40

30

20

10

Department of Electrical Engineering and Computer Science

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

6.858 Spring 2018
Quiz II Solutions

Mean 68.3 Standard deviation 13.5

| | |
e distribution E&~1

25
25

%

8

RS
QL

KRB
SRS
S

<

fNNV%
QRS

SRRHKS
3R

X
0
%

Q

X
X
S

X XXX :zzixxx

10 20 30 40 50 60 70 80 90 100
Score (max is 100)

I Multiple-choice questions

For all of the multiple choice questions, please mark all choices that apply.

1. [4 points]: Based on the paper “SoK: SSL and HTTPS: Revisiting past challenges and evaluating
certificates trust model enhancements”, which of the following statements are true?

A. Valid DV certificates provide more confidence to a user that she is connecting to the intended party
than valid EV certificates.

B. OCSP stapling allows a server to prove to a browser that its certificate hasn’t been revoked.
C. DANE makes it difficult for an adversary to launch a SSL stripping attack.

D. Server key-pinning makes it harder for an adversary to convince a CA to mint a certificate for a site
and launch an MITM attack on that site.

Answer: B, C, D.

2. [4 points]: Based on the paper “Click Trajectories: End-to-End Analysis of the Spam Value
Chain”, which of the following statements are true? “Spammers” here refer to operators of various
parts of the “spam value chain.”

A. Spammers run their spam-advertised web sites on compromised user machines that are part of a botnet.
B. Spammers need to register domain names in order for their spam-based advertisements to be effective.

C. Credit card network operators, such as Visa, perform random purchases to check whether transactions
are correctly coded.

D. There is a high cost for spammers to switch acquiring banks.

Answer: B, D. We did not consider A to be correct: spammers do use botnets for sending spam, but
largely avoid them for hosting their web site (though we accepted answers that said spammers use
them as proxies). We accepted answers that said B was false because spammers could rely on URL
redirectors like bit.ly.

3. [4 points]: Based on Mark Silis and Jessica Murray’s guest lecture, which of the following
statements are true?

. Portions of MIT’s 18.%*.*.* address space are announced via BGP by Akamai to protect against
denial-of-service attacks.

. The biggest security impact of selling parts of 18.*.*.* address space to Amazon was that AFS had
hard-coded permissions allowing access from any net-18 address.

C. MIT uses a single ISP, allowing IS&T to outsource firewall and intrusion detection work to them.

D. MIT IS&T relies on backups to defend against malware that encrypts user data and holds it hostage

until the user pays a ransom fee.

Answer: A, D. We accepted an answer that said D is false because MIT relies on backups for recovering
rather than defending against such attacks.

4. [3 points]: Based on the paper “LAVA: Large-scale Automated Vulnerability Addition”, which of
the following statements are true?

. The code added by LAVA is easy to detect.

B. Even if a bug can be detected, some bugs introduced by LAVA are unreachable (i.e., no input causes

the buggy code to execute).
. Even if a bug can be reached, some bugs introduced by LAVA are not exploitable (i.e., no input allows
an adversary to execute arbitrary code).

Answer: A, C. We accepted answers that said A is false because existing tools have trouble locating
these bugs, although the bugs are easy to find by looking for the exact code that LAVA inserts.

I Symbolic/concolic execution

Ben writes the following test case for lab 3:

def f(n):
i=20
while i < n:
print "1: Iteration"
i+4=1
print "2: Done"
return i

def test_fQ):
v = f(fuzzy.mk_int("n"))

f_results = fuzzy.concolic_execs(test_f)

5. [6 points]: How many times would the print "2: Done" statement be executed? Explain
where this number comes from, or why it’s impossible to tell.

Answer: The code prints “2: Done” every time that £() is executed. Lab 3’s concolic execution
system runs £() once for every value of n that it tries (since # is specified to be a symbolic value).

Since n is a 32-bit signed integer, there are 23! different execution paths through £(). All values of n
that are zero or negative yield the same execution path (one where the loop executes zero times). Every
positive value of n yields its own distinct execution path.

Lab 3’s concolic execution system tries to find different inputs (in this case, the value of #) that lead to
distinct execution paths. In this case, in principle, the concolic execution system might explore all of
these 2°! paths. However, lab 3 contains a limit on the number of iterations that it will try, max_iter.
In lab 3, this is set to 100, and as a result, the code will print “2: Done” 100 times.

We also accepted the answer 23! or 232 if accompanied by a good explanation along the lines of the
above.

6. [6 points]: How many times would the print "1: TIteration" statement be executed?
Explain where this number comes from, or why it’s impossible to tell.

Answer: Every time £() is invoked with some argument n, the code prints “1: Iteration” n times
(or zero times if n is negative). As a result, the exact number of times “1: Iteration” will be printed
depends on the value of n that the concolic execution system chooses to pass to £().

In Iab 3’s concolic execution system, the first choice for a concolic integer is 0, but subsequent choices
are determined by Z3 when it is asked to give an example value of n that contradicts the existing path
constraints. Z3 gives no guarantees about the value it chooses: for example, when asked to give a
counterexample for n > 0, it could return n = 1, n = 200, or any other value n > 0. Thus, we were
looking for the answer that it is impossible to determine.

We also accepted the answer 2451, because this happens to be the sum of values returned by Z3 for the
above code snippet.

II Web security

Ben Bitdiddle proposes a new approach to protect against cookie-stealing attacks, like the ones you did in lab
4. Ben’s idea is to use the path attribute of the cookie to limit which pages can access the cookie through
document . cookie. In particular, a page can access a cookie only if its URL matches the cookie’s path. Ben
also modifies Zoobar to set the login cookie to /zoobar/index.cgi/login.

7. [6 points]: Can an attacker still obtain a victim’s cookie, as in lab 4, with Ben’s new defense
mechanism and Ben’s modified Zoobar? Either explain why this is not possible, or describe a specific
attack, including snippets of HTML and Javascript code the attacker could use.

Answer: Inject the following code into some other page (like the profile page) via an XSS attack:
<iframe id="1" src="/zoobar/index.cgi/login"></iframe>

<script>
document.getElementByld("l").appendChild("<script>alert(document.cookie);</script>");
</script>

If you described this in detail without code, we gave you full credit. However, if you just mentioned an
XSS attack with little detail and no code, we only gave partial credit.

We also gave credit to those who explained that you can exploit an XSS bug in the login form.

IV TCP hijacking

As described in the paper A look back at “security problems in the TCP/IP protocol suite”, the TCP/IP
protocol for establishing a connection uses the following messages:

A. C — S: SYN(ISN¢), SRC=C

B. C < S: SYN(ISNs), ACK(ISN¢), SRC=S

C. C — S: ACK(ISNy), SRC=C

D. C — S: byte0, ISN¢, SRC=C, ACK(ISNj)

E. C — S: bytel, ISNc + 1, SRC=C, ACK(ISNj)
F. ..

TCP uses sequence numbers (as shown in message D and E) to detect duplicate bytes and deliver bytes to S
in the order they were sent by C. As the paper describes, S increases the initial ISN by 128 every second and
by 64 per new connection.

As described in the paper, this protocol is vulnerable to hijacking: an attacker can pretend to be C by
suppressing message B and guessing the initial sequence number that S is proposing to C.

8. [5 points]: Assuming S isn’t busy, how can an adversary guess the sequence number that it must
send in message C efficiently? (Briefly describe.)

Answer: The adversary can open a regular connection to S, which will cause § to send the last ISN
to the adversary. The adversary can then add 64 to that ISN value as a guess for the ISN that § will
choose for the next connection from any client.

9. [5 points]: To defend against connection hijacking, Ben proposes to modify the TCP hand-shake
protocol, replacing the initial /SNg and ISN¢ (in messages A and B) with random numbers, but still
incrementing them sequentially as data is transmitted. Would this make hijacking harder? (Briefly
explain.)

Answer: Yes, the adversary has a hard time guessing the next sequence number to use. (Although we
did not ask for whether this is a good idea, it happens to not be one: TCP sequence numbers must
increase slowly in order for TCP to detect duplicate connection requests.)

V Secure handshake

Alisa layers the following protocol over TCP/IP to set up a secure channel that provides confidentiality and
integrity:

C — S: connect with TCP

C < S: PK;, Sign(SKy, {S: PKs}), Sign(SKs, {PK;})
C — S: Encrypt(PK;, {K,SN})

C — S: ¢; = Encrypt(K, {msg,,SN}), t =MAC(K, c1)

C — S: ¢ = Encrypt(K, {msgr,SN +1}), t = MAC(K, ¢3)

= B2 2 0O R P

Public keys are denoted as PK, and their corresponding secret key as SK. A private key for symmetric ciphers
is denoted as K. “SN” is a unique sequence number. { and } mark a message.

You can assume that everyone knows the PK4 of the certificate authority. Furthermore, as soon S doesn’t
need SK; in the protocol anymore (i.e., right after processing message C), S deletes SK; from memory.

10. [6 points]: Ben doesn’t like certificate authorities so he suggests replacing message B with:
C < S: PK,, Sign(SKs, {PK;}).

That is, the server sends C a signed public key, but without the certificate. Ben also requires client C to
store the PKj in C’s file system on the first successful connection to S. He further modifies the protocol
to check the PKs in message B against the stored key on subsequent connections.

What attack could an adversary launch? (Briefly describe the attack.)

Answer: An adversary could launch a man-in-the-middle attack (i.e., impersonate the server S using
the adversary’s version of PKg and SKj), on the first time that C connects to S. If the adversary
did not intercept the first connection, subsequent connections from C to S are not vulnerable to
man-in-the-middle attacks because C remembers the correct value of PKj.

11. [6 points]: If the protocol doesn’t include a unique SN in message C and D, what attack could
an adversary launch? What concrete steps could an adversary take, which messages would he need to
receive or send, and what bad thing would happen as a result?

Answer: The adversary could replay message D, without the server being able to determine whether
the client really sent another copy, or whether this is a replay attack. This might cause the server to
process message msg| twice.

12. [5 points]: Ben proposes to simplify the protocol by replacing PK; with PK; in message B and
C. That is, Ben’s protocol omits using PK;. What attacks is Ben’s protocol vulnerable to that Alissa’s
protocol isn’t? What concrete steps could an adversary take, which messages would he need to receive
or send, and what bad thing would happen as a result?

Answer: Ben’s protocol doesn’t provide forward secrecy. If an attacker manages to steal SK;, he will
be able to decrypt K and all communication.

VI Side channels

Consider the Spectre example implementation shown in Append A of the paper “Spectre attacks: exploiting
speculative execution” by Kocher et al. In this example, the code attempts to learn the secret “secret” through
a side-channel by running the function victim_function.

Suppose that you changed the value “256” to “128” on lines 49 and 81.

13. [6 points]: Would this code still print out the same secret?

Answer: Yes. This changes the attack to consider only byte values O through 127. The attack still
works because ASCII strings consist of byte values below 128.

14. [6 points]: Suppose that the secret value is an arbitrary AES key (recall that AES keys are
128-bit values). Would this attack work to recover the AES key?

Answer: 128-bit AES keys are stored in memory as 16 8-bit bytes. Each byte value ranges from 0 to
255. Since this question’s modified Spectre attack considers byte values from O to 127, it would be
unable to recover half of the bytes in the AES key, on average.

VII Bitcoin

At the beginning of the semester, Alyssa P. Hacker got 1 Bitcoin and challenged Ben Bitdiddle to steal it.
Alyssa tells Ben the transaction in which she acquired 1 Bitcoin (and her public key), but Ben does not know
Alyssa’s private key (and Alyssa stores it in a way that Ben cannot obtain it).

Ben has been working hard on this problem, and found a friend that can lend him some chips that compute
SHA-256 hashes much faster than existing Bitcoin miners—so much so that they give him about 60% of the
“mining power” in Bitcoin! Ben’s friend is willing to lend these chips to Ben for a few months.

15. [6 points]: Suppose Alyssa transfers her Bitcoin to her friend Charlie. Can Ben transfer Alyssa’s
Bitcoin to himself? Give a precise attack or explain why not.

Answer: No, because Ben cannot generate a transaction signed by Alyssa’s private key. Ben doesn’t
have enough time to fork the blockchain from before Alyssa got the Bitcoin.

16. [6 points]: Can Ben ensure that Alyssa cannot give her Bitcoin to someone else? Describe how,
or explain why not.

Answer: Yes, Ben can prevent Alyssa’s transactions from going into Ben’s blocks, and out-mine any
other blocks that include Alyssa’s transaction.

10

VIII Tor

Alyssa’s nosy neighbor, Norbert, runs two popular web sites. Alyssa is visiting one of Norbert’s web sites
through Tor, but Norbert doesn’t know which one. The only thing Norbert can observe is Alyssa’s encrypted
WiFi transmissions (he does not know Alyssa’s WiFi password, or which Tor nodes she happens to use).

17. [6 points]: Describe an attack by which Norbert can determine which of Norbert’s two sites
Alyssa is visiting.
Answer: Many possibilities. Turn off one web site and see whether Alyssa still has significant traffic.

Change the size of the pages on the two web sites to be very different, and observe how much data
Alyssa is receiving. Correlate timing between Alyssa’s packets and requests at Norbert’s web servers.

11

IX Secure messaging

The 6.858 course staff design the following messaging protocol, which is a variation of the protocol discussed
in lecture. Each user maintains a long-term signing key, SK, and knows the other users’ corresponding public
keys, PK. To start a conversation, each user chooses a fresh Diffie-Hellman key (say, a for Alice) and sends
the corresponding public key (say, g* for Alice) to the other user. Each user signs their public key (with their
long-term signing key), to prevent MITM attacks, and then signs the other user’s public key, to acknowledge
its receipt:

A. A — B: g9 “Alice”, Sign(SKpjice. 187
B. A < B: g, “Bob”, Sign(SKgp» {¢°})
C. A — B: “ACK”, Sign(SK pjjce- 18°))

D. A + B: “ACK”, Sign(SKgop» {£°})

The users (Alice and Bob in this example) then derive a shared secret key, g“b , using Diffie-Hellman, and
exchange messages by using Seal (), as described in the lecture notes. Seal () provides authenticated
encryption: an adversary cannot determine the contents of the message, or construct another valid message,
without knowing the shared key. Messages must unseal correctly (specifically, Seal’s MAC tag must match)
before they are displayed to the recipient.

18. [6 points]: Describe how David, one of the 6.858 TAs, can send the message “Lecture is
canceled” to Nickolai as if the message was sent by Frans. Assume there are no software bugs, the
cryptographic primitives (signatures, Diffie-Hellman, and Seal) are secure, and David does not have
physical access to Nickolai’s or Frans’s computer.

Answer: David should pick x and send g* to Frans, as if establishing a new connection. When Frans
eventually responds with an ACK of g*, David will have “Sign(SKp;ans. {°)).

Now, David establishes a connection to Nickolai, sending this g* value along with Frans’s signature
on that value. This will cause Nickolai’s client to believe that Frans is establishing a connection with
public key g* (i.e., step A).

To send the acknowledgment of Nickolai’s g" (in step C), David needs to open a second connection to
Frans, sending Nickolai’s g" (from Nickolai’s step B) to Frans, and similarly wait for “Sign(SKp;4n-
{g"})”, which he can send in step C to Nickolai.

We also gave some credit for solutions that claimed to replay past messages between Nickolai and
Frans that said “Lecture is canceled”, as well as solutions that mis-spelled the names of the parties in
question.

We did not give credit for solutions that required stealing the private keys from Frans, bribing him,
using a phishing attack, etc.

12

X 6.858

We’d like to hear your opinions about 6.858. Any answer, except no answer, will receive full credit.

19. [2 points]: Are there any papers in the second part of the semester that you think we should
definitely remove next year? If not, feel free to say that.

Answer: 35x LAVA. 20x Tangled Web. 11x Security economics. 9x SoK papers. 8x Messaging. 5x
Bitcoin. 5x TCP. 4x SSL. 2x Tor. 3x Spectre. 2x EXE. 1x Capsicum.

20. [2 points]: Are there topics that we didn’t cover this semester that you think 6.858 should cover
in future years?

Answer: 11x Network security: firewalls, DoS, worms, hands-on. 10x Kerberos. 10x IoT/hardware
security. 6x More side-channel attacks; lab? 4x More crypto. 4x Cryptocurrencies, blockchains.
4x Real-world, recent attacks/exploits. 4x Botnets. 3x Penetration testing. 3x Ur/Web. 3x Reverse
engineering. 2x Hacking ethics. 2x Database security. 2x SUNDR. 2x MIT/Athena security. 2x More
sandboxing. 2x Static analysis / formal methods. 1x More lectures by David. 1x Cover material in
lecture that’s not in the readings. 1x UI security. 1x Social engineering. 1x Signal paper instead
of Messaging. 1x Vulnerability classification. 1x Password managers. 1x Corporate security from
management perspective. 1x Link-layer network security. 1x BitTorrent. 1x How to defend against
lab4 attacks? 1x ML security. 1x Stuxnet. 1x NSA attacks. 1x Control flow integrity. 1x ForceHTTPS.

End of Quiz

13

