
MIT 6.858 1

ROP Compiler
Jeff Stewart, Veer Dedhia

I. INTRODUCTION

When developing exploits for modern x86 64-bit systems,
attackers must handcraft exploits for each binary. This involves
finding a vulnerability (such as a stack-based buffer overflow)
and diverting control flow (overwrite return address). Mod-
ern exploits employ Return-Oriented Programming (ROP) to
bypass widely deployed defenses such as WˆX.

Building a ROP chain requires manual effort to find suitable
gadgets out of the multitude of existing code snippets, and
then chain those gadgets together in the correct order to call
functions or execute injected code. x86 64-bit systems present
some challenges that do not exist on other platforms. For
example, the 64-bit calling convention primarily uses register
arguments, as opposed to stack-pushed arguments on many
32-bit systems. This requires finding gadgets to set values in
registers, instead of using an overflow to write to the stack.
While many tools exist to help the various stages of exploit
building, no public compiler is available to fully create these
ROP chains.

We present a simple ROP Compiler, developed to more
easily generate ROP chains, given a binary and goal. We
demonstrate our compiler on both a proof-of-concept simple
binary, as well as a well-known utility, rsync. Our tool gen-
erates working ROP chains to inject and execute shellcode or
call other functions.

A. Background

Control flow hijacking is an extremely dangerous attack
vector. They allow an attacker to divert the intended program
flow, and instead execute instructions that further the attacker’s
goals. These goals may include spawning a shell or installing
malware. This gives the attacker a foothold on the machine
towards a larger goals, such as financial fraud or exfiltration
of sensitive data.

Modern computer systems employ various defenses, such as
WˆX and ASLR, that protect against different types of control
flow hijacking. WˆX works by disabling execution of writable
memory, such as the stack. This prevents an attacker from
injecting malicious code as user-supplied input and directly
diverting control flow to that address.

ASLR (address space layout randomization) works by load-
ing a given binary at a random offset in memory for each
execution. Libraries (libc, etc.) use position-independent code
(PIC), so that they may be shared amongst processes or loaded
separately. Binaries that support ALSR are known as position-
independent executables (PIE), which means that the code
does not use hardcoded addresses can be loaded at any address.
Non-PIE binaries have hardcoded addresses, and thus they do
not support ASLR.

With these defenses widely deployed, attackers have turned
away from simpler techniques (code injection), and have in-
stead developed control hijacking that reuses existing program
code. This easily bypasses WˆX, since the code is already
allowed to execute. Libraries, such as libc, provide many
functions that an attacker would like to call (execve, mprotect,
etc.). As such, the first techniques focused on setting up stack
arguments and then diverting control to a library function
(return-to-libc).

However, this technique is limited to calling a single
function, whose arguments come from the stack. An attack
goal may require calls to functions whose arguments come
from registers or setting up other prerequisites, however, so
chaining becomes the necessary next step. Return-Oriented
Programming (ROP) [6] is a technique developed to generalize
the return-to-libc attacks by chaining snippets of code that end
in ’ret’ (called gadgets). Most modern exploits leverage ROP
to bypass existing defenses.

There do exist some tools that find gadgets and suggest
ROP chains, such as Q [5], ROPC [2], mona.py [1], and
ROPgadget [4]. However, these tools are either not available
(Q), do not work on realistic binaries (ROPC), x86 64-bit
binaries (mona.py), or are not fully featured (ROPgadget).

II. IMPLEMENTATION DETAILS

Our ROP Compiler is separated into four main components:
the goal interpreter, the gadget finder, the gadget classifier, and
the gadget scheduler.

A. Goal Interpreter

The goal interpreter provides the necessary configuration
data for the ROP compiler. This configuration data is supplied
by the exploit author and is comprised of three separate
components:

1) A list of files to extract gadgets from. For PIE executa-
bles and libraries, each file should include the address
that it was loaded to.

2) A list of libraries to extract metadata from. This list of
libraries will be used to obtain function metadata for use
later, as described in Section II-D.

3) A list of the author’s desired goals. Each goal item
can be one of three types: Function, ShellcodeAddress,
Shellcode. Function goals indicate the author wishes to
call a given function with a set of specified arguments.
ShellcodeAddress goals indicate the author wishes to
run shellcode that already exists in the target program’s
address space. The Shellcode goal indicates the author
wishes to run a set of shellcode that does not already
exist in the target program’s address space. Thus, the



MIT 6.858 2

Name Input Parameters Semantic Definition
JumpG AddrReg RIP ← AddrReg
MoveRegG InReg, OutReg OutReg ← InReg
LoadConstG OutReg Value OutReg ← Value
ArithmeticG InReg1, InReg2, OutReg �b OutReg ← InReg1 �b InReg2
LoadMemG AddrReg, OutReg Offset OutReg ← M[AddrReg + Offset]
StoreMemG AddrReg, InReg Offset M[AddrReg + Offset] ← InReg
ArithmeticLoadG AddrReg, OutReg Offset, �b OutReg �b← M[AddrReg + Offset]
ArithmeticStoreG AddrReg, InReg Offset, �b M[AddrReg + Offset] �b← InReg

TABLE I: Gadget Types that our Gadget Classifier can find. M[addr] means accessing memory at the address addr and �b means an arbitrary
binary operation.

Shellcode goal must first load the shellcode into memory
before it may continue.

These 3 goals were chosen to allow the exploit author to obtain
arbitrary code execution, while also specifying the minimum
amount of work that is necessary. For instance, there is no need
to use a Shellcode goal if the exploit author already knows the
address of their shellcode in memory.

B. Gadget Finder

The gadget finder iterates over all of the available binaries
and searches for gadgets. This is accomplished by stepping
through each byte (not instruction) of the executable sections
of each binary, and then trying to disassemble the last N
number of bytes. If a series of bytes ends in a RET or JMP
instruction, then that series of bytes is saved as a potential
gadget. For disassembly, our ROP compiler makes use of the
Capstone framework [3].

The choice of N is a compromise between the speed of the
ROP compiling process, and the number of gadgets found. As
larger gadgets tend to be more complex (and thus less useful
during ROP compilation), increasing N is not necessarily the
best option. Our implementation makes the compromise of
setting N to 10. A future version may iteratively increase N
upon failing to compile an adequate ROP chain.

C. Gadget Classifier

The gadget classifier analyzes each of potential gadget to
determine its type(s). Our classifier’s implementation is based
on the design of Q’s classifier as presented by Schwartz et al.
[5]. Schwartz proposed classifying gadget into 9 types useful
for generating ROP chains. Our implementation classifies our
potential gadgets into the 8 gadget types shown in Table I
(excluding NoOpG gadgets from [5]).

Similar to the classifier proposed by Schwartz, our imple-
mentation uses the weakest precondition technique. For each
gadget, we generate a symbolic formula for the instructions.
This formula is then used to concretely emulate the gadget
by substituting random values for any initial registers used
and memory reads. The output registers and memory writes
are then used to evaluate which, if any, of the gadget type
preconditions hold true. This process is then done a number
of times. Any preconditions left unviolated throughout all of
the concrete executions reveal the gadget type.

While Q [5] and ROPC [2] take this process one step
further, by utilizing a SMT solver to verify the gadgets;
our implementation does not do so. In our brief analysis

and examples (described in Section III), we have not seen
a gadget that has been misclassified using only the concrete
emulation. Thus, to improve the ROP compilation speed, our
implementation does not verify gadgets. Any of the necessary
metadata (such as which registers are clobbered by a gadget)
is extracted from the symbolic formula.

D. Gadget Scheduler

The gadget scheduler combines classified gadgets into the
individual goals. These goals are accomplished by iterating
over the classified gadgets to find a sequence that match the
required goal. For example, to write a value to memory, the
scheduler looks for a LoadMemG gadget to set the address,
another LoadMemG gadget to set the value, and a StoreMemG
to perform the write to memory. The scheduler keeps track of
the registers to ensure that one used in the beginning of a
chain does not clobber one needed later in the chain.

While the Function and ShellcodeAddress goals are rel-
atively straight forward to implement, the Shellcode goal
requires more work. In order to execute the exploit author’s
shellcode, our scheduler first must write the shellcode to
memory. This is accomplished by querying the goal interpreter
for a writable section of memory, and then chaining together
a series of write memory chains as previously described.
Once the shellcode has been stored to memory, the Shellcode
goal can be accomplished through the same means as a
ShellcodeAddress goal.

A final situation that requires additional work is calling
external functions in libraries. While calling functions within
the main binary’s Procedure Linkage Table (PLT) is relatively
simple, calling a function not imported into the PLT requires
substantially more work. To accomplish this task, the scheduler
must first read from the target process’s GOT for a function
which the target process does use. Next, the scheduler adds
the offset from this base function to the target function in
the library. As offsets within a library are constant under
traditional ASLR, the computed value will be the address of
the target function. Our scheduler implements this approach
by finding a chain of the following gadgets:

1) LoadMemG from the stack to set the address of the base
entry to read in the GOT

2) LoadMemG to read the base entry in the GOT
3) LoadMemG from the stack to set the offset from the

base entry to the target entry in the library
4) ArithmeticG to add the offset from the base entry to the

target entry in the GOT



MIT 6.858 3

5) One LoadMemG per argument for the target function to
set the argument’s value

6) JumpG to jump to the function in the library

The scheduler scans for each gadget while making sure
any values used in the later gadgets (such as the computed
function’s address) aren’t clobbered by the earlier gadgets.

III. EXAMPLE USAGE

A. Buffer Overflow Proof of Concepts

In order to provide a test suite for our ROP compiler,
we’ve implemented a series of proof of concept stack buffer
overflow exploits. These example proof of concept programs
exercise the different components of the compiler. This test
suite includes:

1) A buffer overflow which calls mprotect from the PLT
to change memory permissions and execute shellcode
already existing in memory

2) A buffer overflow which calls the syscall function from
the PLT to change memory permissions and execute
shellcode already existing in memory

3) A buffer overflow which calls mprotect from the PLT to
change memory permissions and execute shellcode not
already existing in memory

4) A buffer overflow which calls system from the PLT to
run a command

5) A buffer overflow which reads the address of printf in the
GOT, adds the offset from printf to mprotect in libc, calls
mprotect to change memory permissions, and executes
shellcode not already existing in memory

B. rsync

In order to illustrate a real world use of our ROP compiler,
we implemented an exploit for rsync. As the current rsync1

does not have any publicly known vulnerabilities, we intro-
duced a synthetic stack buffer overflow into rsync. This stack
buffer overflow vulnerability was introduced into rsync’s filter
file argument processing code. rsync provides the ability to
filter the files that are copied through the use of a filter file
that specifies which files to exclude. As this vulnerability is a
file format bug, there is little chance for the attacker to leak
information about the memory layout of rsync (as compared
to a network reachable vulnerability). Thus, a working exploit
must be able to load shellcode at a known address. The exploit
is further complicated by the need to call mprotect without it
being in rsync’s PLT.

Our exploit, provided in rsync.py, utilizes an automatically
generated ROP chain that handles these issues. The resulting
ROP chain is 464 bytes that loads and executes a 33 byte
execve-based shellcode. This ROP chain was generated in 71
seconds on the author’s laptop with an Intel i7-4700HG CPU
and 8 GB of RAM.

1rsync 3.1.1, current as of 12/6/15

IV. FUTURE WORK

Our ROP compiler, while functional, could be improved
to provide additional advanced features. For example, we
would like to explore synthesizing new gadgets by combining
existing smaller gadgets. This would enable our compiler to
produce chains on smaller binaries. We would also like to
expand our attack goal language to allow for more expressive
goals. While Turing completeness was abandoned early on, in
terms of practicality, a more expressive language would allow
more complex exploits, such as those needed in environments
that do not allow remapping of memory permissions [7].

REFERENCES

[1] Corelan. Mona. https://github.com/corelan/mona, 2015.
[2] pakt. Ropc - a turing complete rop compiler. https://github.com/pakt/ropc,

2013.
[3] Nguyen Anh Quynh. Capstone: Next-gen disassembly framework. http:

//www.capstone-engine.org/BHUSA2014-capstone.pdf, 2014.
[4] Jonathan Salwan. Ropgadget. https://github.com/JonathanSalwan/

ROPgadget, 2015.
[5] Edward J Schwartz, Thanassis Avgerinos, and David Brumley. Q: Exploit

hardening made easy. In USENIX Security Symposium, 2011.
[6] Hovav Shacham. The geometry of innocent flesh on the bone: Return-

into-libc without function calls (on the x86). In Proceedings of the 14th
ACM Conference on Computer and Communications Security, CCS ’07,
pages 552–561, New York, NY, USA, 2007. ACM.

[7] Brad Spengler. grsecurity: Features. https://grsecurity.net/features.php#
mprotect, 2015.


