
SplitSecure

SplitSecure
A Distributed Credential Storage System

P. Kaundinya, D. Narayanan, Q. Nguyen, R. Mahajan
{pranavk, deepakn, qdnguyen, rohanm}@ mit.edu

12th December, 2013

1 Abstract

Password databases of several high pro�le companies such as Sony, LinkedIn, and Adobe have been

compromised in recent years. These security breaches a�ect millions of users and result in millions

of dollars in damage along with a lot of negative publicity. Despite the obvious security hazards,

companies often store passwords in clear text or hashed but unsalted form. As computing power

becomes cheaper, even salted passwords are becoming vulnerable.

We designed a scalable distributed server-side password storage system with the objective of

forcing adversaries to compromise multiple servers in order to obtain any sensitive information.

2 Related Work

Although distributed cryptography is a well established �eld, prior to 2012, there were no commer-

cially available distributed password storage and authentication systems. With security breaches

becoming more frequent and computation becoming cheaper, there is now a market for such a

distributed password storage system.

Some key ideas in our design are inspired by the following prior work.

2.1 Distributed Credential Protection (DCP)

The �rst commercially available distributed password storage system was released by RSA in 2012

and is called Distributed Credential Protection (DCP) [1]. This scheme forces an adversary to

compromise multiple servers in order to obtain any useful information. It stores the password using

a combination of two servers - one server which stores the password XORed with a random number

and the other which stores the random number itself. The system veri�es the password without

reconstructing it. The mechanics of this scheme are shown in Figure 1.

Scalability is a concern in this system because during authentication, the server needs to contact

all databases which are involved in storing the user's password.

1



SplitSecure

Figure 1: RSA Distributed Credential Protection [1]: DCP stores each password using two servers - one

server which stores the password XORed with a random number and the other which stores the

random number itself. During registration, the client sends a password XORed with a random

number to one server and the random number to the other server. During authentication, the

client sends the password XORed with a new random number to the �rst server and the random

number to the second. The system veri�es the password without reconstructing it.

2.2 Shamir's Secret Sharing Scheme

Shamir's Secret Sharing [2] is a k-out-of-n threshold secret sharing scheme in which a secret is split

among a group of n entities. Each entity holds a unique share, and any k of these n entities are

su�cient reconstruct the secret.

The core idea behind Shamir's Secret Sharing scheme is that a polynomial of degree k − 1 can

be uniquely determined by k points. If a secret is encoded as the constant term of a degree k − 1

polynomial with randomly chosen coe�cient and arbitrary points on the polynomial are chosen as

shares of the secret, k shares are su�cient to reconstruct the polynomial and obtain the secret. The

individual points by themselves contain no information about the polynomial whatsoever. Shamir's

Secret Sharing scheme can be shown to be information theoretically secure.

3 Design

We designed our system with the following design goals:

• To never reconstruct user passwords or store complete passwords on any one machine

2



SplitSecure

• To make the system more scalable than existing systems

• To minimize the computation load on the client

Our system consists of two main components:

• Authentication server: This is the main machine that the client communicates with while

registering and authenticating.

• Database servers: These are the machines which actually store password information. Let

the number of database servers containing a share of any given user's password be n, and the

number of databases involved in authentication be k. Note that no server stores more than

one share of a user's password.

We describe our design in more detail in the following sections.

3.1 Threat Model

The main aim of our system is to protect users' passwords in the event that one or more server-

side machines are compromised. We assume that each server-side machine is well isolated so that

attacking one server successfully doesn't make it any easier to attack the other servers.

Our design assumes that the network is safe. There are several existing solutions to deal with

network vulnerabilities. The goal of our design is to protect against server attacks. All communi-

cation of sensitive data in our system is encrypted and we use certi�cates and signatures to verify

authenticity. However, our design is still vulnerable to attacks where an adversary modi�es packet

routing or intercepts packets.

3.2 Registration

Consider the registration protocol shown in �gure Figure 2. The following steps are involved in

registration:

1. The client issues a registration request to the authentication server. This request contains the

username of the user trying to register. The authentication server �rst checks if there already

exists an entry for that particular username in the username-database servers table. If so,

registration fails and the client is noti�ed. Otherwise, the authentication server creates a new

entry for the user in the username-database servers table. This table stores a list of n tuples

for each user in which the �rst element in each tuple is the address of a database server and

the second element is a randomly chosen challenge point.

2. The authentication server responds to the registration request with a list of n (database server,

random challenge point) tuples that tell the client which databases it needs to talk to, along

with the corresponding challenge points. The n database servers are chosen randomly from the

pool of database servers available and recorded in the username-database server table. The

authentication server also sends the client a digitally signed token containing the username.

This token is used by the client to communicate with the database servers.

3



SplitSecure

Figure 2: The registration protocol in our distributed password storage system.

3. The client then chooses random numbers A and B and hashes the entered password to obtain

a number C. The client constructs the polynomial P (x) = Ax2 + Bx + C, which is then

evaluated at the challenge points obtained from the authentication server. These evaluated

values (password shares) along with the client's username are then sent to the corresponding

database servers. Communication between the client and authentication/database servers is

protected by SSL to maintain secrecy and authenticity.

4. Each database server processes the request it gets from the client by storing the value obtained

from the client (a password share) in a table mapping usernames to password shares. Before

processing a request, the database server veri�es the signed username in the token presented

by the user.

5. Each database server noti�es the authentication server of successful registration

6. The authentication server noti�es the client that the registration was successful if it receives

a successful registration signal from all the n database servers

3.3 Authentication

Consider the authentication protocol shown in �gure Figure 3. The following steps are involved in

authentication:

1. The client issues an authentication request to the authentication server. This request contains

the username of the client. Using this username, the authentication server performs a lookup

in the username-database servers table.

4



SplitSecure

Figure 3: The authentication protocol in our distributed password storage system for k = 3.

2. The authentication server responds to the authentication request with a list of database servers

that the client needs to talk to, together with the challenge points associated with those

database servers. This list consists of k of the n database servers containing the user's password

shares. To balance the load, the k database servers are chosen so that the more loaded database

servers are less likely to be chosen. The authentication server also sends the client a digitally

signed token containing the username. This token is used by the client to communicate with

the database servers.

3. The client chooses random numbers a and b and hashes the password just entered by the

user to obtain a number c (Note that these random numbers are di�erent from those used

during registration - A and B). The client constructs the polynomial Q(x) = ax2 + bx + c

and then evaluates the polynomial Q at the challenge points obtained from the authentica-

tion server. These evaluated points are then sent (along with the client's username) to the

corresponding database servers. As with registration, communication between the client and

authentication/database servers is protected by SSL to maintain secrecy and authenticity.

4. Each database server processes the request it gets from the client by computing the di�erence

Dk between the value stored in the database and the value obtained from the client. These

di�erences are then sent to the authentication server, where the authentication process actu-

ally happens. Before processing a request, the database server veri�es the signed username

in the token presented by the user. The communication between the database servers and

authentication servers is encrypted with a symmetric key that is renewed periodically.

5. The authentication server rewrites each di�erence as a polynomial with unknown coe�cients.

5



SplitSecure

It then assumes that the password is correct, thus obtaining a system of k equations and k−1

unknowns. By choosing di�erent subsets of these equations, solving for the unknowns, and

comparing the results, the authentication server can verify whether the password is correct.

The steps involved in this computation are illustrated for k = 3 in �gure Figure 3.

6. The authentication server noti�es the client whether the authentication was successful or not.

4 Implementation

We implemented a simple prototype of our design to serve as a proof-of-concept. We implemented

the authentication server and database servers as python HTTP servers. We developed a client with

a simple user interface. We used Javascript to perform all the client-side computation.

Figure 4: User interface of our prototype implementation

The security of our design is based on the assumption that successfully compromising one

6



SplitSecure

database server doesn't make it any easier to compromise any of the other database servers. There-

fore, successful implementation requires enforcing strong isolation between the database servers.

One way of achieving this is to virtualize the database servers using di�erent operating systems. For

the purposes of our prototype, we assumed that such isolation methods were already in use.

5 Analysis

5.1 Security

• Authentication Server Attacks:

Since no passwords are stored on the authentication server, the adversary doesn't obtain any

passwords by compromising the authentication server. Further, the authentication servers only

obtain the di�erences of shares from the database servers and the password isn't reconstructed

during authentication. Even if an adversary listens to all communications with the client

and aggregation servers, he doesn't obtain any sensitive information. In the worst case, an

adversary could misdirect a client to a false database server, but such an database server would

be unable to present a valid certi�cate to the client. Therefore the worst thing an adversary

could do is to mount a denial-of-service attack.

• Database Server Attacks:

Since each database only stores a single share of each password, the adversary doesn't obtain

any sensitive information by attacking a few database servers. Compromising a database server

would only give the attacker values of arbitrary polynomials evaluated at the challenge points.

The challenge points can easily be obtained by simply querying the authentication server.

However, a share stored in a database server provides no information about the polynomial

(and therefore the password) even if the corresponding challenge point is known. An adversary

needs to compromise k database servers in order to obtain any complete passwords since k

points are necessary in order to determine a k − 1 degree polynomial. The constant term of

the polynomial (which is the hashed password) cannot be determined without reconstructing

the entire polynomial.

5.2 Performance

Even though our scheme is more computationally expensive than a normal authentication scheme

we don't believe that this excess computation is a major drawback. The excess computation is quite

simple and there exist several e�cient algorithms to perform this computation. Besides the standard

cryptographic computations needed to make sure that data is sent securely over the network, the

additional computation that our design introduces is two-fold - the client now has to evaluate a

polynomial at n di�erent points and the server needs to solve systems of linear equations. Eval-

uating the polynomial isn't very computationally intensive (especially for low degree polynomials)

so the client isn't burdened by heavy computations. Solving the system of linear equations is more

expensive, but this can be done reasonably e�ciently using optimized matrix operations.

7



SplitSecure

However, our system consumes signi�cantly more network bandwidth than ordinary authentica-

tion schemes. To authenticate itself, the client needs to make k requests (+1 depending on the exact

implementation) in our design instead of just a single request in normal authentication schemes.

Since the data being sent in each request is small, for small values of k, we believe that this overhead

is quite insigni�cant. The authentication server also needs to communicate with k database servers.

For a large-scale system, this could be a signi�cant overhead.

While there will certainly be an increase in the time taken for authentication, we don't expect

this impact to signi�cantly a�ect user experience. Even though we simulated some load, it was hard

to get a quantitative measure of the impact on authentication time from our prototype. The fact

that our scheme is scalable and allows load balancing makes it possible to implement the scheme

in a way that minimizes the impact on authentication time. Further, we expect this system to be

primarily used in cases where users' credentials are extremely valuable, so we believe that a slight

increase in authentication time is acceptable.

5.3 Hardware Overhead

Our system requires powerful and robust authentication servers because they perform most of the

computation. The authentication server also needs to store the database servers and challenge points

corresponding to users so it needs to have a database associated with it. A complete large-scale

implementation of our scheme would have multiple authentication servers.

Although database servers don't perform any intense computation, they handle requests directly

from users and need to be capable of handling load. Our k-out-of-n scheme allows us for database

fault-tolerance to be built into the implementation.

6 Conclusion

Using Shamir's k-out-of-n secret sharing scheme, we were able to design a password storage system

that is more scalable than RSA's uted Credential Protection (DCP) at the cost of some extra

computational overhead. Unlike in DCP, there is no distinction database servers in our system.

By using a variation of Shamir's Secret Sharing scheme and treating all the databases equally, our

system allows load balancing.

Ultimately, both DCP and our system only make stealing passwords more di�cult on the server

side. The attacker can still steal the password directly from the user. However, recent security

breaches have shown that guarding credential databases against attacks is becoming an important

aspect of protecting users' credentials.

8



SplitSecure

References

[1] RSA Security: Distributed Credential Protection (DCP)

http://www.emc.com/collateral/software/white-papers/h11013-rsa-dcp-0812-wp.pdf

[2] Shamir, Adi: How to Share a Secret

http://dl.acm.org/citation.cfm?doid=359168.359176

9


	Abstract
	Related Work
	Distributed Credential Protection (DCP)
	Shamir's Secret Sharing Scheme

	Design
	Threat Model
	Registration
	Authentication

	Implementation
	Analysis
	Security
	Performance
	Hardware Overhead

	Conclusion

