Uncovering Undefined Behavior

Eric Lubin
eblubin@mit.edu

Jared Wong
Jjaredw(@mit.edu

December 13, 2013

1 Overview

In this project we study the effects of undefined behavior in
open source software and its ability to cause unstable code
to be optimized out by modern compilers.

Given the sheer number of software systems that contain
such errors, with about 50% of Debian packages reporting
over 80,000 different warnings, we attempted to begin the
process of filtering through these results.

With the help of Stack[3], we analyzed 85 packages,
from Debian and other locations, and submitted a total of
18 patches, of which 8 have been accepted thus far, with
the rest pending approval. This paper presents a case study
into the common mis-practices of many developers and has
helped us develop a rule-of-thumb heuristic as to which
types of bugs are more or less likely to be vulnerabilities.

In section] we review our working threat model and the
security implications of undefined behavior, in section 3 we
break down the observed bugs into a number of different
categories that loosely correspond to the types of bugs Stack
can detect, and in section i we wrap up and discuss future
areas of research.

2 Security Overview

2.1 Threat Model

When accessing the security implications of undefined be-
havior we assume that an attacker has complete knowledge
of the source code. Any optimization unsafe bugs that exist
are known to the attacker, and are able to be exploited if
possible.

2.2 Threats

Undefined behavior can lead to a number of common secu-
rity vulnerabilities. In our case study of undefined behav-
ior we observe pointer overflows, buffer overflows, inte-
ger overflows, uninitialized data, null pointer dereferences,
and infinite loops. In a recent case study from 2010 to mid
2011 [2] of the Linux kernel, these types of errors have been
shown to account for up to 70% of the CVE reports.

As compilers increasingly take advantage of undefined
behavior [3] and attackers continue to exploit behavior

caused by undefined behavior it is important for program-
mers to not use, intentionally or unintentionally, undefined
behavior.

3 Classification of Unstable Code

Generally, the bugs we found due to unstable code fell into
several main categories. First, null pointer dereferences
were the most common type of bug signaled by Stack but
did not alter correctness. Mixed in with these null pointer
dereferences were actual programmer errors due to acciden-
tally not dereferencing pointers for which they wanted their
value. Second, signed integer operation overflow checks
were another common source of developer misconception.
Thirdly, there were pointer overflow bugs. And finally,
there were a class of miscellaneous bugs related to divi-
sion by zero, buffer overflow by one, and shift left and right
overflow.

3.1 Null Pointer Dereference

The most common type of warning given by Stack was that
of the null pointer dereference. As the C standard states
[1f], dereferencing a null pointer is undefined, so modern
compilers use this standard to predict all previously derefer-
enced pointers are already non-null. Often times, program-
mers write redundant checks to verify something is non-
null. For example, a common practice we found was the
tendency for developers to check whether a pointer is null
before freeing it. Of course, since the pointer had already
been dereferenced previously, the check was immediately
optimized out. Of course, the free function accepts NULL
pointers as well and therefore we see that this check for non-
null acts as almost like a defensive programming behavior,
so Stack's warnings do not affect correctness or jeopardize
security in any way.

An entirely separate class of errors that Stack was able to
pick up on by chance were also categorized as null pointer
dereferences. Upon further review, these errors can be
best categorized as programmer error. In each case, the
developer had a pointer which was pointing some value
of interest. Due to carelessness, instead of dereferencing
the pointer to find its value, the code showed accidentally
checked whether the pointer itself was non-zero. Because
the pointer had already been dereferenced, Stack threw a

mailto:eblubin@mit.edu
mailto:jaredw@mit.edu

char *last_dot = strrchr(path, '.');
/* check if the strings ends in a period */
if (last_dot && (last_dot + 1 != '\0")) {...}

Figure 1: The above code snippet gives an example of a
programmer error in SVN. Having forgotten to dereference
(last_dot + 1), the compiler optimizes out the check against
null. STACK warns the user of this programming error.

warning. This fortuitous static checking ability turned out
to be quite useful, helping to find two bugs in SVN and one
in Audacity. The fixes for all of them were trivial and only
needed a single dereference on the pointer of interest, but it
is fascinating to see the power of Stack to pick up on other
sorts of programmer errors other than those it was intended
for. In Figure [l| below, we outline the programmer error
that Stack helped fix that went undetected for years.

3.2 Signed Integer Operation Overflow

According to the C standard [[1]], the overflow of signed in-
tegers results in undefined behavior. This standard allows
the compiler to make various sorts of optimizations that it
wouldn't normally have been able to make because it as-
sumes signed integer arithmetic cannot overflow. We found
that many developers incorrectly go out of their way to try
to catch these overflows. Instead of using constants like
INT_MAX, they assume that an overflow will wrap around to
its negative value and check to see if the sum is less than one
of the operands. Unfortunately, if they were to check this
with DEBUG on and no optimizations, it would probably
work, leading to a greater misunderstanding among devel-
opers about how to correctly check if a signed operation
will overflow.

3.2.1 Exploiting libcurl

In the following example, we see an instance of incorrect
signed integer overflow and its subsequent security impli-
cations for cURL's curl_parsedate. In Figure fl we see
a function that is public to the API for computing the time
stamp associated with a given string representation of the
date. First, the code parses the date string up to every-
thing but the time zone difference and stores the result into
a t of type time_t. Next, it validates that the time zone
is one of many available timezones specified in the header
file, or if not that it is within 14 hours ahead or behind of
GMT. The developer then is aware of the fact that adding
the offset to the original time might overflow the time, Un-
fortunately, seemingly unaware of the distinction between
signed-type overflows and how they are not guaranteed
to wrap around in the same way as their unsigned inte-
ger counterparts, the developer implements these overflow
checks incorrectly. The compiler, on sufficiently high opti-
mization levels, takes advantage of the fact that signed types
cannot overflow and then assumes that the addition will not

time_t t = /% ... %/ ;
/* Add the time zone diff between local time
zone and GMT. */
long delta = (long)(tzoff!=-1?tzoff:0);
if((delta > @) && (t + delta < t))
return -1; /* time_t overflow */
t += delta;

Figure 2: The above shows an unstable signed integer
check for overflow. Interestingly, The developer has gone
out of his way to write this check as evidenced by the com-
ment. Unfortunately this check is invalid and simply a com-
mon misconception, and the compiler then simplifies ¢+
delta < ¢ to delta < 0 and thus the compound expression
evaluates to false. There is a potential overflow in incre-
menting t by delta, which is never checked because the
compiler has optimized out the unstable code, and this over-
flow propagates outwards to any library calling this func-
tion without any chance of recovery.

char *exploit = "19 Jan 2038 03:14:07 -0200";
time_t time = curl_getdate(exploit, NULL);

Figure 3: The above shows a working exploit for the
curl_parsedate bug. Taking advantage of the undefined
behavior of signed integer overflow, the overflow goes un-
detected due to the unstable overflow check.

converge. With this optimization, checks like y + 250 < y
get simplified to false, thereby bypassing the extra security
checks that the developer put in for the whole sake of lim-
iting bugs.

In response, we wrote a simple exploit that seeks to take
advantage of the bug by overflowing t due to the time zone
difference. We assumed for the sake of simplicity that we
were working on a 32 bit machine so that our exploit date
string was a small date, but if we were on a 64 bit ma-
chine the exploit would work the same just the date would
have to about 290 billion years later. Our exploit, shown
in Figure B, passes in to the parsedate function a string
that represents the maximum representable timestamp with
a signed 32 bit integer: 03:14:07 UTC on Tuesday, 19 Jan-
uary 2038. We then append to this a timezone string such as
"-0200." When the code path is executed, ¢ is INT_MAX and
then 20*60*60 is added to it, which overflows. Since the
compiler optimized out the overflow check, this undefined
value can propagate outwards to any callers of this of this
library function and potentially have security implications
for them as well.

To patch this bug, we check instead for overflow by
checking for t < INT_MAX - delta, which fixes the bug
and successfully anticipates the overflow before it happens.

while ((line[i] != ":") && (line[i] != '\@")
&& (i < line_size)) { /* ... */ }

Figure 4: In this example, taken from GnuTLS, the loop is
iterating over the indices of the character buffer line. How-
ever, this code has a bug because the check to make sure
that the index is in bounds comes after access to the index.

do {
pos++;
size = read(fd, &buf[pos], 1);
VA ¥

} while ((buf[pos] != '\n') && (size > 0)
&& (pos < 256));

Figure 5: In this check, courtesy of Asunder, the index pos
is incremented inside of a do while loop, and then a check
to make sure the index is in bounds (pos < 256) is tacked
on to the end of a list of checks in the while clause. The
length of buf is only 256, so not only will there be an out-
of-bounds read in the while condition (buf [pos]), but there
will also be an out-of-bounds write in the call to read.

3.3 Buffer Overflow

A common cause for buffer overflows are out of order
checks when iterating over a buffer. In Figure § and Fig-
ure [§ we see examples of this mistake. In each case an out of
bounds location was accessed before a check to make sure
that the index being accessed was in bounds. The program-
mers clearly had good intentions, however, they mixed up
the order of their checks.

In the Asunder vulnerability it is possible to exploit the
code and force it to corrupt it's memory by ensuring that
the file descriptor being read from doesn't stall. Here the
file descriptor is simply the output of another third-party
program.

4 Conclusion

Overall, we have shown the value that Stack brings to the
suite of static checkers available to developers to verify
the correctness and stability of their code. Stack can even
present warnings to the developer that catch simple careless
error where certain pointers are not dereferenced, as was the
case with Subversion and Audacity.

Nonetheless, we have noticed the difficulty with discov-
ering legitimate exploits based on these undefined behav-
ior bugs. Amidst countless redundant null pointer deref-
erences, many such bugs are hidden numerous levels deep
from the outwards facing components in these packages.
As a result, the ability to propagate an invalid input into
such a bug and then exploit this bug is highly challenging.

In the future, we hope to take this research further. In
particular, we'd like to analyze more large scale packages

such as the llvm, julia, and latex packages. Given the time
and processor constraints of this project and the slight dif-
ficulty we had in compiling llvm in the first place for using
with Stack, we would like to be able to devote more time
into such an endeavor. Furthermore, while we liked having
access to all the Debian packages having already been an-
alyzed by Stack, we spent a lot of our time building other
packages and suppressing compiler warnings instead of an-
alyzing optck reports. In the past week, we have discussed
writing a harness into brew install in order to get Stack
results on a much larger variety of packages. Furthermore,
we want to focus on existing bugs to attempt to continue on
our quest for exploitable, public facing bugs.

References

[1] ISO/IEC 9899:2011, programming languages - c.
ISO/IEC, 2011.

[2] Haogang Chen, Yandong Mao, Xi Wang, Dong Zhou,
Nickolai Zeldovich, and M. Fraans Kaashoek. Linux
kernel vulnerabilities: State-of-the-art defenses and
open problems. ACM, 2011.

[3] Xi Wang, Nickolai Zeldovich, M. Fraans Kaashoek,
and Armando Solar-Lezama. Towards optimization
safe systems: Analyzing the impact of undefined be-
havior. SOSP, 2013.

	Overview
	Security Overview
	Threat Model
	Threats

	Classification of Unstable Code
	Null Pointer Dereference
	Signed Integer Operation Overflow
	Exploiting libcurl

	Buffer Overflow

	Conclusion

