.0 Server Key Certificate Chains (Section 7.6.1).

Version 5.11.3 Breakout Rooms (Section 7.8). E2EE Zoom Phone (Section 8.1).

Version 5.12.6 Cryptographic User Identity (Section 3), except for cloud identifier and
ADN support (Section 3.3, Section 3.3.1), Using Backup Keys for Escrow (Section 3.7.2),
Contact Sync (Section 3.9), and Compromise Prevention for Device Provisioning (Sec-
tion 3.10). Advanced Encryption for Voicemail (Section 8.2).

Version 5.12.8 Encryption for Zoom Mail Service (Section 6).

B Understanding Multiple Devices

As detailed in Section 3.4, device graphs can become complicated; we introduce a formal
model to reason about them and what guarantees are available.

Definition B.1. A device family state is a tuple:

Ft = 〈Dt, dt,Rt,At,Pt,Bt〉

Where:

• t ∈ N0 is a non-negative integer which is used to order states in a sequence, which
we refer to as “time.”

• Dt is a finite set whose elements represent the devices at time t.

• dt : Dt → N0 is a function that maps devices to the time t that they were provisioned.
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• Rt ⊆ Dt is the set of revoked devices at time t. x ∈ Rt means that x is revoked at
time t or before.

• At ⊆ Dt × Dt is the set of device approvals at time t. 〈x,y〉 ∈ At means that x
approved y at time t or before.

• Pt is the set of per-user-keys (PUKs).

• Bt ⊆ Pt×Dt×Dt is the set of PUK boxes, where one device boxes the private keys
of a PUK for itself or another device. That is, 〈k,x,y〉 ∈ Bt means that device x
boxed k for device y at time t or before.

It’s also worth defining, for convenience, a function that maps a device x to all the PUKs
that it knows. Recall that x knows a PUK k if another device y boxed k for it; or
symbolically, that 〈k,x,y〉 ∈ Bt. Note that in some cases, x = y.

Definition B.2. Let pt : Dt → Pt be defined as:

pt(x) = {k | ∃y ∈ Dt such that 〈k,y,x〉 ∈ Bt}

We now define how a device family transitions from one configuration to another over time.

Definition B.3. A device family consists of a sequence F = (F0,F1, . . . ,Fn). Each of
the Fi is a family state as defined above. F0 is the empty family state (all the components
of the tuple are empty sets or functions with empty domain). Moreover, we require that
the difference between any two consecutive states can be seen as the result of one of
the following transitions below (which leave the components of the tuple which are not
explicitly updated as unchanged):

1. DeviceAdd. Device x is provisioned at time t:

- Preconditions:

(a) x /∈ Dt−1

- Effects:

(a) Dt ← Dt−1 ∪ {x}
(b) dt ← dt−1 ∪ {〈x, t〉}
(c) Pt ← Pt−1 ∪ {k} for some new key k

(d) Bt ← Bt−1 ∪ {〈k,x,y〉 | y ∈ Dt\Rt}

2. DeviceRevoke. Device x is revoking devices S at time t:

- Preconditions:

(a) x ∈ Dt−1

(b) x /∈ Rt−1

(c) S ⊆ Dt−1

(d) S ∩Rt−1 = ∅
- Effects:
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(a) Rt ← Rt−1 ∪ S
(b) Pt ← Pt−1 ∪ {k} for some new PUK k

(c) Bt ← Bt−1 ∪ {〈k,x,y〉 | y ∈ Dt\Rt}

Note that our model also allows the server to initiate a DeviceRevoke, in which case
the PUK will not be rotated. We don’t model this transition here for simplicity.

3. PerUserKeyRotate. Device x rotates PerUserKey at time t (usually after another
device self-revoked):

- Preconditions:

(a) x ∈ Dt−1

(b) x /∈ Rt−1

- Effects:

(a) Pt ← Pt−1 ∪ {k} for some new PUK k.

(b) Bt ← Bt−1 ∪ {〈k,x,y〉 | y ∈ Dt\Rt}

4. BatchApprove. Device x approves devices at time t, meaning it approves all non-
revoked devices y such that dt(x) < dt(y).

- Preconditions:

(a) x ∈ Dt−1

(b) x /∈ Rt−1

- Effects:

(a) At ← At−1 ∪ {〈x,y〉 | y ∈ Dt\Rt, dt(x) < dt(y)}
(b) Bt ← Bt−1 ∪ {〈k,x,y〉 | y ∈ Dt\Rt, dt(x) < dt(y), k ∈ pt−1(x)}

The thinking behind the batch approval operation is that a user should always revoke
all devices when necessary, and therefore should be approving all the devices that can be
approved whenever they approve any device.

DeviceKeyRotate is not explicitly modeled here, as it would have the same preconditions
and effects of a PerUserKeyRotate link.

Note that At defines an undirected graph on the set Dt (where elements of At are the
edges).

Definition B.4. We denote with et(x) ⊂ Dt the connected component of x in the graph
defined on Dt by At. Let vt : Dt → N be the function defined as:

vt(x) = min {dt(y) | y ∈ et(x)}

We can define an equivalence relation between two devices with respect to a device family
state Ft (which boils down to being part of the same connected component):

Definition B.5. Given a device family Ft, ∀x,y ∈ Dt define x ≡t y iff vt(x) = vt(y).
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Note that, while revoked devices cannot perform new approvals, the approvals they make
before being revoked are still considered part of the graph. For example, consider a family
with 3 devices and the following transitions:

1. a is provisioned

2. b is provisioned

3. a approves b

4. c is provisioned

5. b approves c

At this point (t = 5), we have: v5(a) = v5(b) = v5(c) = 1. Then (at t = 6) b self-revokes.
v6(c) remains at 1, even though the only path from a to c at t = 6 crosses b, a revoked
device.

It’s worth noting that by definition of vt and the equivalence ≡t, the idea of approval is
bidirectional. That is, if Alice provisions x then y, then approves y with x, then x and
y are in the same equivalence class, even though she never approved x with y. We think
this is a useful simplification. The rationale is that when y was added, Alice had access to
the list of her devices on y which includes x, so we assume she implicitly approved x with
y, since she didn’t revoke it when she had a chance.

B.1 A Claim about Device Equivalence Classes

We have an important claim to flesh out: that all devices in the same equivalence class
know the same PerUserKey secrets. This allows us to treat them the same throughout the
UI, either for the purposes of propagating trust, or for the purposes of propagating secrets.

Theorem B.1. For any device family, and any time t, ∀x,y ∈ Dt\Rt, if x ≡t y then
pt(x) = pt(y).

Before we get to the proof, it helps to proves some simpler lemmas about the structure of
device families given our transition rules in Definition B.3.

First, a simple observation:

Lemma B.2. For any device family, any time t, ∀x,y ∈ Dt\Rt, if 〈x,y〉 ∈ At then
vt(x) = vt(y).

Proof. If if 〈x,y〉 ∈ At, then the two are connected, and thus et(x) = et(y), from which
we have vt(x) = vt(y). �

The second lemma states that older devices know strictly more PerUserKey private halves
than newer devices. For devices, a,b, c and d, provisioned in that order, it is clear to see
that the later devices will always box for the earlier devices. But keep in mind that when
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b approves new devices, it never sends PerUserKeys back to earlier devices. So we must
formally show that, for instance, c approving d does not transmit PerUserKeys from a
that b didn’t know about.

Lemma B.3. For any device family, at any time t, ∀x,y ∈ Dt\Rt, if dt(x) < dt(y) then
pt(y) ⊆ pt(x).

Proof. The proof is by induction over time t. For the base case, for any device family
containing less than two devices (which includes any family at time t = 0), the claim is
trivially true. For the inductive case, assume the lemma is true for time t − 1. Take
arbitrary x,y ∈ Dt\Rt, such that dt(x) < dt(y). Consider the 4 possible state transitions:

1. DeviceAdd. A new device z is introduced at time t, meaning dt(z) = t. Note that it
cannot be z = x as dt(x) < dt(y) ≤ t.

If z = y, then let k be the PUK generated at Effect 1c. Bt gets 〈k,y,y〉 and 〈k,y,x〉
as a result of Effect 1d. Thus, pt(y) = {k} and k ∈ pt(x), which proves pt(y) ⊆ pt(x).

If instead z 6∈ {x,y}, it must be that dt(x) < dt(y) < dt(z). By inductive assumption,
pt−1(y) ⊆ pt−1(x). As before, let k be the PUK that is introduced at Effect 1c. At
Effect 1d, Bt is augmented with 〈k, z,y〉 and 〈k, z,x〉, and boxes for other devices.
Thus, pt(x) = pt−1(x)∪{k}, and pt(y) = pt−1(y)∪{k}. Combining with the inductive
assumption, it follows that pt(y) ⊆ pt(x).

2. DeviceRevoke and PerUserKeyRotate follow the same logic as device provisioning, so
we leave out the argument for brevity.

3. BatchApprove is the interesting case. Device z approves all younger devices at time
t. We consider three disjoint subcases:

(a) dt(z) ≤ dt(x) < dt(y). As a result of Effect 4b, we get that pt(x) = pt−1(x) ∪
pt(z) and pt(y) = pt−1(y) ∪ pt(z). By inductive assumption we have that
pt−1(y) ⊆ pt−1(x). Combining these three statements proves pt(y) ⊆ pt(x).

(b) dt(x) < dt(z) < dt(y). Here we apply the inductive assumption to x and z,
giving us that pt−1(z) ⊆ pt−1(x). Effect 4b doesn’t change pt−1(x) so therefore
pt−1(x) = pt(x). Chaining these set relations together gives us that pt−1(z) ⊆
pt(x). Next, apply the inductive assumption to z and y, giving us that pt−1(y) ⊆
pt−1(z). By Effect 4b, pt(y) = pt−1(y) ∪ pt−1(z). By basic set theory, it is still
the case that pt(y) ⊆ pt−1(z). By transitivity, pt(y) ⊆ pt(x).

(c) dt(x) < dt(y) ≤ dt(z). Due to Effect 4a, devices y and x do not receive any new
keys, i.e. pt(x) = pt−1(x) and pt(y) = pt−1(y). Combining with the inductive
assumption pt−1(y) ⊆ pt−1(x) proves the subcase. �

The next lemma establishes that older devices will always be grouped into older equivalence
classes:

Lemma B.4. For any device family F , any time t, ∀x,y ∈ Dt \Rt, if dt(x) < dt(y) then
vt(x) ≤ vt(y).
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Proof. Let k ∈ et(y) be such that dt(k) is minimal (in particular, vt(y) = dt(k)). We
have 3 cases.

Consider the case dt(k) < dt(x) (which implies k 6= y, as dt(x) < dt(y)). Consider a path
from k to y along edges in At. There must be some 〈a,b〉 ∈ At along this path such that
dt(a) < dt(x) ≤ dt(b). This implies that 〈a,x〉 ∈ At (as a must have approved x when it
approved b), which means x ∈ et(y), and therefore vt(y) = vt(x).

If dt(k) = dt(x), then x = k ∈ et(y) and vt(y) = vt(x).

Finally, if dt(x) < dt(k), we have that by definition vt(x) ≤ dt(x) and thus vt(x) ≤ dt(x) <
dt(k) = vt(y). �

In the next lemma we show that a device performing an approval transition doesn’t change
its own equivalence class.

Lemma B.5. For any device family, any time t, ∀x ∈ Dt\Rt, if device x performs approval
at time t, then vt(x) = vt−1(x).

Proof. Assume for contradiction there exists a device family, and a time t such that x
does a device approval transition at time t and vt(x) < vt−1(x). Pick i to be minimal in
x’s equivalence class at time t, i.e. such that dt(i) = vt(x), and consider a path (without
repeated nodes) from i to x. Since this path does not exist in At−1 (else it would be
vt−1(x) ≤ dt(i) which leads to a contradiction), any such path must contain one of the
edges 〈x,b〉 ∈ At \At−1 (with dt(x) < dt(b)) added due to Effect 4a in the transition at
time t. Since the path does not have repeated edges, the sub-path between b and i must be
composed of edges in At−1, from which we derive vt−1(b) = dt−1(i). Putting it altogether,
at time t − 1 we have that dt−1(x) < dt−1(b) but vt−1(x) > vt(x) = dt−1(i) = vt−1(b)
which contradicts Lemma B.4. �

Additionally, a device performing an approval cannot change the equivalence classes of
older devices.

Lemma B.6. For any device family, any time t, ∀x,y ∈ Dt\Rt such that dt−1(x) <
dt−1(y), if y runs approval at time t then vt(x) = vt−1(x).

Proof. The proof is similar to the one of the previous lemma. Assume for contradiction
there exists a device family, and a time t such that y does a device approval transition
at time t and vt(x) < vt−1(x) for some device x such that dt(x) < dt(y). Pick i to be
minimal in x’s equivalence class at time t, i.e. such that dt(i) = vt(x), and consider a path
(without repeated nodes) from i to x. Since this path does not exist in At−1 (else it would
be vt−1(x) ≤ dt(i) which leads to a contradiction), any such path must contain one of the
edges 〈y,b〉 ∈ At \At−1 (with dt(x) < dt(b)) added due to Effect 4a in the transition at
time t. Since the path does not have repeated edges, the sub-path between b and i must be
composed of edges in At−1, from which we derive vt−1(b) = dt−1(i). Putting it altogether,
at time t − 1 we have that dt−1(x) < dt−1(y) < dt−1(b) but vt−1(x) > vt(x) = dt−1(i) =
vt−1(b) which contradicts Lemma B.4. �

Finally, we can prove Theorem B.1. The proof is by induction over t. It is trivially true at
time t = 0, since there is only the null equivalence class. Assume it is true for time t− 1,
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and we prove true tor time t. We proceed case-wise, reasoning over the four transition
types that could explain the transition from t− 1 to t.

And now to the case-wise analysis:

1. DeviceAdd. A new device z is introduced at time t. In this case, since x ≡t y, z
cannot be neither x nor y, and also x ≡t−1 y. We need to prove pt(x) = pt(y), but
without loss of generality, we can prove one inclusion, and argue the other follows by
symmetry. Given k ∈ pt(x), we need to prove k ∈ pt(y). We consider these subcases:

(a) k ∈ pt−1(x). Then by inductive assumption, k ∈ pt−1(y). Since the set Bt only
grows over time, it follows that k ∈ pt(y), which proves the case.

(b) k /∈ pt−1(x). That is, there does not exist a w such that 〈k,w,x〉 ∈ Bt−1. Then
it follows that at Effect 1d above, such a member was introduced. Recall that
x,y ∈ Dt\Rt because the equivalence relation is only defined over devices in
Dt\Rt. The loop in Effect 1d is over all devices in Dt\Rt, so x and y were both
included. Thus, it follows that 〈k,w,y〉 ∈ Bt, and therefore that k ∈ pt(y).

2. DeviceRevoke. This case follows much like Case 1 (Device Provisioning), just above.
In considering the two subcases k ∈ pt−1(x) is argued the same way. In the sec-
ond subcase, k /∈ pt−1(x). Then the 〈k,w,y〉 triple must have been introduced at
Effect 2c, and by similar argument as above 〈k,w,y〉 ∈ Bt, and therefore k ∈ pt(y).

3. PerUserKeyRotate. This case follows from the same reasoning as the other two cases
above (provisioning and revocation).

4. BatchApprove. This is the most interesting case. Let w be the device that’s doing
the approval at time t. Without loss of generality, assume that dt(x) < dt(y). The
three cases to consider is how dt(w) is interwoven with dt(x) and dt(y).

(a) dt(w) ≤ dt(x) < dt(y). By Lemma B.3, pt−1(x) ⊆ pt−1(w) and pt−1(y) ⊆
pt−1(w). As a result of Effect 4b, x and y will learn about all of the PerUserKeys
that w knows. Combining with the prior observation, pt(x) = pt(y) = pt(w).

(b) dt(x) < dt(w) < dt(y). This implies vt(x) ≤ vt(w) ≤ vt(y) by Lemma B.4, and
since by assumption x ≡t y, it must be vt(x) = vt(w) = vt(y). By Lemmas B.5
and B.6, vt(x) = vt−1(x) and vt(w) = vt−1(w), and by transitivity, vt−1(x) =
vt−1(w), and therefore x ≡t−1 w. We apply the inductive assumption to deduce
that pt−1(x) = pt−1(w). Again pt−1(x) isn’t affected by w’s approving newer
devices, so pt−1(x) = pt(x) and therefore pt(x) = pt−1(w) by transitivity. By
Lemma B.3, we know that pt−1(y) ⊆ pt−1(w). By Effect 4b, y gets all of
w’s keys, and pt−1(w) is unchanged, so this gives pt(y) = pt(w) = pt−1(w).
Chaining set equality, pt(x) = pt(y), which proves the case.

(c) dt(x) < dt(y) ≤ dt(w). By assumption vt(x) = vt(y), and by Lemmas B.5 and
B.6, vt−1(x) = vt(x) and vt−1(y) = vt(y). Chaining, vt−1(x) = vt−1(y) which
means x ≡t−1 y. Applying the inductive assumption, pt−1(x) = pt−1(y). Device
w running approval has no effect on pt−1(x) or pt−1(y). That is, pt−1(x) = pt(x)
and pt−1(y) = pt(y). Chaining, pt(x) = pt(y) which proves it. �
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C Cake-AES

Cake-AES is a general-purpose symmetric encryption mode built on top of 256-bit AES-
GCM and SHA-512 with the following features:

• Support for incremental encryption of long messages (theoretically, up to 2109 bytes)

• Support for incremental, authenticated, random-access decryption of long messages

• A single long-lived key can encrypt a very high number of ciphertexts, by using large
24-byte nonces

• Nonces are internally generated, reducing the likelihood of nonce misuse

• Ciphertexts commit to both the key and (indirectly) the message

By contrast, AES-GCM and ChaCha20-Poly1305 both use 12-byte nonces, and have a
message size limit of 64 GiB and 256 GiB respectively. While both support random-access
decryption, the full message must be decrypted to be authenticated.

Cake-AES private keys are 32-byte strings generated uniformly at random. At a high level,
Cake-AES derives a one-time key by hashing the private key with the nonce, breaks the
plaintext into 16 KiB chunks, and encrypts each chunk with AES-GCM and a position-
based nonce. Below, we describe in more depth how to encrypt and decrypt data using
Cake-AES.

C.1 Encryption

• Generate a random 24-byte nonce.

• Concatenate the caller’s 32-byte key and the random nonce and hash them with
SHA-512. Use the first 32 bytes of the hash as a one-time key, and the second 32
bytes as a key commitment.

• Split the message into 16 KiB chunks, with a short final chunk that may be empty.

• Encrypt each chunk with AES-GCM using the one-time key. For the AES-GCM
nonce, use the little-endian encoding of either twice the chunk index (for non-final
chunks) or twice the chunk index plus one (for the final chunk).

• Concatenate the random nonce, the key commitment, and all the encrypted chunks
to produce the ciphertext.

C.2 Decryption

• Read the random nonce and the key commitment from the front of the ciphertext.
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• Hash the caller’s 32-byte key and the random nonce with SHA-512. The first 32
bytes of the hash are the one-time key. Assert that the second 32 bytes match the
key commitment.

• Split the remainder of the ciphertext into 16400-byte chunks (16 KiB plus 16 bytes
for the GCM tag), with a short final chunk.

• Decrypt each chunk with AES-GCM using the one-time key and the same chunk
nonce schedule as above.

• Concatenate all the plaintext chunks to form the original message. Or, since each
chunk is independently authenticated, return chunks of plaintext to the caller as a
stream.

C.3 Random-Access Decryption

• If the one-time key is not yet cached:

– Read the random nonce and the key commitment from the front of the stream,
derive the one-time key, and verify the key commitment as above.

– Cache the one-time key.

• If the authentic plaintext length is not yet cached:

– Get the apparent ciphertext length from the underlying stream. For example,
with a ciphertext saved on disk, this would be the file size. This value may be
inauthentic, and we need to authenticate it.

– Compute the apparent length of the final ciphertext chunk. This is the total
length, minus the random nonce and commitment lengths (56), modulo 16400.
Subtract that length from the total to give the apparent start offset of the final
ciphertext chunk.

– Seek the underlying stream to that start offset.

– Read the final ciphertext chunk and decrypt it with AES-GCM using the one-
time key and the appropriate final chunk nonce.

– If decryption succeeds, the ciphertext length is authentic. Compute the authen-
tic plaintext length by subtracting the random nonce and commitment lengths,
plus 16 bytes times the number of chunks (the GCM tags), from the ciphertext
length.

– Cache the authentic plaintext length.

• If the plaintext seek target is beyond the authentic plaintext length, arrange to return
EOF to the caller for any subsequent reads.

• Otherwise, seek the underlying stream to the start of the ciphertext chunk corre-
sponding to the caller’s plaintext seek target. To account for the seek offset within
that chunk, arrange to skip the appropriate number of bytes after the next decryption.
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