
CAMELFS
An Encrypted File System to Secure Storage on Untrusted Remote Servers

E. Sila Sayan, Eric Soderstrom, Tiffany Tang
{erensila, e_k_s, fable}@mit.edu

6.858 Fall 2013

6.858 Final Project: CamelFS

CAMELFS
An Encrypted File System to Secure Storage on Untrusted Remote Servers

E.Sila Sayan, Eric Soderstrom, Tiffany Tang
6.858 Fall 2013

Abstract
CamelFS is an encrypted file system which allows users to store files on an untrusted server
without revealing file contents or names. The system also enables file sharing in read-only
or read-write permission modes. Some interesting design aspects are 1) Access control is de-
centralized by implementing permissions as capabilities attached to the resources them-
selves (i.e. carried in file meta-data), 2) A two-tier security approach which enlists the help of
the server in case it is cooperative and trustworthy, but doesn’t depend on it.

System Goals
(See Appendix A for full list of requirements system satisfies)

• Minimize number of keys that users must keep track of

• Two-tier Security : Don’t depend on an untrusted server for security, but allow system to
leverage server’s help if it is trusted.

Our Design Process
We knew from the start that given an untrusted server, we would want to design permis-
sions more like capabilities rather than UNIX-like access control lists. After all, with a
server that is not to be trusted, who would be in charge of enforcing the requirements of
these access control lists. Further, we did not want to assume a trusted third party, because
it seemed like that would be side-stepping the real problem.

To hide file names and contents from the server, we needed encryption. Clearly, the notion
of capabilities in this case was going to be distilled into cryptographic keys. In particular, we
observed the following natural correspondences between file permissions and security con-
cepts:

' Read permission <--> Data confidentiality --> Encryption

' Write permission <--> Data integrity --> Signing

6.858 Final Project: CamelFS

As such, a user with read permissions would need a decryption key, and a user with write
permissions would need a signature key as well as a decryption key, to be able to provide a
valid, verifiable signature upon modifying the file.

We went through several iterations of design as we tried to tame the beast that was the
problem of key exchange: To achieve file-level granularity for sharing and permissions, there
needed to be unique encryption and signature keys per file. We also needed unique keys per
user. Furthermore, we wanted to have as little out-of-band communication as possible to
simplify matters.

The idea we eventually settled upon had the following outline:

• Files carry their own associated encryption and signature keys (i.e. capabilities are
attached to the resources themselves)

• Files carry their own permission information, which express which users have access
to the file’s read and/or write capabilities (i.e. no central access control table neces-
sary)

• The permission information carried by the file is enforced cryptographically, without
a central authority having to marshal authorization decisions.

We further refined this idea and fleshed out the specifics of how to cryptographically en-
force permissions by referring to [1].

Another option for reducing the key management load could have been to take an approach
similar to that in [2], where the logical grouping is built around files, not users. That is, [2]
“groups files (not users)”. We chose not to go this route, as permissions based on users,
rather than filegroups, was a more familiar paradigm we found more natural and elegant to
work with.

The Final Design

6.858 Final Project: CamelFS

Table 1. Terminology

T E R M H I G H L E V E L
D E F I N I T I O N

File Contains the data that is to
be put on the server/shared

File log (f-log) Contains metadata about the
file, most important of
which is are “Access Blocks”.

Files and their corresponding
f-logs are associated by the
system.

Access Block Data structure that contains
permission information in
the form of username and
granted capabilities.

Directory log (d-log) Contains metadata about the
directory, much like an f-log.

Directories and their corre-
sponding d-logs are associ-
ated by the system.

Keys in the System

CamelFS has 3 unique keys per file, and 2 unique keys per user.

The File Encryption Key is an AES key which functions as a read-capability. The File Signa-
ture Key is a DSA key, which functions as write-capability. Though, since write-only permis-
sion doesn’t make sense, if a user has the File Signature Key for a file, he/she must also have
the File Encryption Key. The third file key, Block Encryption Key, is an AES key used for as
an intermediary for encryption to solve some kinks in implementation. (See note below Ta-
ble 3).

The User Encryption Key allows the keys for a file to be encrypted on a per user basis, such
that a user may have access to a file key only if it has been encrypted with their User En-
cryption Key and included in the file log (file logs and files explained in next section).

6.858 Final Project: CamelFS

Meanwhile, The User Signature Key allows the owner of a file to sign a file log, allowing re-
ceivers of this corresponding

Table 2. Unique Keys per User

K E Y D E S C R I P T I O N U S E D F O R

User Encryption Key RSA key pair Encrypting per file keys
meant for user in the the file
log’s access block

User Signature Key DSA key pair Signing file log if owner of
file

Table 3. Unique Keys per File

K E Y D E S C R I P T I O N U S E D F O R

File Encryption Key AES key Encrypting file contents

File Signature Key DSA key pair Signing hash of file contents

Block Encryption Key AES key Encrypting File Signature
Key *

* Note: The Block Encryption Key was needed to make the implementation work. A File
Signature Key needs to be signed by the RSA keys of those users who have write-
permission to the corresponding file. We found in practice that the DSA key generated for
file signatures was too long to be directly encrypted by an RSA key. Therefore, we have an
intermediary AES key with which to first encrypt the File Signature Key, and then sign
with appropriate users’ User Encryption Key.

File Structure in the System and Additional Data Structures

File and f-log

6.858 Final Project: CamelFS

Every file which contains data, also contains a hash of its contents signed by the File Signa-
ture Key.

For every file which contains some data, there’s an associated f-log file which contains meta-
data.

The f-log: Information Content

It contains information about:

' File owner

' List of users with whom file was shared

' File Signature Key (public portion)

' Timestamp of last modification of f-log

' Encrypted name of the associated file

For each user, including the owner, there is an Access Block which contains the:

' File Encryption Key

' File Signature Key : None if user doesn’t have write permission

' Block Signature Key: None if user doesn’t have write permission (see Note below Ta-
ble 3)

The f-log: Implementation

The f-log is a file which consists of a dictionary containing the above mentioned metadata,
and a signature of this dictionary at the end (signed by the file owner).

' Example.

' ' Assume file foo.txt owned by Alice.

' ' She wants to share this file:

' ' ' read-only with Bob' '

' ' ' read-write with Chris

Table 4 shows what information the dictionary in the corresponding f-log file, foo.txt.flog,
contains.

6.858 Final Project: CamelFS

Table 4. Contents of dictionary in foo.txt.flog

K E Y V A L U E C O M M E N T S

‘owner’ ‘Alice’

‘Alice’ Access Block for Alice by default, owner’s Access
Block always contains the
File Encryption Key, File
Signature Key, and Block
Encryption Key, all en-
crypted with owner’s User
Encryption Key

‘timestamp’ time f-log was last modified

‘encrypted_name’ string “foo.txt” encrypted
with foo.txt’s File Encryp-
tion Key

‘file_dsa_public’ Public portion of foo.txt’s
File Signature Key

‘users’ [‘bob’, ‘chris’]

‘bob’ Access Block for Bob Bob has read-only access. So
his Access Block contains
foo.txt’s File Encryption Key
encrypted with Bob’s User
Encryption Key

‘chris’ Access Block for Chris Chris has read-write access.
So his Access Block contains
foo.txt’s File Encryption Key,
File Signature Key, and Block
Encryption Key, all en-
crypted with Chris’s User
Encryption Key

Lastly, foo.txt.flog contains a hash of the dictionary signed by Alice’s User Signature Key.

Directory and d-log

Directories work just like they do in UNIX file systems. The directory and d-log relation is
analogous to the file and f-log relation.

6.858 Final Project: CamelFS

Access Block

An AccessBlock object contains a File Encryption Key, a File Signature Key and a Block En-
cryption Key. File Signature Key and Block Encryption Key are None if the object is cre-
ated for a user who only has read permission on the particular file.

In the AccessBlock object, the keys are all encrypted by the User Encryption Key of the
user for whom the the AccessBlock was created.

Key Exchange

The only keys that need to be exchanged out-of-band in our system are User Encryption and
User Signature public keys. We assume that the users will use a PGP key server to exchange
these keys.

Two-Tier Security

In case the server is not malicious, we would like to able to utilize it as a second layer of
“safety blanket”. As such, the server keeps two tables:

' User table contains: Usernames, hashed passwords and salts

' File table: For each file keeps track of users who have write permission, and users
who have read permission

If the server is non-malicious and cooperative, it can stop an attacker without read and/or
write permissions before the attacker tries to even read/write. Similarly, the server checks
that only the owner of a file or directory can delete it.

But it’s important to note that our system does not depend solely on this. The crypto-
graphic system we have described so far makes sure that even with a malicious server which
colludes with attackers or features an adversarial system administrator, the users can stop
and/or detect attacks mentioned in the project specification (Appendix A).

Prevention/Detection of Malicious Acts

User without read permissions cannot decrypt the file to read it.

6.858 Final Project: CamelFS

User without write permissions cannot produce valid signature for file.

Server cannot successfully use providing foo.txt when bar.txt is requested as an attack vector
because a) it cannot see decrypted filenames, so when user gets file and decrypts name, user
will see it was the wrong file, or b) if the server provides bar.txt.flog but foo.txt, the user
won’t be able to get the correct decryption key to read the file, so the attack will be useless.

Lastly, the system is set up such that all files in a user’s home and subdirectories are owned
by the user. So if the server maliciously tries to add a file to a user’s directory it will be de-
tected, as the server doesn’t know the user’s private key to be able impersonate him/her.

Limitations

CamelFS satisfies the requirements posed by the project specifications. There are, however,
improvements that we would’ve hoped to make had we had more time. For instance, with
the infrastructure that we’ve already built for CamelFS, it would be a natural next step to
add f-log freshness files with a Merkle tree implementation to make freshness guarantees.

We also haven’t explicitly implemented access revocation features, but our design makes it
easy to do so: The owner would just need to update the f-log/d-log files and also re-encrypt
the file/directory in question.

Conclusion

We implemented an encrypted file system that provides a Directory structure and basic
UNIX file operations, while maintaining confidentiality of file/directory names/contents.
The most interesting features of our design are that 1) We are approaching permissions as
capabilities implemented as cryptographic keys, and attaching the capabilities to the re-
sources themselves, 2) We are de-centralizing access-control by allowing each file/directory
to contain its own permission information, and relying on cryptography to enforce the ac-
cess control policy that these permissions define, 3) We are taking a two-tier approach to
security in the face of a possibly malicious server, i.e. we are not depending on the server for
security, but we are enlisting its help when we can.

Appendix A

Encrypted file system

6.858 Final Project: CamelFS

Your goal for this project idea is to develop a file system that allows users to store data on an
untrusted file server. The file server should not be able to obtain the user's plaintext data
(i.e., your file system should encrypt the data), and the file server should not be able to cor-
rupt the data either (i.e., your file system should authenticate the data it gets back from the
file server).

• Your file system should support many users, and allow users to share files with one an-
other. For each file, it should be possible to control the set of users who can read, and
who can write, to that file.

• At a minimum, your file system should meet the following requirements:

• Users can create, delete, read, write, rename files.

• The file system should support directories, much like the Unix file system.

• Users should be able to set permissions on files and directories, which also requires that
your file system be able to name users.

• File names (and directory names) should be treated as confidential.

• Users should not be able to modify files or directories without being detected, unless
they are authorized to do so.

• If the server is not malicious, unauthorized users should not be able to corrupt the file
system.

• The file server should not be able to read file content, file names, or directory names.

• The server should not be able to take data from one file and supply it in response to a
client reading a different file, without being detected.

• A malicious file server should not be able to create or delete files or directories without
being detected.

6.858 Final Project: CamelFS

BIBLIOGRAPHY

[1] Goh et al SiRiUS: Securing Remote Untrusted Storage

[2] Kallahalla et al Plutus: Scalable Secure File Sharing on
Untrusted Storage

6.858 Final Project: CamelFS

