
iOS Security
May 2012

2

Page 3 Introduction

Page 4 System Architecture
Secure Boot Chain
System Software Personalization
App Code Signing
Runtime Process Security

Page 7 Encryption and Data Protection
Hardware Security Features
File Data Protection
Passcodes
Classes
Keychain Data Protection
Keybags

Page 13 Network Security
SSL, TLS
VPN
Wi-Fi
Bluetooth

Page 15 Device Access
Passcode Protection
Configuration Enforcement
Mobile Device Management
Device Restrictions
Remote Wipe

Page 18 Conclusion
A Commitment to Security

Page 19 Glossary

Contents

Apple designed the iOS platform with security at its core. Keeping information secure
on mobile devices is critical for any user, whether they’re accessing corporate and customer
information or storing personal photos, banking information, and addresses. Because
every user’s information is important, iOS devices are built to maintain a high level of
security without compromising the user experience.

iOS devices provide stringent security technology and features, and yet also are easy to
use. The devices are designed to make security as transparent as possible. Many security
features are enabled by default, so IT departments don’t need to perform extensive
configurations. And some key features, like device encryption, are not configurable, so
users cannot disable them by mistake.

For organizations considering the security of iOS devices, it is helpful to understand
how the built-in security features work together to provide a secure mobile computing
platform.

iPhone, iPad, and iPod touch are designed with layers of security. Low-level hardware
and firmware features protect against malware and viruses, while high-level OS features
allow secure access to personal information and corporate data, prevent unauthorized
use, and help thwart attacks.

The iOS security model protects information while still enabling mobile use, third-party
apps, and syncing. Much of the system is based on industry-standard secure design
principles—and in many cases, Apple has done additional design work to enhance
security without compromising usability.

This document provides details about how security technology and features are
implemented within the iOS platform. It also outlines key elements that organizations
should understand when evaluating or deploying iOS devices on their networks.

• System architecture: The secure platform and hardware foundations of iPhone, iPad,
and iPod touch.

• Encryption and Data Protection: The architecture and design that protects the user’s
data when the device is lost or stolen, or when an unauthorized person attempts to
use or modify it.

• Network security: Industry-standard networking protocols that provide secure
authentication and encryption of data in transmission.

• Device access: Methods that prevent unauthorized use of the device and enable it
to be remotely wiped if lost or stolen.

iOS is based on the same core technologies as OS X, and benefits from years of
hardening and security development. The continued enhancements and additional
security features with each major release of iOS have allowed IT departments in
businesses worldwide to rapidly adopt and support iOS devices on their networks.

Device Key
Group Key

Apple Root Certificate

Crypto Engine

Kernel

OS Partition

User Partition

Data Protection Class

App Sandbox

Encrypted File System

Software

Hardware and
Firmware

Introduction

3

Security architecture diagram of iOS provides
a visual overview of the different technologies
discussed in this document.

Entering DFU mode
DFU mode can be entered manually by
connecting the device to a computer using
the 30-pin Dock Connector to USB Cable,
then holding down both the Home and
Sleep/Wake buttons. After 8 seconds have
elapsed, release the Sleep/Wake button while
continuing to hold down the Home button.
Note: Nothing will be displayed on the screen
when in DFU mode. If the Apple logo appears,
the Sleep/Wake button was held down for too
long. Restoring a device after entering DFU
mode returns it to a known good state with
the certainty that only unmodified Apple-
signed code is present.

4

The tight integration of hardware and software on iOS devices allows for the validation
of activities across all layers of the device. From initial boot-up to iOS software installation
and through to third-party apps, each step is analyzed and vetted to ensure that each
activity is trusted and uses resources properly.

Once the system is running, this integrated security architecture depends on the integrity
and trustworthiness of XNU, the iOS kernel. XNU enforces security features at runtime
and is essential to being able to trust higher-level functions and apps.

Secure Boot Chain
Each step of the boot-up process contains components that are cryptographically
signed by Apple to ensure integrity, and proceeds only after verifying the chain of
trust. This includes the bootloaders, kernel, kernel extensions, and baseband firmware.

When an iOS device is turned on, its application processor immediately executes code
from read-only memory known as the Boot ROM. This immutable code is laid down
during chip fabrication, and is implicitly trusted. The Boot ROM code contains the Apple
Root CA public key, which is used to verify that the Low-Level Bootloader (LLB) is signed
by Apple before allowing it to load. This is the first step in the chain of trust where each
step ensures that the next is signed by Apple. When the LLB finishes its tasks, it verifies
and runs the next-stage bootloader, iBoot, which in turn verifies and runs the iOS kernel.

This secure boot chain ensures that the lowest levels of software are not tampered
with, and allows iOS to run only on validated Apple devices.

If one step of this boot process is unable to load or verify the next, boot-up is stopped
and the device displays the “Connect to iTunes” screen. This is called recovery mode.
If the Boot ROM is not even able to load or verify LLB, it enters DFU (Device Firmware
Upgrade) mode. In both cases, the device must be connected to iTunes via USB and
restored to factory default settings. For more information on manually entering recovery
mode, see http://support.apple.com/kb/HT1808.

System Software Personalization
Apple regularly releases software updates to address emerging security concerns; these
updates are provided for all supported devices simultaneously. Users receive iOS update
notifications on the device and through iTunes, and updates are delivered wirelessly,
encouraging rapid adoption of the latest security fixes.

The boot process described above ensures that only Apple-signed code can be installed
on a device. To prevent devices from being downgraded to older versions that lack the
latest security updates, iOS uses a process called System Software Personalization. If
downgrades were possible, an attacker who gains possession of a device could install an
older version of iOS and exploit a vulnerability that’s been fixed in the newer version.

System Architecture

5

iOS software updates can be installed using iTunes or over-the-air (OTA) on the device.
With iTunes, a full copy of iOS is downloaded and installed. OTA software updates are
provided as deltas for network efficiency.

During an iOS install or upgrade, iTunes (or the device itself, in the case of OTA software
updates) connects to the Apple installation authorization server (gs.apple.com) and
sends it a list of cryptographic measurements for each part of the installation bundle
to be installed (for example LLB, iBoot, the kernel, and OS image), a random anti-replay
value (nonce), and the device’s unique ID (ECID).

The server checks the presented list of measurements against versions for which
installation is permitted, and if a match is found, adds the ECID to the measurement
and signs the result. The complete set of signed data from the server is passed to
the device as part of the install or upgrade process. Adding the ECID “personalizes”
the authorization for the requesting device. By authorizing and signing only for known
measurements, the server ensures that the update is exactly as provided by Apple.

The boot-time chain-of-trust evaluation verifies that the signature comes from Apple
and that the measurement of the item loaded from disk, combined with the device’s
ECID, matches what was covered by the signature.

These steps ensure that the authorization is for a specific device and that an old iOS
version from one device can’t be copied to another. The nonce prevents an attacker from
saving the server’s response and using it to downgrade a user’s device in the future.

App Code Signing
Once the iOS kernel has booted, it controls which user processes and apps can be run.
To ensure that all apps come from a known and approved source and have not been
tampered with, iOS requires that all executable code be signed using an Apple-issued
certificate. Apps provided with the device, like Mail and Safari, are signed by Apple.
Third-party apps must also be validated and signed using an Apple-issued certificate.
Mandatory code signing extends the concept of chain of trust from the OS to apps,
and prevents third-party apps from loading unsigned code resources or using self-
modifying code.

In order to develop and install apps on iOS devices, developers must register with
Apple and join the iOS Developer Program. The real-world identity of each developer,
whether an individual or a business, is verified by Apple before their certificate is
issued. This certificate enables developers to sign apps and submit them to the App
Store for distribution. As a result, all apps in the App Store have been submitted by an
identifiable person or organization, serving as a deterrent to the creation of malicious
apps. They have also been reviewed by Apple to ensure they operate as described
and don’t contain obvious bugs or other problems. In addition to the technology
already discussed, this curation process gives customers confidence in the quality of
the apps they buy.

Businesses also have the ability to write in-house apps for use within their organization
and distribute them to their employees. Businesses and organizations can apply to
the iOS Developer Enterprise Program (iDEP) with a D-U-N-S number. Apple approves
applicants after verifying their identity and eligibility. Once an organization becomes a
member of iDEP, it can register to obtain a provisioning profile that permits in-house
apps to run on devices it authorizes. Users must have the provisioning profile installed
in order to run the in-house apps. This ensures that only the organization’s intended
users are able to load the apps onto their iOS devices.

6

Unlike other mobile platforms, iOS does not allow users to install potentially malicious
unsigned apps from websites, or run untrusted code. At runtime, code signature checks
of all executable memory pages are made as they are loaded to ensure that an app
has not been modified since it was installed or last updated.

Runtime Process Security
Once an app is verified to be from an approved source, iOS enforces security measures
to ensure that it can’t compromise other apps or the rest of the system.

All third-party apps are “sandboxed,” so they are restricted from accessing files stored
by other apps or from making changes to the device. This prevents apps from gathering
or modifying information stored by other apps. Each app has a unique home directory
for its files, which is randomly assigned when the app is installed. If a third-party app
needs to access information other than its own, it does so only by using application
programming interfaces (APIs) and services provided by iOS.

System files and resources are also shielded from the user’s apps. The majority of
iOS runs as the non-privileged user “mobile,” as do all third-party apps. The entire OS
partition is mounted read-only. Unnecessary tools, such as remote login services, aren’t
included in the system software, and APIs do not allow apps to escalate their own
privileges to modify other apps or iOS itself.

Access by third-party apps to user information and features such as iCloud is controlled
using declared entitlements. Entitlements are key/value pairs that are signed in to an
app and allow authentication beyond runtime factors like unix user ID. Since entitle-
ments are digitally signed, they cannot be changed. Entitlements are used extensively
by system apps and daemons to perform specific privileged operations that would
otherwise require the process to run as root. This greatly reduces the potential for
privilege escalation by a compromised system application or daemon.

In addition, apps can only perform background processing through system-provided
APIs. This enables apps to continue to function without degrading performance or
dramatically impacting battery life. Apps can’t share data directly with each other;
sharing can be implemented only by both the receiving and sending apps using
custom URL schemes, or through shared keychain access groups.

Address space layout randomization (ASLR) protects against the exploitation of memory
corruption bugs. Built-in apps use ASLR to ensure that all memory regions are random-
ized upon launch. Additionally, system shared library locations are randomized at each
device startup. Xcode, the iOS development environment, automatically compiles
third-party programs with ASLR support turned on.

Further protection is provided by iOS using ARM’s Execute Never (XN) feature, which
marks memory pages as non-executable. Memory pages marked as both writable and
executable can be used only by apps under tightly controlled conditions: The kernel
checks for the presence of the Apple-only “dynamic-codesigning” entitlement. Even
then, only a single mmap call can be made to request an executable and writable page,
which is given a randomized address. Safari uses this functionality for its JavaScript
JIT compiler.

7

The secure boot chain, code signing, and runtime process security all help to ensure
that only trusted code and apps can run on a device. iOS has additional security features
to protect user data, even in cases where other parts of the security infrastructure have
been compromised (for example, on a device with unauthorized modifications). Like
the system architecture itself, these encryption and data protection capabilities use layers
of integrated hardware and software technologies.

Hardware Security Features
On mobile devices, speed and power efficiency are critical. Cryptographic operations
are complex and can introduce performance or battery life problems if not designed
and implemented correctly.

Every iOS device has a dedicated AES 256 crypto engine built into the DMA path
between the flash storage and main system memory, making file encryption highly
efficient. Along with the AES engine, SHA-1 is implemented in hardware, further reducing
cryptographic operation overhead.

The device’s unique ID (UID) and a device group ID (GID) are AES 256-bit keys fused
into the application processor during manufacturing. No software or firmware can
read them directly; they can see only the results of encryption or decryption opera-
tions performed using them. The UID is unique to each device and is not recorded by
Apple or any of its suppliers. The GID is common to all processors in a class of devices
(for example, all devices using the Apple A5 chip), and is used as an additional level of
protection when delivering system software during installation and restore. Burning
these keys into the silicon prevents them from being tampered with or bypassed, and
guarantees that they can be accessed only by the AES engine.

The UID allows data to be cryptographically tied to a particular device. For example,
the key hierarchy protecting the file system includes the UID, so if the memory chips
are physically moved from one device to another, the files are inaccessible. The UID is
not related to any other identifier on the device.

Apart from the UID and GID, all other cryptographic keys are created by the system’s
random number generator (RNG) using an algorithm based on Yarrow. System entropy
is gathered from interrupt timing during boot, and additionally from internal sensors
once the device has booted.

Securely erasing saved keys is just as important as generating them. It’s especially
challenging to do so on flash storage, where wear-leveling might mean multiple
copies of data need to be erased. To address this issue, iOS devices include a feature
dedicated to secure data erasure called Effaceable Storage. This feature accesses the
underlying storage technology (for example, NAND) to directly address and erase a
small number of blocks at a very low level.

Encryption and Data
Protection

Erase all content and settings
The “Erase all content and settings” option in
Settings obliterates all the keys in Effaceable
Storage, rendering all user data on the device
cryptographically inaccessible. Therefore, it’s
an ideal way to be sure all personal informa-
tion is removed from a device before giving
it to somebody else or returning it for service.
Important: Do not use the “Erase all content
and settings” option until the device has been
backed up, as there is no way to recover the
erased data.

8

File Data Protection
In addition to the hardware encryption features built into iOS devices, Apple uses
a technology called Data Protection to further protect data stored in flash memory
on the device. This technology is designed with mobile devices in mind, taking into
account the fact that they may always be turned on and connected to the Internet,
and may receive phone calls, text, or emails at any time.

Data Protection allows a device to respond to events such as incoming phone calls
without decrypting sensitive data and downloading new information while locked.
These individual behaviors are controlled on a per-file basis by assigning each file to
a class, as described in the Classes section later in document.

Data Protection protects the data in each class based on when the data needs to be
accessed. Accessibility is determined by whether the class keys have been unlocked.

Data Protection is implemented by constructing and managing a hierarchy of keys,
and builds on the hardware encryption technologies previously described.

Architecture overview
Every time a file on the data partition is created, Data Protection creates a new 256-bit
key (the “per-file” key) and gives it to the hardware AES engine, which uses the key to
encrypt the file as it is written to flash memory using AES CBC mode. The initialization
vector (IV) is the output of a linear feedback shift register (LFSR) calculated with the
block offset into the file, encrypted with the SHA-1 hash of the per-file key.

The per-file key is wrapped with one of several class keys, depending on the circum-
stances under which the file should be accessible. Like all other wrappings, this is
performed using NIST AES key wrapping, per RFC 3394. The wrapped per-file key is
stored in the file’s metadata.

When a file is opened, its metadata is decrypted with the file system key, revealing
the wrapped per-file key and a notation on which class protects it. The per-file key
is unwrapped with the class key, then supplied to the hardware AES engine, which
decrypts the file as it is read from flash memory.

The metadata of all files in the file system are encrypted with a random key, which is
created when iOS is first installed or when the device is wiped by a user. The file system
key is stored in Effaceable Storage. Since it’s stored on the device, this key is not used
to maintain the confidentiality of data; instead, it’s designed to be quickly erased on
demand (by the user, with the “Erase all content and settings” option, or by a user or
administrator issuing a remote wipe command from a Mobile Device Management
server, Exchange ActiveSync, or iCloud). Erasing the key in this manner renders all files
cryptographically inaccessible.

Passcode considerations
If a long password that contains only
numbers is entered, a numeric keypad
is displayed at the Lock screen instead
of the full keyboard. A longer numeric
passcode may be easier to enter than a
shorter alphanumeric passcode, while
providing similar security.

Creating strong Apple ID passwords
Apple IDs are used to connect to a number
of services including iCloud, FaceTime, and
iMessage. To help users create strong
passwords, all new accounts must contain
the following password attributes:
• At least eight characters
• At least one letter
• At least one uppercase letter
• At least one number
• No more than three consecutive

identical characters
• Not the same as the account name

9

File Contents
File Metadata

File Key

File System Key

Class Key

User Passcode

Device UID

The content of a file is encrypted with a per-file key, which is wrapped with a class key
and stored in a file’s metadata, which is in turn encrypted with the file system key. The
class key is protected with the hardware UID and, for some classes, the user’s passcode.
This hierarchy provides both flexibility and performance. For example, changing a file’s
class only requires rewrapping its per-file key, and a change of passcode just rewraps
the class key.

Passcodes
By setting up a device passcode, the user automatically enables Data Protection.
iOS supports four-digit and arbitrary-length alphanumeric passcodes. In addition to
unlocking the device, a passcode provides the entropy for encryption keys, which are
not stored on the device. This means an attacker in possession of a device can’t get
access to data in certain protection classes without the passcode.

The passcode is “tangled” with the device’s UID, so brute-force attempts must be
performed on the device under attack. A large iteration count is used to make each
attempt slower. The iteration count is calibrated so that one attempt takes approximately
80 milliseconds. This means it would take more than 5½ years to try all combinations
of a six-character alphanumeric passcode with lowercase letters and numbers, or
2½ years for a nine-digit passcode with numbers only.

To further discourage brute-force passcode attacks, the iOS interface enforces escalating
time delays after the entry of an invalid passcode at the Lock screen. Users can choose
to have the device automatically wiped after 10 failed passcode attempts. This setting is
also available as an administrative policy through Mobile Device Management (MDM)
and Exchange ActiveSync, and can also be set to a lower threshold.

10

Classes
When a new file is created on an iOS device, it’s assigned a class by the app that creates
it. Each class uses different policies to determine when the data is accessible. The basic
classes and policies are as follows:

Complete Protection
(NSFileProtectionComplete): The class key is protected with a key derived from the
user passcode and the device UID. Shortly after the user locks a device (10 seconds,
if the Require Password setting is Immediately), the decrypted class key is discarded,
rendering all data in this class inaccessible until the user enters the passcode again.

The Mail app implements Complete Protection for messages and attachments. App
launch images and location data are also stored with Complete Protection.

Protected Unless Open
(NSFileProtectionCompleteUnlessOpen): Some files may need to be written while
the device is locked. A good example of this is a mail attachment downloading in the
background. This behavior is achieved by using asymmetric elliptic curve cryptography
(ECDH over Curve25519). Along with the usual per-file key, Data Protection generates
a file public/private key pair. A shared secret is computed using the file’s private key
and the Protected Unless Open class public key, whose corresponding private key is
protected with the user’s passcode and the device UID. The per-file key is wrapped
with the hash of this shared secret and stored in the file’s metadata along with the
file’s public key; the corresponding private key is then wiped from memory. As soon
as the file is closed, the per-file key is also wiped from memory. To open the file again,
the shared secret is re-created using the Protected Unless Open class’s private key and
the file’s ephemeral public key; its hash is used to unwrap the per-file key, which is
then used to decrypt the file.

Protected Until First User Authentication
(NSFileProtectionCompleteUntilFirstUserAuthentication): This class behaves in
the same way as Complete Protection, except that the decrypted class key is not
removed from memory when the device is locked. The protection in this class has
similar properties to desktop full-disk encryption, and protects data from attacks
that involve a reboot.

No Protection
(NSFileProtectionNone): This class key is protected only with the UID, and is kept
in Effaceable Storage. This is the default class for all files not otherwise assigned to a
Data Protection class. Since all the keys needed to decrypt files in this class are stored
on the device, the encryption only affords the benefit of fast remote wipe. If a file is
not assigned a Data Protection class, it is still stored in encrypted form (as is all data
on an iOS device).

The iOS Software Development Kit (SDK) offers a full suite of APIs that make it easy for
third-party and in-house developers to adopt Data Protection and ensure the highest
level of protection in their apps. Data Protection is available for file and database APIs,
including NSFileManager, CoreData, NSData, and SQLite.

Components of a keychain item
Along with the access group, each keychain
item contains administrative metadata (such
as “created” and “last updated” time stamps).
It also contains SHA-1 hashes of the attributes
used to query for the item (such as the
account and server name) to allow lookup
without decrypting each item. And finally, it
contains the encryption data, which includes
the following:
• Version number
• Value indicating which protection class

the item is in
• Per-item key wrapped with the protection

class key
• Dictionary of attributes describing the

item (as passed to SecItemAdd), encoded
as a binary plist and encrypted with the
per-item key

The encryption is AES 128 in GCM (Galois/
Counter Mode); the access group is included
in the attributes and protected by the GMAC
tag calculated during encryption.

11

Keychain Data Protection
Many apps need to handle passwords and other short but sensitive bits of data, such
as keys and login tokens. The iOS keychain provides a secure way to store these items.

The keychain is implemented as a SQLite database stored on the file system in the
No Protection class, while its security is provided by a different key hierarchy that
runs parallel to the key hierarchy used to protect files. There is only one database;
the securityd daemon determines which keychain items each process or app can
access. Keychain access APIs result in calls to the securityd framework, which queries
the app’s “keychain-access-groups” and the “application-identifier” entitlement. Rather
than limiting access to a single process, access groups allow keychain items to be
shared between apps.

Keychain items can only be shared between apps from the same developer. This is
managed by requiring third-party apps to use access groups with a prefix allocated to
them through the iOS Developer Program. The prefix requirement is enforced through
code signing and provisioning profiles.

Keychain data is protected using a class structure similar to the one used in file Data
Protection. These classes have behaviors equivalent to file Data Protection classes, but
use distinct keys and are part of APIs that are named differently.

Availability File Data Protection Keychain Data Protection

When unlocked NSFileProtectionComplete kSecAttrAccessibleWhenUnlocked

While locked NSFileProtectionCompleteUnlessOpen N/A

After first unlock NSFileProtectionCompleteUntilFirstUserAuthentication kSecAttrAccessibleAfterFirstUnlock

Always NSFileProtectionNone kSecAttrAccessibleAlways

Each keychain class has a “This device only” counterpart, which is always protected
with the UID when being copied from the device during a backup, rendering it useless
if restored to a different device.

Apple has carefully balanced security and usability by choosing keychain classes that
depend on the type of information being secured and when it’s needed by the OS.
For example, a VPN certificate must always be available so the device keeps a continuous
connection, but it’s classified as “non-migratory,” so it can’t be moved to another device.

For keychain items created by iOS, the following class protections are enforced:

Item Accessible

Wi-Fi passwords After first unlock

Mail accounts After first unlock

Exchange accounts After first unlock

VPN certificates Always, non-migratory

VPN passwords After first unlock

LDAP, CalDAV, CardDAV After first unlock

iTunes backup When unlocked, non-migratory

Voicemail Always

Safari passwords When unlocked

Bluetooth keys Always, non-migratory

Apple Push Notification Service Token Always, non-migratory

iCloud certificates and private key Always, non-migratory

iMessage keys Always, non-migratory

Certificates and private keys installed by Configuration Profile Always, non-migratory

SIM PIN Always, non-migratory

Components of a keybag
A header containing:
• Version (set to 3 in iOS 5)
• Type (System, Backup, Escrow, or iCloud

Backup)
• Keybag UUID
• An HMAC if the keybag is signed
• The method used for wrapping the class

keys: tangling with the UID or PBKDF2,
along with the salt and iteration count

A list of class keys:
• Key UUID
• Class (which file or keychain Data Protection

class this is)
• Wrapping type (UID-derived key only;

UID-derived key and passcode-derived key)
• Wrapped class key
• Public key for asymmetric classes

12

Keybags

The keys for both file and keychain Data Protection classes are collected and
managed in keybags. iOS uses the following four keybags: System, Backup, Escrow,
and iCloud Backup.

System keybag is where the wrapped class keys used in normal operation of the
device are stored. For example, when a passcode is entered, the NSFileProtectionComplete
key is loaded from the system keychain and unwrapped. It is a binary plist stored
in the No Protection class, but whose contents are encrypted with a key held in
Effaceable Storage. In order to give forward security to keybags, this key is wiped
and regenerated each time a user changes a passcode. The System keybag is the
only keybag stored on the device. The AppleKeyStore kernel extension manages the
System keybag, and can be queried regarding a device’s lock state. It reports that the
device is unlocked only if all the class keys in the System are accessible, having been
unwrapped successfully.

Backup keybag is created when an encrypted backup is made by iTunes and stored
on the computer to which the device is backed up. A new keybag is created with
a new set of keys, and the backed-up data is re-encrypted to these new keys. As
explained earlier, non-migratory keychain items remain wrapped with the UID-derived
key, allowing them to be restored to the device they were originally backed up from,
but rendering them inaccessible on a different device.

The keybag is protected with the password set in iTunes, run through 10,000 iterations
of PBKDF2. Despite this large iteration count, there’s no tie to a specific device, and
therefore a brute-force attack parallelized across many computers can be attempted
on the backup keybag. This threat can be mitigated with a sufficiently strong password.

If a user chooses to not encrypt an iTunes backup, the backup files are not encrypted
regardless of their Data Protection class, but the keychain remains protected with a
UID-derived key. This is why keychain items migrate to a new device only if a backup
password is set.

Escrow keybag is used for iTunes syncing and Mobile Device Management (MDM).
This keybag allows iTunes to back up and sync without requiring the user to enter a
passcode, and it allows an MDM server to remotely clear a user’s passcode. It is stored
on the computer that’s used to sync with iTunes, or on the MDM server that manages
the device.

The Escrow keybag improves the user experience during device synchronization,
which potentially requires access to all classes of data. When a passcode-locked device
is first connected to iTunes, the user is prompted to enter a passcode. The device
then creates an Escrow keybag and passes it to the host. The Escrow keybag contains
exactly the same class keys used on the device, protected by a newly generated key.
This key is needed to unlock the Escrow keybag, and is stored on the device in the
Protected Until First User Authentication class. This is why the device passcode must
be entered before backing up with iTunes for the first time after a reboot.

iCloud Backup keybag is similar to the Backup keybag. All the class keys in this keybag
are asymmetric (using Curve25519, like the Protected Unless Open Data Protection class),
so iCloud backups can be performed in the background. For all Data Protection classes
except No Protection, the encrypted data is read from the device and sent to iCloud.
The corresponding class keys are protected by iCloud keys. The keychain class keys are
wrapped with a UID-derived key in the same way as an unencrypted iTunes backup.

13

In addition to the measures Apple has taken to protect data stored on iOS devices,
there are many network security measures that organizations can take to safeguard
information as it travels to and from an iOS device.

Mobile users must be able to access corporate information networks from anywhere
in the world, so it’s important to ensure they are authorized and that their data is
protected during transmission. iOS uses—and provides developer access to—standard
networking protocols for authenticated, authorized, and encrypted communications.
iOS provides proven technologies and the latest standards to accomplish these security
objectives for both Wi-Fi and cellular data network connections.

On other platforms, firewall software is needed to protect numerous open communication
ports against intrusion. Because iOS achieves a reduced attack surface by limiting listening
ports and removing unnecessary network utilities such as telnet, shells, or a web server,
it doesn’t need firewall software. Additionally, communication using iMessage, FaceTime,
and the Apple Push Notification Server is fully encrypted and authenticated.

SSL, TLS
iOS supports Secure Socket Layer (SSL v3) as well as Transport Layer Security (TLS v1.1,
TLS v1.2) and DTLS. Safari, Calendar, Mail, and other Internet applications automatically
use these mechanisms to enable an encrypted communication channel between the
device and network services. High-level APIs (such as CFNetwork) make it easy for
developers to adopt TLS in their apps, while low-level APIs (SecureTransport) provide
fine-grained control.

VPN
Secure network services like virtual private networking typically require minimal setup
and configuration to work with iOS devices. iOS devices work with VPN servers that
support the following protocols and authentication methods:

• Juniper Networks, Cisco, Aruba Networks, SonicWALL, Check Point, and F5 Networks
SSL-VPN using the appropriate client app from the App Store. These apps provide user
authentication for the built-in iOS support.

• Cisco IPSec with user authentication by Password, RSA SecurID or Cryptocard, and
machine authentication by shared secret and certificates. Cisco IPSec supports VPN
On Demand for domains that are specified during device configuration.

• L2TP/IPSec with user authentication by MS-CHAPV2 Password, RSA SecurID or
Cryptocard, and machine authentication by shared secret.

• PPTP with user authentication by MS-CHAPV2 Password and RSA SecurID or Cryptocard.

Network Security

14

iOS supports VPN On Demand for networks that use certificated-based authentication.
IT policies specify which domains require a VPN connection by using a configuration
profile.

For more information on VPN server configuration for iOS devices, see
http://help.apple.com/iosdeployment-vpn/.

Wi-Fi
iOS supports industry-standard Wi-Fi protocols, including WPA2 Enterprise, to provide
authenticated access to wireless corporate networks. WPA2 Enterprise uses 128-bit
AES encryption, giving users the highest level of assurance that their data remains
protected when sending and receiving communications over a Wi-Fi network
connection. With support for 802.1X, iOS devices can be integrated into a broad
range of RADIUS authentication environments. 802.1X wireless authentication
methods supported on iPhone and iPad include EAP-TLS, EAP-TTLS, EAP-FAST,
EAP-SIM, PEAPv0, PEAPv1, and LEAP.

Bluetooth
Bluetooth support in iOS has been designed to provide useful functionality without
unnecessary increased access to private data. iOS devices support Encryption Mode 3,
Security Mode 4, and Service Level 1 connections. iOS supports the following Bluetooth
profiles:

• Hands-Free Profile (HFP 1.5)
• Phone Book Access Profile (PBAP)
• Advanced Audio Distribution Profile (A2DP)
• Audio/Video Remote Control Profile (AVRCP)
• Personal Area Network Profile (PAN)
• Human Interface Device Profile (HID)

Support for these profiles varies by device. For more information, see
http://support.apple.com/kb/ht3647.

15

iOS supports flexible security policies and configurations that are easily enforced and
managed. This enables enterprises to protect corporate information and ensure that
employees meet enterprise requirements, even if they are using devices they’ve
provided themselves.

Passcode Protection
In addition to providing the cryptographic protection discussed earlier, passcodes
prevent unauthorized access to the device’s UI. The iOS interface enforces escalating
time delays after the entry of an invalid passcode, dramatically reducing the effective-
ness of brute force attacks via the Lock screen. Users can choose to have the device
automatically wiped after 10 failed passcode attempts. This setting is available as an
administrative policy and can also be set to a lower threshold through MDM and
Exchange ActiveSync.

By default, the user’s passcode can be defined as a four-digit PIN. Users can specify a
longer, alphanumeric passcode by turning on Settings > General > Passcode > Complex
Passcode. Longer and more complex passcodes are harder to guess or attack, and are
recommended for enterprise use.

Administrators can enforce complex passcode requirements and other policies using
MDM or Exchange ActiveSync, or by requiring users to manually install configuration
profiles. The following passcode policies are available:

• Allow simple value
• Require alphanumeric value
• Minimum passcode length
• Minimum number of complex characters
• Maximum passcode age
• Passcode history
• Auto-lock timeout
• Grace period for device lock
• Maximum number of failed attempts

For details about each policy, see the iPhone Configuration Utility documentation at
http://help.apple.com/iosdeployment-ipcu/.

Configuration Enforcement
A configuration profile is an XML file that allows an administrator to distribute configu-
ration information to iOS devices. Settings that are defined by an installed configuration
profile can’t be changed by the user. If the user deletes a configuration profile, all the
settings defined by the profile are also removed. In this manner, administrators can

Device Access

16

enforce settings by tying policies to access. For example, a configuration profile that
provides an email configuration can also specify a device passcode policy. Users won’t
be able to access mail unless their passcodes meet the administrator’s requirements.

An iOS configuration profile contains a number of settings that can be specified:

• Passcode policies
• Restrictions on device features (disabling the camera, for example)
• Wi-Fi settings
• VPN settings
• Email server settings
• Exchange settings
• LDAP directory service settings
• CalDAV calendar service settings
• Web clips
• Credentials and keys
• Advanced cellular network settings

Configuration profiles can be signed and encrypted to validate their origin, ensure
their integrity, and protect their contents. Configuration profiles are encrypted using
CMS (RFC 3852), supporting 3DES and AES-128.

Configuration profiles can also be locked to a device to completely prevent their
removal, or to allow removal only with a passcode. Since many enterprise users
personally own their iOS devices, configuration profiles that bind a device to an MDM
server can be removed—but doing so will also remove all managed configuration
information, data, and apps.

Users can install configuration profiles directly on their devices using the iPhone
Configuration Utility. Configuration profiles can be downloaded via email or
over-the-air using an MDM server.

Mobile Device Management
iOS support for MDM allows businesses to securely configure and manage scaled iPhone
and iPad deployments across their organizations. MDM capabilities are built on existing
iOS technologies such as Configuration Profiles, Over-the-Air Enrollment, and the Apple
Push Notification service. Using MDM, IT departments can enroll iOS devices in an
enterprise environment, wirelessly configure and update settings, monitor compliance
with corporate policies, and even remotely wipe or lock managed devices. For more
information on Mobile Device Management, visit www.apple.com/business/mdm.

Device Restrictions
Administrators can restrict device features by installing a configuration profile.
The following restrictions are available:

• Allow app installs
• Allow use of camera
• Allow FaceTime
• Allow screen capture
• Allow voice dialing
• Allow automatic sync while roaming
• Allow in-app purchases
• Force user to enter store password for all purchases
• Allow multiplayer gaming
• Allow adding Game Center Friends
• Allow Siri

17

• Allow Siri while device is locked
• Allow use of YouTube
• Allow use of iTunes Store
• Allow use of Safari
• Enable Safari autofill
• Force Fraudulent Website Warning
• Enable JavaScript
• Block pop-ups
• Accept cookies
• Allow iCloud backup
• Allow iCloud document sync
• Allow Photo Stream
• Allow diagnostics to be sent to Apple
• Allow user to accept untrusted TLS certificates
• Force encrypted backups
• Restrict media by content rating

Remote Wipe
iOS devices can be erased remotely by an administrator or user. Instant remote wiping
is achieved by securely discarding the block storage encryption key from Effaceable
Storage, rendering all data unreadable. Remote wiping can be initiated by MDM,
Exchange, or iCloud.

When remote wiping is triggered by MDM or iCloud, the device sends an acknowledg-
ment and performs the wipe. For remote wiping via Exchange, the device checks in
with the Exchange Server before performing the wipe.

Users can also wipe devices in their possession using the Settings app. And as
mentioned, devices can be set to automatically wipe after a series of failed
passcode attempts.

Conclusion

A Commitment to Security
Each component of the iOS security platform, from hardware to encryption to device
access, provides organizations with the resources they need to build enterprise-grade
security solutions. The sum of these parts gives iOS its industry-leading security features,
without making the device difficult or cumbersome to use.

Apple uses this security infrastructure throughout iOS and the iOS apps ecosystem.
Hardware-based storage encryption provides instant remote wipe capabilities when a
device is lost, and ensures that users can completely remove all corporate and personal
information when a device is sold or transferred to another owner. For the collection of
diagnostic information, unique identifiers are created to identify a device anonymously.

Safari offers safe browsing with its support for OCSP, EV certificates, and certificate veri-
fication warnings. Mail leverages certificates for authenticated and encrypted email by
supporting S/MIME. iMessage and FaceTime provide client-to-client encryption as well.

The combination of required code signing, sandboxing, and entitlements in apps
provides solid protection against viruses, malware, and other exploits that compromise
the security of other platforms. The App Store submission process works to further
protect users from these risks by reviewing every app before it’s made available for sale.

Businesses are encouraged to review their IT and security policies to ensure they are
taking full advantage of the layers of security technology and features offered by the
iOS platform.

Apple maintains a dedicated security team to support all Apple products. The team
provides security auditing and testing for products under development as well as
released products. The Apple team also provides security tools and training, and
actively monitors for reports of new security issues and threats. Apple is a member
of the Forum of Incident Response and Security Teams (FIRST). For information
about reporting issues to Apple and subscribing to security notifications, go to
apple.com/support/security.

Apple is committed to incorporating proven encryption methods and creating modern
mobile-centric privacy and security technologies to ensure that iOS devices can be
used with confidence in any personal or corporate environment.

18

19

Address space layout
randomization (ASLR)

A technique employed by iOS to make the successful exploitation of a software bug
much more difficult. By ensuring memory addresses and offsets are unpredictable,
exploit code can’t hard code these values. In iOS 5, the position of all system apps
and libraries are randomized, along with all third-party apps compiled as position-
independent executables.

Boot ROM The very first code executed by a device’s processor when it first boots. As an integral
part of the processor, it can’t be altered by either Apple or an attacker.

Data Protection File and keychain protection mechanism for iOS. It can also refer to the APIs that apps
use to protect files and keychain items.

DFU A mode in which a device’s Boot ROM code waits to be recovered over USB. The
screen is black when in DFU mode, but upon connecting to a computer running
iTunes, the following prompt is presented: “iTunes has detected an iPad in recovery
mode. You must restore this iPad before it can be used with iTunes.”

ECID A 64-bit identifier that’s unique to the processor in each iOS device. Used as part of
the personalization process, it’s not considered a secret.

Effaceable Storage A dedicated area of NAND storage, used to store cryptographic keys, that can be
addressed directly and wiped securely. While it doesn’t provide protection if an
attacker has physical possession of a device, keys held in Effaceable Storage can be
used as part of a key hierarchy to facilitate fast wipe and forward security.

File system key The key that encrypts each file’s metadata, including its class key. This is kept in
Effaceable Storage to facilitate fast wipe, rather than confidentiality.

GID Like the UID but common to every processor in a class.

iBoot Code that’s loaded by LLB, and in turn loads XNU, as part of the secure boot chain.

Keybag A data structure used to store a collection of class keys. Each type (System, Backup,
Escrow, or iCloud Backup) has the same format:
• A header containing:

– Version (set to 3 in iOS 5)
– Type (System, Backup, Escrow, or iCloud Backup)
– Keybag UUID
– An HMAC if the keybag is signed
– The method used for wrapping the class keys: tangling with the UID or PBKDF2, along

with the salt and iteration count
• A list of class keys:

– Key UUID
– Class (which file or keychain Data Protection class this is)
– Wrapping type (UID-derived key only; UID-derived key and passcode-derived key)
– Wrapped class key
– Public key for asymmetric classes

Glossary

20

Keychain The infrastructure and a set of APIs used by iOS and third-party apps to store and
retrieve passwords, keys, and other sensitive credentials.

Key wrapping Encrypting one key with another. iOS uses NIST AES key wrapping, as per RFC 3394.

Low-Level Bootloader (LLB) Code that’s invoked by the Boot ROM, and in turn loads iBoot, as part of the secure
boot chain.

Per-file key The AES 256-bit key used to encrypt a file on the file system. The per-file key is
wrapped by a class key and is stored in the file’s metadata.

Provisioning profile A plist signed by Apple that contains a set of entities and entitlements allowing apps
to be installed and tested on an iOS device. A development provisioning profile lists
the devices that a developer has chosen for ad hoc distribution, and a distribution
provisioning profile contains the app ID of an enterprise-developed app.

Tangling The process by which a user’s passcode is turned into a cryptographic key and
strengthened with the device’s UID. This ensures that a brute-force attack must be
performed on a given device, and thus is rate limited and cannot be performed in
parallel. The tangling algorithm is PBKDF2, which uses AES as the pseudorandom
function (PRF) with a UID-derived key.

UID A 256-bit AES key that’s burned into each processor at manufacture. It cannot be read
by firmware or software, and is used only by the processor’s hardware AES engine.
To obtain the actual key, an attacker would have to mount a highly sophisticated
and expensive physical attack against the processor’s silicon. The UID is not related
to any other identifier on the device including, but not limited to, the UDID.

XNU The kernel at the heart of the iOS and OS X operating systems. It’s assumed to be
trusted, and enforces security measures such as code signing, sandboxing, entitlement
checking, and ASLR.

Yarrow A cryptographically secure pseudorandom number generator algorithm. An implemen-
tation of Yarrow in iOS takes entropy generated by various system events and produces
unpredictable random numbers that can be used, for example, as encryption keys.

© 2012 Apple Inc. All rights reserved. Apple, the Apple logo, FaceTime, iPad, iPhone, iPod touch, iTunes, Keychain, OS X, Safari, Siri,
and Xcode are trademarks of Apple Inc., registered in the U.S. and other countries. iMessage is a trademark of Apple Inc. iCloud
and iTunes Store are service marks of Apple Inc., registered in the U.S. and other countries. App Store is a service mark of Apple Inc.
The Bluetooth® word mark and logos are registered trademarks owned by Bluetooth SIG, Inc. and any use of such marks by Apple
is under license. Other product and company names mentioned herein may be trademarks of their respective companies. Product
specifications are subject to change without notice. May 2012

