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Power-Based Side-Channel Attack for AES Key
Extraction on the ATMega328 Microcontroller

Utsav Banerjee, Lisa Ho, and Skanda Koppula

Abstract—We demonstrate the extraction of an AES secret key
from flash memory on the ATMega328 microcontroller (the mi-
crocontroller used on the popular Arduino Genuino/Uno board).
We loaded a standard AVR-architecture AES-128 implementation
onto the chip and encrypted randomly chosen plaintexts with
several different keys. We measured the chip’s power consump-
tion during encryption, correlated observed power consumption
with the expected power consumption of the plaintexts with every
possible key, and ultimately extracted the 128-bit key used during
AES. We describe here our test infrastructure for automated
power trace collection, an overview of our correlation attack,
sanitization of the traces and stumbling blocks encountered
during data collection and analysis, and results of our attack.

Index Terms—AES, ATMega328, Correlation Power Analysis,
power consumption, side-channel

I. INTRODUCTION

Recent concerns about data privacy have brought attention
to encryption algorithms. One of the more popular symmetric-
key algorithms, Advanced Encryption Standard (AES), has
been the U.S. government standard since 2002 (ISO/IEC
18033-3), and is used in a multitude of applications: SSL/TLS
protocols [1], Kerberos [2], and demonstrably secure embed-
ded devices [3]. This last application in particular, embedded
devices, has seen much growth in recent years, given the
advantages of computation on smaller embedded devices: low
power, lower system latency, and generally smaller device size.

Small hardware implementations, however, are notoriously
vulnerable to a range of side-channel attacks [4]. Timing, elec-
tromagnetic radiation, and power consumption are just three
commonly exploited vectors used to leak information about
ongoing computations and data on the chip. Knowing that a
device architecture is vulnerable to side-channel exploitation
is useful in deciding whether to execute unprotected sensitive
computations or store data on devices with similar memory
and processor characteristics.

We aim to demonstrate a reasonably realistic power-based
side-channel attack on AES-128-ECB software implementa-
tion on one such embedded device: the ATMega328 micro-

All authors are with the Department of Electrical and Computer Engineer-
ing, Massachusetts Institute of Technology, Cambridge, MA, 02139 USA

To contact the authors: utsav@mit.edu, lisaho@mit.edu, and
skandak@mit .edu

Manuscript completed for 6.858 Computer Systems Security; completed on
December 5, 2015

controller produced by Atmel. The ATMega328 is the basis
for the widely popular development board, Arduino Uno .

In section II, we review the theoretical ideas underpinning
our attack. In section III, we describe our experiment: our
hardware setup, power measurement infrastructure, correla-
tion methods, instructive problems that we encountered, and
overview of the structure of our source code. In section IV,
we quantitatively describe the results of our attack.

II. PRELIMINARIES
A. Controller Specifications

The ATMega328 family of chips is an 8-bit microcontroller
series with 32 KB of NAND-type flash and 2KB of SRAM.
The controller runs off a 16 MHz external clock on the
Arduino board. Typical power consumption of the chip is a
20mA current draw from 5V power supply, but it can vary
depending upon the peripheral and I/O pin usage [7]. Our
attack exploits the NAND-type flash memory architecture that
consumes marginally more power when accessing addresses
that store value-zero (discharge) bits 2 [8].

The encryption program running on our ATMega328,
AESLib, wuses an Arduino-specific port of the
avr-crypto-lib by Davy Landman and Bochum
Hackerspace [5] [6]. AESLib is one of the more widely-used
AES implementations for Arduino, and includes support
for ECB and CBC-modes of AES. Our team decided that
ECB-mode would be more vulnerable to a power correlation
attack, and correspondingly chose to exploit the library’s
AES-ECB implementation. We discuss ECB in further depth
in section IIID.

B. Correlation Power Analysis

Correlation Power Analysis (CPA) is a type of side channel
attack that relies on power consumption information. On a high
level, CPA attempts to correlate observed power consumption
with expected power consumption. To a greater extent than
more basic forms of power analysis such as Simple Power
Analysis, CPA attacks are able to extract secret keys from
noisy data [9]. This requires collecting the power consumption

10ther models of the Arduino, such as the Arduino Mega and Arduino
Genuino Micro use ATMega chips as well, that have a similar architecture to
the ATMega328. It is possible that this attack could be adapted to those chips
as well.

2In a highly simplified power consumption model, NAND-flash charges a
central bit line connected to a series of memory cells. Depending on the value
stored in the accessed memory cell, the line is discharged or not. Thus, the
line requires data-dependent recharging.
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of a device performing encryption over many different plain-
texts with the same key. We can then build a power model
that contains the expected power consumption of the device
performing a particular operation during encryption over the
given plaintexts with every possible key.

In our case, we use CPA against AES encryption. Sev-
eral operations during AES are good candidates to model
power consumption for. Attacks tend to model power from
the first round of AES because it provides the best data
regarding which bytes of plaintext and key are combined.
Power analysis tends to target the XOR operation in the
AddRoundKey step or the SBOX substitution during the
SubBytes step, since these can consume predictable amounts
of power. Different CPA implementations use different power
consumption models; the most common are the Hamming
Weight of the operation result or the Hamming Distance of the
input and output of the targeted operation. Hamming Weight
and Hamming Distance may be correlated with the amount of
power consumed because reading a “0” or a “1” from memory
may require different amounts of power.

After deciding on a power model to use, using CPA against
AES requires collecting the amount of power consumed over
encryption of hundreds of plaintexts, and then calculating the
expected power consumption for each of these plaintexts with
every possible key. Trying every possible key with AES is
possible because a different byte of the key is used for every
byte of the plaintext. This reduces our search space to 28
possibilities for each key byte.

After building a power hypothesis consisting of the amount
of power consumed for each possible plaintext with every
possible key byte, we can calculate the correlation coefficients
between these expected amounts of power and the amount
of power observed during encryption. One advantage of CPA
is that we don’t need to know exactly when our targeted
operation occurs during encryption; we can calculate the
correlation coefficient between the power hypothesis and the
power trace (collected power consumption over time) at each
point of the trace. We then take the key byte that gives us the
maximum correlation coefficient as our best guess key byte.
Repeating this process 16 times gives us best guesses for all
16 bytes of the key.

III. PROTOCOLS AND PROCEDURE
A. Data Collection Infrastructure

A central piece of our work was developing the serial-
connection based data collection framework to feed plaintexts
for encryption to the Arduino and read the resulting power
trace from the oscilloscope. An outline is given in Fig. 1.

We needed a subset of the power trace that correlated
strongly with the input plaintext and key. Specifically, we were
interested in finding the portion of the trace that corresponded
to the xor (plaintext, key) operation, and the the SBOX
permutation taken over the xor result. In order to automate
slicing to this part of the trace, we modified the AESLib
SBOX assembly code to insert a flag on a memory-mapped
register that pulled up pin 13 on the board (pin 19 on the chip).
Our oscilloscope triggered on this output and automatically
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Fig. 1: The oscilloscope probes voltages on the chip’s power
line, starting automated power trace on a trigger that signals
the start of AES
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Fig. 2: Voltage measured during AES encryption, as shown on
the oscilloscope

captured the part of the trace immediately after the rising edge
on pin 13.

Central to our data collection was a Tektronix 5054B
computing oscilloscope that collected samples at a maximum
of 4GHz with internal memory bank of at most 16 million
points. The sampling rate limited the resolution of traces that
we were able to capture; we originally thought this physical
cap on data quality was causing correlation issues we ran into,
until we discovered other issues related to DC shifts and time
shifts which we discuss in more detail in Section III.C. An
example of a typical power trace we collected is shown in Fig.
2. It may look like the sampling rate is lower than desirable,
but we explain this more in Section IIL.C.

We used the oscilloscope’s GPIB (IEEE-488 General Pur-
pose Interface Bus) query interface to automate configuration
and downloading of traces.

In the final iteration of our system, we have an orchestrating
computer C' send plaintexts to the Arduino for encryption
every 2 seconds over the Arduino’s serial port (Fig. 1). The
pin 13 trigger resulted in an oscilloscope trace capture, which
was subsequently sent back to C.

More recently, we have been attempting to use the Tektronix
FastFrames feature to take capture batches of 2,500-point
traces at once, and use one memory-read and GPIB-write
operation to transfer these traces to the computer. This would
allow us much faster trace measurement, which is currently
bottlenecked by the GPIB-write operation. As we will discuss
in Section IV, the number of key bytes we can recover is
directly correlated with the number of plaintexts we can
capture.
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Fig. 3: XOR operations alternated between results of all ”0”s
and all ”1”s. The power consumption was noticeably different
depending on the Hamming Weight of the result.

Photos  of collection  framework can be
found at https://www.dropbox.com/sh/
usialgelvfglsdr/AACVvgOHKEWoumWNYi2WRIebCa?
d1=0.

our

B. Implementation of CPA and Power Model

We examined AESLib, our AES implementation of choice,
to try to determine how to estimate power consumption most
effectively. The XOR operation from the AddRoundKey step
consisted of two operations, a load and an XOR: 1) 1d rO0,
X+, and 2) eor param, r0, where param was a byte
of the plaintext and X+ was a byte of the key. The SBOX
operation from the SubBytes step consisted of a move
and load program memory instruction: 1) mov r30, STO0O,
and 2) 1lpm STO00, Z. We hypothesized that reading from
memory might require different amounts of power depending
on whether we were reading a “0” or a “1”.

We first modelled the power consumed during the SBOX
operation, since its nonlinearity would make for clearer key
results. However, when we built a power model based on the
SBOX operation and then tried to correlate it to our first set
of traces, we found no useful correlation. It later became clear
that this was a problem with our data rather than our power
model (as outlined in III.C). At the time, however, we were
concerned that maybe the power consumed by the Arduino
was for some reason not proportional to the SBOX output.

To verify that the results of the SBOX and XOR operations
were actually correlated with the amount of power the Arduino
consumed, we examined the power consumption of just the
AVR assembly operations corresponding to these steps atom-
ically. We were unable to easily make out any difference in
power consumption between SBOX operations that resulted in
all “0”s or all “1”’s, but we were able to easily see a diffference
in power consumption between XOR operation that resulted
in all “0”s or all “1”’s (Fig. 3).

Based on these results, we moved forward with correlating
the measured power consumption with the Hamming Weight
of the XOR result. After collecting more reliable traces (as
explained in III.C), we re-ran CPA using this metric and were
able to recover many of the key bytes. However, we ran
into a symmetry issue. Each key byte and its complement
with respect to 255 had an equal correlation with the power
consumption (e.g. key byte candidates such as 1 and 255 or 3
and 252 showed the same correlation magnitude). Taking this

into account, we were able to correctly identify % key bytes

down to the correct key byte k or 255-k. ’

This symmetry from the XOR output meant we wouldn’t
be able to recover the correct key without applying brute force
guessing after running CPA. Using the output of the SBOX
for the power model would have the advantage of avoiding
this symmetry, giving us one correct key. After getting more
reliable traces, we retried CPA with a power model employing
the Hamming Weight of the SBOX output and found that this
was actually a reliable power model to use. Using Hamming
Weight of SBOX output while increasing the number and
reliability of traces we used, we were able to recover all key
bytes.

In later iterations of our code, we aimed to speed up
analysis of waveforms and obtain results like those in Fig. 4
more quickly. To do this, we replaced our correlation function
with a faster iterative correlation function that calculates the
correlations given 1,2,3,...,4,...,num_plaintexts traces,
without recalculating correlations for the previous ¢ —1 traces.

C. CPA Challenges and Solutions

During the course of the experiment, we faced several
challenges in data collection and interpretation. They are listed
below, along with our solutions:

e Our initial idea was to measure the voltages at the
two ends of a 1£) resistor connected between the VCC
pin of the microcontroller and the power supply, and
measure their difference using a Tektronix ADA400A
Differential Pre-amplifier. However, as with any practical
amplifier, the ADA400A has a gain-bandwidth product
limitation, and we could achieve a gain of 10 at our
required bandwidth. Also, the amplifier introduced its
own noise into the measured power traces, which reduced
our chances of a successful CPA attack. To resolve this
issue, we finally decided to get rid of the differential
measurement setup, and measure only the voltage at the
VCC pin. We also replaced the 12 resistor with a 1002
one, in order to get better gain.

o Another challenge in CPA data collection was dealing
with DC shifts in the power waveform. Minor fluctuations
in the power supply voltage are natural, but they can
mask or scramble the power spikes due to the AES
operations. Our solution was to measure power traces for
10 iterations of AES encryption on the same plaintext and
take the average of these 10 waveforms. The averaging
operation was done using the oscilloscope, and it indeed
provided significant improvements in our attack potency.

o We noticed that some of our AES computations took dif-
ferent lengths of time than others, even though they were
supposedly doing the same operations. We suspected that
these differences in computation duration may have been
due to interrupts. To test this hypothesis, we disabled
interrupts during AES computation by clearing the Global
Interrupt flag. This greatly reduced the timing differences
from trace to trace, improving trace alignment during
correlation.


https://www.dropbox.com/sh/usialgelvfqlsdr/AACvqOHKEWoumWNYi2WRIebCa?dl=0
https://www.dropbox.com/sh/usialgelvfqlsdr/AACvqOHKEWoumWNYi2WRIebCa?dl=0
https://www.dropbox.com/sh/usialgelvfqlsdr/AACvqOHKEWoumWNYi2WRIebCa?dl=0
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o We also faced the issue of missing traces. When the
Arduino encrypted some number of plaintexts, the oscil-
loscope would record the power consumption from most,
but not all, computations. This made it difficult for us to
match power traces with the correct plaintext. We realized
that the oscilloscope was missing traces because it did
not always have time to reset itself between different
plaintexts. Adding a delay before sending the next plain-
text to the Arduino gave the oscilloscope enough time to
reset and correctly record power traces from all of our
plaintexts.

e Some of our traces were quite noisy. To minimize the
amount of noise in our samples, we measured the encryp-
tion of each plaintext ten times and took the average. We
also added a grounded aluminum box to our setup, which
may have reduced electromagnetic noise and interference.

e« We originally used the maximum sample rate while
collecting data (4 GHz), which meant that our data took
a long time to collect and download. To speed up this
process, we reduced our sample rate to 2500 MHz. Even
at this lower sample rate, we were able to recover all
necessary information with at most 600 plaintexts. It
might be interesting to further examine the relationship
between sample rate and number of plaintexts required
in order to find optimal combinations.

o CPA essentially relies on statistical algorithms. Therefore,
it is extremely important to have large sets of data
samples to analyse. We started our experiment with only
100 power traces (100 random plaintexts) and were able
to reliably recover only 10-11 of the 16 key bytes. Soon,
we realized that we needed more data, and repeating the
experiment for 300-400 traces (plaintexts) enabled us to
recover all the key bytes. It has to be noted that some
keys needed even more power traces, and we estimate
that 1000 traces are enough to recover any key. Further
data and graphs from our experimental results can be
found in the link mentioned in Section IV.

D. Limitations

Aspects of our attack implementation are unlikely to be
possible in real-world attack scenarios; we address these
concerns and suggest possible remedies:

— We chose to attack the Arduino library’s implementation
of the AES-ECB mode, rather than the more secure
CBC-mode. However, ECB is still (unfortunately) used
as the default option in a number of crypto-suites,
avr-crypto-1ib included, despite it not being se-
mantically secure (i.e. you can derive information about
the plaintext from the ciphertext). This is because of
its relatively simple implementation, compared to other
more sophisticated modes of AES. Furthermore, our at-
tack does not exploit the plaintext-ciphertext correlations
in ECB to derive the key; rather, it uses the power
sidechannel. For our team’s first power-trace based attack,
we chose a mode that we were confident might have
some correlation with the plaintext-key XOR (the first
computation in the first step of ECB); however, it might
be possible to adapt our attack to CBC-mode as well.

— We modified the AESLib assembly code to pull high
one of Arduino’s I/O to signal the oscilloscope when
to begin collecting traces (the scope’s trigger). In a real
world attack, it is unlikely that we will be able to insert a
convenient signal to aid our trace collection and analysis
result. Nonetheless, careful manual analysis of one trace
could yield a constant time frame of interest, which,
barring waveform time shifts, we could use to automate
trace collection and trace slicing. We have demonstrated
ways to reduce time-shift errors in our work.

E. Overview of Source Code

All our source code can be found at https://github.
com/skoppula/aes—sidechannel. Files in the source
that might be of interest:

— cpa/cpa.py contains the source that reads in the wave-
form binary data (with helper wfm2read_fast.py)
and subsequently runs CPA. It outputs the top ten key
byte guesses per byte of key, and a correlation visualiza-
tions like Fig. 4.

— data-capture/arduino-aes-2 runs AES encryp-
tion on a new plaintext 10 times, each time a
‘run’ command is received on the terminal. The
ten traces are later averaged on the oscilloscope.
data-capture/arduino-aes-1 runs AES encryp-
tion on a plaintext sent over the serial port.

— data-capture/scope—-interface-2 runs a
Python script that interfaces with the Arduino to
run AES at regular intervals, and interfaces with
the oscilloscope to collect the corresponding traces.
data-capture/scope-interface-1 is a Matlab
implementation of similar functionality that we
originally used to interface with the oscilloscope
over GPIB; interfacing with the Arduino was
done seperately in this version of the code (in
data-capture/send-plaintexts—-processing)

— data-capture/process—wfms contains the scripts
we put together initially to parse and plot the first = . wfm
waveform binaries that we recieved from the oscilloscope.
This was later integrated into cpa/cpa.py

IV. RESULTS

We conducted the experiment three times, with three differ-
ent secret keys: two randomly generated keys and one non-
random key 3. In all three, we were able to discover the correct
key.

We found more robust results by triggering our traces
to start from the beginning of the AES EBC-mode
xor (plaintext, key) and continue until SBOX substi-
tutions are complete. These computations empirically corre-
lated well with our key guesses. Furthermore, we found much
higher rates of correct key guesses by disabling the chip’s

3By non-random, we mean the key [0x0 Ox1 0x2 0x3 0x4 0x5
0x6 0x7 0x8 0x9 O0xA 0xB 0xC 0xD OxE OxF]. This was the test
key chosen during the development stage of our project, as we were building
the trace-collection infrastructure and writing the CPA code.


https://github.com/skoppula/aes-sidechannel
https://github.com/skoppula/aes-sidechannel
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serial output and disabling interrupts. This seemed to elim-
inate inter-trace time-shifts that messed with our correlation
analysis. In addition, averaging ten traces at a time seemed
to eliminate DC power bias that shifted the power magnitude
up and down between traces run on the same plaintext. Only
after these corrections were we able to find any meaningful
correlations and extract our first correct key guess.

However, interestingly, the number of traces required to
recover all key bytes differed from key to key. Specifically,
it took 600 trace averages (each corresponding to a plaintext)
to get complete accuracy on the non-random key, 300 trace
averages to completely uncover the first random key, and 400
trace averages to uncover the second random key. We were
interested in understanding the performance of each key guess
as the number of input plaintext traces increased; for each run,
we created a plot that tracked each key guess’s correlation with
the trace data as the amount of trace data increased (Fig. 4)

It takes roughly 30 minutes for our infrastructure to collect
the traces for the encryption of 100 plaintexts. Data collection
time seems to scale linearly with the number of plaintexts we
process: encrypting and collecting the traces for 500 traces
takes on average two and half hours. Processing these 500
traces and extracting the correlation values and key estimates
over ¢ plaintexts for all ¢ (Fig. 4) takes roughly five to ten
minutes.

Further data and results can be found at https:
//www.dropbox.com/sh/07xni6s4tudklme/
AABnrBK-QZCVO1tMK4GFeQ5ta?dl1=0.
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Fig. 4: Each graph corresponds to one of the 16 blocks/16 plaintext bytes/16 key bytes in our AES implementation. A single
graph plots the correlation of all 256 key guesses (y-axis) with the power trace data, as more data is fed into the correlation (x-
axis). The red line represents the correct key guess. Notice that by the time we feed the 400th trace into our CPA implementation,
the correct key byte is the key guess with the highest correlation with all the traces (visible in the height of each red line at
2 = 400). Results for the other two CPA runs can be found at the Dropbox link.
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