
CheckBits

Ada Taylor, Brendan Chang, Erica Du, Parker Tew

December 12, 2014

Abstract

Bitcoin, while originally designed for digital spaces, is gaining enough mainstream popularity to be
increasingly offered as a method of payment in the physical world. However, two problems arise in the
day-to-day use of Bitcoin in physical point of sale applications. The first is double spending, where
a customer issues two checks which are both valid individually but if both cashed would overextend
the customer’s wallet. Merchants do not have a guarantee that the customer is not double-spending
until their payment is confirmed, which can take up to 10 minutes. Secondly, because transactions
are public, users can be deanonymized. This leaves information about a customer’s assets, spending
patterns, contacts, and purchases vulnerable with access to a user’s transaction or address.

We propose a guarantor system as a solution. Instead of paying for services directly, the customer
pools money with others in a trusted guarantor. To make a purchase, the customer informs the guarantor
with a signed and encrypted “check”. The guarantor makes a Bitcoin payment on their behalf, leaving
it ambiguous which of the users of the guarantor authorized the purchase. The guarantor then posts a
signed notification of the transaction’s validity on a public bulletin, where the merchant can check to
get an immediate confirmation of payment from the guarantor.

This systems allows for a wide variety of guarantors, from credit and debit systems to more trusting
models that might be appropriate for small living groups.

1 Background

The most common method used for obfuscating Bitcoin payment trails is tumblers. Wallets from multiple
customers are jumbled together, then mixed into new wallets and sub-payouts for the original users. However,
tumbling requires a significant time delay, and transactions made with the same output wallet can be
associated with each other. It is difficult to tumble before every transaction, particularly in the case of
unplanned purchases. Additionally, these systems are also sometimes vulnerable to timing and amount
attacks because of their single transaction nature.

Some companies, such as Coinbase, use off-blockchain transactions to obfuscate smaller transactions
between users of their service and decrease load. This means that some transactions between Coinbase
users are not publicly viewable as part of the blockchain. However, this requires both users to be part of
Coinbase, which also means that a single point of failure would endanger all users using this shared method.

Furthermore, existing Bitcoin mixers do not solve the transaction delay problem.

2 Threat Model

We assume that the attacker has complete access to the blockchain’s record, which is publicly accessible.
We also assume that they have access to all traffic. However, the attacker is unable to decrypt or spoof
signing without a private key.

3 System Design

3.1 Guarantor

Our system introduces a middleman, the guarantor, which pools the Bitcoin of multiple clients together, so
that a single charge cannot be correlated with any specific user of the guarantor by looking at the blockchain.
The guarantor’s first responsibility is to accept money and establish a secure relationship with the customer
with an exchange of keys. Its second responsibility is to make purchases on behalf of its clients in response
to their signed and encrypted requests, using the Bitcoin pool it controls.

1



There is a large degree of flexibility for the guarantor outside of these parameters. A service could be
run on a debit model, where users are only allowed to spend up to the amount that they stored initially.
Alternatively, the guarantor could work as a credit system, where the guarantor retains a small amount of
information about each customer for billing purposes, and allows them to spend and then pay afterwards. A
third possibility would be payments with a small premium to cover future overcharges and fraud. Guarantors
are incentivized to exist by charging a slight fee per transaction. While each of these models may have its
own security considerations, we are not concerned with these explicitly for the purposes of this paper.

Guarantor scale is also variable. While a guarantor could provide the service for hundreds of users, a
small group of trusted friends could also establish a small guarantor for their use. This guarantor could
even be a client of a larger guarantor, if the customers wanted their checks to have the authority of a larger
and more well known guarantor, but have an additional layer of privacy.

3.2 Bulletin

In order to provide the customer with approval from the guarantor immediately, without waiting for the
blockchain to stabilize and confirm the transaction, we also introduce a bulletin service. This service is a
place specified by the merchant that it will check for notifications verifying valid or invalid payment. These
notifications provide the transaction ID and the status, and are signed by the guarantor. This system allows
the merchant to check one location for that data while are still allowed flexibility in their choice of guarantor.
It also does not require that the merchant be burdened by hosting a server just to receive notification of
payments.

The bulletin is not responsible for the integrity or contents of the checks, and all information provided
there is public. However, these notifications are signed by the guarantor, making them difficult to spoof.

3.3 Backwards Compatibility

Our system is designed to interact with both others using our system and those making standard Bitcoin
transactions. If a merchant does not trust a guarantor or is ignorant of the guarantor, the guarantor still
makes a payment to the given Bitcoin address, though the merchant will not gain the benefit of an immediate
confirmation of a valid payment. The merchant can simply fall back on normal Bitcoin transaction policies,
and wait for the transaction to complete.

The customer also retains their privacy if the merchant is simply providing a Bitcoin address, because
that does not affect the privacy that the pooling within the guarantor provides. The transaction remains
mediated by the guarantor regardless.

4 Anatomy of a purchase

There are two phases to the system: the customer establishing their relationship with the guarantor, and
the customer sending money to a merchant via the guarantor.

4.1 Setup

In the first phase, the customer transmits money to the guarantor, and the guarantor gives back to them
an encryption key or “checkbook”. This key will be used to verify the identity of the customer, and in
encrypted communication with the guarantor. Care should be taken to choose an encryption scheme for
this checkbook which does not allow an adversary to associate checks created by the same customer.

Figure 1: Initial setup

2



4.2 Payment

Before payment, the merchant provides a Bitcoin address for the customer, transaction ID, amount, and
preferred bulletin. This could be provided via QR code, or even non-digitally on paper or a sign. This is
the only direct point of interaction between the customer and the merchant, and can be provided in the
same manner as the good or service which is being paid for. Note that none of this information provides
information about the identity of the customer.

In order to make a payment, the customer uses their “checkbook” to sign and encrypt their purchase
information for the guarantor: the amount, receiving address, transaction ID provided by the merchant,
and a timestamp. If the customer uses TOR to send this check to the guarantor and the encryption scheme
chosen does not allow association of checks written by the same author, there is no way for an attacker to
associate the identity of the customer with the payment.

Upon receiving the payment, the guarantor decrypts the check and verifies the signature of the customer.
They then make the payment to the specified address, and post to the specified bulletin a signed message
of the transaction ID, status, and timestamp.

The merchant can then query the bulletin to see that the payment is incoming and vouched for by the
signing guarantor.

Figure 2: A sample transaction

5 Security Properties

5.1 Guarantor

Since all transactions move through the guarantor, the client never leaves a direct Bitcoin trail of transac-
tions to the merchant. An observer of the Bitcoin transaction log cannot easily associate customers with
transactions, because any of the clients who have used the guarantor in the past could have authorized the
payment. Therefore, the more people using the system the harder it is to attempt to track history.

Timing attacks are mitigated primarily because the checks cannot be associated with each other or (if
they are using TOR) a given user. Therefore, while a check can be associated with a payment, the check
cannot be associated with a specific individual.

The guarantor may decline to honor two checks with the same id and timestamp fields in a short period
at their discretion, in order to prevent replay attacks.

This system is still vulnerable to statistical attacks, but the more users and transactions handled by the
system, the more difficult this becomes. Additionally, while smaller systems may be easier to attack, they
are also lower value targets, which would in itself deter attackers.

3



5.2 Bulletin

The bulletin service can be untrusted, since every notification posted is signed by the guarantor and that
information is bundled to avoid tampering with individual elements. Merchants only have to trust the
guarantor in order to take payments immediately rather than waiting for the Bitcoin transaction to complete.
Again, if the guarantor is unknown or untrusted the merchant can ignore the bulletin board notification
completely, and just wait for a Bitcoin transaction as normal.

The only information an outside observer can glean from the bulletin board is how many payments the
guarantor is making and when (but not how much). They could then visit the guarantor’s Bitcoin pool
and see that merchants are having payments given to them via this system- but this is true of the current
system, as well.

Bulletins are queried by transaction ID, and therefore ID collisions should be avoided. We solve this
problem by asking the merchant to randomly generate a 64-bit ID, which makes the possibility of collisions
extremely low. Deleting transaction notifications after a short window should also help keep the chances
of collision negligible. This method allows mechants to generate transaction IDs without consulting the
guarantor or bulletin first.

6 Our specific implementation

While there is a great deal of flexibility in the role of the guarantor, we have chosen to implement ours on a
debit system accepting Bitcoin transactions. Admittedly, this is motivated in part by low financial risk on
the part of the guarantor, but we also aim to demonstrate the differences between our system and vanilla
Bitcoin transactions, as well as provide an example of one of the most likely schemes to chose for small
living group use.

In our specific example, the user creates an account with the guarantor. They can then provide the
guarantor with their public key, and this allows the guarantor to verify that checks are actually from them.
The client will provide the guarantor with a key such that the customer can encrypt messages to them and
have them decrypted by the guarantor.

The guarantor also provides the customer with a randomized address to its centralized wallet. This
address is one-time use and allows the guarantor to determine which customer deposited value without
relying on knowledge of which customer claims they own a particular wallet or transaction. The customer
can ask for a new address at will.

This means that if a user already has two previously existing completely unassociated wallets, they will
not betray to an outside observer the fact that they own both if they make deposits through two randomized
deposit addresses. Wallet addresses do not contain any unique information about the customer they belong
to, and are randomly generated in their entirety.

Therefore, the balance that the guarantor contains depends only on selected deposits that the customer
wants to place, using the secret knowledge they have from their account with the guarantor. An attacker
with control of a past or current wallet cannot compromise the relationship between the guarantor and the
customer, and merely claiming to have a given wallet address does not provide any access or additional
knowledge.

7 Future Work

In the future, we would like to explore using an escrow type element in the guarantor service, such that
customers do not need to place as much trust in the guarantor’s control of their money.

Another possible avenue of work is making the bulletin instead a custom blockchain, which records all
transactions within. In order to prevent over 51% attacks, we might ask that merchants who use the bulletin
add to the maintainance of the blockchain. Alternately, this could be linked to the Bitcoin blockchain for
recording.

We would also like to transition to an encryption scheme for our specific guarantor implementation with
stronger guarantees about non-associativity of checks.

8 Code

https://github.com/ptew/ghost

4


