
Department of Electrical Engineering and Computer Science

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

6.858 Spring 2019

Quiz II

You have 120 minutes to answer the questions in this quiz. In order to receive credit you must
answer each question as precisely as possible.

Some questions are harder than others, and some questions earn more points than others. You may
want to skim them all through first, and attack them in the order that allows you to make the most
progress.

If you find a question ambiguous, be sure to write down any assumptions you make. Be neat and
legible. If we can’t understand your answer, we can’t give you credit!

Write your name and submission website email address on this cover sheet.

This is an open book, open notes, open laptop exam.
NO INTERNET ACCESS OR OTHER COMMUNICATION.

This quiz is printed double-sided.

Please do not write in the boxes below.

I (xx/11) II (xx/10) III (xx/8) IV (xx/12) V (xx/12) VI (xx/12) VII (xx/12) VIII (xx/3) Total (xx/80)

Name:

Submission website email address:

You can answer the feedback questions on the back of the quiz before the official start time. 1

I Multiple-choice questions

1. [3 points]: Based on Mark Silis, Garry Zacheiss, and Jessica Murray’s guest lecture, which of the
following statements are true?

(Circle True or False for each choice; we subtract points for incorrect answers.)

A. True / False The one DDoS attack on MIT in the last year flooded a network link.

B. True / False Email forwarding through MIT resulted in much email being marked as spam, because
after forwarding the DKIM signature failed for many messages.

C. True / False Chinese hackers stole military maritime secrets through a breach at MIT.

2. [4 points]: Based on Max Burkhardt’s guest lecture, which of the following statements are true?
(Circle True or False for each choice; we subtract points for incorrect answers.)

A. True / False Security solutions scale well with the growth of the Internet/Web.

B. True / False Mutual TLS authenticates the server to the client and the client to the server.

C. True / False Network segmentation limits the services a compromised machine can talk to.

D. True / False The global map of which services talk to each other changes so slowly that the map
can be maintained manually.

2

3. [4 points]: Based on the Tor readings and Nick Mathewson’s guest lecture on Tor, which of the
following statements are true?

(Circle True or False for each choice; we subtract points for incorrect answers.)

A. True / False Tor sacrifices some security properties that are desirable in an anonymous communi-
cation system.

B. True / False An attacker who can observe all traffic going into entry points and coming out of exit
points can learn the IP address of the machine that opened a TCP connection over TOR.

C. True / False Tor traffic has grown so much that the directory server and protocol of Section 6.3 in
the paper may become impractical, because the complete list of relays is too large.

D. True / False If an attacker compromises one relay in the middle of a circuit (i.e., not the first relay),
then the attacker can learn the IP address of the machine that originated the TCP connection that is
running over the circuit.

3

II Symbolic/concolic execution

Ben implements concolic_force_branch (that explores the other side of branch b) for Lab 3 the following
way:

def concolic_force_branch(b, branch_conds, branch_callers):
constraint = const_bool(True)

cond_list = [x for i, x in enumerate(branch_conds) if i != b]
for branch in cond_list:

constraint = sym_and(constraint, branch)
constraint = sym_and(constraint, sym_not(branch_conds[b]))

return constraint

4. [5 points]: Would Ben’s implementation exhaust all possible control flow decisions in the
program? Why/Why not? If not, please correct the code above.

4

Consider the following snippet, similar to the code in check-symex-int.py:

def f(x):
if x == 0:

return 3
elif x == 1:

return 6
elif x == 2:

return 8
elif x == 3:

return 7
return -1

def test_f():
i = fuzzy.mk_int(’i’)
v = f(i)
return v

f_results = fuzzy.concolic_execs(test_f)

With a correct implementation of the concolic execution system, f_results contains [3, 6, 8, 7, -1], all
possible results of executing the function f.

Suppose f were replaced with a functionally equivalent implementation g as follows:

def g(x):
if 0 <= x < 4:

return [3, 6, 8, 7][x]
return -1

With this implementation, the concolic execution system from Lab 3 only finds the results [3, -1].

5. [5 points]: Explain why the concolic execution system as implemented in Lab 3 fails to find the
rest of the possible results.

5

III TCP hijacking

As described in the paper A Look Back at “Security Problems in the TCP/IP Protocol Suite”, an attacker on
machine X can pretend to be a trusted machine T while connecting with TCP/IP to machine S. The attack is
as follows and relies on guessing the initial sequence number ISNs:

A. X→ S: SYN(ISNx), SRC=T

B. S→ T: SYN(ISNs), ACK(ISNx)

C. X→ S: ACK(ISNs), SRC=T

D. X→ S: ACK(ISNs), SRC=T , data

6. [4 points]: The attacker must suppress message B; why? (Briefly explain your answer.)

7. [4 points]: Assume that the attacker has no control of the network between T and S. How can the
attacker suppress message B? (Briefly explain your answer.)

6

IV Secure handshake

Ben uses the following protocol to set up a secure channel over the Internet from a client (C) to a server (S):

A. C→ S: make a connection with S

B. C← S: PKt , Sign(SKS, {PKt})

C. C→ S: Encrypt(PKt , {K,SN})

D. C→ S: c1 = Encrypt(K, {msg1,SN}), t = MAC(K, c1)

E. C→ S: c2 = Encrypt(K, {msg2,SN +1}), t = MAC(K, c2)

F. ...

PKS / SKS are the server’s permanent public/private key pair. The client knows PKS. The server creates a
fresh public/private key pair PKt / SKt using a secure random number generator just before step B. The client
creates a fresh symmetric key K using a secure random number generator just before step C. The client
generates a random initial sequence number SN with a secure random number generator just before step C.

The ciphers and random-numbers are strong and correctly implemented. The adversary does not know SKS.

Immediately after processing message C, S deletes SKt from memory. When C and S are done communicating
and close the secure channel, they also delete the shared symmetric key K.

Steps D and E provide authenticated encryption: an adversary cannot determine the contents of the message,
or construct another valid message, without knowing the shared key K. The MAC must match in order for S
to accept a message. S will reject a message if it doesn’t have the expected next sequence number, so that the
attacker cannot replay messages D and E.

8. [4 points]: Suppose an adversary A can guess SN. Can the adversary hijack an on-going
conversation between C and S? That is, can A insert a message in step F that S will accept? (Explain
your answer briefly.)

7

9. [4 points]: Can S establish the identity of C? That is, if C sets up a new secure channel to S, can S
establish that it is the same C as in the earlier secure channel? Explain your answer briefly.

10. [4 points]: Does the protocol provide forward secrecy? That is, if the attacker learns SKS after
the connection has finished and the attacker has a recording of all the encrypted messages sent, is it
difficult for the attacker to learn the content of those messages? (Briefly explain your answer.)

8

V Web security

Ben Bitdiddle did not do lab 4, and decides to use the 6.858 Zoobar application without modifications to
launch his own bank: Ben’s Bucks. Ben knows from skimming the 6.858 notes that the same-origin policy
protects web sites from each other, so when Alyssa asks him about the security of his bank, Ben reassures her
that it is completely safe. Alyssa, having done lab 4, finds this hard to believe given all the issues she knows
about in Zoobar.

11. [2 points]: Briefly explain one JavaScript-based attack that Alyssa can perform against Ben’s
bank that the same-origin policy does not protect against.

Following his discussion with Alyssa, Ben realizes that his bank may have some security shortcomings. He
carefully walks through his code and ensures that he never emits unsanitized user-controlled input, and that
every transfer request requires a unique token embedded into the transfer form. Afterwards, he tells Alyssa
that the site is now 100% secure.

Alyssa has been paying close attention to web security research over the past few years, and is still not
convinced. She decides to try a “clickjacking” attack; she loads the transfer page from Ben’s bank in an
iframe on a page she controls, makes it transparent, and then adds a button that says “Free apples” directly
underneath the “Transfer” button on the form. This way, when a victim clicks the “Free apples” button, their
browser will instead interpret it as a click of the “Transfer” button.

12. [5 points]: Assuming the fields of the transfer form have already been filled out, would Alyssa’s
clickjacking attack indeed perform an unauthorized transfer? Briefly explain how the same-origin
policy prevents this attack, or why it does not.

9

Alyssa tells Ben that he really ought to set the SameSite: strict option on the Zoobar session cookie.
When this option is set, modern browsers will not include cookies set by origin X when making requests
generated by pages that are not themselves from origin X.

13. [5 points]: Assuming all his users use modern browsers, briefly describe an attack that is no
longer possible against Ben’s bank, and why the header prevents it.

10

VI Side channels

Consider the Spectre example implementation shown in Appendix A of the paper “Spectre attacks: exploiting
speculative execution” by Kocher et al. The attack assumes that the victim_function function exists in the
address space of the victim. The attack measures accesses to array2 to determine the secret secret.

14. [3 points]: If Intel turned off speculative execution on their processors would this attack still
work? (Briefly explain your answer.)

15. [3 points]: If the attacker cannot cause array2 to be evicted from the processor cache (i.e., there
is no instruction to flush the cache and the attacker cannot evict the cache indirectly), is the Spectre
attack still possible? (Briefly explain your answer)

16. [3 points]: Ben runs a memory-intensive program on one core and the example program of
appendix A on another core. The two cores use a single shared cache. How will this impact the
program’s ability to identify the secret? (Briefly explain your answer.)

11

Ben finds a code fragment similar to the victim_function:

void function1(size_t x) {
if (x < array1_size) {
temp &= array1[x] * 512;

}
}

Ben also modifies the measurement code to flush and measure array1.

17. [3 points]: Can Ben learn the secret? (Briefly explain your answer.)

12

VII Untrusted Version Server

Alice is designing a new internet “Version Server” to help people keep the software on their computers up to
date. The idea is that software vendors would register the latest version number of each software package
with the server. Peoples’ computers would periodically run an “update client” that would ask the server for
the latest version of each installed package, and tell the user which needed to be upgraded. The larger goal is
to help people avoid running old software versions that have known bugs and vulnerabilities.

Alice is inspired by the 6.858 guest lectures about Keybase and Key Transparency and the “SoK: Secure
Messaging” paper’s Trust Management section. She would like her design to make it difficult for the Version
Server to get away with maliciously providing incorrect answers.

For these questions, assume that the cryptographic primitives are used correctly, that the cryptographic
algorithms cannot be broken, and that attackers cannot learn anyone else’s private key.

Design D1. Here is Alice’s first design, D1. Note that a real implementation might not follow the design
faithfully, and might even be malicious. Alice’s design specifies that the Version Server should keep a
database of version records, one for each package identifier. Each version record is created by the package’s
vendor, and contains the following information:

struct VersionRecord {
id: PackageId; // Contains vendor ID
version: int; // Increased by one for a new release
sig: Signature; // signature over id and version, signed by vendor

}

A package ID contains the vendor ID so that clients know which public key to use to verify a version record.
The version numbers for a package are increasing integers.

The D1 design provides two RPC calls:

• put(packageID, versionRecord). A vendor calls put(packageID, versionRecord) when-
ever the vendor releases a new version or creates a new package. The server should validate the request:
it should check that the versionRecord is correctly signed, and that its version number is higher than
that packageID’s version number already in the database (if any). If both are true, the server should
update its database entry for the packageID.

• get(packageID). A user’s update client calls get(packageID) on each installed package. The RPC
return value is a version record. The update client ignores the return value if it is not signed by the
package’s vendor.

Each user’s computer knows the correct public key of the vendor of each installed package. The Version
Server knows the public keys of all vendors.

13

18. [3 points]: Which of the following deceptions could a malicious server carry out without
detection, given the above design?

(Circle True or False for each choice; we subtract points for incorrect answers.)

A. True / False Cause a client to think a package ID isn’t registered at all.

B. True / False Cause a client to think version X +1 is the latest, when actually the the highest version
submitted by the vendor is X .

C. True / False Cause a client to think version X−1 is the latest, when actually the the highest version
submitted by the vendor is X .

Design D2. Alice thinks she can do better, and creates a second design, D2. In this design, the Version
Server should arrange all received version records in a log. The log should be a sequence of log records with
the following fields in each log record:

struct LogRecord {
versionR: VersionRecord; // version record (as in D1)
hash: Hash; // the cryptographic hash of the previous log record
sig: Signature; // signature over versionR and hash, signed by Version Server

}

The first (oldest) log record contains zeros instead of a cryptographic hash. The Version Server should
maintain a single log containing all submitted version records for all packages. The most recent log record is
called the tail.

The design supports two RPCs:

• put(packageID, versionRecord). When the Version Server receives put(packageID, versionRecord),
it validates the version record (as in D1), creates a new log record with the version record and the hash
of the previous tail, signs it, and adds it to the log as the new tail.

• fetch(). The fetch() RPC returns the entire log – all of the log records.

The server should process incoming RPCs one at a time, completing each before starting the next one.

When a user’s update client needs to check installed packages, it calls fetch(). The client checks the log
that fetch() yields as follows:

A. It checks that the log records form a proper log: that there is some total order of log records for which
each log record in the order is pointed to by the hash in its successor.

B. The client checks that every log record is correctly signed by the Version Server. All clients know the
Version Server’s public key.

14

C. The client checks that the version record in each log record is correctly signed by the relevant vendor.

D. The client checks that the hash in the earliest log record is zero.

The update client rejects the fetch() result if any of these checks fail.

If the server correctly follows Alice’s design, then (in the absence of put()s) all clients will see the same log
from fetch(), reflecting the sequence of put()s processed by the server. In the presence of put()s, later
fetches may see a longer log, so a more accurate statement is that for any two logs seen by clients or stored
on the server, the shorter log will be a prefix of the longer log: they will be identical up to the length of the
shorter of the two logs. If this prefix property doesn’t hold, then the server is not following Alice’s design,
and therefor may be malicious.

Consider the following sequence of events:

• SecureChat v2 (version 2) is released, and its vendor calls put to add its version record to the Version
Server’s log.

• After fixing a bug, the vendor calls put to add the version record for SecureChat v3.

• Other vendors call put.

• A vendor releases the brand-new game Angry Turtles v1 and calls put() for it.

Bob’s update client calls fetch(), and the resulting log contains a record for SecureChat v3 and, later in the
log, Angry Turtles v1. The fetch() results pass all the client checks explained above.

However, when Alice calls fetch(), the server maliciously omits the SecureChat v3 record, though it does
include SecureChat v2. The server includes Angry Turtles v1; everyone has heard of this game, and Alice
would be suspicious if fetch() omitted it. The fetch() results pass all the client checks explained above.

19. [5 points]: Bob and Alice both see a log record for Angry Turtles v1 in their fetch results. Are
these log records identical, or different? Briefly explain.

15

Alice would like a fast “cross-validation” technique to help detect if the Version Server is hiding version
records; she wants to do this without the expense of sending complete logs between clients. Every once in
a while, Alice sends Bob ha, the cryptographic hash of the tail log record from Alice’s most recent call to
fetch(). After Bob receives Alice’s ha, Bob calls fetch(). Bob computes the cryptographic hash hb of the
tail log record he got from his fetch(). Both fetch() results pass all the client checks explained above.
Note that Bob does not have a copy of Alice’s log. Bob and Alice are entirely trustworthy.

20. [4 points]: Which of the following are true?
(Circle True or False for each choice; we subtract points for incorrect answers.)

A. True / False If ha != hb, the server must be intentionally hiding version records from either Alice
or Bob.

B. True / False If ha = hb, then the Version Server cannot be hiding version records from Alice.

C. True / False If ha = hb, then Alice’s and Bob’s fetch()s must have returned identical logs.

D. True / False If Bob’s fetch() result doesn’t contain a record that hashes to ha, then Alice’s log is
not a prefix of Bob’s.

16

VIII 6.858

We’d like to hear your opinions about 6.858. Any answer, except no answer, will receive full credit.

21. [2 points]: Are there any papers in the second part of the semester that you think we should
definitely remove next year? If not, feel free to say that.

22. [1 points]: Are there topics that we didn’t cover this semester that you think 6.858 should cover
in future years?

End of Quiz

17

