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Abstract

This paper presents FOKS (Federated Open Key System), a decentralized key management
system designed to provide secure and flexible key distribution across federated networks. The
basic problem addressed is that of two parties sharing end-to-end encrypted data across the in-
ternet, where both parties have several devices. They might rotate devices, form mutable teams
with other users, or even teams of teams in an arbitrary graph. They need to share secret key
material to facilitate symmetric encryption, and this material must rotate whenever devices are
replaced, or team membership changes. This is a very natural problem but one that still lacks
an adequate solution. Moreover, we believe key management should not lock users into a partic-
ular, walled provider, but instead, should allow for federation and independent management of
server resources, as we see in HTTP and SMTP. We describe the system architecture, security
model, and implementation details of a system that achieves secure, federated key exchange,
and enables useful applications like end-to-end encrypted data sharing and git hosting.

1 Introduction

In recent years, Signal, iMessage and WhatsApp have proven out the customer demand for end-to-
end encrypted communication. But despite the success of these systems, and their vast improve-
ments over previous, less-secure systems, important problems remain unresolved. Most obviously,
questions remain around identity. In a recent, high-profile incident, United States government
officials misused Signal to mistakenly leak matters of national security to the press [21]. Relying
on phone numbers as identifiers is only part of the problem; the larger issue, arguably, is that
public identities are hard to audit and map to public keys, and that large groups are even harder
to manage.

We see other issues: all the systems mentioned above and many others lock users into a walled-
garden with a centralized single provider. Outside observers lack the ability to experiment with their
own servers as part of a security audit. Many of these systems lack an unconditional commitment
to open-source everywhere, closing off parts or all of their systems to third party scrutiny. Single-
provider systems further suffer from vendor lock-in. As data is not portable, and switching to a
competing platform is not supported, the service providers have the leverage to “monetize” their
users as they see fit.

The authors have deep experience with the Keybase system [1], which came at these problems
from a different angle. In Keybase, the initial focus was on identity, multi-device support, and
formation of auditable groups that could evolve over time. But Keybase shows the same limitations
as Signal, WhatsApp and iMessage: it is stuck on a single-provider model.

This paper introduces a new system: the Federated Open Key Service (FOKS). It inherits much
from these prior system but inhabits a different point in the design space. FOKS provides secure
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key distribution for users who have multiple devices. It allows those users to form groups, and
unlike previous systems, for those groups to join other groups. Whether managing a user’s device
cloud, or managing the membership of a team, FOKS ensures that a malicious server cannot inject
invalid members, and that it cannot withhold important revocations and deletions. Many of these
features are possible with previous systems, but FOKS’s major architectural advance is the support
of federation. Anyone can run a server in the FOKS network. Users can stay siloed on different
servers, or can form teams that span multiple servers. Federation gives users more choice, control
and better guarantees. Though servers cannot decrypt or sign on behalf of users, they still can see
metadata, and often are called upon to protect user privacy. Therefore, companies or tight-knit
groups have good reason to run their own servers, and can do so in the system.

The aim here is to build a general protocol that can scale to the internet, owned by no single
party. FOKS aims to be agnostic to hosting provider, much like SMTP or HTTP. What those
protocols have done for email and the web, FOKS aims to do for cryptographic key management
and distribution.

This paper introduces and describes the FOKS system. We cover a threat model in Section 2, a
system design in Section 3, the use of cryptography in Section 4, and some important applications
in Section 5. The primary goal here is not academic novelty, but rather to describe a system that
embodies a unique and quite useful set of trade-offs for end-to-end encrypted systems. However,
there are some, to our knowledge, new contributions: (1) An exploration of key-rotation for teams
that can form nearly arbitrary graphs across federated servers; (2) a system for hiding identity and
team updates in a larger transparency tree without the need for pseudo-random functions; and
(3) a new protocol specification language (called Snowpack) that enforces domain separation for
cryptographic operations.

2 Threat Model

In FOKS, we consider a threat model similar to that of the Keybase [1], SEEMLess [14] or
CONIKs [32] systems. The high level north star is end-to-end secrecy and integrity. Only the
clients at the edges of the system should be able to decrypt important data, and only those clients
can make authorized changes to the data. Of course, multiple devices per user and mutable groups
complicate the picture.

We assume that clients are trustworthy, and behave properly. If this assumption is violated,
say, if a client is compromised by a rootkit, then we cannot offer any guarantees.

Users might sometimes lose their devices. In an ideal world, hardware protections would prevent
whoever recovered the device from accessing the device’s private key material. In the case of
hardware keys (like YubiKeys), or backup-keys written on paper, the user has less protection
during compromise. Regardless, once the user revokes the lost device, keys should rotate so that
data is secure going forward (this property is known post-compromise security). In some cases,
past data might be safe from the attacker (this property is known as forward-secrecy), but the
specifics depend on the trustworthiness of the server (see below). Similarly, revoked keys on lost
devices lose their signing power, and other devices will not accept their signatures going forward.

The threat model here is similar but not exactly the same as Signal’s and WhatsApp’s, because
our applications feature persistent (rather than ephemeral) data. If a new user joins an existing
group, or if a user adds a new device, they should be able to access old data, which might be
required to reassemble the shared resource. For instance, when Alice adds Bob to a git project,
Bob should see all past commits in the commit history, otherwise the application will break. Thus,
we can’t guarantee forward-secrecy, since lack of forward secrecy is needed for the application to
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function properly.
In FOKS, clients pick their servers. They might select for servers that are generally aligned

with. They can run their own servers, or pick from third party hosting providers. Users should
assume that servers are generally trustworthy, but might suffer compromises from time to time. For
instance, servers might be running on cloud infrastructure, and the underlying storage, network,
or computation might be compromised. Insiders or state actors might have privileged access to the
underlying infrastructure.

If servers behave honestly, the FOKS system works securely as expected. If servers behave
maliciously, they can deny access to data through a variety of mechanisms: they can go offline,
they can withhold data, or they can subtly corrupt server-resident data to confuse clients. In this
last case, the system’s security design should prevent the clients from leaking secrets or accepting
unauthorized changes to data. But as in the other more obvious cases, the clients will lose access
to their data.

When servers are behaving honestly, they can provide clients with forward-secrecy. That is,
if honest servers throw away data encrypted with old keys, attackers with access to private keys
cannot recover past data. If we assume on the other hand that an attacker who steals a private key
operates in cahoots with the server, then we cannot offer any guarantees about forward secrecy.

Servers do not trust each other. If one server becomes corrupted, it has no bearing on the other
servers in the system. In other words, we assume attackers can stand up their own servers, since
anyone in the system can do so.

3 Design

FOKS is a classic client-server system. At a high level, the clients manage private keys, and the
server manages public keys, encryptions of, shared secret keys, and encrypted data. Users generally
trust their servers to be online, available, and not to intentionally sabotage agreed-upon protocols.

3.1 System Architecture

Much like HTTP or STMP, FOKS clients communicate with one or more servers, depending on
where users have accounts. They can safely ignore the other servers in the system. Most commu-
nication is between client and server, and there is little if any server-to-server or client-to-client
communication. This property simplifies protocol upgrades and network configuration.

Each client can speak for many users, as users can have accounts on different servers, or several
accounts on the same server. By analogy, an email client can serve multiple emails accounts for the
same user concurrently, say one for work and one for personal use. Or a web browser might have
different profiles (with different cookies, preferences, passwords and history) for the same user.

Each of the users can of course have multiple devices, like a desktop, a laptop, a phone, and a
Yubikey. Additionally, users can have “backup devices,” which can be written down on paper and
stored in a safe place. The system recommends at least two devices to prevent data loss. That is,
these devices have private keys that decrypt data, and the loss of the last key prevents decryption
of the data. Obviously there is a trade-off here: the more devices, the more likely the user will lose
one, or have one stolen; the fewer devices, the more likely the user will lose all devices and therefore
access to data. Some optimal middle ground exists, but varies with users and their behaviors.

3



3.2 Key Hierarchy

The FOKS key hierarchy sits at the core of the system. It aims to provide users with a sequence
of symmetric keys shared across all of their devices, so that they can store data encrypted (and
authenticated) with the latest key, and can decrypt (and authenticate) data encrypted with older
keys when necessary. Similarly, users in a team should share secret keys that users outside their
teams cannot see, allowing them to share encrypted data via untrusted FOKS servers.

3.2.1 Device Keys

When a user sits down at a FOKS client to signup or provision a new device for an existing account,
she first creates a new key-pair specifically for that device. The private key never leaves the device.
She shares the public key with the FOKS server, who eventually selectively shares it with other
users. We detail the exact cryptography in Section 4.2.

Hardware keys that support the PIV protocol (like Yubikey version 5 and later) can also be
used as device keys. These devices randomly-generate private keys for one of 20 possible “retired
management slots.” They can then export “attestations” that keys are generated on-device (as
opposed to generated elsewhere and written into the device). FOKS users select a slot to use,
and the client sends the corresponding public key to the FOKS server. Signing and decryption
operations happen on the device against the chosen slot.

3.2.2 Per-User Keys (PUKS)

Every user on the FOKS system has one of more per-user keys, or PUKs. A PUK is a randomly-
generated key-pair whose private key is encrypted for each of the device public keys. This way, all
current devices can access the current PUK secret key, and perform decryptions or signatures for
the current PUK public key. The client makes a new PUK every time the user revokes a device.
The system encrypts the old PUK secret keys for the new PUK secret key. This way, a device that
has access to the latest PUK can get access easily to all prior PUKs.

Once the PUK sequence is established, the system has a convenient way to encrypt a datum
for all of the user’s devices — it simply encrypts the data for the user’s latest PUK.

3.2.3 Per-Team Keys (PTKs)

Each team has a sequence of per-team-keys, or PTKs, which are analogous to PUKs for users. Upon
creation, a team gets a new random PTK. The client performing the creation sends the public part
of the PTK to the server. The private part of the PTK is encrypted for each member’s latest PUK,
and therefore is available on each of the user’s devices.

As with PUKs, data that the team shares is encrypted for the team’s latest PTK, and all
members can decrypt it. As we will see in Section 3.6, teams can join other teams, but the key
hierarchy works just the same. When team A joins team B, the secret part of team B’s PTK is
encrypted for team A’s latest PTK, so that all members of team A can decrypt B’s PTK, and
therefore, B’s encrypted data.

3.3 Key Roles

FOKS has a notion of a “role” for device keys, PUKs and PTKs. The roles are: owner, admin, and
reader, but reader keys have a “visibility level” that varies between -32768 and 32767. There is a
total ordering among key roles, so that owner > admin > reader, and between reader keys, k1 > k2
iff k1 has a higher visibility level than k2.
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The important property enforced is that we only encrypt PUK k for device key j if role(k) ≤
role(j), and similarly, we only encrypt PTK k for PUK j if role(k) ≤ role(j).

The idea here is that the owners of a group get to see all the keys; the admins can see the admin
and reader keys; and the readers can see keys at or below their visibility level. This configuration
allows groups to have lower-privileged members, and for users to have lower-privileged devices. In
Keybase, a similar but less-flexible property allows “bots” into teams, so that all the members of
the teams can interact with the bots, but the members had communications that the bots aren’t
privy to. For now, all user devices are at the owner role, but we plan to relax this requirement in
the future.

3.4 Data Structures

We now have some basic motivation as to what the key system ought to achieve. It ought to allow
groups of devices, groups of users, or groups of users and teams to share a secret encryption key.
From there, they can share data encrypted (and authenticated) with that key. But the question
becomes, how are users formulated from devices, and how are teams formulated from users so that
only desired members are in the group, especially if the server behaves maliciously?

For instance, a malicious server might fool a user into encrypting secret data for an invalid
device, or team administrator into encrypting data for an invalid user.

3.4.1 Signature Chains

FOKS uses the same mechanism as Keybase here — the signature chain (or “sigchain” for short).
The sigchain is a series of signed statements that form a cryptographic chain, meaning they can
only be replayed in the intended order. Replaying the chain allows a viewer to confirm the chain
appears how the author intended and wasn’t tampered with, even if the set of signers varies over
time. Of course, signers do vary over time as users add and remove devices, or as they add and
remove members from teams.

Each user (and team) gets its own sigchain. The sigchain keeps an indelible record of which
keys can update the chain, and which PUKs or PTKs are currently active for the user (or team).

Users The first link in a sigchain is called the “eldest” link. For user sigchains, the first device
generates this link, generates the first PUK, and then computes a signature over the following data:

U.1 The hash of the previous link in the chain (nil for the eldest)

U.2 The current sequence number of the sigchain (which is 1 for the eldest link)

U.3 A commitment to the next random tree location (see Section 3.4.5)

U.4 The current Merkle root hash (see Section 3.4.3)

U.5 The user’s ID and the server’s host ID (see Section 3.4.6)

U.6 The user’s new PUK public keys

U.7 The user’s new device key

U.8 A “subchain tree location seed commitment“ (see Section 3.4.7)

U.9 A cryptographic commitment to the user’s username (see Section 3.4.8)

U.10 A cryptographic commitment to the user’s device name (picked by the user)

U.11 The role of the new device (currently always owner).
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U.12 For Yubikeys, a public “subkey” used to authenticate the client to the server.

The client computes nested signatures first by the new PUKs introduced in Step U.6, and lastly
by the user’s device key. (Recall that sometimes several PUKs can be introduced at once due to
the different possible device roles). The client uploads the whole package as the user’s eldest link.

Subsequent links proceed in largely the same way, with a few minor differences. The previous
hash (U.1) is the collision-resistant hash of the package uploaded in the previous step. In some
cases, like device addition, new PUK public keys (U.6) do not appear. In these cases, no signatures
with PUKs are required.

For any link in the chain, a set of devices is authorized to make further updates to the chain.
After the first link, the set contains only the first device (sometimes called the “eldest” device).
A link can either add a new device, or revoke an existing device, updating the set of authorized
devices accordingly. When clients upload new chainlinks, the server enforces valid signatures by
authorized devices. When users replay this chain, they perform the same check. This simple
mechanism ensures the server can’t introduce a bogus device.

Teams A team chain link contains the following fields, many of which are analogous to user
chains:

T.1 The hash of the previous link in the chain (nil for the eldest)

T.2 The current sequence number of the sigchain (starting at 1)

T.3 A commitment to the next random tree location

T.4 The current Merkle root hash

T.5 The team’s ID and the server’s host ID

T.6 The user (or team) ID, host ID, and PUK (or PTK) of the actor making the change

T.7 New PTK public keys

T.8 A set of membership changes

T.9 A “subchain tree location seed commitment“

T.10 A cryptographic commitment to the team’s name (optional if not changing)

T.11 The team’s “index range” (see 3.6.2)

Since teams can contain both users and other teams, the actor creating or modifying the team
can be either a user or a team. In FOKS, a party refers to someone or something that can be in a
team, so either a user or a team. In field T.6, the link contains the unique identifier of the party
(which is the user or team ID plus the host ID), and also the key making the change. For users,
this key is the user’s latest PUK at the owner role. For teams, it’s the team’s latest PTK at the
desired source role. That is, consider a team T where users a and b are owners of T , c is an admin
and d is a reader (at visibility level 0). If T creates a new team U with source role of owner, then
only users a and b will have access. If T creates the new team with source role of reader, then all
users will have access.

FOKS clients and servers enforce these access controls with the key hierarchy. In the case of
the owners of T creating U , T ’s owner PTK appears in field T.6 and performs the signature over
the chainlink. As T creates U , it makes new PTKs for U . It encrypts the secret keys of these new
PTKs for the owner PTK of T . This way, everyone in the owner group of T can now access U ’s
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PTKs. The second example follows similarly, with the readers of T getting access to U ’s secret
PTKs after team creation.

The membership changes field (T.8) contains the following fields for each member being modi-
fied:

M.1 The “destination role”: the role the member is to have in the team; for removals, this is the
role none.

M.2 The member’s party and host IDs (a party ID is a user ID or a team ID).

M.3 The source role: the role the member has in its current party.

M.4 The member’s public PTK or PUK from its current party.

M.5 The generation number of that PTK or PUK.

M.6 A commitment to a “team removal key” (see Section 3.6.5)

In the case of team creation, member addition, member role upgrade or downgrade, the role in
field M.1 is the new role in the target team that the member has after the change is applied. In
the case of removal, the role is none.

Note that in field M.4, the public PUK (or PTK) appears directly in the chain, in addition
to the ID of that party. Admins and owners are later allowed to make team modifications, and
these are the public keys that will sign these modifications. Team readers in particular might lack
the permission to load the chains of these users and teams directly, so it’s crucial the keys appear
directly in the team chain. See Section 3.8 for further details about sigchain visibility.

As alluded to above, owners have ultimate control over the team. They can add and remove
members, add other owners, downgrade owners to admins, etc. Admins have more limited control;
they have similar control over admins and readers, but cannot: upgrade admins to owners, introduce
new members as owners, remove existing owners; or downgrade existing owners. Readers cannot
make any team modifications but can of course read team chains, and can access data protected
by the reader’s PTKs at their level and below.

Teams, unlike users, can include members located on different servers. Above, in item M.2,
we include the host ID of the party in the membership change. Remote members cannot be
admins or owners, but can be readers. This configuration allows for convenient data sharing across
federation boundaries but simplifies team management relative to an alternative system where
remote members can be owners or admins.

Parties making changes to teams sign new team chain links much the same way as user devices
sign user chain links. First, all new PTKs sign the chain link, and then the acting party’s latest
PUK or PTK signs the chain link. This PUK or PTK must be the exact key advertised earlier in
the chain in the case of link 2 and above. The eldest link is essentially self-signed.

3.4.2 Sigchain Playback

Whenever a client on the team interacts with another party, or even itself, it begins by playing back
that party’s sigchain. The client connects to the party’s home server, downloads any new links it
hasn’t seen, and ensures the new links play back cleanly on top of links it previously cached. The
rules for playback are largely implied by the discussion above, such as:

• All chains start at 1, and have ascending sequence numbers.

• All links should contain the hash of the previous link.
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• All links should have valid signatures by devices, PUKs or PTKs that the chain itself autho-
rized. Eldest links are essentially self-signed.

• The role restrictions described in Section 3.4.1 are obeyed in team chains.

Once playback succeeds, the client has a set of devices keys, PUKs and PTKs that can speak
on behalf of the party. It also has rosters of devices of members who share that key. From here,
useful application work can take over. For instance, in the case of file sharing (whether via Git or
via a KV-store interface), a key derived from the most recent PUK or PTK serves as the symmetric
key for authenticated encryption. Whenever the PUK or PTK rotates to a new generation, future
encryption should use the new key.

3.4.3 Merkle Tree

Section 2 describes the FOKS threat model, and we assume the server can behave maliciously.
Sigchains prevent a server from creating new chainlinks out of whole cloth and interleaving those
with legitimate links. The protection simply is that the server does not have the private keys the
parties use for signing. We assume those never leave the devices they are made on. By these
mechanisms, the server cannot extend a chain or replace an inner link. The server can of course
create a brand new chain, and might trick clients into using this chain rather than the one the users
intended. This problem of “mistaken identity” is one of naming, which we cover in Section 3.4.8.

The server can nonetheless withhold links at the end of a chain, or show some clients the full
chains, and other various subchains, with the hope of forcing them to “fork” the sigchain into two
incompatible chains. We need a mechanism to force the server’s hand into showing a consistent
chain tail to all users who request it. This is where the Merkle Tree comes in. FOKS servers expose
a Merkle Tree that forces the server to commit to a coherent state of the system, across all parties,
preventing selective rollback of sigchains.

FOKS uses a Merkle Tree strategy that is a hybrid of Keybase’s [1], CONIK’s [32] and SEEM-
Less’s [14], but with a simple novel mechanism introduced to obviate the need for pseudo-random
functions. The Merkle tree stores each party’s sigchain tail at a leaf in the Merkle tree. The server
computes hashes all the way up to the root node. The root block contains this tree root hash, a
pointer to the previous version of the tree (called the previous “epoch”), a logarithmicly-sized set
of pointers to previous roots further back in history, and also the tail of the server’s hostchain (see
Section 3.4.6). The hash of this root block is now a summary of the entire system. The server
attempts to publish root blocks immediately after every sigchain update but sometimes batches
them for efficiency. In general, roots should be produced no more than 15 seconds after a sigchain
update to keep clients responsive (since sometimes they need to wait for updates).

3.4.4 Root Chaining

Since many users and teams might be active on a single FOKS server, the user has no reason to
download every root Merkle epoch. Rather, the user will experience long gaps between epochs,
especially if going periodically offline. Whenever a client downloads a root block, say at epoch i, it
writes it to local storage. When the client later downloads another root block, call it k, the client
enforces that i < k. It also sends up the parameter i, and the server replies with intermediate
blocks j1, j2 . . . jn, such that i < j1 < · · · jn < k, where block ja contains a pointer to ja−1, block j1
contains a pointer to i and block k contains a pointer to jn. The spacing of the previous pointers
in the root block ensures that n is approximately log(k − i). Chaining root blocks in this way
encourages the server to maintain a consistent, coherent append-only tree. Clients should perform
periodic audits of all root blocks to ensure previous-pointer consistency across all epochs.

8



3.4.5 Location Hiding

For the party p, at sequence number i, the leaf node is a key-value pair, where the key isH(p, i, t, ri),
and the value is the hash of the signature of the last link in the sigchain (the ith). t is an enumerated
value that specifies which type of chain for p this is. As we will see in Section 3.4.7, each party
has multiple chains. ri is a random value that was generated when the (i− 1) link was published.
The (i − 1) link contains the value H(ri) in the field U.3 (or T.3 for teams) from Section 3.4.1.
This simple mechanism achieves the same end as the pseudo-random function in CONIKs and
SEEMLess: it hides the sigchain tail randomly in the tree. This unpredictability prevents data
leaks that would otherwise allow the owners of neighboring nodes in the tree to deduce when p’s
chain advances.

When a client requests a sigchain for party p, the server returns (n + 1) paths down from the
root of the tree, if the sigchain is n links long. The first n paths point to chain links 1 through n
as described above, and the last is a proof that the (n+ 1) link does not exist. For each path, the
server returns neighbors necessary to trace the path back to the tree root. The server also returns
the sequence (r2, r3, . . . rn+1), so the client can verify they match the commitments in the sigchain.
Note the first link location is not randomized with r1, since there was no 0th link to commit to
r1. However, the eldest link’s placement is already essentially random since the party’s ID p is
generated randomly at the first link (and is predictable thereafter).

3.4.6 Hostchains

Servers maintain hostchains so they can manage and rotate their signing keys, DNS names, and
TLS keys. Like team and user chains, hostchains form a cryptographic chain, ensuring they can
only be replayed in the intended order, even if modified in transit. Chain links have sequence
numbers and contain the cryptographic hashes of previous links. When an administrator creates a
new server, they first create a hostkey, a signing key-pair. This public key becomes the host’s ID.
The first chainlink contains this hostkey and several subkeys, one that serves as a TLS CA for the
server, and one used to sign zonefiles for the server. The zonefile contains the DNS names for the
server’s various services. Subsequent chainlinks can change any of these keys or subkeys, as long
as they are signed with keys valid up until that point. Clients play these links back to map host
IDs to DNS names as they establish connections to new servers.

3.4.7 Subchains

User Settings We have already seen two sigchains: the user chain and the team chain. Each
of these chains has a subchain. Users have a user settings subchain in addition to the user chain.
Currently, this chain contains information about the user’s passphrase, which can optionally locally
encrypt device secret keys (see Section 4.3.2). Whenever the user changes her passphrase, she writes
a new link to the chain, so that the server cannot roll back her passphrase information to an earlier
setting. Chain locations for links i2 and above are computed as in the user chain itself, but with
t = settings rather than t = user. However, the eldest link is randomized, since otherwise, its
location in the tree is predictable given the user ID.

Recall that the eldest user chain link contains a “subchain tree location seed commitment”
(U.8). When creating the link, the client software generates a random value s, and puts the hash
H(s) into the chain link. Then r1 = H(s, settings), and the Merkle Tree stores the first link of u’s
user settings chain at location H(u, 1, settings, r1). The server knows s, and u knows s, so both can
compute and verify the random location of the first link of the user settings chain. But other users
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who view u’s sigchain do not know s and therefore cannot infer if u has a user settings chain or
not.

Team Membership Users and teams have a subchain to keep track of which team it is a member
of. As we discuss in Section 3.6.4, users need to rotate their teams from time to time based on
key rotation events, like device revocation and removals from teams. The general strategy the
user follows is to enumerate all teams she is transitively a member of (since recall teams can be
members of other teams), and then check each team for staleness, rotating those that are stale.
If this membership list were based purely on server trust, a malicious server could withhold team
memberships from a user to silently suppress team rotations.1 Instead of relying on server trust, the
client software maintains a list of team memberships as a sigchain, which the server must faithfully
synchronize across all of the user’s devices. The tree location mechanism here is the same as for
user chains, with t = teamMembership. See Section 3.6.5 for more information on team additions
and removals, and how the client maintains this subchain.

3.4.8 Naming

The server stores user and team chains at tree locations indexed by user IDs and team IDs respec-
tively. These IDs are large random identifiers, and are not friendly to humans. Users of course
need to be able to refer to these parties with convenient names. Moreover, parties should have the
ability to change names from time-to-time, though not too frequently, as too much churn in naming
would complicate the user experience.

Naming in FOKS works as follows. When a user signs up, she first picks a name n, and the
software later generates a random user ID u that n will correspond to. The server stores the user
ID u at the Merkle Tree location H(n, 1, name, nil), and the sigchain for u commits to n at U.9.
When another user loads u, she looks up the Merkle leaves at location H(n, 1, name, nil) and
H(n, 2, name, nil), confirming that: (1) the first location maps to u; and (2) the second location is
absent from the tree, or rather, the name hasn’t be remapped. The loader then confirms that the
name matches the commitment in u’s sigchain.

This system ensures a 1-to-1 mapping between a name n and a user ID u. u can later switch
to a new name n′ by adding another sigchain link committing to n′ that overrides the earlier
commitment to n. The server can likewise later reassign n (though we currently do not allow this)
by posting a new user ID u′ at tree location H(n, 2, name, nil).

Team naming works exactly the same way.

3.5 Provisioning

When users sign up for a new FOKS account, they establish a first device. They establish further
devices via a process called “provisioning”. In provisioning, an existing device signs the device key
of the new device, and also sends it the private side of the current PUK. As we saw above, the
signatures form a link in the sigchain. The server helps exchange encrypted PUK keys as “sidecar”
data.

1A malicious server could also reject a legitimate team update, but the user’s software can alert the user of such
a failure.
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3.5.1 Device-to-Device

The most complicated case is device-to-device provisioning. A user has an active account on device
d1 and uses it to directly provision device d2. We call the existing device, d1, the “provisioner”, and
the new device, d2, the “provisionee.” Device d2 generates a new device key k2 and prompts the
user for a device name, which is n2. Both devices pick random 125-bit session keys, call them s1 and
s2. Both clients show these keys to the user, using a simple encoding scheme we call “high-entropy
secret phrase”. See Section 4.2.5 for more details. An example might look like:2

sniff 216 tilt 139 fat 230 patient 228 same 87 burger 13 master

To initiate the key exchange protocol, either the user enters s2 on device D1 or s1 on device
D2. In both cases, the message flow is as follows:

d1 (provisioner) d2 (provisionee)

[start]

hello: k2, n2

please sign: link l, token t

please counter-sign: link l

done

The first message, “start”, is optional and only needed in the case that s2 is entered on device
d1. In the “hello” message, the provisionee sends its new key and desired device name over to the
provisioner. The provisioner then makes a sigchain link, l, and in the “please sign” message, asks
the provisionee to sign it with k2, the new device key. The provisioner also includes token t so
the provisionee can load the user’s sigchain from the server. In the “please counter-sign” message,
the provisionee returns the signed link and asks the provisioner sign it a second time with k1, d1’s
device key. Finally, the provisioner can post the new signed sigchain link l to the server, including
encryption of the latest PUK for k2 with l. Once the provisionee receives the “done” message, it
can load the user’s PUKs from the server, and decrypt them with k2.

Though messages between d1 and d2 could use interesting local peer-to-peer protocols, we
employ a simpler, more reliable strategy. The FOKS server proxies all of these messages. One
device sends a message, while the other polls for the next message in the sequence. Let s∗ be the
session key that was input on the other device. Both devices encrypt all messages send to the server
with the session key s∗, using authenticated encryption.

Some researchers [40] have suggested using a passphrase-authenticated key exchange (PAKE)
rather than this simple s1 / s2 mechanism. The observation is that the secret phrases, which users
have to type until smart-phone apps are built, are quite long and could be much shorter with
PAKEs. We considered these constructions but rejected them for FOKS, since we are concerned

2The foks client running device assist one-shotted this secret phrase, and I am pleasantly surprised. When I
first used a BBS in 1990, the SYSOP (my friend’s older brother) assigned me the handle “Burger Master”. I hadn’t
thought of this in years.
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the PAKEs can be easily DOSed. That is, the provisionee d2 is not authenticated to the server
since the user hasn’t logged in on d2 yet; this login happens naturally as a result of the provisioning
process. Thus, there is nothing to stop an attacker from targeting a user and entering bad PAKE
codes before the legitimate user can enter the correct code. Such an attack would not break the
integrity of the protocol, but could prevent the user from ever successfully provisioning.

Note that several of these provisioning sessions can happen concurrently on the same the server.
d1 and d2, with the server’s assistance, must separate their messages from other currently active
clients. They therefore tag each message in the exchange with the channel identifier H(s∗), where
H is a one-way function like SHA2. This channel identifier is unguessable for any malicious clients
who do not know s∗, and will clearly be unique across all device pairs.

3.5.2 Yubikey-to-Device and Device-to-Yubikey

Most of the protocol in Section 3.5.1 can be skipped in the case of either provisioning a regular
device (a computer or a phone) with a Yubikey, or vice versa. No communication needs to bounce
off the server, as the device and the Yubikey can communicate directly via the local machine. The
crux of the protocol, however, remains. For a Yubikey provisioning a new device, the device makes
the new link, the device signs the link, and the Yubikey countersigns it. Then the device posts the
link (and encrypted PUK keys) to the server. And vice-versa for a device adding a new Yubikey.

3.6 Teams

We covered much of how teams work in Section 3.4.1, largely by analogy to users and devices.
There are, however, some important differences, which we cover here in more detail.

3.6.1 Cross-Server Teams

As described in Section 3.4.1, teams are composed of parties that can span multiple federated
servers. A team has a home server, which hosts its public keys, encrypted secret keys, sigchain,
and Merkle Tree. And importantly, all the admins and owners — those who have the ability to
change the team — must be on the same home server. However, team readers can join the team
from across the internet.

Because readers can be local or remote, important team protocols, like addition and removal,
must work with more generality, as we cannot assume that the reader and the team have the same
home server. Moreover, we cannot assume much cooperation among independently administered
servers under our threat model (see Section 2).

3.6.2 Cycle Avoidance

One problem in particular the presents itself immediately: cycles. Imagine a simple case, with
three hosts h1, h2 and h3, and three teams on those hosts, respectively, t1, t2 and t3. If t2 adds
t1 as a reader, t3 adds t2 as a reader, and t1 adds t3 as a reader, there is now a cycle in the team
membership graph. That cycles are bad is not immediately obvious, but we must consider what
happens in a rekey scenario.

Imagine at the start of the sequence, team t1 consists of two owners — call then u and v —
and no other members. Team t2 consists of a single owner x, and team t3 consists a single owner
y. Focus on user v, who will eventually be removed. At the start v has access to t1’s reader PTK
at generation 1, call it k1. Next, x adds the readers of t1 to t2 as readers. As a result, v gets access
via k1 to t2’s reader PTK, call it k2. Next, user y adds the readers of t2 to t3 as readers, giving v
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access to t3’s PTK k3 transitively via k1 and k2. Finally, u completes the cycle, adding the readers
of t3 to t1 as readers. Figure 1 shows this initial configuration.

k1 k2

k3

Figure 1: The initial configuration of teams t1, t2 and t3. A link from k to j means that knowing
k gives one access to j, i.e., that k is a reader of j.

Everything up until now is working as planned, but consider what happens when u removes v
from t1. What should happen is that all three teams should rotate so that v loses access to the most
recent reader PTKs. But in practice, this objective cannot be achieved. Playing out the scenario,
u rotates t1’s reader PTK from k1 to k′1. It encrypts k1 with k′1 so that the remaining members can
still access old data. It also encrypts k′1 for t3’s most recent reader PTK, which remains k3. See
Figure 2 for what this new configuration looks like. One thing to notice immediately is that any
node on the graph is reachable from any other. That is, if user v knows k1 (which he had access to
before u removed him), then he can still decrypt any other key on the graph, including k′1, which
he reaches via k1 → k2 → k3 → k′1. So in a deep sense, the rotation has failed.

k1 k2

k3

k′1

Figure 2: After u removes v from t1 and rotates t1’s reader PTK to k′1.

To continue a few more steps, assume t2 rotates (see Figure 3), and then t3 rotates (see Figure 4).
for the new configuration. The problem remains. Any node in the graph is reachable from any
other, and therefore, v can still access the new PTKs for all teams. We can generalize (without
proof) that there is no “fixed point” during this decentralized key rotation process, and that no
amount of rotation will lock v out of the teams. A different system in which t1, t2 and t3 rotated
simultaneously might avoid this problem, but we see no robust way for them to do so if those teams
reside on independent servers.

The simplest path forward is to disallow cycles in the global team graph, which seems like a
natural constraint. However, enforcing lack of cycles globally is challenging, and seems to require
some concept of global locks across the internet. To see why, consider four teams, t1, t2, t3 and t4,
on four different servers. First, t1 adds t2 as a reader, and t3 adds t4 as a reader. So far so good.
If t2 adds t3 as a reader, or t4 adds t1 as a reader, we still are cycle-free. But if the two additions
happen roughly simultaneously, a cycle is formed, and there is no easy way for any of the hosts
involved to detect it.
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k1 k2

k3

k′1 k′2

Figure 3: The Widening Gyre: After u removes v, t1 rotates, then t2 rotates.

k1 k2

k3

k′1 k′2

k′3

Figure 4: Things Fall Apart : After u removes v, t1 rotates, then t2 rotates, and finally t3 rotates.

The most blunt and naive solution is for each team to get an “index”, which is simply a natural
number. This index cannot change once assigned, and t2 can add t1 if t1’s index is less than t2’s.
This simple rule prevents cycles, but is inflexible and doesn’t allow much play in the team graph
as the system evolves. FOKS opts for a slightly more flexible solution of a similar flavor. Each
team gets a “range” of possible index values, representing bounds on where the team’s index will
eventually settle. This range in practice is an interval on the positive rational numbers, of the form
[a, b), where a, b ∈ Q+. b can take on the special value ∞. A team can always restrict its range but
can never expand it. The rule for addition then becomes that t2 can add t1 if the lower bound of
t2’s range is greater than the upper bound of t1’s range. The rule guarantees that wherever t1 and
t2’s indices eventually settle, t2’s index is greater than t1’s.

All teams get the initial default range of [1,∞). When a team administrator seeks to add one
team to another, she might need to change one or both of the team’s ranges. For instance, take
teams t1 and t2, both at the default range [1,∞). To add t1 to t2 as a reader, the administrator can
reduce t1’s range to [1, 128) and team t2’s range to [128,∞). Now the property above is upheld,
since [1, 128) < [128,∞). Note that it still remains possible to add t2 to another team or to add
another team to t1 by making appropriate range reductions.
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3.6.3 Invitation Sequence

By default, two parties p and q cannot view each other’s sigchains, even if on the same server. But
p must be able to read q’s sigchain in order to compute its current PUKs or PTKs if adding q
to a team. So a protocol must be invented to allow p and q to exchange information before the
actual join process occurs. There are three general steps: (1) p creates a multi-use invitation token,
which p can share with one or more parties; this invitation exposes the team’s name, host and ID
to all invitees; (2) q “accepts” this invitation, thereby granting p access to its sigchain; and (3) p
“admits” q into the team.

Invite Tokens A team’s administrator or owner can create a multi-use invitation token for a
team t. First, the administrator creates a team certificate with the fields:

• The team’s ID
• The team’s Host ID
• The team’s current admin PTK
• The current time
• The name of the team
• The team’s index range

The administrator then signs this certificate payload with both the current PTK, and also the
original PTK, whose hash is the team’s ID. If the PTK hasn’t rotated, then of course only one
signature suffices. In totality, the above data and the signatures are quite large, so we introduce
one layer of indirection to make them shorter. The administrator posts the signed certificate to
its home server, and then formulates an invitation as: (1) the hash of the above data; and (2) the
host’s ID. The resulting token can look something like this:

YcarI5JTMAVDHG47cb5l1Pp87COqmK6nzf6h12hchVLMMjlplmjC5dky

wwnqlOhuakWkAjzO2zJ6BtxrnOxdZV8NyLby2r16MhCvC

Which is small enough to exchange via group text chat.

Accepting Invitations Once a party p receives the invitation to team t (p can be a user or
a user acting on behalf of a team), it breaks the token into its two parts, the host ID and the
certificate hash. It maps the host ID to a DNS name (see Section 3.7), and then asks the server
for the preimage of the hash from the invitation. It checks that the preimage hashes correctly, and
then opens the certificate. From here, it checks the signatures described just above. Note that at
this point, p is not a member of the team, so cannot read the team’s sigchain.

There is therefore an opportunity for the team certificate to be partially forged. p can check
that that first PTK corresponds to the team ID, so therefore knows that whoever generated this
certificate was at one time a team admin. But that administrator might have been removed from
the team. Also, the name of the team cannot be checked against the Merkle Tree, so the team’s
name might be forged. Eventually, once p is admitted into the team, it can check that these fields
are correct, and leave the team if not. By accepting the invitation, be it malicious or otherwise,
p is primarily giving access to reading its sigchain. It must decide whether or not this is a good
idea on the basis of who sent the team invitation in the first place. This problem can recursively
be solved in FOKS, perhaps by a different team, or by trusted channel on a different platform, like
a secure team chat.

If p decides to accept this invitation, there are four subcases to consider:
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1. p is a user, and p and t are on the same server. Here, the user p instructs her home server to
allow the owners and administrators of t to allow access to her sigchain. The server makes
a quick note in the database to honor future accesses. Then p writes a link to its Team
Membership Chain (see Section 3.4.7) saying it accepted an invitation to team t.

2. p is a user, and p and t are on different servers. User p contacts its home server and asks that
it issue a new “remote view permission token” for the administrators and owners of t. The
server sends back this token. p encrypts this token with the PTK it received in the team’s
certificate, and then posts this encryption to t’s home server. Note that p isn’t trusting the
server’s administrators here, so does not send this token in plaintext. As with the above case,
p writes a link to its Team Membership Chain saying it accepted an invitation to t. It also
informs t’s server that it has accepted the invitation.

3. p is a team, and p and t are on the same server. The actor here is an an administrator or
owner of team p. He firsts does a cycle check, checking that the index range of p is less
than that of t. The server would reject the addition of p otherwise. The admin/owner now
operates analogously to Case 1. First, he instructs the server to allow the admins of t to read
p’s sigchain. Then, he posts a link to p’s Team Membership Chain saying that it has accepted
an invitation to t.

4. p is a team, and p and t are on different servers. This case is a hybrid of Cases 2 and 3.
As in Case 3, the actor first performs a cycle check. As in Case 2, the actor makes a new
review view token for p and posts it to t’s home server. Then it writes a link to p’s Team
Membership Chain as above.

Admitting into Teams For a given team t, the owners and administrators see an inbox of
pending accepted invitations. For each of these, the administrator makes a yes/no decision as to
whether the team can be admitted into the team, and also what its role should be in the new
team. Recall some restrictions on these roles: (1) remote parties can only be readers; and (2)
administrators cannot add new members to teams as owners. In any of the four subcases above,
the administrator gets the necessary access to play the accepted party’s sigchain; as such, he can
put their latest PUK or PTK into the sigchain, and can encrypt t’s latest PTK for that PUK or
PTK.

Once the party is admitted into the team, it can sign a statement with its PTK or PUK to play
the team’s sigchain. When it does that for the first time, it updates its Team Membership Chain
to show that the accepted invite transitioned to an official admittance.

3.6.4 Team Key Rotations

PTKs must be rotated in two important cases: (1) when a party is removed from a team; and (2)
when a member rotates their PTK or PUK. The first case is straightforward, and happens when
the administrator performs the removal. In such a case, the administrator (or owner) posts a new
link to the team’s sigchain with the role of none for the affected party. The link also contains the
new PTKs for the team. The administrator also includes new encryption of these PTKs for the
remaining members of the team.

The trickier case is the second, since the rotations happen asynchronously. Say that user u is
a member of team t1 which is in turn a member of team t2. Now say user u revokes a device,
maybe because it was lost or stolen. Upon revocation, his PUKs will rotate. Eventually the
PTKs for t1 must rotate, which will eventually trigger a rotation for t2. But there are several
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reasons these rotations might not be immediate. Perhaps all the relevant administrators (who are
authorized to perform the rotations) are offline. Or maybe t1 or t2 is hosted on a different server
which is currently offline for maintenance. Since it is clear that some cascading team key rotations
must be done asynchronously, we simplify the FOKS systems by having all team rotations happen
asynchronously along the same code paths.

Every FOKS client polls all reachable teams in a background loop. It starts with teams in the
user’s team membership chain, then recursively loads all teams and their associated membership
chains, in a breadth-first manner. For each team encountered where the user can act as an admin-
istrator, either directly or via a team, it checks that all PTKs and PUKs in the team chain are
up-to-date. If it finds one that is behind for any member, it will rotate necessary PTKs so they
are encrypted for the member’s latest keys. Rekeying starts with teams that have the lowest index
ranges, and moves upwards, so that cascading rekeys happen in the right order.

If there are multiple administrators or owners for teams, there is no explicit coordination.
Rather, they in effect race to rekey the same teams. However, the FOKS client adds randomness
into the traversal order where possible, and randomness into the timing, so chances of collisions are
low. If they do happen, the loser of the race will fail to update the team chain (as enforced by the
server), will reload the team, and then see it no longer needs to rekey.

Note the importance of the Team Membership Chains in this protocol. The users should not
trust the servers to faithfully recount to them which teams they are members of; if they did,
dishonest servers could silently suppress team rotation through omission. Instead, the Merkle Tree
and sigchain append-only properties give users guarantees that servers aren’t tampering with their
view of team memberships.

Also note that to perform this ongoing key rotation process, all team administrators need ongo-
ing access to the sigchain of team’s members. Thus, the access tokens and permissions exchanged
as part of the team invitation process (see Section 3.6.3) persist in the team as long as members
remain.

3.6.5 Removal Keys

When users are removed from teams, they should no longer be able to load the team’s sigchain.
But what’s to stop a server from falsely claiming the user was removed, thereby preventing the
user from rotating the team as described in Section 3.6.4? We here discuss “Team Removal Keys”,
which allow a team administrator to prove to a removed team member that they were legitimately
removed, rather than falsely removed as a malicious server might claim.

Recall from Section 3.4.1 that when administrator add members to teams, they include for each
member a commitment to a “team removal key”. Here is where this mechanism comes into play.
The team removal key is a 32-byte random value, generated anew for each member added to the
team. When adding member p to the team, the administrator encrypts this removal key for the
other administrators for the team, and also for p’s PTK (or PUK, depending if p is a user or a
team). The administrator puts both ciphertexts to the server, and writes a commitment to this
key into the sigchain link. When p loads the team and plays the sigchain, it writes down this
commitment to a local database.

Later, when an administrator removes p from the team, p will fail to load new chainlinks from
the team, though it should still keep existing chainlinks in its cache. It can now demand “proof”
from the server that its removal was legitimate. If indeed it was, the server will send down the
ciphertext computed at addition time, and p can decrypt it. It can check this key against the
commitment in the team chain that it has written to a local database. It can further check that
the administrator MAC’ed a statement with this key, stating that p was removed from the team
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and the time of the removal. If the decryption of the key fails, or if the key does not match the
commitment in the team chain, or if the MAC of the removal statement fails, the software can post
a warning to the user’s client, saying that it suspects some form of server tampering.

Member p’s team removal key is not rotated when p rotates their PTK or PUK; nor is it rotated
when the admins or owners of the team change. Lack of rotation opens the window for an attack;
a malicious server collaborating with an attacker who gains access to a stolen device can recover
the team removal key and make a false statement that p has been removed from the team. Though
it is possible to replace and rotate team removal keys when member PTKs or PUKs change, such
rotations create new challenges. If members fall behind the latest team removal keys and then are
removed, they will have no commitment to compare the new removal key against, preventing the
protocol from working. We believe the correct trade-off is to keep the original team removal key
despite other rotations.

3.6.6 Sequencing Revocations and Team Removals

merkle root 2000

user settings
link 6

signed by d1

team t1
link 2

signed by u2

team t2
link 1

signed by u2

revoke d1
rotate u2 → u3

Figure 5: User revokes device d1, causing PUK rotation from u2 to u3.

Consider the case of a user revoking a device, as in Figure 5. Such a revocation causes an
existing device key and an existing PUK to be deemed invalid going forward, and for the PUK to
be replaced with a new PUK. When other users play back this user’s chains, or other subchains
or teams that the user has signed, they want a strong guarantee that all such signatures in these
chains happened before the revocation. Within the same chain, this ordering is trivial, but across
multiple chains, care is needed. The general plan in FOKS is as follow: when the user revokes
a device (d1 in the figure), they include a hash of the Merkle Root at the time. This hash then
includes all of the signatures this key will ever sign. Anything unreachable from this root is not
considered a valid signature for this key.

Race conditions, however, might cause problems. A user might make a signature with device
d1, and then revoke it shortly thereafter. The messages might “cross in the mail:” though the
revocation happened after the signature, the signature might not be reflected in the Merkle Tree
at the time of the revocation. FOKS does not block signature creation on Merkle Tree production.
For efficiency’s sake, updates to the Merkle Tree are batched and might lag behind several seconds.
To address this challenge, the FOKS server rejects revocations of devices or PUKs if there are
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associated signatures still outstanding and not reflected in the Merkle Tree. Of course a dishonest
server can intentionally fail in this capacity, which might cause signature chains to fail to playback.
That is, the result would be a denial-of-service, which the server is always capable of.

Above, we described how revocation of user devices work. Removal of members from teams
follows a similar protocol. Note here is one rationale for requiring team admins to be local to the
server that a team is on. Were it otherwise, the server could not carefully sequence signatures and
revocations, as it does with this restriction in place.

3.7 Beacon Server

When a user is discovering a new server, there are two types of lookups that are required: (1)
mapping from a standard DNS name to a the server’s ID; and (2) the other direction, mapping
from a host ID to a DNS name. The first direction is straightforward. The user’s client makes a
TLS connection to the server’s name, and retrieves a hostchain. The client uses the standard root
CAs to verify that the server’s certificate matches its DNS name. The returned hostchain is rooted
in the server’s initial public key, and potentially contains several key rotations. The most recent
key must sign the host’s DNS name, allowing the client to verify the correspondence between the
two.

Once the server makes an initial mapping of a domain name like example.com to a host ID h,
the user’s client writes it down in its local database, and it is “pinned” going forward. The server
can change to a new hostname example.io through the normal operation of the hostchain. But
the original hostname should never be reused by a different server.

Sometimes clients need to perform the opposite mapping, from host ID to DNS name. Users
are allowed to refer to servers by their host ID and might choose to do so if they have reason to
mistrust the root CAs [23]. While more sophisticated solutions are possible (like DHTs [41] and
blockchains [33]), FOKS opts for a simple solution for now. We host a single “beacon” server, which
is a simple server that maps host IDs to DNS names. Clients take these mappings with a grain of
salt but can verify them via the hostchain protocols described above.

3.8 Privacy

Previous systems like Keybase [1] espoused a notion of transparency regarding a user’s identity and
devices. Any user u is free to load the sigchain of any other user v on the system, and can learn
how many devices v has, when those devices were added to v’s sigchain, and the names of these
devices. However, team membership was private, so u could only load team t’s sigchain, or learn
team t’s name, if u is on team t. Zoom’s system [17] is derived from Keybase’s, but because it
caters to enterprise settings, it opts for more privacy, obscuring most details about user’s identities.

As described above, FOKS takes by default the more privacy-respecting approach, similar to
that of Zoom’s system. User u can load v’s sigchain only if u allows it. The team invitation flow 3.6.3
is an example of how v shares a view of his sigchain only as required. However, server administrators
can configure their server in FOKS to have different policies. A server, for instance, can allow all
logged-in users to see each other without need for explicit permissions. A complementary policy
might be that v can always directly add u to a team, and if u is unhappy with this situation, he
can leave. This configuration might work well for a company-specific server.

Hiding and allowing deletion of device names is also important for privacy. As described in Sec-
tion 3.4.1, users do not write device names directly into sigchain links. Instead, when provisioning
a device name n, the user picks a random 32-byte value r, and publishes H(n, r) into the sigchain.
On playback, the server returns r and n, so the user can check it’s the same value as intended.
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If the user later regrets the choice of n, the server can throw n and r away while still allowing
playback of the sigchain.

4 Cryptographic Design

Here we describe the important cryptographic decisions at play in the FOKS system. For the
most part, our bias is toward simplicity and boring, failure-proof cryptography. For instance, as
described in Section 3.4.3, we use a vanilla collision-resistant hash function to hide tree locations,
rather than the slightly more exotic pseudo-random function approach. The emphasis throughout
is on tried-and-true cryptography that will prove as robust as possible to misuse through software
bugs.

4.1 The Snowpack Domain-Specific Language

One of the biggest risks in a system like FOKS is signature malleability due to issues like permitting
non-canonical encodings [11, 43], lack of clear domain separation [40, 7], or undefined behavior due
to parsing and encoding bugs [16].

To address these threats, and at the same time to provide an convenient language for defining
RPC protocols, we introduce the Snowpack Language [26], which is influenced by protobufs [22],
Framed Msgpack-RPC as used in Keybase [1] and Cap’n Proto [42]. A further property we insist
upon is support for backwards and forwards compatibility. Since FOKS is a federated system, we
have no expectations that upgrades will happen in lockstep. The protocol itself must behave well
in any number of partially-upgraded configurations.

4.1.1 Structures

By way of example, see Figure 6 for the definition of a sigchain link both for teams and users
in the Snowpack language. Any constant of the form @1 or @0x8fbf37f586b0bc6e is meant to
be immutable. Once written down in the protocol, it should never change. For instance, look
at the first field in the structure: chainer @0 : HidingChainer;. The @0 indicates that this
field will take the 0th slot in the encoded version of the structure. Future editors of this file must
never introduce a new field at slot 0 with a different type, as that would cause old clients to fail
in decoding. All new fields should be added at the end of the structure. Old clients will ignore
fields from the future that they do not know how to decode. Similarly, it is allowable to delete a
field. Software with older version of the protocol will get 0 values for the deleted fields. In the Go
language, this means 0 for integers, empty strings for strings, empty slices for lists, and nil pointers
for optional fields. Of course new clients must consider the impact on older clients to leave 0-ed
fields, but the protocol layer itself does not introduce a failure here.

Structures like GroupChange from Figure 6 are encoded as JSON-style arrays on the wire, with
fields written to slots as directed by their @i-style positions. Elided fields are written down as null
values. Before going out to the wire, the JSON-style arrays are encoded with the Msgpack [19]
encoding format. Where two possible encodings are possible (e.g., the number 0x2 can be encoded
as 0x2 or 0xcd 0x00 0x02), the shorter encoding is mandated. Note that field names (like chainer
above) are not sent over the wire, but are available on either end as human-readable references to
fields. Thus, it is permitted to rename a field as long as its type doesn’t change. We note that
serializing using JSON-style dictionaries seems error-prone, since keys can repeat or be ordered in
different ways. Snowpack’s slot-oriented encoding aims to avoid these styles of ambiguities and
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struct GroupChange @0x8fbf37f586b0bc6e {

chainer @0 : HidingChainer;

entity @1 : FQEntity;

signer @2 : GroupChangeSigner;

changes @3 : List(MemberRole);

sharedKeys @5 : List(SharedKey);

metadata @6 : List(ChangeMetadata);

}

Figure 6: A sigchain link in the Snowpack language.

to minimize encoding sizes. At the same time, development tools can decode encoded messages
without reference to protocol specification files.

4.1.2 Domain Separation

In the definition of the GroupChange structure from Figure 6, note the 64-bit integer @0x8fbf3....
This is a randomly-generated number that serves as a domain separator. We refer to it below as
unique type identifier (UTID). Though domain specifiers are optional in the Snowpack language,
when a structure provides it, the snowpack compiler fills in five possible cryptographic operations
for the structure:

• PrefixedHash(obj ): The object’s UTID is big-endian encoded, then prepended to the object’s
binary Msgpack encoding. The hash of the combined message is returned.

• Hmac(obj, key): As above, a message is formed out of the object’s UTID concatenated with
the encoding of the object itself. The combined message is the message input to the MAC
function, and the key is passed through as the key.

• SealIntoSecretBox(obj, nonce, key): The object’s UTID is encoded and concatenated with
the supplied nonce. The new value is then used as the nonce passed into the encryption
algorithm, along with the encoding of obj and the supplied key.

• Sign(obj, key): The object’s UTID is prepended to an encoding of obj ; the combined message
is then used as the message input, passed along to the signature algorithm along with the
supplied key.

Public key encryption calls into SealIntoSecretBox with a random session key, so therefore uses
the same domain separation mechanism. Inverse operations for Hmac, SealIntoSecretBox and
Sign are also provided; they similarly supply UTIDs where necessary to ensure that verification
and decryption succeed.

The programmer must supply their own tooling to generate these UTIDs. Simple CLI tools or
editor plugins suffice. However, FOKS provides two mechanisms to guarantee they remain unique
across the project. At compile-time, a simple tool examines all input files to guarantee that no
UTID constant appears twice. And at runtime, the compiler provides a list of all UTID constants
compiled from the protocol input files. The program fails an assertion if it sees any repeats.
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4.1.3 Variants

We have seen Snowpack structures in Section 4.1.1. Another important data type is the variant,
also known as a discriminated union. Figure 7 shows an example from FOKS. The enumerated
type LinkType has two possible values: GroupChange for main chains, and Generic for subchains
like team membership chains and user settings chains. Based on the switch value, the enumerated
type takes the form of a GroupChange or GenericLink object. Variants have many of the same
restrictions as structures: fields specified with ‘@i’-style slots should never be repurposed, though
they can be dropped; also, new type possibilities can be added without breaking the protocol.

variant LinkInner switch (t : LinkType) @0xacf9066572a9e7de {

case GroupChange @0 : GroupChange;

case Generic @1 : GenericLink;

}

Figure 7: A variant in the Snowpack language.

4.2 Cryptographic Primitives

We have tried as much as possible to make boring, unopinionated cryptographic decisions.

4.2.1 Hashing, MAC’ing and Symmetric Encryption

Throughout the system, hashing uses SHA512 truncated to 256 bits [2]. Message authentication
codes are with HMAC [25] over SHA512/256. HMAC is used for MAC’ing but also for commit-
ments, and in general, any context where a pair of items are hashed together (one being the “key”
and the other being the “data”). Authenticated symmetric encryption uses Salsa20/Poly1305 as
implemented by the NaCl [10] library. Sals20 has a 24-byte nonce field, which is often handy when
combining with our domain separation strategy with other authenticated data. Throughout, we
refer to encrypting with Salsa20 as secretBox’ing, as per the library’s conventions.

4.2.2 Signatures and Post-Quantum Encryption

For signing, we use EdDSA with the Ed25519 curve [9]. Public-key encryption is a hybrid of Diffie-
Hellman over Curve25519 [8], and ML-KEM [34] using a construction similar to X-Wing [3], but
with a different binary encoding format and constants. Thus, in practice, all device keys, PUKs,
PTKs, and so on are not a single keypair, but rather a triple: an EdDSA keypair, a Curve25519
keypair, and an ML-KEM keypair. Wherever public keys are introduced, an EdDSA signature over
the Curve25519 and ML-KEM public keys is produced to bind them together.

The exact derivation of the hybrid encryption secret key is specified in Snowpack, using the
structure shown in Figure 8. Hash inputs are: the domain separator (UTID); a version number;
the shared key exchanged via KEM; the shared Diffie-Hellman key; the receiver’s public keys; and
the sender’s public DH key. Though everywhere in the project we use SHA512/256, here we use
SHA3 to follow the spirit of the X-wing specification.

4.2.3 Key Derivation

As described just above, each public key in FOKS actually consists of three keypairs. However,
a single 32-byte secret seed suffices to generate all three, which simplifies secret key management
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struct HybridSecretKeySHA3Payload @0x8a9e327647262289 {

version @0 : BoxHybridVersion;

pqKemKey @1 : KemSharedKey;

dhSharedKey @2 : DHSharedKey;

rcvr @3 : HEPK; // Hybrid Encryption Public Key = DH + KEM Public keys

sndr @4 : DHPublicKey;

}

Figure 8: Hybrid encryption secret key derivation in the Snowpack language.

and backup keys. The key derivation system again uses the Snowpack specification system and
simple HMAC-based key derivation. Figure 9 shows the Snowpack structures and variants used.
The derived key is the HMAC of the KeyDerivation object with the secret 32-byte seed as the
key.

enum KeyDerivationType {

// Core types

Signing @0;

DH @1;

SecretBoxKey @2;

MLKEM @4;

AppKey @5; // Used for different higher-level applications, like KV Store

}

enum AppKeyDerivationType {

Enum @0;

String @1;

}

enum AppKeyEnum {

KVStore @0;

}

variant KeyDerivation switch (t: KeyDerivationType) @0xd35cdcc95caef674 {

case MLKEM @4: Uint; // need 2 32-byte values to get a 64-byte seed

default: void;

}

Figure 9: Structures and variants used in key derivation.

For example, to make a new PTK, the team administrator picks a random 32-byte seed value.
Whenever the PTK is used in a symmetric context (like for encrypting older PTKs), the key
derivation uses KeyDerivationType = SecretBoxKey as an HMAC input. Similarly for using the
PTK as a signing key. All derived keys are also 32-bytes with the exception of the ML-KEM key,
which needs 64-bytes. The two halves of this derived key are generated with the same mechanism,
but using MLKEM=0 and MLKEM=1 in the KeyDervitation object as the HMAC input.
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4.2.4 Yubikeys

FOKS supports hardware keys like Yubikey that support the Personal Identity Verification [15]
(PIV) standard. This standard allows the device to perform public key cryptographic operations,
like ECDSA and Diffie-Hellman over the p256 elliptic curve [35]. Though we have chosen the
Ed25519 and Curve25519 curves for use everywhere, we now need to accommodate another curve
to fit the PIV standard. Too much “agility” has proven problematic for other systems [30], and we
would like to avoid it as much as possible with FOKS, but we make an exception here for a popular
hardware standard.

The bigger issue with Yubikeys is: what do to about post-quantum security? To date, we have
not seen a wide release of an algorithm like ML-KEM to hardware devices, and even if so, we’d like
to support older, widely-deployed hardware.

Since there are no perfect solutions here, we have designed a PQ-secure system around existing
PIVs as follows:

1. Extract a ”secret” from the PIV module: pick an unused “retired key management” slot
(0x82-0x95), and compute gx

2
via the ECDH algorithm. Use this value as the seed to create

a new ML-KEM keypair. Compute ML-KEM on user’s computer after extracting the secret
and deriving the keys.

2. Select a different retired key management slot to use for classical ECDH over curve p256.
Compute ECDH as usually using the Yubikey’s hardware.

3. Combine the secret keys from the previous two steps using the X-wing-style derivation scheme
from Section 4.2.3.

An important property of this system is that all of the relevant key material lives on the Yubikey;
none lives on the user’s computer. The Yubikey is all the user needs to recover important secrets,
even if the computer is lost or suffers data loss. Further, this system is no less secure than an
encryption scheme without PQ-security, as the classical ECDH computation still happens on the
Yubikey as normal. That is, we are not forcing the user to choose between PQ and hardware security.
However, this scheme has an important shortcoming. If the user later reuses the key management
slot in Step 1 for a different purpose, and exports the public key gx from the device, the scheme is
no longer PQ-secure. A quantum computer could recover x from gx and then derive the ML-KEM
secret key. This shortcoming makes us long for better hardware support for ML-KEM. However,
a mitigating factor here is that PIV is an infrequently-used standard (and for instance is way less
popular than FIDO2). There are few competing applications using these features and key slots.

4.2.5 High-Entropy Secret Phrase

For backup device keys (which FOKS users can write on pieces of paper), and exchanging provision-
ing secrets between two computers, FOKS uses a simple encoding scheme called the “high-entropy
secret phrase”. The pattern is a series of random words, each separated by a random number. All
words are chose from the BIP39 wordlist [36]. The exact parameters depend on the application,
and are shown in Table 1.

4.3 Secret Key Management

Secret keys derive from 32-byte seeds, which never leave the device they are created on (with the
possible exception of backup keys, which are written down on paper). We discuss here how the
FOKS client stores these secret seeds persistently.
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Application # of Words # of Numbers Number Range Entropy

Provisioning 7 6 [0, 28 − 1] 7 · 11 + 6 · 8 = 125

Backup Device Key 8 7 [0, 213 − 1] 8 · 11 + 7 · 13 = 179

Table 1: Parameters for high-entropy secret phrases.

4.3.1 Secure Enclaves

Where possible, FOKS uses OS-specific secure enclaves. This is the simple case. FOKS stores the
actual 32-byte seeds in a FOKS-specific keyring file in the user’s home directory. For each seed,
FOKS picks a random 32-byte key to encrypt with, and, if possible, stores that 32-byte key in the
user’s OS keyring.

4.3.2 Passphrase-based Management

Though it’s not encouraged, FOKS does offer a passphrase-based protection mechanism for secret
key seeds. As above, each secret seed gets its own secret-key material wrapping key (SKMWK).
But instead of storing the SKMWKs in the OS keystore, they are encrypted with a key derived
from the user’s passphrase. We have important design considerations for this system that make it
quite complex:

1. If the user has two computers, A and B, and the user changes his passphrase on A, when B
comes online with the old passphrase, it has to decrypt with the new passphrase.

2. Keys encrypted for old passphrases need to eventually be migrated to the new passphrase,
so that if an attacker gets the old passphrase and all server data, they still can’t decrypt the
key. Of course this is only possible if that computer B comes back online after the change,
but assuming that the property should hold.

3. Passphrase recovery: to change the passphrase and recover keys, it is sufficient to know the
latest PUK. Thus, having a backup paper key or a backup Yubikey should suffice to “recover”
a passphrase and to allow the user to change it without knowing the old passphrase.

4. As with passphrases, if the PUK is updated, all machines with passphrase-encrypted keys
should eventually rotate (when they come online) so that they cannot be decrypted with an
old PUK.

We describe the process through a small example: two rotations, one due to a PUK rotation,
and one due to a passphrase change. The net result is three different configurations (the original,
and the two following rotations). The general idea is that we have a new “session” key at every
update, which symmetrically encrypts the SKMWKs. The session key gets encrypted twice: once
for a key derived from the current passphrase, and one for the user’s PUK. This allows recovery of
the SKMWKs with either the passphrase or the PUK:

Key Epoch 0 Epoch 1 Epoch 2

SKMWK r0 r1 r2
Session Key s0 s1 s2

Ephemeral DH Key t0 t1 t2
Passphrase p0 p0 p1

PUK u0 u1 u1
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At Epoch 0, we have the initial configuration, which consists of the following three encryptions:

e0 = secretBox(r0, s0)

f0 = dhBox(s0, publicKey(p0), secretKey(t0)), publicKey(t0)

g0 = secretBox([s0, publicKey(p0)], u0)

e0 is the encryption of the SKMWK r0 for the session key s0. f0 is the encryption of the session
key for the user’s current passphrase, p0. To derive secretKey(p0), we employ a simple stretching
algorithm and interpret the result as a Curve25519 secret key; then we derive publicKey(p0) from
the secret key as usual. Finally, g0 is the encryption of the session key s0 for the user’s current
PUK. We include publicKey(p0) in the plaintext for reasons we will see shortly. After the client
creates encryptions e0, f0, and g0, it sends them up to the server, for later user on this and other
devices.

At Epoch 1, we have the passphrase stationary at p0 but the user’s PUK is rotated from u0 to
u1. We will make a SKMWK r1 and a new session key s1. s1 will be encrypted for the user’s new
PUK and for the user’s existing passphrase. This user might not have input their passphrase on
this machine, and it would annoy the user to prompt for it for a seemingly unrelated operation.
For this reason, we included publicKey(p0) in the plaintext of g0, which the user can decrypt with
access to the old PUK u0. The new encryptions are then:

e1 = secretBox([r0, r1], s1)

f1 = dhBox(s1, publicKey(p0), secretKey(t1)), publicKey(t1)

g1 = secretBox([s1, publicKey(p0)], u1)

In the next epoch, the user changes their passphrase from p0 to p1, and the PUK remains at
u1. The new encryptions are:

e2 = secretBox([r0, r1, r2], s2)

f2 = dhBox(s2, publicKey(p1), secretKey(t2)), publicKey(t2)

g2 = secretBox([s2, publicKey(p1)], u1)

And so on. It might seem at first that there is an unnecessary layer of indirection with using
SKMWKs ri’s and session keys si’s. To see why it’s required, consider the case of a device active
around passphrase generation p0, but then turned off for a long time, only to come back online at
a much later passphrase generation, say p9. At this point, the user has forgotten passphrase p0
and is only expected to know p9. When they try to unlock secret key materials on this hitherto-
mothballed device, they will enter passphrase p9. The scheme is robust to this scenario. The device
pulls f9 down from the server and derives secretKey(p9) from p9. It can then decrypt f9 and recover
the session key s9. Then, it pulls e9 down from the server, and uses it to recover all historical ri’s,
including r0. With r0, it can decrypt the device’s secret key material, encrypted ages ago. After
so doing, it discards the encryption with r0 and then upgrades to an encryption with r9. This
way, going forward, if an attacker steals the device and learns the old passphrase p0, she cannot
recover the secret key material. Decrypting the secret key material requires r9, which only can be
decrypted with the latest passphrase (p9) or the latest PUK.
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5 Applications

The goal of the FOKS system is primarily: for a user or a group of users to agree upon a sequence of
cryptographic keys so they can perform authenticated, end-to-end encryption of arbitrary data. As
a secondary goal, the system exposes a set of authorized signing keys to sign on behalf of the group,
so that changes can be properly attributed. From here, we can build any number of applications.

For instance, one can imagine an MLS system for group messaging [4] where the chat keys are
the cryptographic combination (via something like HMAC or SHA3) of: (1) the root of the MLS
ratchet tree; and (2) the most current PTKs available for the FOKS group. In this way, one can
simultaneously achieve Signal-style forward secrecy and FOKS-style team and device management.

For our first FOKS prototypes, we have focused instead of two important applications: first, at
the lower level, a simple key-value store. Members of the team can put and get key-value pairs to
the FOKS server. Keys and values are encrypted with authenticated encryption against the team’s
PTKs. A second application, built atop the first, is an end-to-end encrypted Git server, that is
compatible with legacy Git clients. We describe them both below.

5.1 The FOKS Key-Value Store

The FOKS Key-value (KV) store is an end-to-end encrypted key-value store, with a hierarchical
namespace, local to each party on the system. One can store a value to any key of the form ‘/a/b/c’;
the value can be a few bytes long, or many gigabytes. The system provides simple put and get
operations, but also operations on the namespace, like listing, moving, and deletion of directories.
That is, one can perform an operation like mv /a/b /foo in roughly O(1) time, without individually
modifying each of the entries stored under /a/b. Symlinks are also allowed. Though the system has
some important Unix-style file system behaviors, it does not implement full POSIX [24] semantics.

When a user puts a key-value pair into the store, it does so on behalf of a party, whether
themselves personally, or a team. It encrypts the key and value with the latest PUK or PTK for
the acting party. Of course PTKs and PUKs can rotate after the put happens, so when getting
values out of the store, the user might perform a decryption with an older PTK or PUK, depending
on the circumstances. We discuss rotation in more detail below as we describe the various operations
of the system.

5.1.1 Making a New Directory

The steps for making a new directory for party p operating at role r are as follows:

1. Pick a random 32-byte directory key seed s.

2. Pick a random 16-byte directory ID i.

3. Derive k for application KVStore from p’s PTK (or PUK) for role r

4. Encrypt s with key k and nonce i.

5. Post the ciphertext and the the directory ID i to the server.

This process creates an new empty directory, floating more or less in space. To link this new
directory, we first need to walk to the appropriate place in the key tree, and then modify the parent
“directory entry” or dirent to point to this new directory. See Section 5.1.2 for more details on the
walking process, but for now, assume we have found the appropriate parent directory d. The client
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gets the directory key seeds for the parent directory d either from the server or from the client’s
local cache, The client then derive to keys from this key: a 32-byte HMAC key, and a 32-byte box
key. The client can now form a dirent with the fields: (1) the new directory ID i; (2) the parent
dirent d; (3) the MACs of the name of directory (the last component of the path), using the MAC
key derived just above; (4) the encryption of this name, using the box key derived just above; (5)
the version number (which starts at 1); (6) the role required to overwrite this entry; and (7) a
“binding MAC” of the above fields, using the HMAC key derived for parent directory d. The client
posts this dirent up to the server, and now the new directory is linked into place. Note, the client
can race another client here, in which case there will be conflict over the triple composed of d, the
name MAC, and the version number. The client that loses the race should download the winning
dirent and potentially try again.

Note that the directory name is MAC’ed and encrypted (using randomized authenticated-
encryption) separately. The fields serve two different purposes: the former allows for lookups,
where a client knows a path and want to discover which directory (or file) it points to; the latter
allows for listing, where a client wants to know what is in a directory.

5.1.2 Walking the Namespace

Most operations start with a “walk” of the namespace, from the root down to the desired node.
For a path like /a/b/c there are of course three directories along the way, and three corresponding
dirents. Each party has a designated root directory ID, initialized by the first user of the KV
store for this party. The client can fetch this directory with a special RPC, which returns the
directory ID and its boxed directory key seeds. To walk down to /a, the client MAC’s the name a
with MAC keys derived from these seeds, and then queries the server for the dirent in / with the
computed MAC, at the greatest version. This dirent, if found, contains a “binding MAC”, which
cryptographically binds the dirents fields together, as MACed by the directory’s MAC key. The
client verifies this MAC, and if it passes, then the next step in the path is the “value” field of the
dirent, which contains the directory ID of /a. This process continues until the leaf is reached.

To reduce latency, clients make heavy use of local caching. As they walk, they write down which
dirents they passed through and which versions of those dirents that they saw. At the end of the
process, they send up the whole path to the server, asking if any dirent was stale. If so, the clients
repeats parts of the walk to get fresh data.

Note there is a special value field for “tombstones,” which signify that the file at the path
was deleted. That value can later be reinstated if a subsequent version of the dirent replaces the
tombstone with a value that points to a directory or file.

A dishonest server can withhold fresh dirent versions, which might mask file updates, deletions
or creations. Future improvements to this design might include a transparency tree akin to the
existing Merkle Trees to force the server to be honest. The throughput and performance of this
tree is a challenge that we so far have not tackled.

5.1.3 Creating Small Files

Creating a small file (one less than 2KB) works much like creating a directory. The client:

1. Creates a new random 16-byte file ID.

2. The plaintext is padded to a power of two no less than 32, to hide the exact size of the data.

3. Encrypts the file data with: the KVStore key derived from the current PTK (or PUK) at the
given role; and with the file ID as the nonce.
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4. Puts the ciphertext to the server

5. Walks the file path down to the correct dirent

6. And writes the dirent pointing to the new file ID.

Small files are immutable. To edit a small file, a client uploads a new small file and replaces the
dirent to point to the new file ID.

5.1.4 Creating Large Files

Files bigger than 2KB get a different treatment: each gets its own 32-byte encryption key, and they
are chunked into 4MB chunks. When the put commences, the client creates this random 32-byte
file key, and encrypts it for the party’s latest PTK (or PUK). Each chunk gets encrypted with this
key, and a nonce constructed from: (1) the file ID; (2) the chunk’s offset; (3) an “is-final” flag;
and (4) the unique type ID for chunk nonces. These fields cannot all fit into Salsa20’s 24-byte
nonce field, so they are hashed and truncated to 24 bytes. This nonce selection here prevents an
evil server from reordering chunks, lying about the end-of-the-file, or mixing-and-matching chunks
from different files.

5.1.5 Key Rotations

Given the application stores persistent data, and new clients and members might need to access
old data, there is only so much we can do to prevent data theft if a client device is compromised.
Consider this example: Alice is a member of team “Acme” and writes a file /foo. Call her device
key d, her PUK u0 and the PTK t0. The server has access to the sequence of encryptions, starting
from the d, through u0, t0 and the file key f , that secure the contents of /foo. The server needs
access to these data to broker access to Alice’s other devices, and the other members of team
Acme. Years pass, and device d is lost, and Alice revokes d after realizing this. Along the way, u0
has rotated to u6, and the latest Acme PTK is now t100. And let’s say all along, Acme members
rotate the encryptions stored in the KV store to use the latest PTKs. An evil server who recovers
device d can still access the file /foo, despite all the well-intentioned rotations, because it kept the
original encryption of /foo, encrypted with the original keys, and disobeyed commands to throw
away ciphertexts. In other words, if the server doesn’t cooperate, there is only so much that can be
done to protect old data after a device compromise. Of course, future data is safe in this scenario.

The Keybase system takes the stance that rotating old file system data is not worth it, due
to scenario described above. If we assume the server is semi-honest, that is, if it sometimes (or
always!) throws away old ciphertexts, then we still made security gains by rotating file system
data, even if the server later becomes evil.

The FOKS KV-Store leaves the door open to later perform these reencryptions, though so far
we have not implemented it. Clients should periodically sweep over all keys and values, reencrypt
them for the latest PTKs (or PUKs), and instruct the server to discard the old ciphertexts. Due
to per-file keys for large files, there is no need to download and reupload large file data. Instead, it
suffices to reencrypt the file key.

There is no limit to the number of active entries in a directory, so we cannot assume a directory
will be rotated all at once. Thus, we allow for two valid directory key seeds per directory. As the
reencryption process sweeps across the directory, more dirents use the new key, and fewer use the
old, until the old key can be retired.
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5.1.6 Garbage Collection

In its current form, the FOKS KV store does not perform any garbage collection, opting instead to
keep prior versions of values available indefinitely. We plan to implement deletion in future versions
so users can reclaim quota.

5.2 The FOKS Git Server

FOKS includes an application written atop the KV store, which implements an end-to-end en-
crypted (and authenticated) Git Server. FOKS URLs for a user looks like this:

foks://acme.host/alice/tango-proj

Where acme.host is the FOKS server, alice is the user’s username, and tango-proj is the name
of the repository. And for a team:

foks://acme.host/t:interns/whiskey-proj

Where t:interns is the team name. Users of the system git clone this URL and then push
and pull as they would a conventional Git server. Data is written through to the FOKS server at
acme.host, into its KV-store, of course end-to-end encrypted and authenticated so that the server
cannot read or modify the data.

5.2.1 The Git Remote Helper Protocol

FOKS’s git integration is built with the Git Remote Helper Protocol [20]. This protocol allows Git
to interact with remote storage systems other than its native SSH and HTTP protocols. When
Git encounters a URL with a custom scheme like foks://, it looks for an executable named
git-remote-foks in the system path. Git then launches this helper process and communicates
with it using a simple text-based protocol.

The protocol consists of Git sending commands like capabilities, list, push, and fetch, and
the helper responding with success/failure and data. The helper translates between Git’s object
model and whatever remote storage system it interfaces with. The helper must deeply understand
git’s object model. The helper gives commands of the form:

push refs/heads/main:refs/heads/main

The helper starts at the commit referred to by refs/heads/main, then walks the commit tree
backwards until it finds objects that the server already has. Then it must push the missing objects
up to the server, then remap the references to point to the HEAD commit.

Much work has been done to optimize such protocols. Servers in particular can scan the objects
they have in their database to assist the client in figuring out the smallest set of objects possible.
Unfortunately, in our case, the FOKS server is of little help, since it doesn’t know the names of
the objects (i.e., their SHA1 hashes). Instead, it sees MACs of these hashes, and also encryptions.
And for good reason. The server should not know these content hashes, since knowing them would
allow the server to deduce, in important cases, the contents of those objects.

To achieve reasonable performance, while maintaining compatibility with the Git protocol, the
FOKS git system makes aggressive use of packfiles and packfile indices. When clients push, they
eagerly pack objects into packfiles, and send these packfiles up to the server. A packfile, in Git,
actually consists of two files: the packfile itself, which is a compressed concatenation of multiple
objects; and the packfile index, which contains among other fields, a list of all objects contained in
the packfile.

When a client fetches a new HEAD from the server, the algorithm is roughly:
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1. Fetch all packfile indices from the server

2. Fetch the HEAD object from the KV store

3. Traverse the commit graph starting from the HEAD object:

(a) If the next object is in the packfile index, fetch the packfile from the KV store.

(b) Otherwise, fetch the object from the KV store.

The assumption here is that clients pack objects along with other objects that future clients will
need to pull together. As long as this assumption roughly holds, clients that pull can avoid costly
round-trips and instead can efficiently download batches of objects via packfiles.

5.2.2 Attribution

Secure attribution of commits is left for future work, but we describe how it can work here. With
authenticated encryption, members of a team are sure that no one outside the team (like the
server) has tampered with their data. However, there is no cryptographic method to establish who
authored commits. Such a system can be built atop the Git system, with FOKS’s help. A plan
might look like:

1. First off, it becomes important to use SHA2 rather than SHA1-based object hashing. The
latter is the default in git, but due to the ease with which one can find collisions in SHA1,
signing over these hashes achieves little. Up until now, SHA1 does not pose a security threat,
since all objects and object hashes are protected with authenticated encryption.

2. Next, sign a new PGP [13] key into the user’s sigchain, and encrypt the secret key for the
user’s PUK. Export this PGP key into the user’s local PGP keyring on every device the user
needs to make git commits from.

3. Configure git to sign each commit with the exported PGP key.

4. The team administrator creates a signed PGP roster, that maps each PGP key to a user’s
name and UID.

Nested team graphs can complicate this picture. If u is a member of team t1, which is in turn a
member of team t2, what happens when u signs commits for t2’s git repository? Recall that readers
of t2 might not have access to t1’s roster, and therefore might not be able to read u’s sigchain or
verify his PGP key. So administrators with better visibility need to propagate these keys to the
rest of the team; and this process might be recursive.

6 Related Work

The initial inspiration for FOKS is the SUNDR project [29], which first originated the idea of a
fork-consistent blockchain of edits facilitated by a untrusted server. Like Keybase [1], FOKS applies
this basic architecture to the problem of key distribution, rather than the data those keys might
secure. Many other projects have influenced FOKS’s design, like CONIKS [32], SEEMless [14],
ELEKTRA [27], Zoom’s E2EE system [12], OPTIKS [28] and the widespread adoption of Key
Transparency in Signal, WhatsApp and iMessage. The question of federation has largely been
ignored, as these systems all shared the basic architecture of a single upstream server.

Projects such as Matrix [18] and Mastodon [39] have demonstrated the power of federation in
other domains but focus on different applications, like chat and social media. Various IETF drafts
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are considering Key Transparency [31] and identity extensions [6] to Messaging Layer Security
(MLS) [5] but so far do not provide a complete solution for the use case described in this paper.

7 Conclusion

We have described, at a high level, the Federated Open Key Service (FOKS). FOKS features multi-
device support for users, arbitrary acyclic team graphs, PQ-encryption, and federation. With these
primitives, we can build applications like end-to-end authenticated, encrypted key-value stores, and
git hosting. This service is currently operational [38] and all source code is available on GitHub [37].
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