Apple Platform
Security

N

January 2026



Apple Platform Security

Contents

Apple Platform Security

Intro to Apple platform security

Hardware security and biometrics

Hardware security overview
Apple SoC security

The Secure Enclave

Optic ID, Face ID, and Touch ID
Hardware microphone disconnect

Express Cards with power reserve

System security

System security overview

Secure boot

Signed system volume security
Secure software updates
Background Security Improvements

Operating system integrity

Device pairing and connection security

BlastDoor for Messages and IDS

Lockdown Mode security

Overview of additional macOS system security capabilities

System security for watchOS

Random number generation

Communicating emergency information using satellites

Apple Security Research Device

Encryption and Data Protection

Encryption and Data Protection overview

Quantum-secure cryptography with Apple devices

Passcodes and passwords

30

30
30
53
55
56
58
62
67
67
68
78
81
82
84

86
86
87
88



Apple Platform Security

Data Protection
FileVault
How Apple protects users' personal data

Digital signing and encryption

App security

App security overview

App code signing process

App security in iOS, iPadOS, and visionOS
App security in macOS

Supporting extensions

Secure features in the Notes app

Secure features in the Shortcuts app

Services security

Services security overview

Apple Account and Managed Apple Account
iCloud

Passcode and password management
Apple Pay

Using Apple Wallet

iMessage

Secure Apple Messages for Business
FaceTime security

Find My

Continuity

Network security

Network security overview

TLS security

IPv6 security

VPN security

Wi-Fi security and privacy
Bluetooth security

Ultra Wideband security in iOS
Single Sign-on security

AirDrop security

Wi-Fi password sharing security

Firewall security in macOS

91
104
108

m

113
113
114
116
119
123
124
126

127

127
127
130
139
149
166
185
189
190
191
193

197

197
197
199
200
201
206
208
208
21
212
212



Apple Platform Security

Developer kit security

Developer kit security overview
ARKit security

DriverKit security

EnergyKit data security
HomeKit security

NFC & SE Platform security
ReplayKit security

SiriKit security

WidgetKit security

Secure device management

Secure device management overview

Device management
Apple Configurator security

Screen Time security

Glossary

Document revision history

Document revision history

Copyright and trademarks

213

213
213
214
214
215
220
223
224
225

226

226
226
241
242

244

249
249

262



Apple Platform Security

Apple Platform Security

Intro to Apple platform security

Apple designs security into the core of its platforms. Building on the experience of
creating the world’s most advanced mobile operating system, Apple has created security
architectures that address the unique requirements of mobile, watch, desktop, and home.

Every Apple device combines hardware, software, and services designed to work together
for maximum security and a transparent user experience in service of the ultimate goal

of keeping personal information safe. For example, Apple designed silicon and security
hardware powers critical security features, including those that protect both the operating
system and third-party apps. Services provide a mechanism for secure and timely software
updates, power a protected app ecosystem, and facilitate secure communications and
payments. As a result, Apple devices protect not only the device and its data but the

entire ecosystem, including everything users do locally on networks, and with key internet
services.

Apple designs its products to be simple, intuitive, capable, and above all else, secure.
Key security features, such as hardware-based device encryption, can't be turned off by
mistake. Other features, such as Face ID and Touch ID, enhance the user experience by
making it simpler and more intuitive to secure the device. And because many of these
features are enabled by default, users or IT departments don’t need to perform extensive
configurations.

This documentation provides details about how security technology and features are
implemented within Apple platforms. It also helps organizations combine Apple platform
security technology and features with their own policies and procedures to meet their
specific security needs.

Content is organized into the following topic areas:

- Hardware security and biometrics: The silicon and hardware that forms the
foundation for security on Apple devices, including Apple silicon, the Secure Enclave,
cryptographic engines, and biometric authentication

- System security: The integrated hardware and software functions that provide for the
safe boot, update, and ongoing operation of Apple operating systems

- Encryption and Data Protection: The architecture and design that protects user data
if the device is lost or stolen or if an unauthorized person or process attempts to use or
modify it

- App security: The software and services that provide a safe app ecosystem and enable
apps to run securely and without compromising platform integrity



- Services security: Apple's services for identification, password management,
payments, communications, and finding lost devices

- Network security: Industry-standard networking protocols that provide secure
authentication and encryption of data in transmission

- Developer kit security: Framework “kits" for secure and private management of home
and health, as well as extension of Apple device and service capabilities to third-party

apps

- Secure device management: Methods that allow management of Apple devices, help
prevent unauthorized use, and enable remote wipe if a device is lost or stolen

A commitment to security

Apple is committed to helping protect customers with leading privacy and security
technologies—designed to safeguard personal information—and comprehensive methods,
to help protect corporate data in an enterprise environment. Apple rewards researchers for
the work they do to uncover vulnerabilities by offering the Apple Security Bounty. Details of
the program and bounty categories are available at https://security.apple.com/bounty.

We maintain a dedicated security team to support all Apple products. The team provides
security auditing and testing for products, both under development and released. The
Apple team also provides security tools and training, and actively monitors for threats and
reports of new security issues. Apple is a member of the Forum of Incident Response and
Security Teams (FIRST).

Apple continues to push the boundaries of what's possible in security and privacy. It uses
custom Apple silicon across the product lineup—from Apple Watch, to iPad and iPhone, to
the M-series chips in Mac—powering not only efficient computation but also security. For
example, Apple silicon forms the foundation for secure boot, biometric authentication, and
Data Protection. In addition, security features powered by Apple silicon—such as Kernel
Integrity Protection, Pointer Authentication Codes, and Fast Permission Restrictions—
help thwart common types of exploitation. Even if attacker code somehow executes, the
damage it can do is dramatically reduced.

To make the most of the extensive security features built into our platforms, organizations
are encouraged to review their IT and security policies to ensure that they are taking full
advantage of the layers of security technology offered by these platforms.

To learn more about reporting issues to Apple and subscribing to security notifications, see
Report a security or privacy vulnerability.

Apple believes privacy is a fundamental human right and has numerous built-in controls
and options that allow users to decide how and when apps use their information, as well
as what information is being used. To learn more about Apple’s approach to privacy,
privacy controls on Apple devices, and the Apple privacy policy, see https://www.apple.
com/privacy.

Note: Unless otherwise noted, this documentation covers the following operating system
versions: i0S 26.1, iPadOS 26.1, macOS 26.1, tvOS 26.1, visionOS 26.1, and watchOS 26.1.

Apple Platform Security 6


https://security.apple.com/bounty
https://www.first.org
https://www.first.org
https://support.apple.com/102549
https://www.apple.com/privacy
https://www.apple.com/privacy

Apple Platform Security

Hardware security and biometrics

Hardware security overview

For software to be secure, it needs to rest on hardware that has security built in. That's
why Apple devices—with iOS, iPadOS, macOS, tvOS, vision0OS, and watchOS—have security
capabilities designed into silicon. These capabilities include a CPU that powers system
security features, as well as additional silicon that's dedicated to security functions.
Security-focused hardware follows the principle of supporting limited and discretely
defined functions to minimize attack surface. Such components include a Boot ROM,

which forms a hardware root of trust for secure boot, dedicated AES Engines for efficient
and secure encryption and decryption, and a Secure Enclave. The Secure Enclave is a
component on Apple system on a chip (SoC) that's included on all recent iPad, iPhone,
Apple TV, Apple Vision Pro, Apple Watch, HomePod devices, and on a Mac with Apple
silicon and those with the Apple T2 Security Chip. The Secure Enclave follows the same
principle of design as the SoC does, containing its own discrete Boot ROM and the
advanced encryption standard (AES) engine. engine. The Secure Enclave also provides the
foundation for the secure generation and storage of the keys necessary for encrypting data
at rest, and it protects and evaluates the biometric data for Optic ID, Face ID, and Touch ID.

Storage encryption needs to be fast and efficient. At the same time, it can’t expose the
data (or keying material) it uses to establish cryptographic keying relationships. The AES
hardware engine solves this problem by performing fast in-line encryption and decryption
as files are written or read. A special channel from the Secure Enclave provides necessary
keying material to the AES Engine without exposing this information to the Application
Processor (or CPU) or overall operating system. This helps ensure that the Apple Data
Protection and FileVault technologies protect user files without exposing long-lived
encryption keys.

Apple has designed secure boot to protect the lowest levels of software against tampering,
allowing only trusted operating system software from Apple to load at startup. Secure

boot begins in immutable code called the Boot ROM, which is laid down during Apple SoC
fabrication and is known as the hardware root of trust. On a Mac with a T2 chip, trust for
macOS secure boot begins with the T2. (Both the T2 chip and the Secure Enclave also
execute their own secure boot processes using their own separate Boot ROM—this is an
exact analogue to how the A-series and M series chips boot securely.)

The Secure Enclave also processes eye, face, and fingerprint data from Optic ID, Face ID,
and Touch ID sensors in Apple devices. This provides secure authentication while keeping
user biometric data private and secure. It also allows users to benefit from the security

of longer and more complex passcodes and passwords with, in many situations, the
convenience of swift authentication for access or purchases.



Apple Platform Security

Apple SoC security

Apple-designed silicon forms a common architecture across all Apple products and powers
iPad, iPhone, Mac, Apple TV, Apple Vision Pro, Apple Watch, and HomePod. For over a
decade, Apple’s world-class silicon design team has been building and refining Apple
systems on a chip (SoCs). The result is a scalable architecture designed for all devices that
leads the industry in security capabilities. This common foundation for security features is
only possible from a company that designs its own silicon to work with its software.

Apple silicon has been designed and fabricated to specifically enable the system security
features detailed below.

Feature A10 A11, S3 A12-A14 A15-A18 M1 M2-M4 A19
S4-S10 M5

Kernel 4 v 4 4 4 4 4

Integrity

Protection

Fast X v v v v v v

Permission

Restrictions

system X X v v v v v

Coprocessor
Integrity
Protection

Pointer x X \/ \/ \/ \/ \/

Authentication
Codes

e X

Protection
Layer

Secure Page >< X X

Table Monitor

- X
AN
X
X

X <
X X

Memory x X X

Integrity
Enforcement
with Enhanced
Memory
Tagging
Extension

1: Secure Page Table Monitor (SPTM) is supported in the A15 or later and M2 or later SOCs
and replaces Page Protection Layer on supported platforms.

2: Page Protection Layer (PPL) and Secure Page Table Monitor (SPTM) enforce the
execution of signed and trusted code on all platforms with the exception of macOS
(because macOS is designed to run any code). All of the other security properties,
including the protection of page tables, are present across all supported platforms.



Apple-designed silicon also specifically enables the Data Protection capabilities detailed

below.

Feature A10, A11 A12 or later
S3 S4 or later

M1 or later

Sealed Key Protection (SKP) \/ \/

recoveryOS - All Data Protection \/ \/

Classes protected

Alternate boots of DFU, Diagnostics, \/

and Update - Class A, B, and C data

protected

Apple Platform Security
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The Secure Enclave

The Secure Enclave is a dedicated secure subsystem in the latest versions of iPad, iPhone,
Mac, Apple TV, Apple Vision Pro, Apple Watch, and HomePod.

Overview

The Secure Enclave is a dedicated secure subsystem integrated into Apple (SoC). The
Secure Enclave is isolated from the main processor to provide an extra layer of security and
is designed to keep sensitive user data secure even when the Application Processor kernel
becomes compromised. It follows the same design principles as the SoC does—a Boot ROM
to establish a hardware root of trust, an AES Engine for efficient and secure cryptographic
operations, and protected memory. Although the Secure Enclave doesn’t include storage,

it has a mechanism to store information securely on attached storage separate from the
NAND flash storage that's used by the Application Processor and operating system.

NAND flash storage DRAM

I

Memory controller

A

NAND flash controller ——————————=_%

Application Processor 1
AES engine e

v

A
cnnencccatecaaa

TRNG
Secure Enclave v
AES Engine
S B <—» Memory P.rotectlon
Processor Elefl=
PKA

Secure Enclave

System on chip

Secure Nonvolatile Storage



The Secure Enclave is a hardware feature of most versions of iPad, iPhone, Mac,
Apple TV, Apple Vision Pro, Apple Watch, and HomePod—namely:

- All iPad models starting with iPad Air or later

- All iPhone models starting with iPhone 5s or later

- All Mac computers with Apple silicon

- MacBook Pro computers with Touch Bar (2016 and 2017) that contain the Apple T1 Chip
- All Intel-based Mac computers that contain the Apple T2 Security Chip

- All Apple TV models starting with Apple TV HD or later

- All Apple Watch models starting with Apple Watch Series 1 or later

- Apple Vision Pro

- All HomePod models

The Secure Enclave Processor

The Secure Enclave Processor provides the main computing power for the Secure Enclave.
To provide the strongest isolation, the Secure Enclave Processor is dedicated solely for
Secure Enclave use. This helps prevent side-channel attacks that depend on malicious
software sharing the same execution core as the target software under attack.

The Secure Enclave Processor runs an Apple-customized version of the L4 microkernel. It's
designed to operate efficiently at a lower clock speed that helps to protect it against clock
and power attacks. The Secure Enclave Processor, starting with the A11 and S4, includes

a memory-protected engine and encrypted memory with anti-replay capabilities, secure
boot, a dedicated random number generator, and its own AES Engine.

Memory Protection Engine

The Secure Enclave operates from a dedicated region of the device’'s DRAM memory.
Multiple layers of protection isolate the Secure Enclave protected memory from the
Application Processor.

When the device starts up, the Secure Enclave Boot ROM generates a random ephemeral
memory protection key for the Memory Protection Engine. Whenever the Secure Enclave
writes to its dedicated memory region, the Memory Protection Engine encrypts the block
of memory using AES in Mac XEX (xor-encrypt-xor) mode, and calculates a Cipher-
based Message Authentication Code (CMAC) authentication tag for the memory. The
Memory Protection Engine stores the authentication tag alongside the encrypted memory.
When the Secure Enclave reads the memory, the Memory Protection Engine verifies the
authentication tag. If the authentication tag matches, the Memory Protection Engine
decrypts the block of memory. If the tag doesn’t match, the Memory Protection Engine
signals an error to the Secure Enclave. After a memory authentication error, the Secure
Enclave stops accepting requests until the system is rebooted.

Apple Platform Security 1
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Starting with the Apple A11 and S4 SoCs, the Memory Protection Engine adds replay
protection for Secure Enclave memory. To help prevent replay of security-critical data, the
Memory Protection Engine stores a unique one-off number, called an anti-replay value,
for the block of memory alongside the authentication tag. The anti-replay value is used

as an additional refinement for the CMAC authentication tag. The anti-replay values for all
memory blocks are protected using an integrity tree rooted in dedicated SRAM within the
Secure Enclave. For writes, the Memory Protection Engine updates the anti-replay value
and each level of the integrity tree up to the SRAM. For reads, the Memory Protection
Engine verifies the anti-replay value and each level of the integrity tree up to the SRAM.
Anti-replay value mismatches are handled similarly to authentication tag mismatches.

On Apple A14, M1, or later SoCs, the Memory Protection Engine supports two ephemeral
memory protection keys. The first is used for data private to the Secure Enclave, and the
second is used for data shared with the Secure Neural Engine.

The Memory Protection Engine operates inline and transparently to the Secure Enclave.
The Secure Enclave reads and writes memory as if it were regular unencrypted

DRAM, whereas an observer outside the Secure Enclave sees only the encrypted and
authenticated version of the memory. The result is strong memory protection without
performance or software complexity tradeoffs.

The Secure Enclave Boot ROM

The Secure Enclave includes a dedicated Secure Enclave Boot ROM. Like the Application
Processor Boot ROM, the Secure Enclave Boot ROM is immutable code that establishes the
hardware root of trust for the Secure Enclave.

On system startup, iBoot assigns a dedicated region of memory to the Secure Enclave.
Before using the memory, the Secure Enclave Boot ROM initializes the Memory Protection
Engine to provide cryptographic protection of the Secure Enclave protected memory.

The Application Processor then sends the sepOS image to the Secure Enclave Boot ROM.
After copying the sepOS image into the Secure Enclave protected memory, the Secure
Enclave Boot ROM checks the cryptographic hash and signature of the image to verify that
the sepOS is authorized to run on the device. If the sepOS image is properly signed to run
on the device, the Secure Enclave Boot ROM transfers control to sepOS. If the signature
isn't valid, the Secure Enclave Boot ROM is designed to prevent any further use of the
Secure Enclave until the next chip reset.

On Apple A10 or later SoCs, the Secure Enclave Boot ROM locks a hash of the sepOS
into a register dedicated to this purpose. The Public Key Accelerator uses this hash for
operating-system-bound (OS-bound) keys.
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The Secure Enclave Boot Monitor

On Apple A13 or later SoCs, the Secure Enclave includes a Boot Monitor designed to ensure
stronger integrity on the hash of the booted sepOS.

At system startup, the Secure Enclave Processor's System Coprocessor Integrity
Protection (SCIP) configuration helps prevent the Secure Enclave Processor from executing
any code other than the Secure Enclave Boot ROM. The Boot Monitor helps prevent the
Secure Enclave from modifying the SCIP configuration directly. To make the loaded sepOS
executable, the Secure Enclave Boot ROM sends the Boot Monitor a request with the
address and size of the loaded sepOS. On receipt of the request, the Boot Monitor resets
the Secure Enclave Processor, hashes the loaded sepOS, updates the SCIP settings to
allow execution of the loaded sepOS, and starts execution within the newly loaded code.
As the system continues booting, this same process is used whenever new code is made
executable. Each time, the Boot Monitor updates a running hash of the boot process. The
Boot Monitor also includes critical security parameters in the running hash.

When boot completes, the Boot Monitor finalizes the running hash and sends it to the
Public Key Accelerator to use for OS-bound keys. This process is designed to avoid
bypassing operating system keybinding even with a vulnerability in the Secure Enclave
Boot ROM.

True Random Number Generator

The True Random Number Generator (TRNG) is used to generate secure random data. The
Secure Enclave uses the TRNG whenever it generates a random cryptographic key, random
key seed, or other entropy. The TRNG is based on multiple ring oscillators post processed

with CTR_DRBG (an algorithm based on block ciphers in Counter Mode).

Root Cryptographic Keys

The Secure Enclave includes a unique ID (UID) root cryptographic key. The UID is unique to
each individual device and isn't related to any other identifier on the device.

A randomly generated UID is fused into the SoC at manufacturing time. Starting with A9
SoCs, the UID is generated by the Secure Enclave TRNG during manufacturing and written
to the fuses using a software process that runs entirely in the Secure Enclave. This process
protects the UID from being visible outside the device during manufacturing and therefore
isn't available for access or storage by Apple or any of its suppliers.

sepOS uses the UID to protect device-specific secrets. The UID allows data to be
cryptographically tied to a particular device. For example, the key hierarchy protecting
the file system includes the UID, so if the internal SSD storage is physically moved from
one device to another, the files are inaccessible. Other protected device-specific secrets
include Optic ID, Face ID, or Touch ID data. On a Mac, only fully internal storage linked to
the AES Engine receives this level of encryption. For example, neither external storage
devices connected over USB nor PCle-based storage added to the 2019 Mac Pro are
encrypted in this fashion.

The Secure Enclave also has a device group ID (GID), which is common to all devices that
use a given SoC (for example, all devices using the Apple A15 SoC share the same GID).

The UID and GID aren't available through Joint Test Action Group (JTAG) or other
debugging interfaces.



The Secure Enclave AES Engine

The Secure Enclave AES Engine is a hardware block used to perform symmetric
cryptography based on the AES cipher. The AES Engine is designed to resist leaking
information by using timing and Static Power Analysis (SPA). Starting with the A9 SoC, the
AES Engine also includes Dynamic Power Analysis (DPA) countermeasures.

The AES Engine supports hardware and software keys. Hardware keys are derived from
the Secure Enclave UID or GID. These keys stay within the AES Engine and aren’t made
visible even to sepOS software. Although software can request encryption and decryption
operations with hardware keys, it can't extract the keys.

On Apple A10 and newer SoCs, the AES Engine includes lockable seed bits that diversify
keys derived from the UID or GID. This allows data access to be conditioned on the
device's mode of operation. For example, lockable seed bits are used to deny access to
password-protected data when booting from Device Firmware Update (DFU) mode. For
more information, see Passcodes and passwords.

AES Engine

Every Apple device with a Secure Enclave also has a dedicated AES-256 crypto engine
(the AES Engine) built into the direct memory access (DMA) path between the NAND
(nonvolatile) flash storage and main system memory, making file encryption highly
efficient. On A9 or later A-series processors, the flash storage subsystem is on an isolated
bus that's granted access only to memory containing user data through the DMA crypto
engine.

At boot time, sepOS generates an ephemeral wrapping key using the TRNG. The Secure
Enclave transmits this key to the AES Engine using dedicated wires, designed to prevent it
from being accessed by any software outside the Secure Enclave. sepOS can then use the
ephemeral wrapping key to wrap file keys for use by the Application Processor file-system
driver. When the file-system driver reads or writes a file, it sends the wrapped key to the
AES Engine, which unwraps the key. The AES Engine never exposes the unwrapped key to
software.

Note: The AES Engine is a separate component from both the Secure Enclave and the
Secure Enclave AES Engine, but its operation is closely tied to the Secure Enclave, as
shown below.

Secure Enclave = ccceea

[]
)
[]
]
)
1
1
Application E
1
[ ]

Processor .
N AES Engine <

memory

NAND flash
storage
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Public Key Accelerator

The Public Key Accelerator (PKA) is a hardware block used to perform asymmetric
cryptography operations. The PKA supports RSA and Elliptic Curve Cryptography (ECC)
signing and encryption algorithms. The PKA is designed to resist leaking information using
timing and side-channel attacks such as SPA and DPA.

The PKA supports software and hardware keys. Hardware keys are derived from the Secure
Enclave UID or GID. These keys stay within the PKA and aren’t made visible even to sepOS.

Starting with A13 SoCs, the PKA's encryption implementations have been proved to be
mathematically correct using formal verification techniques.

On Apple A10 or later SoCs, the PKA supports OS-bound keys, also referred to as Sealed
Key Protection (SKP). These keys are generated using a combination of the device's UID
and the hash of the sepOS running on the device. The hash is provided by the Secure
Enclave Boot ROM, or by the Secure Enclave Boot Monitor on Apple A13 or later SoCs.
These keys are also used to:

- Verify the sepOS version when making requests to certain Apple services.

- Improve the security of passcode-protected data by helping to prevent access to keying
material if critical changes are made to the system without user authorization.

Secure nonvolatile storage

The Secure Enclave is equipped with a dedicated secure nonvolatile storage device. The
secure nonvolatile storage is connected to the Secure Enclave using a dedicated 12C bus,
so that it can only be accessed by the Secure Enclave. All user data encryption keys are
rooted in entropy stored in the Secure Enclave nonvolatile storage.

In devices with A12, S4, or later SoCs, the Secure Enclave is paired with a Secure
Storage Component for entropy storage. The Secure Storage Component is itself
designed with immutable ROM code, a hardware random number generator, a per-device
unique cryptographic key, cryptography engines, and physical tamper detection. The
Secure Enclave and Secure Storage Component communicate using an encrypted and
authenticated protocol that provides exclusive access to the entropy.

Devices first released in Fall 2020 or later are equipped with a 2nd-generation Secure
Storage Component, which adds counter lockboxes. Each counter lockbox stores a 128-bit
salt, a 128-bit passcode verifier, an 8-bit counter, and an 8-bit maximum attempt value.
Access to the counter lockboxes is through an encrypted and authenticated protocol.

Counter lockboxes hold the entropy needed to unlock passcode-protected user data. To
access the user data, the paired Secure Enclave needs to derive the correct passcode
entropy value from the user’s passcode and the Secure Enclave's UID. The user’s passcode
can't be learned using unlock attempts sent from a source other than the paired Secure
Enclave. If the passcode attempt limit is exceeded (for example, 10 attempts on iPhone),
the passcode-protected data is erased completely by the Secure Storage Component.

Apple Platform Security 15
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To create a counter lockbox, the Secure Enclave sends the Secure Storage Component the
passcode entropy value and the maximum attempt value. The Secure Storage Component
generates the salt value using its random number generator. It then derives a passcode
verifier value and a lockbox entropy value from the provided passcode entropy, the Secure
Storage Component’s unique cryptographic key, and the salt value. The Secure Storage
Component initializes the counter lockbox with a count of 0, the provided maximum
attempt value, the derived passcode verifier value, and the salt value. The Secure Storage
Component then returns the generated lockbox entropy value to the Secure Enclave.

To retrieve the lockbox entropy value from a counter lockbox later, the Secure Enclave
sends the Secure Storage Component the passcode entropy. The Secure Storage
Component first increments the counter for the lockbox. If the incremented counter
exceeds the maximum attempt value, the Secure Storage Component completely erases
the counter lockbox. If the maximum attempt count hasn't been reached, the Secure
Storage Component attempts to derive the passcode verifier value and lockbox entropy
value with the same algorithm used to create the counter lockbox. If the derived passcode
verifier value matches the stored passcode verifier value, the Secure Storage Component
returns the lockbox entropy value to the Secure Enclave and resets the counter to 0.

The keys used to access password-protected data are rooted in the entropy stored in
counter lockboxes. For more information, see Data Protection overview.

The secure nonvolatile storage is used for all anti-replay services in the Secure Enclave.
Anti-replay services on the Secure Enclave are used for revocation of data over events that
mark anti-replay boundaries including, but not limited to, the following:

- Passcode change

- Turning on, off, or resetting Optic ID, Face ID, or Touch ID

- Adding or removing an eye, face, or fingerprint, respectively
- Adding or removing an Apple Pay card

- Erase All Content and Settings

On architectures that don't feature a Secure Storage Component, electrically erasable
programmable read-only memory (EEPROM) is utilized to provide secure storage services
for the Secure Enclave. Just like the Secure Storage Components, the EEPROM is attached
and accessible only from the Secure Enclave, but it doesn't:

- Contain dedicated hardware security features.

- Guarantee exclusive access to entropy (aside from its physical attachment
characteristics) or counter lockbox functionality.

The Secure Neural Engine

On Apple Vision Pro, the Secure Neural Engine converts images into a mathematical
representation of a user’s eyes. On devices with Face ID (not Touch ID), the Secure Neural
Engine converts 2D images and depth maps into a mathematical representation of a
user's face.

On Apple A11 through A13 SoCs, the Secure Neural Engine is integrated into the Secure
Enclave. The Secure Neural Engine uses DMA for high performance. An input-output
memory management unit (IOMMU) under the sepOS kernel's control limits this direct
access to authorized memory regions.
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On Apple A14, M1, or later SoCs, the Secure Neural Engine is implemented as a secure
mode in the Application Processor’s Neural Engine. A dedicated hardware security
controller switches between Application Processor and Secure Enclave tasks, resetting

Neural Engine state on each transition to keep Optic ID, Face ID, or Touch ID data secure.

A dedicated engine applies memory encryption, authentication, and access control. At

the same time, it uses a separate cryptographic key and memory range to limit the Secure

Neural Engine to authorized memory regions.

Power and clock monitors

All electronics are designed to operate within a limited voltage and frequency envelope.
When operated outside this envelope, the electronics can malfunction and then security
controls may be bypassed. To help ensure that the voltage and frequency stay in a safe
range, the Secure Enclave is designed with monitoring circuits. These monitoring circuits
are designed to have a much larger operating envelope than the rest of the Secure

Enclave. If the monitors detect an illegal operating point, the clocks in the Secure Enclave

automatically stop and don't restart until the next SoC reset.

Secure Enclave feature summary

A12, A13, S4, and S5 products first released in Fall 2020 have a 2nd generation Secure
Storage Component, whereas while earlier products based on these SoCs have a 1st
generation Secure Storage Component.

SoC

A8

A9

A10

A1

A12 (Apple devices
released before Fall
2020)

A12 (Apple devices
released after Fall
2020)

A13 (Apple devices
released before Fall
2020)

A13 (Apple devices
released after Fall
2020)

Memory Protection
Engine

Encryption and
authentication

Encryption and
authentication

Encryption and
authentication

Encryption,
authentication, and
replay prevention

Encryption,
authentication, and
replay prevention

Encryption,
authentication, and
replay prevention

Encryption,
authentication, and
replay prevention

Encryption,
authentication, and
replay prevention

Secure Storage

EEPROM

EEPROM

EEPROM

EEPROM

Secure Storage
Component gen 1

Secure Storage
Component gen 2

Secure Storage
Component gen 1

Secure Storage
Component gen 2

AES Engine

v

DPA protection
DPA protection and
lockable seed bits
DPA protection and

lockable seed bits

DPA protection and
lockable seed bits

DPA protection and
lockable seed bits

DPA protection and
lockable seed bits

DPA protection and
lockable seed bits

PKA

X
4

0S-bound keys

0OS-bound keys
0S-bound keys
0S-bound keys
0S-bound keys and
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Optic ID, Face ID, and Touch ID

Biometric security

Passcodes and passwords are essential to the security of Apple devices. At the same
time, users require convenient access to their devices, often more than a hundred times a
day. Biometric authentication provides a way to retain the security of a strong passcode—
or even strengthen the passcode or password because it doesn’t need to be entered
manually—while providing the convenience of swiftly unlocking with a finger press or
glance. Optic ID, Face ID, and Touch ID don't replace a passcode or password, but in most
situations they do make access faster.

Apple's biometric security architecture relies on a strict separation of responsibilities
between the biometric sensor and the Secure Enclave, and a secure connection between
the two. The sensor captures the biometric image and securely transmits it to the Secure
Enclave. During enrollment, the Secure Enclave processes, encrypts, and stores the
corresponding Optic ID, Face ID, and Touch ID template data. During matching, the Secure
Enclave compares incoming data from the biometric sensor against the stored templates
to determine whether to unlock the device or respond that a match is valid (for Apple Pay,
in-app, and other uses of Optic ID, Face ID, and Touch ID). The architecture supports
devices that include both the sensor and Secure Enclave (such as iPad, iPhone, many Mac
computers, and Apple Vision Pro), as well as the ability to physically separate the sensor
into a peripheral that's then securely paired to the Secure Enclave in a Mac with Apple
silicon.

Optic ID security

Optic ID provides intuitive and secure authentication that uses the uniqueness of a
person's iris, made possible by the high-performance eye-tracking system of LEDs and
infrared cameras in Apple Vision Pro. It uses a spatiotemporally modulated eye-safe near-
infrared light to illuminate the eye so that Apple Vision Pro eye cameras capture images
of the iris. Image data is sent to and processed on the Secure Enclave and Secure Neural
Engine, where it's transformed into a mathematical representation for enroliment.

Optic ID is designed to:

- Work with prescription soft contact lenses and ZEISS Optical Inserts for users who
require vision correction.

- Confirm user attention using gaze tracking and provide robust authentication with a low
false-match rate.

- Mitigate both digital and physical spoofing.

When a user unlocks their Apple Vision Pro using their eyes, Optic ID uses neural networks
to determine matching and antispoofing. It automatically adapts to changes in conditions
by updating the user’s enrolled template after each successful authentication. This helps
improve Optic ID performance in various lighting conditions, under which the visible
portion of the iris and the size of the pupil might vary.
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When a user unlocks Apple Vision Pro, the Optic ID icon is prominently displayed in the
center of the user’s line of sight. After successful unlock (or during an app authentication),
Optic ID continually tracks the user’s eye area with the eye cameras in Apple Vision Pro.
While the user continues to wear the device, if the user needs to authenticate again, this
continual tracking is used by Optic ID for authentication.

Face ID security

With a glance, Face ID securely unlocks supported Apple devices and is designed to
confirm user attention, provide robust authentication with a low false-match rate, and
mitigate both digital and physical spoofing. It provides intuitive and secure authentication
enabled by the TrueDepth camera system, which uses advanced technologies to accurately
map the geometry of a user’s face. Face ID uses neural networks for determining attention,
matching, and antispoofing, so a user can unlock their phone with a glance, even with

a mask on when using supported devices. Face ID automatically adapts to changes in
appearance, and carefully safeguards the privacy and security of a user's biometric data.

The TrueDepth camera automatically looks for the user’s face when the user wakes an
Apple device that features Face ID (by raising it or tapping the screen), as well as when
those devices attempt to authenticate the user to display an incoming notification or

when a supported app requests Face ID authentication. When a face is detected, Face ID
confirms attention and intent to unlock by detecting that the user’s eyes are open and their
attention is directed at their device; for accessibility, the Face ID attention check is turned
off when VoiceOver is activated and, if required, can be turned off separately. Attention
detection is always required when using Face ID with a mask.

After the TrueDepth camera confirms the presence of an attentive face, it projects and
reads thousands of infrared dots to form a depth map of the face along with a 2D infrared
image. This data is used to create a sequence of 2D images and depth maps, which are
digitally signed and sent to the Secure Enclave. To counter both digital and physical
spoofs, the TrueDepth camera randomizes the sequence of 2D images and depth map
captures, and projects a device-specific random pattern. A portion of the Secure Neural
Engine—protected within the Secure Enclave—transforms this data into a mathematical
representation and compares that representation to the enrolled facial data. This enrolled
facial data is itself a mathematical representation of the user’s face captured across a
variety of poses.

Touch ID security

Touch ID is the fingerprint sensing system that makes secure access to supported Apple
devices faster and easier. This technology reads fingerprint data from any angle and
learns more about a user’s fingerprint over time, with the sensor continuing to expand the
fingerprint map as additional overlapping nodes are identified with each use.

Apple devices with a Touch ID sensor can be unlocked using a fingerprint. Touch ID doesn't
replace the need for a device passcode or user password, which is still required after
device startup, restart, or logout (on a Mac). In some apps, Touch ID can also be used in
place of a device passcode or user password; for example, to unlock:

- Password-protected notes in the Notes app
- Keychain-protected websites

- Supported app passwords
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However, a device passcode or user password is always required in some scenarios (for
example, to change an existing device passcode or user password or to remove existing
fingerprint enrollments or create new ones).

When the fingerprint sensor detects the touch of a finger, it initiates the advanced imaging
array to scan the finger and sends the scan to the Secure Enclave. The channel used to
secure this connection varies, depending on whether the Touch ID sensor is built into the
device with the Secure Enclave or is located in a separate peripheral.

While the fingerprint scan is being vectorized for analysis, the raster scan is temporarily
stored in encrypted memory within the Secure Enclave and then it's discarded. The
analysis uses subdermal ridge flow angle mapping, a lossy process that discards “finger
minutiae data" that would be required to reconstruct the user’s actual fingerprint. During
enrollment, the resulting map of nodes is stored in an encrypted format that can be read
only by the Secure Enclave as a template to compare against for future matches, but
without any identity information. This data never leaves the device. It's not sent to Apple,
nor is it included in device backups.

Built-in Touch ID channel security

Communication between the Secure Enclave and the built-in Touch ID sensor takes place
over a serial peripheral interface bus. The processor forwards the data to the Secure
Enclave but can’t read it. It's encrypted and authenticated with a session key that's
negotiated using a shared key provisioned for each Touch ID sensor and its corresponding
Secure Enclave at the factory. For every Touch ID sensor, the shared key is strong, random,
and different. The session key exchange uses AES key wrapping, with both sides providing
a random key that establishes the session key and uses transport encryption that provides
both authentication and confidentiality (using AES-CCM).

Magic Keyboard with Touch ID

The Magic Keyboard with Touch ID (and the Magic Keyboard with Touch ID and Numeric
Keypad) provides a Touch ID sensor in an external keyboard that can be used with any Mac
with Apple silicon. The Magic Keyboard with Touch ID performs the role of the biometric
sensor; it doesn't store biometric templates, perform biometric matching, or enforce
security policies (for example, having to enter the password after 48 hours without an
unlock). The Touch ID sensor in the Magic Keyboard with Touch ID needs to be securely
paired to the Secure Enclave on the Mac before it can be used, and then the Secure
Enclave performs the enrollment and matching operations and enforces security policies
in the same way it would for a built-in Touch ID sensor. Apple performs the pairing process
in the factory for a Magic Keyboard with Touch ID that's shipped with a Mac. Pairing can
also be performed by the user if needed. A Magic Keyboard with Touch ID can be securely
paired with only one Mac at a time, but a Mac can maintain secure pairings with up to five
different Magic Keyboard with Touch ID keyboards.

The Magic Keyboard with Touch ID and built-in Touch ID sensors are compatible. If a finger
that was enrolled on a built-in Mac Touch ID sensor is presented on a Magic Keyboard with
Touch ID, the Secure Enclave in the Mac successfully processes the match and vice versa.

To support secure pairing and thus communication between the Mac Secure Enclave and
the Magic Keyboard with Touch ID, the keyboard is equipped with a hardware Public Key
Accelerator (PKA) block, to provide attestation, and with hardware-based keys, to perform
the necessary cryptographic processes.
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Secure pairing

Before a Magic Keyboard with Touch ID can be used for Touch ID operations, it needs

to be securely paired to the Mac. To pair, the Secure Enclave on the Mac and the PKA
block in the Magic Keyboard with Touch ID exchange public keys, rooted in the trusted
Apple certificate authority (CA), and they use hardware-held attestation keys and Elliptic
Curve Diffie-Hellman Exchange Ephemeral (ECDHE) to securely attest to their identity.
On the Mac, this data is protected by the Secure Enclave; on the Magic Keyboard with
Touch ID, this data is protected by the PKA block. After secure pairing, all Touch ID data
communicated between the Mac and the Magic Keyboard with Touch ID is encrypted

by AES-GCM with a key length of 256 bits, and with ephemeral ECDH keys using NIST
P-256 curve based on the stored identities. For more information on using the keyboard in
wireless mode, see Bluetooth security.

Secure intent to pair

To perform some Touch ID operations for the first time, such as enrolling a new fingerprint,
the user needs to physically confirm their intent to use a Magic Keyboard with Touch ID
with the Mac. Physical intent is confirmed by pressing twice on the Mac power button
when indicated by the user interface, or by successfully matching a fingerprint that

had previously been enrolled with the Mac. For more information, see Secure intent and
connections to the Secure Enclave.

Apple Pay transactions can be authorized with a Touch ID match or by entering the macOS
user password and pressing twice on the Touch ID button on the Magic Keyboard with
Touch ID. The latter allows the user to confirm physical intent even without a Touch ID
match.

Magic Keyboard with Touch ID channel security

To help ensure a secure communication channel between the Touch ID sensor in the Magic
Keyboard with Touch ID and Secure Enclave on the paired Mac, the following are required:

- The secure pairing between the Magic Keyboard with Touch ID PKA block and the
Secure Enclave as described above.

- A secure channel, between the Magic Keyboard with Touch ID sensor and its PKA block.

The secure channel between the Magic Keyboard with Touch ID sensor and its PKA block
is established in the factory by using a unique key shared between the two. For Mac
computers with Touch ID built-in, this is the same technique used to create the secure
channel between the Secure Enclave on the Mac and its built-in sensor.

Optic ID, Face ID, Touch ID, passcodes, and passwords

To use Optic ID, Face ID, or Touch ID, the user needs to set up their device so that a
passcode or password is required to unlock it. When one of them detects a successful
match, the user’s device unlocks without asking for the device passcode or password. This
makes using a longer, more complex passcode or password far more practical because

the user doesn’t need to enter it as frequently. Optic ID, Face ID, and Touch ID don't
replace the user’s passcode or password; instead, they provide access to the device within
thoughtful boundaries and time constraints. This is important because a strong passcode
or password forms the foundation for how a user’s iPad, iPhone, Mac, Apple Watch, or
Apple Vision Pro cryptographically protects that user’s data.
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When a device passcode or password is required

Users can use their passcode or password anytime instead of Optic ID, Face ID, or
Touch ID, but there are situations where biometrics aren’t permitted. The following
security-sensitive operations always require entry of a passcode or password:

Updating the software

Erasing the device

Viewing or changing passcode settings

Installing configuration profiles

Unlocking the Privacy & Security pane in System Settings (macOS 13 or later) on Mac

Unlocking the Security & Privacy pane in System Preferences (macOS 12 or earlier) on
Mac

Unlocking the Users & Groups pane in System Settings (macOS 13 or later) on Mac (if
FileVault is turned on)

Unlocking the Users & Groups pane in System Preferences (macOS 12 or earlier) on
Mac (if FileVault is turned on)

A passcode or password is also required if the device is in any of the following states:

The device has just been turned on or restarted (doesn’t apply to Apple Vision Pro if the
“Nearby iPhone Enables Optic ID" feature is turned on).

The user has logged out of their Mac account (or hasn't yet logged in).
The user hasn’t unlocked their device for more than 48 hours.

The user hasn't used their passcode or password to unlock their device for 156 hours
(six and a half days), and the user hasn’t used biometric authentication to unlock their
device in four hours.

The device has received a remote lock command.

The user exited power off[Emergency SOS by pressing and holding either volume button
and the Sleep/Wake button simultaneously for two seconds and then pressing Cancel.

There were five unsuccessful biometric authentication match attempts (though for
usability, the device might offer entering a passcode or password instead of using
biometrics after a smaller number of failures).

When Face ID with a mask is enabled on an iPhone, it's available for the next 6.5 hours
after one of the following user actions:

.

Successful Face ID match attempt, even with or without a mask covering the nose and
mouth

Device passcode validation
Device unlock with Apple Vision Pro

Device unlock with Apple Watch

Any of these actions extends the period an additional 6.5 hours when performed.

When Optic ID, Face ID, or Touch ID is enabled on an iPad, iPhone, Mac laptop with
Touch ID, or Apple Vision Pro, the device immediately locks:

Apple Platform Security

When the Sleep/Wake button is pressed (if applicable).

23



Apple Platform Security

- Every time it goes to sleep.

Optic ID, Face ID, and Touch ID require a successful match—or optionally, use of the
passcode or password—at every wake.

The probability that a random person in the population could unlock a user’s iPad, iPhone,
or Apple Vision Pro is less than 1 in 1 million with Optic ID or Face ID—including when
Face ID with a mask is turned on. For a user's iPad, iPhone, Mac models with Touch ID,
and those paired with a Magic Keyboard with Touch ID, it's less than 1in 50,000. This
probability increases with multiple enrolled fingerprints (up to 1in 10,000 with five
fingerprints) or appearances for Face ID (up to 1in 500,000 with two appearances). For
additional protection, Optic ID, Face ID, and Touch ID allow only five unsuccessful match
attempts before a passcode or password is required to obtain access to the user’s device
or account. With Face ID, the probability of a false match is higher for:

- Twins and siblings who look like the user

+  Children under the age of 13 (because their distinct facial features may not have fully
developed)

The probability is further increased in these two cases when Face ID with a mask covering
the nose and mouth is used. If a user is concerned about a false match, Apple recommends
using a passcode to authenticate.

Optic ID matching security

Optic ID matches against detailed iris structure in the near-infrared domain, which reveals
highly unique patterns independent of iris pigmentation. It's designed to protect against
spoofing through the use of sophisticated neural networks that analyze the authenticity of
the iris and surrounding region.

While a user is setting up Optic ID, spatiotemporally modulated eye-safe near-infrared

light illuminates the eye, so that Apple Vision Pro eye cameras can capture images of the
iris. This iris image data is sent to and processed on the Secure Enclave and Secure Neural
Engine, where it's transformed into a mathematical representation for enroliment. When the
user unlocks or authenticates with Optic ID, the match attempt uses the same process to
compare the iris to the enrolled biometric data to determine whether there's a match.

Apple developed the neural networks and tuned algorithms for iris recognition using over

a billion images. Studies conducted with the participants’ informed consent are used to
collect those near-infrared domain images. Apple worked with participants from around the
world to include a representative group of people accounting for gender, age, ethnicity, and
other factors. The studies were augmented as needed to provide a high degree of accuracy
for a diverse range of users.

Optic ID works with prescription soft contact lenses and ZEISS Optical Inserts for users
who require vision correction. An antispoofing neural network spots and resist spoofs—
and defends against attempts to unlock the device with photos or masks. Optic ID data,
including mathematical representations of a user’s eye, is encrypted and available only
to the Secure Enclave. This data never leaves the device. It's not sent to Apple, nor is it
included in device backups.

The following Optic ID data is saved, encrypted only for use by the Secure Enclave, during
normal operation:

- The mathematical representations of a user’s eye and iris calculated during enroliment
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- The mathematical representations of a user’s eye and iris calculated during some
unlock attempts if Optic ID deems them useful to augment future matching—for
instance, improved visibility of iris or different pupil size

The Secure Enclave immediately discards eye images captured during normal operation
after it calculates the mathematical representation for either enroliment in Optic ID or for
matching with enrolled Optic ID data.

Facial matching security

Facial matching is performed within the Secure Enclave using neural networks trained
specifically for that purpose. Apple developed the facial matching neural networks

using over a billion images, including infrared (IR) and depth images collected in studies
conducted with the participants’ informed consent. Apple then worked with participants
from around the world to include a representative group of people accounting for gender,
age, ethnicity, and other factors. The studies were augmented as needed to provide a
high degree of accuracy for a diverse range of users. Face ID is designed to work with
hats, scarves, eyeglasses, contact lenses, and many types of sunglasses. Face ID also
supports unlocking with a mask on iPhone devices starting with iPhone 12 and iOS 15.4
or later. Furthermore, it's designed to work indoors, outdoors, and even in total darkness.
An additional neural network—that’s trained to spot and resist spoofing—defends against
attempts to unlock the device with photos or masks. Face ID data, including mathematical
representations of a user’s face, is encrypted and available only to the Secure Enclave.
This data never leaves the device. It's not sent to Apple, nor is it included in device
backups. The following Face ID data is saved, encrypted only for use by the Secure
Enclave, during normal operation:

- The mathematical representations of a user’s face calculated during enrollment

- The mathematical representations of a user’s face calculated during some unlock
attempts if Face ID deems them useful to augment future matching

The Secure Enclave immediately discards face images captured during normal operation
after it calculates the mathematical representation for either enrollment in Face ID or for
matching with enrolled Face ID data.

Improving Face ID matches

To improve match performance and keep pace with the natural changes of a face and look,
Face ID augments its stored mathematical representation over time. Upon a successful
match, Face ID may use the newly calculated mathematical representation—if its quality

is sufficient—for a finite number of additional matches before that data is discarded.
Conversely, if Face ID fails to recognize a face but the match quality is higher than a certain
threshold and a user immediately follows the failure by entering their passcode, Face ID
takes another capture and augments its enrolled Face ID data with the newly calculated
mathematical representation. This new Face ID data is discarded if the user stops matching
against it or after a finite number of matches; the new data is also discarded when the
option to reset Face ID is selected. These augmentation processes allow Face ID to keep
up with dramatic changes in a user’s facial hair or makeup use while minimizing false
acceptance.
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Uses for Optic ID, Face ID, and Touch ID

How a device’s Data Protection keys work varies depending on whether its Optic ID,
Face ID, or Touch ID is turned on or off.

Unlocking a device or user account

With Optic ID, Face ID, or Touch ID turned off, when a device or account is locked, the
keys for the highest class of Data Protection—which are held in the Secure Enclave—are
discarded. The files and keychain items in that class are inaccessible until the user unlocks
the device or account by entering their passcode or password.

With Optic ID, Face ID, or Touch ID turned on, the keys aren’t discarded when the device or
account locks; instead, they're wrapped with a key that's given to the Optic ID, Face ID, or
Touch ID subsystem inside the Secure Enclave. When a user attempts to unlock the device
or account, if the device detects a successful match, it provides the key for unwrapping
the Data Protection keys, and the device or account is unlocked. This process provides
additional protection by requiring cooperation between the Data Protection and Optic ID,
Face ID, or Touch ID subsystems to unlock the device.

When the device restarts, the keys required for Optic ID, Face ID, or Touch ID to unlock the
device or account are lost; they're discarded by the Secure Enclave after any condition is
met that requires passcode or password entry.

Securing purchases with Apple Pay

The user can also use Optic ID, Face ID, and Touch ID with Apple Pay to make easy and
secure purchases in stores, apps, and on the web:

« Using Face ID in stores: To authorize an in-store payment with Face ID, the user needs
to first confirm intent to pay by double-clicking the side button. This double-click
captures user intent using a physical gesture directly linked to the Secure Enclave
and is resistant to forgery by a malicious process. The user then authenticates using
Face ID before placing the device near the contactless payment reader. A different
Apple Pay payment method can be selected after Face ID authentication, which requires
reauthentication, but the user won't have to double-click the side button again.

+ Using Optic ID or Face ID in apps and on the web: To make a payment within apps and
on the web, the user confirms their intent to pay by double-clicking the side button
(on iPad or iPhone) or the top button (on Apple Vision Pro), and then authenticates
using Optic ID or Face ID to authorize the payment. If the Apple Pay transaction isn't
completed within 60 seconds of double-clicking the side button or the top button, the
user needs to reconfirm intent to pay by double-clicking again.

- Using Touch ID: For Touch ID, the intent to pay is confirmed using the gesture of
activating the Touch ID sensor combined with successfully matching the user’s
fingerprint.
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Using system-provided APIs

Third-party apps can use system-provided APIs to ask the user to authenticate using
Optic ID, Face ID, Touch ID, or a passcode or password. Apps that support Touch ID
automatically support Optic ID and Face ID without any changes. When using Optic ID,
Face ID, or Touch ID, the app is notified only as to whether the authentication was
successful; it can’t access Optic ID, Face ID, or Touch ID or the data associated with the
enrolled user.

Protecting keychain items

Keychain items can also be protected with Optic ID, Face ID, or Touch ID, to be released

by the Secure Enclave only by a successful match or with the device passcode or account
password. App developers have APIs to verify that a passcode or password has been set by
the user before requiring Optic ID, Face ID, Touch ID, or a passcode or password to unlock
keychain items. App developers can do any of the following:

- Require that authentication APl operations don't fall back to an app password or the
device passcode. They can query whether a user is enrolled, allowing Optic ID, Face ID,
or Touch ID to be used as a second factor in security-sensitive apps.

- Generate and use Elliptic Curve Cryptography (ECC) keys inside the Secure Enclave
that can be protected by Optic ID, Face ID, or Touch ID. Operations with these keys are
always performed inside the Secure Enclave after it authorizes their use.

Making and approving purchases

Users can also configure Optic ID, Face ID, or Touch ID to approve purchases from the
iTunes Store, the App Store, Apple Books, and more, so users don't have to enter their
Apple Account password. When purchases are made, the Secure Enclave verifies that

a biometric authorization occurred and then releases ECC keys used to sign the store

request.

Authorizing access and car keys sharing

Users can use Optic ID, Face ID, and Touch ID to authorize access and car keys sharing.

Locking and hiding apps

On devices with iOS 18 or iPad OS 18 or later, Face ID and Touch ID can be used to access
apps that the user decided to lock or hide.

Secure intent and connections to the Secure Enclave

Secure intent provides a way to confirm a user’s intent without any interaction with the
operating system or Application Processor. The connection is a physical link—from a
physical button to the Secure Enclave—that's available in the following:

- All iPhone models starting with iPhone X or later

- All iPad models starting with iPad Air (4th generation) or later

- All Mac computers with Apple silicon

« All Apple Watch models starting with Apple Watch Series 1 or later
- Apple Vision Pro
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With this link, users can confirm their intent to complete an operation in a way designed
such that even software running with root privileges or in the kernel can’t spoof.

This feature is used to confirm user intent during Apple Pay transactions and when
finalizing pairing Magic Keyboard with Touch ID to a Mac with Apple silicon. A double-press
on the following buttons—when prompted by the user interface—signals confirmation of
user intent:

- The top button on Apple Vision Pro (for Optic ID)
- The side button on an iPad or iPhone (for Face ID)
- A fingerprint scan (for devices with Touch ID)

A similar mechanism—based on the Secure Enclave and T2 firmware—is supported on
MacBook models with the Apple T2 Security Chip and no Touch Bar.

Hardware microphone disconnect

All Apple silicon-based Mac laptops and Intel-based Mac laptops with the Apple T2
Security Chip feature a hardware disconnect that turns off the microphone whenever the
lid is closed. On all 13-inch MacBook Pro and MacBook Air laptops with the T2 chip, all
MacBook laptops with a T2 chip from 2019 or later, and Mac laptops with Apple silicon, this
disconnect is implemented in hardware alone. The disconnect is designed to prevent any
software—even with root or kernel privileges in macOS, and even the software on the T2
chip or other firmware—from engaging the microphone when the lid is closed. (The camera
isn't disconnected in hardware, because its field of view is completely obstructed with the
lid closed.)

iPad models beginning in 2020 also feature the hardware microphone disconnect. When

an MFi-compliant case (including those sold by Apple) is attached to the iPad and closed,
the microphone is disconnected in hardware. This is designed to prevent microphone audio
data being made available to any software—even with root or kernel privileges in iPadOS, or
any device firmware.

The protections in this section are implemented directly with hardware logic, according to
the following circuit diagram:

Enable mi Clock lines

nable mics ;

. Mttt . to microphone,
Lid sensors Logic Mic clock or data or data lines

(one line per sensor) —_— to SoC,

depending on

(one line per mic) the product.

Mic clock or data

(one line per mic)
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In each product with a hardware microphone cutoff, one or more lid sensors detect the
physical closure of the lid or case using some physical property (for example, a Hall

effect sensor or a hinge angle sensor) of the interaction. For sensors where calibration

is necessary, parameters are set during production of the device and the calibration
process includes a nonreversible hardware lock out of any subsequent changes to
sensitive parameters on the sensor. These sensors emit a direct hardware signal that goes
through a simple set of nonreprogrammable hardware logic. This logic provides debounce,
hysteresis, and/or a delay of up to 500 ms before turning off the microphone. Depending
on the product, this signal can be implemented either by turning off the lines transporting
data between the microphone and the system on a chip (SoC) or by turning off one of the
input lines to the microphone module that's allowing it to be active—for example, the clock
line or a similar effective control.

Express Cards with power reserve

If iOS isn't running because iPhone needs to be charged, there may still be enough
power in the battery to support Express Card transactions. Supported iPhone devices
automatically support this feature with:

- A payment or transit card designated as the Express Transit card
- Access cards with Express Mode turned on

When the side button is pressed, the battery icon shows that power is low, and text
indicates that Express Cards are available to use. The NFC controller performs Express
Card transactions under the same conditions as when iOS is running, except that
transactions are indicated only with haptic notifications (no visible notification is shown).
On iPhone SE 2nd generation, completed transactions may take a few seconds to

appear on screen. This feature isn't available when a standard user-initiated shutdown is
performed.
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System security

System security overview

Building on the unique capabilities of Apple hardware, system security is responsible for
controlling access to system resources in Apple devices without compromising usability.
System security encompasses the boot process, software updates, and protection

of computer system resources such as CPU, memory, disk, software programs, and
stored data.

The most recent versions of Apple operating systems are the most secure. An important
part of Apple security is secure boot, which protects the system from malware infection

at boot time. Secure boot begins in silicon and builds a chain of trust through software,
where each step is designed to ensure that the next is functioning properly before handing
over control. This security model supports not only the default boot of Apple devices but
also the various modes for recovery and timely updates on Apple devices. Subcomponents
like the Secure Enclave also perform their own secure boot to help ensure they only boot
known-good code from Apple. The update system is designed to prevent downgrade
attacks, so that devices can't be rolled back to an older version of the operating system
(which an attacker knows how to compromise) as a method of stealing user data.

Apple devices also include boot and runtime protections so that they maintain their
integrity during ongoing operation. Apple-designed silicon on iPad, iPhone, a Mac with
Apple silicon, Apple TV, Apple Vision Pro, Apple Watch, and HomePod provide a common
architecture for protecting operating system integrity. macOS also features an expanded
and configurable set of protection capabilities in support of its differing computing model,
as well as capabilities supported on all Mac hardware platforms.

Secure boot

Boot process for iPad and iPhone devices

Each step of the startup process contains components that are cryptographically signed by
Apple to enable integrity checking so that boot proceeds only after verifying the chain of
trust. These components include the bootloaders, the kernel, kernel extensions (kext), and
cellular baseband firmware. This secure boot chain is designed to verify that the lowest
levels of software aren’t tampered with.
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When an iPad and iPhone device is turned on, its Application Processor immediately
executes code from read-only memory referred to as Boot ROM. This immutable code,
known as the hardware root of trust, is laid down during chip fabrication and is implicitly
trusted. The Boot ROM code contains the Apple Root certificate authority (CA) public key—
used to verify that the iBoot bootloader is signed by Apple before allowing it to load. This
is the first step in the chain of trust, in which each step checks that the next is signed by
Apple. When the iBoot finishes its tasks, it verifies and runs the iOS or iPadOS kernel. For
devices with an A9 or earlier A-series processor, an additional Low-Level Bootloader (LLB)
stage is loaded and verified by the Boot ROM and in turn loads and verifies iBoot.

A failure to load or verify following stages is handled differently depending on the
hardware:

« Boot ROM can’t load LLB (older devices): Device Firmware Upgrade (DFU) mode
« LLB oriBoot: Recovery mode

In either case, the device must be connected to the Finder (macOS 10.15 or later) or iTunes
(in macOS 10.14 or earlier) through USB and restored to factory default settings.

The Boot Progress Register (BPR) is used by the Secure Enclave to limit access to user
data in different modes and is updated before entering the following modes:

+ DFU mode: Set by Boot ROM on devices with an Apple A12 or later SoCs
+  Recovery mode: Set by iBoot on devices with Apple A10, S2, or later SoCs

On devices with cellular access, a cellular baseband subsystem performs additional secure
booting using signed software and keys verified by the baseband processor.

The Secure Enclave also performs a secure boot that checks its software (sepQS) is
verified and signed by Apple.

Memory safe iBoot implementation

On devices with iOS 14 and iPadOS 14 or later, Apple modified the C compiler toolchain
used to build the iBoot bootloader to improve its security. The modified toolchain
implements code designed to prevent memory- and type-safety issues that are typically
encountered in C programs. For example, it helps prevent most vulnerabilities in the
following classes:

- Buffer overflows, by ensuring that all pointers carry bounds information that's verified
when accessing memory

+  Heap exploitation, by separating heap data from its metadata and accurately detecting
error conditions such as double free errors

- Type confusion, by ensuring that all pointers carry runtime type information that's
verified during pointer cast operations

- Type confusion caused by use after free errors, by segregating all dynamic memory
allocations by static type

This technology is available on iPhone with the A13 Bionic chip or later, and on iPad with
the A14 Bionic chip or later.
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Mac computers with Apple silicon

Boot process for a Mac with Apple silicon

When a Mac with Apple silicon is turned on, it performs a boot process much like that of
iPad and iPhone.

Boot ROM validates LLB signature

!

LLB validates system-paired
firmware signatures

l Secure Enclave Boot
Secure Enclave ROM fetches
signed —> LLB validates LocalPolicy signature = <= LocalPolicy
LocalPolicy nonces from Secure
l Storage Component

LLB evaluates iBoot stage 2 signature
according to LocalPolicy

!

iBoot stage 2 validates macOS-paired
firmware, Boot Kernel Collection,
Auxilary Kernel Collection (if applicable),
system trust cache, and signed system
volume signatures, according
to LocalPolicy

'

macOS

The chip executes code from the Boot ROM in the first step in the chain of trust. macOS
secure boot on a Mac with Apple silicon verifies not only the operating system code itself,
but also the security policies and even kexts (supported, though not recommended)
configured by authorized users.

When the Low-Level Bootloader (LLB) is launched, it verifies the signatures and loads
system-paired firmware for intra-SoC cores such as the storage, display, system
management, and Thunderbolt controllers. LLB is also responsible for loading the
LocalPolicy, which is a file signed by the Secure Enclave Processor. The LocalPolicy file
describes the configuration that the user has chosen for the system boot and runtime
security policies. The LocalPolicy has the same data structure format as all other boot
objects, but it's signed locally by a private key that's available only within a particular
computer’s Secure Enclave instead of being signed by a central Apple server (like software
updates).

To help prevent replay of any previous LocalPolicy, LLB must look up an anti-replay

value from the Secure Enclave-attached Secure Storage Component. To do this, it uses
the Secure Enclave Boot ROM and makes sure the anti-replay value in the LocalPolicy
matches the anti-replay value in the Secure Storage Component. This helps prevent an old
LocalPolicy—which could have been configured for lower security—from being reapplied to
the system after security has been upgraded. The result is that secure boot on a Mac with
Apple silicon helps protect not only against rollback of operating system versions but also
against security policy downgrades.
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The LocalPolicy file captures whether the operating system is configured for Full, Reduced,
or Permissive security.

- Full Security: The system behaves like iOS and iPadOS, and allows only booting
software which was known to be the latest that was available at install time.

- Reduced Security: LLB is directed to trust “global” signatures, which are bundled with
the operating system. This allows the system to run older versions of macOS. Because
older versions of macOS inevitably have unpatched vulnerabilities, this security mode is
described as reduced. This is also the policy level required to support booting kexts.

- Permissive Security: The system behaves like Reduced Security in that it uses global
signature verification for iBoot and beyond, but it also tells iBoot that it should accept
some boot objects being signed by the Secure Enclave with the same key used to sign
the LocalPolicy. This policy level supports users that are building, signing, and booting
their own custom XNU kernels.

If the LocalPolicy indicates to LLB that the selected operating system is running in Full
Security, LLB evaluates the personalized signature for iBoot. If it's running in Reduced
Security or Permissive Security, it evaluates the global signature. Any signature verification
errors cause the system to boot to recoveryOS to provide repair options.

After LLB hands off to iBoot, it loads macOS-paired firmware such as that for the

Secure Neural Engine, the Always On Processor, and other firmware. iBoot also looks at
information about the LocalPolicy handed to it from LLB. If the LocalPolicy indicates that
there should be an Auxiliary Kernel Collection (AuxKC), iBoot looks for it on the file system,
verifies that it was signed by the Secure Enclave with the same key as the LocalPolicy, and
verifies that its hash matches a hash stored in the LocalPolicy. If the AuxKC is verified,
iBoot places it into memory with the Boot Kernel Collection before locking the full memory
region covering the Boot Kernel Collection and AuxKC with the System Coprocessor
Integrity Protection (SCIP). If the policy indicates that an AuxKC should be present but it
isn't found, the system continues to boot into macOS without it. iBoot is also responsible
for verifying the root hash for the signed system volume (SSV), to check that the file
system the kernel will mount is fully integrity verified.

Boot modes for a Mac with Apple silicon

A Mac with Apple silicon has the boot modes described below.

Mode Key combo Description
macOS From a shutdown state, press and 1. Boot ROM hands off to LLB.
release the power button. 2. LLB loads system-paired firmware and the

LocalPolicy for the selected macOS.

3. LLB locks an indication into the Boot Progress
Register (BPR) that it's booting into macOS, and
hands off to iBoot.

4. iBoot loads the macOS-paired firmware, the static
trust cache, the device tree, and the Boot Kernel
Collection.

5. If the LocalPolicy allows it, iBoot loads the Auxiliary
Kernel Collection (AuxKC) of third-party kexts.

6. If the LocalPolicy didn’t make it inactive, iBoot
verifies the root signature hash for the signed
system volume (SSV).
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Mode Key combo

Paired From a shutdown state, press and
recoveryOS hold the power button.

Fallback From a shutdown state, double-
recoveryOS press and hold the power button.
Safe mode Boot into recoveryOS per the above,

then hold Shift while selecting the
startup volume.

Paired recoveryOS restrictions

Description

1. Boot ROM hands off to LLB.

2. LLB loads system-paired firmware and the
LocalPolicy for the recoveryOS.

3. LLB locks an indication into the Boot Progress
Register that it's booting into paired recoveryOS,
and hands off to iBoot for paired recoveryOS.

4. iBoot loads the macOS-paired firmware, the
trust cache, the device tree, and the Boot Kernel
Collection.

5. If paired recoveryOS boot fails, booting into fallback
recoveryOS is attempted.

1. Boot ROM hands off to LLB.

2. LLB loads system-paired firmware and the
LocalPolicy for the recoveryOS.

3. LLB locks an indication into the Boot Progress
Register that it's booting into paired recoveryOS,
and hands off to iBoot for recoveryOS.

4. iBoot loads the macOS-paired firmware, the
trust cache, the device tree, and the Boot Kernel
Collection.

1. Boots to recoveryOS as per the above.

2. Holding the Shift key while selecting a volume
causes the BootPicker app to approve that macOS
for booting, as normal; it also sets an nvram variable
that tells iBoot to not load the AuxKC on the next
boot.

3. System restarts and boots to the targeted volume,
but iBoot doesn’t load AuxKC.

On devices with macOS 12.0.1 or later, every new macOS installation also installs a paired
version of recoveryQOS into the corresponding APFS volume group. This design is familiar to
users of Intel-based Mac computers, but it provides additional security and compatibility
guarantees on a Mac with Apple silicon. Because every macQOS installation now has a
dedicated paired recoveryOS, this helps ensure that only that dedicated paired recoveryOS
can perform security-downgrading operations. This helps protect installations of newer
versions of macOS from tampering initiated from older versions of macOS and vice versa.

The pairing restrictions are enforced as follows:

- All installations of macOS 11 are paired to the recoveryOS. If a macOS 11 installation is
selected to boot by default, the recoveryOS is booted by holding down the power key at
boot time on a Mac with Apple silicon. The recoveryOS can downgrade security settings
of any macOS 11 installations, but not any installations of macOS 12.0.1.

- If amacOS 12.0.1 or later installation is selected to boot by default, its paired
recoveryOS is booted by holding down the power key when the Mac starts up. The
paired recoveryOS can downgrade security settings for the paired macQOS installation,

but not for any other macQOS installation.
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To boot into a paired recoveryOS for any macOS installation, that installation needs to be
selected as the default, which is done using General > Startup Disk in System Settings
(macOS 13 or later), Startup Disk in System Preferences (macOS 12 or earlier), or by
starting any recoveryOS and holding Option while selecting a volume.

Note: Fallback recoveryOS can't perform downgrades for any macOS installation.

Startup Disk security policy control for a Mac with Apple silicon

Unlike security policies on an Intel-based Mac, security policies on a Mac with Apple
silicon are for each installed operating system. This means that multiple installed macOS
instances with different versions and security policies are supported on the same Mac. For
this reason, an operating system picker has been added to Startup Security Utility.

Startup Security Utility

Select the system you want to use to set the security policy

Macintosh HD
macO0S 14.1

cted macOS 14.1 on the disk “Macintosh HD" Security Policy...

On a Mac with Apple silicon, System Security Utility indicates the overall user-configured
security state of macOS, such as the booting of a kext or the configuration of System
Integrity Protection (SIP). If changing a security setting would significantly degrade
security or make the system easier to compromise, users must enter into recoveryOS by
holding the power button (so that malware can’t initiate the signal, only a human with
physical access can) to make the change. Because of this, an Apple-silicon based Mac also
won't require (or support) a firmware password—all critical changes are already gated by
user authorization. For more information on SIP, see System Integrity Protection.

Full Security and Reduced Security can be set using Startup Security Utility from
recoveryOS. But Permissive Security can be accessed only from command-line tools for
users who accept the risk of making their Mac less secure.
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Full Security policy

Full Security is the default, and it behaves like iOS and iPadOS. At the time software is
downloaded and prepared to install, rather than using the global signature that comes with
the software, macOS contacts the same Apple signing server used for iOS and iPadOS and
requests a fresh, “personalized” signature. A signature is personalized when it includes the
Exclusive Chip Identification (ECID)—a unique ID specific to the Apple CPU in this case—as
part of the signing request. The signature given back by the signing server is then unique
and usable only by that particular Apple CPU. When the Full Security policy is in effect,

the Boot ROM and LLB helps ensure that a given signature isn't just signed by Apple but is
signed for this specific Mac, essentially tying that version of macOS to that Mac.

Security Policy for “Macintosh HD":

® Full Security

Ensures that only your current OS, or signed operating system software currently trusted by
Apple, can run. This mode requires a network connection at software installation time.

Reduced Security

Allows any version of signed operating system software ever trusted by Apple to run.

Cancel

Using an online signing server also provides better protection against rollback attacks
than typical global signature approaches. In a global signing system, the security epoch
could have rolled many times, but a system that has never seen the latest firmware won’t
know this. For example, a computer that currently believes it's in security epoch 1 accepts
software from security epoch 2, even if the current actual security epoch is 5. With an
Apple silicon online signing system, the signing server can reject creating signatures for
software that's in anything except the latest security epoch.

Additionally, if an attacker discovers a vulnerability after a security epoch change, they
can’t simply pick up the vulnerable software from a previous epoch off system A and
apply it to system B to attack it. The fact that the vulnerable software from an older

epoch was personalized to system A helps prevent it from being transferable and thus
being used to attack a system B. All these mechanisms work together to provide much
stronger guarantees that attackers can't purposely place vulnerable software on a Mac to
circumvent the protections provided by the latest software. But a user that's in possession
of an administrator user name and password for the Mac can always choose the security
policy that works best for their use cases.
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Reduced Security policy

Reduced Security is similar to Medium Security behavior on an Intel-based Mac with a

T2 chip, in which a vendor (in this case, Apple) generates a digital signature for the code
to assert it came from the vendor. This design helps prevent attackers from inserting
unsigned code. Apple refers to this signature as a global signature because it can be
used on any Mac, for any amount of time, for a Mac that currently has a Reduced Security
policy set. Reduced security doesn’t itself provide protection against rollback attacks
(although unauthorized operating system changes can result in user data being rendered
inaccessible. For more information, see In a Mac with Apple silicon.

Security Policy for “Macintosh HD":
Full Security
Ensures that only your current OS, or signed operating system software currently trusted by
Apple, can run. This mode requires a network connection at software installation time.
Reduced Security

Allows any version of signed operating system software ever trusted by Apple to run.

¥ Allow user management of kernel extensions from identified developers

¥ Allow remote management of kernel extensions and automatic software updates

Cancel OK

In addition to enabling users to run older versions of macOS, Reduced Security is required
for other actions that can put a user’s system security at risk, such as introducing
third-party kernel extensions (kexts). Kexts have the same privileges as the kernel, and
vulnerabilities in third-party kexts can compromise the entire operating system. This is
why developers are being strongly encouraged to adopt system extensions before kext
support is removed from macOS for future Mac computers with Apple silicon. Even when
third-party kexts are enabled, they can’t be loaded into the kernel on demand. Instead, the
kexts are merged into an Auxiliary Kernel Collection (AuxKC)—whose hash is stored in the
LocalPolicy—and thus they require a restart. For more information about AuxKC generation,
see Securely extending the kernel.

Permissive Security policy

Permissive Security is for users who accept the risk of putting their Mac into a much more
insecure state. This mode differs from No Security mode on an Intel-based Mac with a T2
chip. With Permissive Security, signature verification is still performed along the entire
secure boot chain, but setting the policy to Permissive signals to iBoot that it should
accept locally Secure Enclave-signed boot objects, such as a user-generated Boot Kernel
Collection built from a custom XNU kernel. In this way, Permissive Security also provides
an architectural capability for running an arbitrary fully untrusted operating system kernel.
When a custom Boot Kernel Collection or fully untrusted operating system is loaded on
the system, some decryption keys become unavailable. This is designed to prevent a fully
untrusted operating systems from accessing data from trusted operating systems.
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Important: Apple doesn’t provide or support custom XNU kernels.

Security Policy for “Macintosh HD":
Full Security
Ensures that only your current OS, or signed operating system software currently trusted by
Apple, can run. This mode requires a network connection at software installation time.
Reduced Security

Allows any version of signed operating system software ever trusted by Apple to run.

Permissive Security

Does not enforce any requirements on the bootable OS.

Allow user management of kernel extensions from identified developers

Allow remote management of kernel extensions and automatic software updates

Cancel OK

There's another way that Permissive Security differs from No Security on an Intel-based
Mac with a T2 chip: It's a prerequisite for some security downgrades that in the past have
been independently controllable. Most notably, to turn off SIP on a Mac with Apple silicon,
a user must acknowledge that they're putting the system into Permissive Security. This

is required because turning off SIP has always put the system into a state that makes

the kernel much easier to compromise. In particular, turning off SIP on a Mac with Apple
silicon inactivates kext signature enforcement during AuxKC generation time, allowing any
arbitrary kext to be loaded into kernel memory. Another improvement to SIP on a Mac with
Apple silicon is that the policy store has moved out of NVRAM and into the LocalPolicy.
So now, turning off SIP requires authentication by a user with access to the LocalPolicy
signing key from recoveryOS (reached by pressing and holding the power button). This
makes it significantly more difficult for a software-only attacker, or even a physically
present attacker, to turn off SIP.

It isn’t possible to downgrade to Permissive Security from the Startup Security Utility app.
Users can downgrade only by running command-line tools in recoveryOS, such as csrutil
(to turn off SIP). After the user downgrade—Startup Security Utility reflects this fact, and
so the user can then set the security to a more secure mode.

Note: A Mac with Apple silicon doesn't require or support a specific media boot policy,
because technically all boots are performed locally. If a user chooses to boot from external
media, that operating system version first needs to be personalized using an authenticated
restart from recoveryOS. This restart creates a LocalPolicy file on the internal drive that's
used to perform a trusted boot from the operating system stored on the external media.
This means the configuration of starting from external media is always explicitly enabled
on a per operating system basis, and already requires user authorization, so no additional
secure configuration is necessary.
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LocalPolicy signing-key creation and management

Creation

When macOS is first installed in the factory, or when a tethered erase-install is performed,
the Mac runs code from temporary restore RAM disk to initialize the default state. During
this process, the restore environment creates a new pair of public and private keys

which are held in the Secure Enclave. The private key is referred to as the Owner Identity
Key (OIK). If any OIK already exists, it's destroyed as part of this process. The restore
environment also initializes the key used for Activation Lock; the User Identity Key (UIK).
Part of that process which is unique to a Mac with Apple silicon is when UIK certification is
requested for Activation Lock, a set of requested constraints to be enforced at validation-
time on the LocalPolicy are included. If the device can’t get a UIK certified for Activation
Lock (for example, because the device is currently associated with a Find My Mac account
and reported as lost), its unable to proceed further to create a Local Policy. If a device

is issued a User identity Certificate (ucrt), that ucrt contains server imposed policy
constraints and user requested policy constraints in an X.509 v3 extension.

When an Activation Lock/ucrt is successfully retrieved, it's stored in a database on the
server side and also returned to the device. After the device has a ucrt, a certification
request for the public key which corresponds to the OIK is sent to the Basic Attestation
Authority (BAA) server. BAA verifies the OIK certification request using the public key from
the ucrt stored in the BAA accessible database. If the BAA can verify the certification, it
certifies the public key, returning the Owner Identity Certificate (OIC) which is signed by
the BAA and contains the constraints stored in ucrt. The OIC is sent back to the Secure
Enclave. From then on, whenever the Secure Enclave signs a new LocalPolicy, it attaches
the OIC to the Image4. LLB has built-in trust in the BAA root certificate, which causes it to
trust the OIC, which causes it to trust the overall LocalPolicy signature.

RemotePolicy constraints

All Image4 files, not just Local Policies, contain constraints on Image4 manifest evaluation.
These constraints are encoded using special object identifiers (OIDs) in the leaf certificate.
The Image4 verification library looks up the special certificate constraint OID from a
certificate during signature evaluation and then mechanically evaluates the constraints
specified in it. The constraints are of the form:

« X must exist
- X must not exist
- X must have a specific value

So, for instance, for “personalized” signatures, the certificate constraints will contain
"ECID must exist,” and for “global” signatures, it will contain "ECID must not exist." These
constraints are designed to ensure that all Image4 files signed by a given key must
conform to certain requirements to avoid erroneous signed Image4 manifest generation.
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In the context of each LocalPolicy, these Image4 certificate constraints are referred to

as the RemotePolicy. A different RemotePolicy can exist for different boot environments’
LocalPolicies. The RemotePolicy is used to restrict the recoveryOS LocalPolicy so that
when recoveryOS is booted it can only ever behave as if it's booting with Full Security. This
increases trust in the integrity of the recoveryOS boot environment as a place where policy
can be changed. The RemotePolicy restricts the LocalPolicy to contain the ECID of the
Mac on which the LocalPolicy was generated, and the specific Remote Policy Nonce Hash
(rpnh) stored in the Secure Storage Component on that Mac. The rpnh, and therefore the
RemotePolicy, change only when actions are taken for Find My Mac and Activation Lock,
such as enrollment, unenroliment, remote lock, and remote wipe. Remote Policy constraints
are determined and specified at User Identity Key (UIK) certification time and are signed

in to the issued User identity Certificate (ucrt). Some Remote Policy constraints, such as
ECID, ChipID, and BoardID, are determined by the server. This is designed to prevent one
device from signing LocalPolicy files for another device. Other Remote Policy constraints
may be specified by the device to help prevent Security downgrade of the Local Policy
without providing both the local authentication required to access the current OIK and
remote authentication of the account to which the device is Activation Locked.

Contents of a LocalPolicy file for a Mac with Apple silicon

The LocalPolicy is an Image4 file signed by the Secure Enclave. Image4 is an ASN.1
(Abstract Syntax Notation One) DER-encoded data structure format that's used to describe
information about secure boot chain objects on Apple platforms. In an Image4-based
secure boot model, security policies are requested at software installation time initiated

by a signing request to a central Apple signing server. If the policy was acceptable, the
signing server returns a signed Image4 file containing a variety of four-character code
(4CC) sequences. These signed Image4 files and 4CCs are evaluated at startup by
software like the Boot ROM or LLB.

Ownership handoff between operating systems

Access to the Owner Identity Key (OIK) is referred to as “Ownership.” Ownership is required
to allow users to resign the LocalPolicy after making policy or software changes. The OIK
is protected with the same key hierarchy as described in Sealed Key Protection (SKP), with
the OIK being protected by the same Key encryption key (KEK) as the Volume encryption
key (VEK). This means it's normally protected by both user passwords and measurements
of the operating system and policy. There's only a single OIK for all operating systems on
the Mac. Therefore, when installing a second operating system, explicit consent is required
from the users on the first operating system to hand off Ownership to the users on the
second operating system. However, users don't yet exist for the second operating system,
when the installer is running from the first operating system. Users in operating systems
aren't normally generated until the operating system is booted and the Setup Assistant is
running. Two new actions are required when installing a second operating system on a Mac
with Apple silicon:

- Creating a LocalPolicy for the second operating system

- Preparing an "Install User” for handing off Ownership
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When running an Install Assistant and targeting installation for a secondary blank volume,
a prompt asks the user if they'd like to copy a user from the current volume to be the

first user of the second volume. If the user says yes, the Install User which is created is,

in reality, a KEK which is derived from the selected user’s password and hardware keys,
which is then used to encrypt the OIK as it's being handed to the second operating system.
Then from within the second operating system Install Assistant, it prompts for that user’s
password to allow it to access the OIK in the Secure Enclave for the new operating system.
If users opt not to copy a user, the Install User is created the same way, but an empty
password is used instead of a user'’s password. This second flow exists for certain system
administration scenarios. However, users who want to have multivolume installs and want
to perform Ownership handoff in the most secure fashion should always opt to copy a user
from the first operating system to the second operating system.

LocalPolicy on a Mac with Apple silicon

For a Mac with Apple silicon, local security policy control has been delegated to an
application running in the Secure Enclave. This software can use the user’s credentials and
the boot mode of the primary CPU to determine who can change the security policy and
from a specific boot environment. This helps prevent malicious software from using the
security policy controls against the user by downgrading them to gain more privileges.

LocalPolicy manifest properties

The LocalPolicy file contains some architectural 4CCs that are found in most all Image4
files—such as a board or model ID (BORD), indicating a particular Apple chip (CHIP), or
Exclusive Chip Identification (ECID). But the 4CCs below focus only on the security policies
that users can configure.

Note: Apple uses the term Paired One True recoveryOS (1TR) to indicate a boot into the
paired recoveryOS initiated by a physical power button single-press-and-hold. This differs
from a normal recoveryOS boot, which NVRAM or a physical power button double-press-
and-hold, or which errors on startup may initiate. A physical button press of a specific kind
increases trust that a software-only attacker who has broken into macOS can’t reach the
boot environment.

LocalPolicy Nonce Hash (Ipnh)
+  Type: OctetString (48)

+  Mutable environments: 1TR, recoveryOS, macOS

« Description: The 1pnh is used for anti-replay of the LocalPolicy. This is an SHA-384
hash of the LocalPolicy Nonce (LPN), which is stored in the Secure Storage Component
and accessible using the Secure Enclave Boot ROM or Secure Enclave. The raw anti-
replay value is never visible to the Application Processor, only to the sepOS. An attacker
wanting to convince LLB that a previous LocalPolicy they had captured was valid would
need to place a value into the Secure Storage Component, which hashes to the same
1pnh value found in the LocalPolicy they want to replay. Normally there is a single LPN
valid on the system—except during software updates, when two are simultaneously
valid—to allow for the possibility of falling back to booting the old software in the event
of an update error. When any LocalPolicy for any operating system is changed, all
policies are re-signed with the new 1pnh value corresponding to the new LPN found in
the Secure Storage Component. This change happens when the user changes security
settings or creates new operating systems with a new LocalPolicy for each.
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Remote Policy Nonce Hash (rpnh)
- Type: OctetString (48)

- Mutable environments: 1TR, recoveryOS, macOS

- Description: The rpnh behaves the same way as the 1pnh but is updated only when the
remote policy is updated, such as when changing the state of Find My enrollment. This
change happens when the user changes the state of Find My on their Mac.

recoveryOS Nonce Hash (ronh)
. Type: OctetString (48)

«  Mutable environments: 1TR, recoveryOS, macOS

- Description: The ronh behaves the same way as the Ipnh, but is found exclusively in
the LocalPolicy for system recoveryOS. It's updated when the system recoveryOS is
updated, such as on software updates. A separate anti-replay value from the 1pnh and
rpnh is used so that when a device is put into an inactive state by Find My, existing
operating systems can be made inactive (by removing their LPN and RPN from the
Secure Storage Component), while still leaving the system recoveryOS bootable. In
this way, the operating systems can be reenabled when the system owner proves
their control over the system by putting in their iCloud password used for the Find My
account. This change happens when a user updates the system recoveryOS or creates
new operating systems.

Next Stage Image4 Manifest Hash (nsih)
- Type: OctetString (48)

- Mutable environments: 1TR, recoveryOS, macOS

- Description: The nsih field represents an SHA-384 hash of the Image4 manifest data
structure that describes the booted macOS. The macOS Image4 manifest contains
measurements for all the boot objects—such as iBoot, the static trust cache, device
tree, Boot Kernel Collection, and signed system volume (SSV) volume root hash. When
LLB is directed to boot a given macQS, it's designed to ensure that the hash of the
macOS Image4 manifest attached to iBoot matches what's captured in the nsih field
of the LocalPolicy. In this way, the nsih captures the user intention of what operating
system the user has created a LocalPolicy for. Users change the nsih value implicitly
when they perform a software update.

Cryptex1 Image4 Manifest Hash (spih)
«  Type: OctetString (48)

- Mutable environments: 1TR, recoveryOS, macOS

« Description: The spih field represents an SHA-384 hash of the Cryptex1 Image4
manifest data structure. The Cryptex1 Image4 manifest contains measurements of
its cryptexes, their file system seals, and their associated trust cache. When macOS
is starting up, the XNU kernel and Page Protection Layer ensure that the hash of the
Cryptex1 Image4 manifest matches what iBoot published from the spih field of the
LocalPolicy. Users change the spih value implicitly when they install a Background
Security Improvement or perform a software update. The Cryptex1 Image4 Manifest
Hash can be updated independently of the Next Stage Image4 Manifest Hash.
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Cryptex1 Generation (stng)
- Type: 64 bit unsigned integer
- Mutable environments: 1TR, recoveryOS, macOS

- Description: The stng field is a counter value representing when the Cryptex1 Image4
Manifest Hash was last updated in a LocalPolicy. It provides an anti-replay value in place
of 1pnh during the Page Protection Layer's evaluation of the local policy for applying
the Incoming Cryptex. Users increase the stng value implicitly when they install a
Background Security Improvement or a software update.

Auxiliary Kernel Collection (AuxKC) Policy Hash (auxp)
- Type: OctetString (48)

- Mutable environments: macOS

- Description: The auxp is an SHA-384 hash of the user-authorized kext list (UAKL)
policy. This is used at AuxKC generation time to help ensure that only user-authorized
kexts are included in the AuxKC. smb2 is a prerequisite for setting this field. Users
change the auxp value implicitly when they change the UAKL by approving a kext from
Privacy & Security in System Settings (macOS 13 or later), or the Security & Privacy
pane in System Preferences (macOS 12 or earlier).

Auxiliary Kernel Collection (AuxKC) Image4 Manifest Hash (auxi)
+  Type: OctetString (48)

- Mutable environments: macOS

- Description: After the system verifies that the UAKL hash matches what's found in
the auxp field of the LocalPolicy, it requests that the AuxKC be signed by the Secure
Enclave processor application that's responsible for LocalPolicy signing. Next, an SHA-
384 hash of the AuxKC Image4 manifest signature is placed into the LocalPolicy to
avoid the potential for mixing and matching previously signed AuxKCs to an operating
system at boot time. If iBoot finds the auxi field in the LocalPolicy, it attempts to load
the AuxKC from storage and validate its signature. It also verifies that the hash of the
Image4 manifest attached to the AuxKC matches the value found in the auxi field. If
the AuxKC fails to load for any reason, the system continues to boot without this boot
object and without any third-party kexts loaded. The auxp field is a prerequisite for
setting the auxi field in the LocalPolicy. Users change the auxi value implicitly when
they change the UAKL by approving a kext from Privacy & Security in System Settings
(macOS 13 or later), or the Security & Privacy pane in System Preferences (macOS 12 or
earlier).

Auxiliary Kernel Collection (AuxKC) Receipt Hash (auxr)
- Type: OctetString (48)

. Mutable environments: macQOS

Apple Platform Security 43



Apple Platform Security

Description: The auxr is an SHA-384 hash of the AuxKC receipt, which indicates the
exact set of kexts that were included into the AuxKC. The AuxKC receipt can be a
subset of the UAKL, because kexts can be excluded from the AuxKC even if they're
user authorized if they're known to be used for attacks. In addition, some kexts that can
be used to break the user-kernel boundary may lead to decreased functionality, such
as an inability to use Apple Pay or play 4K and HDR content. Users who want these
capabilities opt in to a more restrictive AuxKC inclusion. The auxp field is a prerequisite
for setting the auxr field in the LocalPolicy. Users change the auxr value implicitly
when they build a new AuxKC from Privacy & Security in System Settings (macOS 13 or
later), or the Security & Privacy pane in System Preferences (macQOS 12 or earlier).

CustomOS Image4 Manifest Hash (coih)

Type: OctetString (48)
Mutable environments: 1TR

Description: The coih is an SHA-384 hash of CustomOS Image4 manifest. The payload
for that manifest is used by iBoot (instead of the XNU kernel) to transfer control.

Users change the coih value implicitly when they use the kmutil configure-boot
command-line tool in 1TR.

APFS volume group UUID (vuid)

Type: OctetString (16)
Mutable environments: 1TR, recoveryOS, macOS

Description: The vuid indicates the volume group the kernel should use as root. This
field is primarily informational and isn't used for security constraints. This vuid is set
by the user implicitly when creating a new operating system install.

Key encryption key (KEK) Group UUID (kuid)

Type: OctetString (16)
Mutable environments: 1TR, recoveryOS, macOS

Description: The kuid indicates the volume that was booted. The key encryption key
has typically been used for Data Protection. For each LocalPolicy, it's used to protect
the LocalPolicy signing key. The kuid is set by the user implicitly when creating a new
operating system install.

Paired recoveryOS Trusted Boot Policy Measurement (prot)

Type: OctetString (48)
Mutable environments: 1TR, recoveryOS, macOS

Description: A paired recoveryOS Trusted Boot Policy Measurement (TBPM) is a special
iterative SHA-384 hash calculation over the Image4 manifest of a LocalPolicy, excluding
anti-replay values, to give a consistent measurement over time (because anti-replay
values like 1pnh are frequently updated). The prot field, which is found only in each
macOS LocalPolicy, provides a pairing to indicate the recoveryOS LocalPolicy that
corresponds to the macOS LocalPolicy.
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Has Secure Enclave Signed recoveryOS Local Policy (hrip)
+  Type: Boolean
- Mutable environments: 1TR, recoveryOS, macOS

- Description: The hrlp indicates whether the prot value (above) is the measurement
of a Secure Enclave-signed recoveryOS LocalPolicy. If not, then the recoveryOS
LocalPolicy is signed by the Apple online signing server, which signs things such as
macOS Image4 files.

Local Operating System Version (losv)
. Type: Boolean
+  Mutable environments: 1TR, recoveryOS, macOS

- Description: The losv indicates the OS version that the LocalPolicy is created for. The
version is obtained from the next state manifest during LocalPolicy creation and is used
to enforce recoveryOS pairing restrictions.

Secure Multi-Boot (smb0)
- Type: Boolean
- Mutable environments: 1TR, recoveryOS

- Description: If smb@ is present and true, LLB allows the next stage Image4 manifest to
be globally signed instead of requiring a personalized signature. Users can change this
field with Startup Security Utility or bputil to downgrade to Reduced Security.

Secure Multi-Boot (smb1)
+  Type: Boolean
«  Mutable environments: 1TR

- Description: If smbl is present and true, iBoot allows objects such as a custom kernel
collection to be Secure Enclave signed with the same key as the LocalPolicy. Presence
of smb@ is a prerequisite for presence of smbl. Users can change this field using
command-line tools such as csrutil or bputil to downgrade to Permissive Security.

Secure Multi-Boot (smb2)
- Type: Boolean
- Mutable environments: 1TR

- Description: If smb2 is present and true, iBoot allows the Auxiliary Kernel Collection to
be Secure Enclave signed with the same key as the LocalPolicy. The presence of smb@
is a prerequisite for the presence of smb2. Users can change this field using Startup
Security Utility or bputil to downgrade to Reduced Security and enable third-party
kexts.
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Secure Multi-Boot (smb3)

Type: Boolean
Mutable environments: 1TR

Description: If smb3 is present and true, a user on the device has opted in to a
device management service to control their system. Presence of this field makes

the LocalPolicy-controlling Secure Enclave processor application accept device
management authentication instead of requiring local user authentication. Users

can change this field using Startup Security Utility or bputil to enable managed
control over third-party kexts and software updates. (In macOS 11.2 or later, a device
management service can also initiate an update to the latest macOS version if the
current security mode is Full Security.)

Secure Multi-Boot (smb4)

Type: Boolean
Mutable environments: macOS

Description: If smb4 is present and true, the device has opted in to a device
management service to control of the operating system using Apple School Manager
or Apple Business Manager. Presence of this field makes the LocalPolicy-controlling
Secure Enclave application accept device management authentication instead of
requiring local user authentication. This field is changed by the device management
service when it detects that a device’s serial number appears in any of those three
services.

System Integrity Protection (sip0)

Type: 64 bit unsigned integer
Mutable environments: 1TR

Description: The sip® holds the existing System Integrity Protection (SIP) policy bits
that previously were stored in NVRAM. New SIP policy bits are added here (instead of
using LocalPolicy fields like the below) if they're used only in macOS and not used by
LLB. Users can change this field using csrutil from 1TR to turn off SIP and downgrade
to Permissive Security.

System Integrity Protection (sip1)

Type: Boolean
Mutable environments: 1TR

Description: If sipl is present and true, iBoot allows failures to verify the SSV volume
root hash. Users can change this field using csrutil or bputil from 1TR.

System Integrity Protection (sip2)

Type: Boolean
Mutable environments: 1TR

Description: If sip2 is present and true, iBoot won't lock the Configurable Text Read-
only Region (CTRR) hardware register that marks kernel memory as non-writable. Users
can change this field using csrutil or bputil from 1TR.
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System Integrity Protection (sip3)
+  Type: Boolean
- Mutable environments: 1TR

- Description: If sip3 is present and true, iBoot won’t enforce its built-in allow list for
the boot-args NVRAM variable, which would otherwise filter the options passed to the
kernel. Users can change this field using csrutil or bputil from 1TR.

Certificates and RemotePolicy

As described in LocalPolicy signing-key creation and management, the LocalPolicy Image4
also contains the Owner Identity Certificate (OIC) and the embedded RemotePolicy.

Intel-based Mac computers

Boot process for an Intel-based Mac

Intel-based Mac with an Apple T2 Security Chip

When an Intel-based Mac computer with the Apple T2 Security Chip is turned on, the chip
performs a secure boot from its Boot ROM in the same fashion as iPad, iPhone, and a Mac
with Apple silicon. This verifies the iBoot bootloader and is the first step in the chain of
trust. iBoot checks the kernel and kernel extension code on the T2 chip, which then checks
the Unified Extensible Firmware Interface (UEFI) firmware. The UEFI firmware and the
associated signature are initially available only to the T2 chip.

Boot ROM evaluates iBoot signature

!

iBoot evaluates T2 kernel cache signature

!

T2 kernel cache evaluates UEFI firmware signature

!

UEFI firmware
eSPI T2 chip

Intel CPU

UEFI firmware evaluates boot.efi signature

l

boot.efi evaluates macOS immutable kernel signature

!

macOS
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After verification, the UEFI firmware image is mapped into a portion of the T2 chip memory.
This memory is made available to the Intel CPU through the enhanced Serial Peripheral
Interface (eSPI). When the Intel CPU first boots, it fetches the UEFI firmware through the
eSPI from the integrity-checked, memory-mapped copy of the firmware located on the

T2 chip.

The evaluation of the chain of trust continues on the Intel CPU, with the UEFI firmware
evaluating the signature for the macOS bootloader (Boot. efi). The Intel-resident macOS
secure boot signatures are stored in the same Image4 format used for iOS, iPadOS, and

T2 chip secure boot, and the code that parses the Image4 files is the same hardened code
from the current iOS and iPadOS secure boot implementation. Boot . efiin turn verifies

the signature of a new file, called immutablekernel. When secure boot is enabled, the
immutablekernel file represents the complete set of Apple kernel extensions required to
boot macOS. The secure boot policy terminates at the handoff to the immutablekernel, and
after that, macOS security policies (such as System Integrity Protection and signed kernel
extensions) take effect.

If there are any errors or failures in this process, the Mac enters Recovery mode, Apple
T2 Security Chip Recovery mode, or Apple T2 Security Chip Device Firmware Upgrade
(DFU) mode.

Microsoft Windows on an Intel-based Mac with a T2 chip

By default, an Intel-based Mac that supports secure boot trust only content signed by
Apple. However, to improve the security of Boot Camp installations, Apple also supports
secure booting for Windows. The UEFI firmware includes a copy of the Microsoft Windows
Production CA 2011 certificate used to authenticate Microsoft bootloaders.

Note: There is currently no trust provided for the Microsoft Corporation UEFI CA 2011 that
would allow verification of code signed by Microsoft partners. This UEFI CA is commonly
used to verify the authenticity of bootloaders for other operating systems, such as Linux
variants.

Support for secure boot of Windows isn't enabled by default; instead, it's enabled using
Boot Camp Assistant (BCA). When a user runs BCA, macOS is reconfigured to trust
Microsoft first-party signed code during boot. After BCA completes, if macOS fails to
pass the Apple first-party trust evaluation during secure boot, the UEFI firmware attempts
to evaluate the trust of the object according to UEFI secure boot formatting. If the trust
evaluation succeeds, the Mac proceeds and boots Windows. If not, the Mac enters
recoveryOS and informs the user of the trust evaluation failure.

Intel-based Mac computers without a T2 chip

Because an Intel-based Mac without a T2 chip doesn’t support secure boot, the UEFI
firmware loads the boot.efi from the file system without verification and the booter loads
the kernel (prelinked kernel) from the file system without verification. To protect the
integrity of the boot chain, users should enable all of the following security mechanisms:

- System Integrity Protection (SIP): Enabled by default, this protects the booter and
kernel against malicious writes from within a running macOS.

- FileVault: This can be enabled in two ways: by the user or by a device management
service administrator. This protects against a physically present attacker using target
disk mode to overwrite the booter.
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- Firmware Password: This can be enabled in two ways: by the user or by a device
management service administrator. This helps prevent a physically present attacker
from launching alternate boot modes such as recoveryOS, Single User Mode, or target
disk mode from which the booter can be overwritten. This also helps prevent booting
from alternate media, by which an attacker could run code to overwrite the booter.

User password ——p

Key encryption
key

Volume

encryption key — > Volume data

Boot modes of an Intel-based Mac with an Apple T2 Security Chip

An Intel-based Mac with an Apple T2 Security Chip has a variety of boot modes that can
be entered at boot time by pressing key combinations, which are recognized by the UEFI
firmware or booter. Some boot modes, such as Single User Mode, won't work unless the
security policy is changed to No Security in Startup Security Utility.

Mode

macOS boot

Startup Manager

Target Disk Mode
(TDM)

Single User
Mode

recoveryOS

Internet
recoveryOS

Diagnostics

Internet
Diagnostics

Windows boot

Key combo

None

Option (\0)

Command-S (3@-8)

Command-R (SZC-R)

Option-Command-R (-\t—%—R)

Option-D (-\t-D)

None

Description

The UEFI firmware hands off to the macOS booter

(a UEFI application), which hands off to the macOS
kernel. On standard booting of a Mac with FileVault
enabled, the macOS booter presents the Login Window
interface, which takes the password to decrypt the
storage.

The UEFI firmware launches the built-in UEFI
application that presents the user with a boot device
selection interface.

The UEFI firmware launches the built-in UEFI
application that exposes the internal storage device
as a raw, block-based storage device over FireWire,
Thunderbolt, USB, or any combination of the three
(depending on the Mac model).

The macOS kernel passes the —s flag in the launchd
argument vector, then launchd creates the single-user
shell in the Console app’s tty.

Note: If the user exits the shell, macOS continues boot
to the Login Window.

The UEFI firmware loads a minimal macOS from a
signed disk image (.dmg) file on the internal storage
device.

The signed disk image is downloaded from the internet
using HTTP.

The UEFI firmware loads a minimal UEFI diagnostic
environment from a signed disk image file on the
internal storage device.

The signed disk image is downloaded from the internet
using HTTP.

If Windows has been installed using Boot Camp, the

UEFI firmware hands off to the Windows booter, which
hands off to the Windows kernel.
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Startup Security Utility on a Mac with an Apple T2 Security Chip

On an Intel-based Mac with an Apple T2 Security Chip, Startup Security Utility handles a
number of security policy settings. Users access the utility by booting into recoveryOS and
choosing Startup Security Utility, and it protects supported security settings from easy
manipulation by an attacker.

Startup Security Utility

Firmware password protection is off.

Turn on a firmware password to prevent this computer from starting up from a
n different hard disk, CD, or DVD without the password.

Turn On Firmware Password...

Secure Boot

® Full Security

Ensures that only your current OS, or signed operating system software currently
trusted by Apple, can run. This mode requires a network connection at software
installation time.

Medium Security
Allows any version of signed operating system software ever trusted by Apple to run.

No Security
Does not enforce any requirements on the bootable OS.

Allowed Boot Media

® Disallow booting from external or removable media
Restricts the ability to boot from any device not protected by the T2 such as USB and
Thunderbolt drives or internally connected PCle or SATA drives.

Allow booting from external or removable media
Does not restrict the ability to boot from any devices.

Critical policy changes require authentication, even in Recovery mode. When Startup
Security Utility is first opened, it prompts the user to enter an administrator password from
the primary macOS installation associated with the currently booted recoveryOS. If no
administrator exists, one must be created before the policy can be changed. Before the T2
chip allows a policy change, the Mac computer needs to boot into recoveryOS and the user
needs to authenticate with a Secure Enclave-backed credential. Security policy changes
have two implicit requirements. recoveryOS needs to:

- Boot from a storage device directly connected to the T2 chip, because partitions on
other devices don't have Secure Enclave-backed credentials bound to the internal
storage device.

- Reside on an APFS-based volume, because there is support only for storing the
Authentication in Recovery credentials sent to the Secure Enclave on the "Preboot”
APFS volume of a drive. HFS plus-formatted volumes can't use secure boot.

This policy is shown only in Startup Security Utility on an Intel-based Mac with a T2 chip.
Although most use cases shouldn't require changes to the secure boot policy, users are
ultimately in control of their device's settings and may choose, depending on their needs,
to turn off or downgrade the secure boot functionality on their Mac.

Secure boot policy changes made from within this app apply only to the evaluation of the
chain of trust being verified on the Intel processor. The option “Secure boot the T2 chip” is
always in effect.

Secure boot policy can be configured to one of three settings: Full Security, Medium
Security, and No Security. No Security completely turns off secure boot evaluation on the
Intel processor and allows the user to boot whatever they want.

50



Apple Platform Security

Full Security boot policy

Full Security is the default boot policy, and it behaves much like iOS and iPadOS, or Full
Security on a Mac with Apple silicon. At the time that software is downloaded and prepared
to install, it is personalized with a signature that includes the Exclusive Chip Identification
(ECID)—a unique ID specific to the T2 chip in this case—as part of the signing request. The
signature given back by the signing server is then unique and usable only by that particular
T2 chip. The Unified Extensible Firmware Interface (UEFI) firmware is designed to ensure
that when the Full Security policy is in effect, a given signature isn't just signed by Apple
but is signed for this specific Mac, essentially tying that version of macOS to that Mac. This
helps prevent rollback attacks as described for Full Security on a Mac with Apple silicon.

Medium Security boot policy

Medium Security boot policy is somewhat like a traditional UEFI secure boot, in which a
vendor (here, Apple) generates a digital signature for the code to assert it came from the
vendor. In this way, attackers are prevented from inserting unsigned code. We refer to
this signature as a "global” signature because it can be used on any Mac, for any amount
of time, for a Mac that currently has a Medium Security policy set. Neither iOS, iPadQOS,
nor the T2 chip itself support global signatures. This setting doesn't attempt to prevent
rollback attacks.

Media boot policy

Media boot policy exists only on an Intel-based Mac with a T2 chip and is independent from
the secure boot policy. So even if a user turns off secure boot, this doesn’t change the
default behavior of preventing anything other than the storage device directly connected to
the T2 chip to boot the Mac. (Media boot policy isn't required on a Mac with Apple silicon.
For more information, see Startup Disk security policy control.)

Firmware password protection in an Intel-based Mac

macOS on Intel-based Mac computers with an Apple T2 Security Chip supports the use
of a Firmware Password to help prevent unintended modifications of firmware settings
on a specific Mac. The Firmware Password is designed to prevent selecting alternate
boot modes such as booting into recoveryOS or Single User Mode, booting from an
unauthorized volume, or booting into target disk mode.

Note: The firmware password isn't required on a Mac with Apple silicon, because the
critical firmware functionality it restricted has been moved into the recoveryOS and
(when FileVault is enabled) recoveryOS requires user authentication before its critical
functionality can be reached.

The most basic mode of firmware password can be reached from the recoveryOS Firmware
Password Utility on an Intel-based Mac without a T2 chip, and from the Startup Security
Utility on an Intel-based Mac with a T2 chip. Advanced options (such as the ability to
prompt for the password at every boot) are available from the firmwarepasswd command-
line tool in macOS.

Setting a Firmware Password is especially important to reduce the risk of attacks on Intel-
based Mac computers without a T2 chip from a physically present attacker. The Firmware
Password can help prevent an attacker from booting to recoveryOS, from where they could
otherwise turn off System Integrity Protection (SIP). By restricting boot of alternative
media, an attacker can't execute privileged code from another operating system to attack
peripheral firmwares.
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A firmware password reset mechanism exists to help users who forget their password.
Users press a key combination at startup, and are presented with a model-specific string
to provide to AppleCare. AppleCare digitally signs a resource that's signature checked by
the Uniform Resource Identifier (URI). If the signature is validated and the content is for the
specific Mac, the UEFI firmware removes the firmware password.

For users who want no one but themselves to remove their firmware password by software
means, the —disable-reset—-capability option has been added to the firmwarepasswd
command-line tool in macOS 10.15. Before setting this option, users must acknowledge
that if the password is forgotten and needs removal, the user must bear the cost of the
logic board replacement necessary to achieve this. Organizations that want to protect their
Mac computers from external attackers and from employees must set a firmware password
on organization-owned systems. This can be accomplished on the device in any of the
following ways:

- At provisioning time, by manually using the firmwarepasswd command-line tool
- With third-party management tools that use the firmwarepasswd command-line tool

- Using device management

recoveryOS and diagnostics environments for an Intel-based Mac

recoveryOS

The recoveryOS is completely separate from the main macOS, and the entire contents

are stored in a disk image file named BaseSystem.dmg. There is also an associated
BaseSystem.chunklist, which is used to verify the integrity of the BaseSystem.dmg.
The chunklist is a series of hashes for 10 MB chunks of the BaseSystem.dmg. The Unified
Extensible Firmware Interface (UEFI) firmware evaluates the signature of the chunklist file
and then evaluates the hash one chunk at a time from the BaseSystem.dmg. This helps
ensure that it matches the signed content present in the chunklist. If any of these hashes
don't match, booting from the local recoveryOS is aborted and the UEFI firmware attempts
to boot from Internet recoveryOS instead.

If the verification is successfully completed, the UEFI firmware mounts the BaseSystem.
dmg as a RAM disk and launches the boot. efi file that's in it. There's no need for the UEFI
firmware to do a specific check of the boot. efi, nor for the boot. efi to do a check of the
kernel, because the completed contents of the operating system (of which these elements
are only a subset) have already been integrity checked.

Apple Diagnostics

The procedure for booting the local diagnostic environment is mostly the same as
launching the recoveryOS. Separate AppleDiagnostics.dmg and AppleDiagnostics.
chunklist files are used, but they're verified in the same way as the BaseSystem files
are. Instead of launching boot. efi, the UEFI firmware launches a file inside the disk image
(.dmg file) named diags.efi, which is in turn responsible for invoking a variety of other
UEFI drivers that can interface with and check for errors in the hardware.
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Internet recoveryOS and diagnostic environment

If an error has occurred in the launching of the local recovery or diagnostic environments,
the UEFI firmware attempts to download the images from the internet instead. (A user
can also specifically request the images to be fetched from the internet using special

key sequences held at boot.) The integrity validation of the disk images and chunklists
downloaded from the OS Recovery Server is performed the same way as with images
retrieved from a storage device.

While the connection to the OS Recovery Server is done using HTTP, the complete
downloaded contents are still integrity checked as previously described, and as such are
protected against manipulation by an attacker with control of the network. In the event
that an individual chunk fails integrity verification, it is re-requested from the OS Recovery
Server 11 times, before giving up and displaying an error.

When the internet recovery and diagnostic modes were added to Mac computers in 2011, it
was decided that it would be better to use the simpler HTTP transport, and handle content
authentication using the chunklist mechanism, rather than implement the more complicated
HTTPS functionality in the UEFI firmware, and thus increase the firmware's attack surface.

When Apple added internet recovery and diagnostic modes to Mac computers in 2011, it
was decided to use the simpler HTTP transport and handle content authentication using
the chunklist mechanism, rather than implement the more complicated HTTPS functionality
in the UEFI firmware and as a result, increase the firmware's attack surface.

Signed system volume security

In macOS 10.15, Apple introduced the read-only system volume, a dedicated, isolated
volume for system content. macOS 11 or later adds strong cryptographic protections to
system content with a signed system volume (SSV). SSV features a kernel mechanism
that verifies the integrity of the system content at runtime and rejects any data—code and
noncode—without a valid cryptographic signature from Apple. On devices with iOS 15 and
iPadOS 15 or later, the system volume on an iPhone or iPad also gains the cryptographic
protection of a signed system volume.

SSV not only helps prevent tampering with any Apple software that's part of the operating
system, it also makes macOS software update more reliable and much safer. And because
SSV uses Apple File System (APFS) snapshots, if an update can’t be performed, the old
system version can be restored without reinstallation.

Since its introduction, APFS has provided file-system metadata integrity using
noncryptographic checksums on the internal storage device. SSV strengthens the integrity
mechanism by adding cryptographic hashes, thus extending it to encompass every byte

of file data. Data from the internal storage device (including file system metadata) is
cryptographically hashed in the read path, and the hash is then compared with an expected
value in the file-system metadata. In case of mismatch, the system assumes the data has
been tampered with and won't return it to the requesting software.

Each SSV SHA-256 hash is stored in the main file-system metadata tree, which is itself
hashed. Because each node of the tree recursively verifies the integrity of the hashes of its
children—similar to a binary hash (Merkle) tree—the root node’s hash value, called a seal,
encompasses every byte of data in the SSV. The cryptographic signature then covers the
entire system volume.
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During macOS installation and update, the seal is recomputed from the file system on-
device and that measurement is verified against the measurement Apple signed. On a

Mac with Apple silicon, the bootloader verifies the seal before transferring control to the
kernel. On an Intel-based Mac with an Apple T2 Security Chip, the bootloader forwards

the measurement and signature to the kernel, which then verifies the seal directly before
mounting the root file system. In either case, if the verification fails, the startup process
halts and the user is prompted to reinstall macOS. This procedure is repeated at every boot
unless the user has elected to enter a lower security mode and has separately chosen to
make the signed system volume unavailable.

During iOS and iPadOS software updates, the system volume is prepared and recomputed
in a similar fashion. The iOS and iPadOS bootloaders verify that the seal is intact and that it
matches an Apple-signed value before allowing the device to start the kernel. Mismatches
at boot prompt the user to update the system software on the device. Users aren’t allowed
to turn off the protection of a signed system volume on iOS and iPadOS.

SSV and code signing

Code signing is still present and enforced by the kernel. The signed system volume
provides protection when any bytes at all are read from the internal storage device. In
contrast, code signing provides protection when Mach objects are memory mapped as
executable. Both SSV and code signing protect executable code on all read and execute
paths.

SSV and FileVault

In macOS 11 or later, equivalent at-rest protection for system content is provided by the
SSV, and therefore the system volume no longer needs to be encrypted. Any modifications
made to the file system while it's at rest are detected by the file system when they're read.
If the user has turned on FileVault, the user’s content on the data volume is still encrypted
with a user-provided secret.

If the user chooses to turn off the SSV, the system at rest becomes vulnerable to
tampering, and this tampering could enable an attacker to extract encrypted user data
when the system next starts up. Therefore the system won't permit the user to turn off
the SSV if FileVault is turned on. Protection while at rest must be turned on or off for both
volumes in a consistent manner.

In macOS 10.15 or earlier, FileVault protects operating system software while at rest by
encrypting user and system content with a key protected by a user-provided secret.
This protects against an attacker with physical access to the device from accessing or
effectively modifying the file system containing system software.

SSV and a Mac with an Apple T2 Security Chip

On a Mac with an Apple T2 Security Chip, only macOS itself is protected by the SSV. The
software that runs on the T2 chip and verifies macOS is protected by secure boot.
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Secure software updates

Security is a process and isn't enough to reliably boot the operating system version
installed at the factory—there must also exist a mechanism to quickly and securely obtain
the latest security updates. Apple regularly releases software updates to address emerging
security concerns. Users of iPad and iPhone devices receive update notifications on the
device. Mac users find available updates in System Settings (macOS 13 or later), or System
Preferences (macOS 12 or earlier). Updates are delivered wirelessly, for rapid adoption of
the latest security fixes.

Update process security

The update process uses the same hardware-based root of trust that secure boot uses
that's designed to install only Apple-signed code. The update process also uses system
software authorization to check that only copies of operating system versions that are
actively being signed by Apple can be installed on iPad and iPhone devices, or on a Mac
with the Full Security setting configured as the secure boot policy in Startup Security
Utility. With these secure processes in place, Apple can stop signing older operating
system versions with known vulnerabilities and help prevent downgrade attacks.

For greater software update security, when the device to be upgraded is physically
connected to a Mac, a full copy of iOS or iPadOS is downloaded and installed. But for over-
the-air (OTA) software updates, only the components required to complete an update are
downloaded, improving network efficiency by not downloading the entire operating system.
What's more, software updates can be cached on a Mac with macOS 10.13 or later with
Content Caching turned on, so that iPad and iPhone devices don't need to redownload the
necessary update over the internet. (They still need to contact Apple servers to complete
the update process.)

Personalized update process

During upgrades and updates, certain information is made available to the Apple
installation authorization server, which includes a list of cryptographic measurements for
each part of the installation bundle to be installed (for example, iBoot, the kernel, and the
operating system image), a random anti-replay value, and the device's unique Exclusive
Chip Identification (ECID).
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The authorization server checks the presented list of measurements against versions
whose installation is permitted and, if it finds a match, adds the ECID to the measurement
and signs the result. The server passes a complete set of signed data to the device as
part of the upgrade process. Adding the ECID “personalizes” the authorization for the
requesting device. By authorizing and signing only for known measurements, the server
helps ensure that the update takes place exactly as Apple provided.

e

Cryptographic measurements list
—— iBoot
kernel
operating system image
anti-replay value Apple
ECID Authorization
server

<~ ——

Signed authorization response
signature for software

anti-replay value
o
ECID

The boot-time chain-of-trust evaluation verifies that the signature comes from Apple and
that the measurement of the item loaded from the storage device, combined with the
device's ECID, matches what was covered by the signature. These steps are designed to
ensure that, on devices that support personalization, the authorization is for a specific
device and that an older operating system or firmware version from one device can’t be
copied to another. The anti-replay value helps prevent an attacker from saving the server’s
response and using it to tamper with a device or otherwise alter the system software.

The personalization process is why a network connection to Apple is always required to
update any device with Apple-designed silicon, including an Intel-based Mac with the
Apple T2 Security Chip.

On devices with the Secure Enclave, that hardware similarly uses system software
authorization to check the integrity of its software and is designed to prevent downgrade
installations.

Background Security Improvements in Apple
operating systems

Background Security Improvements are supported and enabled for future releases starting
with i0OS 26.1, iPadOS 26.1, and macOS 26.1. This enables rapid delivery of ongoing and
regular lightweight security releases between software updates for components such as
the Safari browser, WebKit framework stack, and other system libraries that benefit from
smaller, ongoing security patches. In rare instances of compatibility issues, Background
Security Improvements may be temporarily removed and then enhanced in a subsequent
software update.

Background Security Improvement security content is published in the Apple Support
article Apple security releases.
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Background Security Improvements differ from software updates in the following ways:

- On devices with macOS, Safari security improvements delivered through a Background
Security Improvement become active as soon as Safari is relaunched, even before the
whole operating system restarts.

- Background Security Improvements are activated instantly upon restart; the system
volume doesn't need to be cryptographically resealed, and therefore the device doesn't
need to cycle through a RAM disk.

- Background Security Improvements require a much lower battery state of charge than is
required to install a software update.

- A Background Security Improvement can be removed, which reverts the device to the
baseline software update state with no Background Security Improvements applied.

- A Background Security Improvement can be reapplied after removal.

The system volume in iOS, iPadOS, and macOS has been reorganized to support
Background Security Improvements. Content that can be patched using the Background
Security Improvement mechanism has been moved into cryptexes, which are optimized,
cryptographically sealed disk images that reside on the preboot volume alongside other
boot firmware. Cryptexes have different subtypes for operating system framework
components and apps, and they can be updated by applying a binary patch to their backing
disk image file.

Cryptex content is bootstrapped after the kernel has booted. The measurements of the
cryptexes, their file system seals, and their associated trust caches are all represented in a
separate Image4 ticket, which is cryptographically bound to the device on which it resides.
When a Background Security Improvement is being applied, the device sends a request to
Apple's trusted signing service to obtain a corresponding Cryptex1lmage4 manifest; the
existing AP boot ticket isn't updated.

On devices with macOS, a Background Security Improvement may offer the user the option
to apply the changes in the Background Security Improvement to the Safari web browser
by quitting and relaunching it. After Safari has been relaunched, it uses the framework

and library content from the new cryptexes. The rest of the operating system remains
unaffected and doesn’t make use of the new content until the system restarts.

Removing Background Security Improvements

Background Security Improvements are intended to be removable in case a critical
regression associated with the Background Security Improvement is discovered. Users
can also elect to remove all Background Security Improvements currently applied on their
device. In addition, in the rare event that a Background Security Improvement affects
software compatibility or quality, Apple may remove the most recently applied Background
Security Improvement from users’ devices using the Automatic Software Update
mechanism. To facilitate removal, Background Security Improvements ship both a patch
and an antipatch to the device.

If the user removes Background Security Improvements, the removal action removes all
currently installed Background Security Improvements (returning all cryptexes to their base
state) and returns patched system binaries to the version from the last installed software
update. The user must restart the device to complete Background Security Improvement
removal. For more information, see the Apple Support article If you need to remove a
Background Security Improvement.
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Removal recommendations

If Apple observes that a Background Security Improvement is contributing to a potentially
higher rate of application crashes, the identities of the affected applications are published
by a service that devices regularly query. Devices having that Background Security
Improvement installed then use an on-device analytics system to see whether one of the
affected applications has crashed significantly more often after installing the Background
Security Improvement. If the user encounters such a crash, the operating system lets them
know the Background Security Improvement may be contributing to the issue, and the user
is offered the opportunity to remove all Background Security Improvements and restore the
device to its last software update.

Analytics related to removal recommendations (for example, the app that triggered the
recommendation or the fact that the recommendation was displayed) are sent to Apple
only if the user has agreed to share this information using the following settings:

- [Pad: Settings > Privacy & Security > Analytics & Improvements > Share iPad Analytics

- [Phone: Settings > Privacy & Security > Analytics & Improvements > Share iPhone &
Watch Analytics

+  Mac: Settings > Privacy & Security > Analytics & Improvements > Share Mac Analytics

Operating system integrity

Apple designs its operating system software with security at its core. This design includes
a hardware root of trust that enables secure boot and a secure software update process
that's quick and safe. Apple's operating systems also use their purpose-built silicon-based
hardware capabilities to help prevent exploitation as the operating system runs. These
runtime features protect the integrity of trusted code as it executes. Apple's operating
system software helps mitigate attack and exploit techniques—whether those originate
from a malicious app, from the web, or through any other channel. These protections are
available on devices with supported Apple-designed SoCs, including iOS, iPadOS, macOS
on a Mac with Apple silicon, tvOS, visionOS, and watchOS.

Feature A10 A11, S3 A12-A14 A15-A18 M1 M2-M4 A19
S4-S10 M5

Kernel 4 4 v 4 4 4 4

Integrity

Protection

Fast X v 4 v v v v

Permission

Restrictions

System X X v 4 4 4 Vv

Coprocessor
Integrity
Protection

Pointer >< X \/ \/ \/ \/ \/

Authentication
Codes
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1: Secure Page Table Monitor (SPTM) is supported in the A15 or later and M2 or later SOCs
and replaces Page Protection Layer on supported platforms.

2: Page Protection Layer (PPL) and Secure Page Table Monitor (SPTM) enforce the
execution of signed and trusted code on all platforms with the exception of macOS
(because macOS is designed to run any code). All of the other security properties,
including the protection of page tables, are present across all supported platforms.

Kernel Integrity Protection

After the operating system kernel completes initialization, Kernel Integrity Protection (KIP)
is enabled to help prevent modifications of kernel and driver code. The memory controller
provides a protected physical memory region that iBoot uses to load the kernel and kernel
extensions. After startup is complete, the memory controller denies writes to the protected
physical memory region. The Application Processor’'s Memory Management Unit (MMU)

is configured to help prevent mapping privileged code from physical memory outside the
protected memory region and to help prevent writeable mappings of physical memory
within the kernel memory region.

To prevent reconfiguration, the hardware used to enable KIP is locked after the boot
process is complete.

Fast Permission Restrictions

Starting with the Apple A11 Bionic and S3 SoCs, a new hardware primitive was introduced.
This primitive, Fast Permission Restrictions, includes a CPU register that quickly restricts
permissions per thread. With Fast Permission Restrictions (also known as APRR registers),
supported operating systems can remove execute permissions from memory without the
overhead of a system call and a page table walk or flush. These registers provide one more
level of mitigation for attacks from the web, particularly for code compiled at runtime (just-
in-time compiled)—because memory can't be effectively executed at the same time it's
being read from and written to.

System Coprocessor Integrity Protection

Coprocessor firmware handles many critical system tasks—for example, the Secure
Enclave, the image sensor processor, and the motion coprocessor. Therefore its security
is a key part of the security of the overall system. To prevent modification of coprocessor
firmware, Apple uses a mechanism called System Coprocessor Integrity Protection (SCIP).
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SCIP works much like KIP: At boot time, iBoot loads each coprocessor’s firmware into a
protected memory region, one that's reserved and separate from the KIP region. iBoot
configures each coprocessor’s memory unit to help prevent:

- Executable mappings outside its part of the protected memory region
- Writeable mappings inside its part of the protected memory region

Also at boot time, to configure SCIP for the Secure Enclave, the Secure Enclave operating
system is used. After the boot process is complete, the hardware used to enable SCIP is
locked. This is designed to prevent reconfiguration.

Pointer Authentication Codes

Pointer Authentication Codes (PACs) are used to protect against exploitation of memory
corruption bugs. System software and built-in apps use PAC to help prevent modification
of function pointers and return addresses (code pointers). PAC uses five secret 128-bit
values to sign kernel instructions and data, and each user space process has its own B
keys. Items are salted and signed as indicated below.

Item Key Salt

Function Return Address 1B Storage address

Function Pointers 1A 0

Block Invocation Function 1A Storage address

Block Descriptor Pointer DA Storage address + 0xCOBB
Objective-C Method Cache 1B Storage address + Class + Selector
Objective-C Isa Pointer DA Storage address + Ox6AE1
Objective-C Super Pointer DA Storage address + 0xB5AB
Selector Typed Objective-C ivars DB Storage address + 0x57C2
Objective-C Read-only Class Data DA Storage address + 0x61F8

Pointer

C++ V-Table Entries 1A Storage address + Hash (mangled

method name)

C++ V-Table Pointers DA Storage address + Hash (mangled
base V-Table name)

Computed Goto Label 1A Hash (function name)
Kernel Thread State GA
User Thread State Registers 1A Storage address

The signature value is stored in the unused padding bits at the top of the 64-bit pointer.
The signature is verified before use, and the padding is restored to help ensure a
functioning pointer address. Failure to verify results in an abort. This verification increases
the difficulty of many attacks, such as a return-oriented programming (ROP) attack, which
attempts to trick the device into executing existing code maliciously by manipulating
function return addresses stored on the stack.
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Page Protection Layer (PPL) in iOS, iPadQOS, visionOS, and watchOS is designed to prevent
user space code from being modified after code signature verification is complete. Building
on KIP and Fast Permission Restrictions, PPL manages the page table permission overrides
to make sure only the PPL can alter protected pages containing user code and page tables.
The system provides a massive reduction in attack surface by supporting systemwide

code integrity enforcement, even in the face of a compromised kernel. This protection isn’t
offered in macOS because PPL is only applicable on systems where all executed code must
be signed.

Secure Page Table Monitor and Trusted Execution Monitor

Secure Page Table Monitor (SPTM) and Trusted Execution Monitor (TXM) in iOS, iPadOS,
macOS, and visionOS are designed to work together to help protect page tables for both
user and kernel processes against modification. This includes when attackers have kernel
write capabilities and can bypass control flow protections. SPTM does this by utilizing a
higher privilege level than the kernel, and utilizing the lower privileged TXM to actually
enforce the policies that govern code execution. This system is designed so that a TXM
compromise doesn’t automatically translate to an SPTM bypass due to this privilege
separation and the governing of trust between them. In the A15 or later and M2 or later
SOCs, SPTM (in combination with TXM) replaces the PPL, providing a smaller attack
surface that doesn't rely on trust of the kernel, even during early boot. SPTM relies on new
silicon primitives that are an evolution of the Fast Permission Restrictions that PPL utilizes,
and are available only on the processors listed in the table above.

Memory Integrity Enforcement

Memory Integrity Enforcement (MIE), is a comprehensive memory safety defense for Apple
platforms available on A19 and M5 processors or later. MIE is built on the robust foundation
provided by Apple’s secure memory allocators, coupled with Enhanced Memory Tagging
Extension (EMTE) in synchronous mode, and supported by extensive Tag Confidentiality
Enforcement policies. MIE is built in to Apple silicon and offers unparalleled, always-on
memory safety protection for key attack surfaces including the kernel, while maintaining
the power and performance that users expect. For more information, see Memory Integrity
Enforcement: A complete vision for memory safety in Apple devices on Apple Security
Research blog.

Memory Tagging Extension

Arm published the Memory Tagging Extension (MTE) specification in 2019 as a tool for
hardware to help find memory corruption bugs. MTE is a memory tagging and tag-checking
system, where every memory allocation is tagged with a secret. The hardware guarantees
that later requests to access memory are granted only if the request contains the correct
secret. If the secrets don’t match, the app crashes, and the event is logged. This allows
developers to identify memory corruption bugs immediately as they occur.

Enhanced Memory Tagging Extension
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EMTE closes the holes that prevent MTE from being an active defense, including only
supporting the more secure synchronous mode. In addition, accessing nontagged memory
from a tagged memory region requires knowing that region’s tag, making it significantly
harder for attackers to turn out-of-bounds bugs in dynamic tagged memory into a way to
sidestep EMTE by directly modifying nontagged allocations.

Tag Confidentiality Enforcement

Tag Confidentiality Enforcement protects the implementation of the secure allocators from
technical threats and guards the confidentiality of EMTE tags—including against side-
channel and speculative-execution attacks. The Secure Page Table Monitor protects the
kernel allocator backing store and tag storage. The system also ensures that when the
kernel accesses memory on behalf of an application, it's subject to the same tag-checking
rules as userspace. Tag Confidentiality Enforcement also is designed to mitigate against
tag leakage due to timing or speculative attacks, and even includes a protection against
Spectre V1.

Device pairing and connection security

Physical pairing model security for iPad and iPhone

iOS and iPadOS use a pairing model to control access to a device from a host computer.
This establishes a trust relationship between the device and its connected host, signified
by public key exchange. iOS and iPadOS also use this sign of trust to enable additional
functionality with the connected host, such as data syncing. On an iPhone with iOS 9 or
later or an iPad with iPadOS 13.1 or later, services:

- That require pairing can't be started until after the device has been unlocked by the
user

- Won't start unless the device has been recently unlocked
- May (such as with photo syncing) require the device to be unlocked to begin

The pairing process requires the user to unlock the device and accept the pairing request
from the host. On an iPhone with iOS 9 or later or an iPad with iPadOS 13.1 or later, the user
is also required to enter their passcode, after which the host and device exchange and save
2048-bit RSA public keys. The host is then given a 256-bit key that can unlock an escrow
keybag stored on the device. The exchanged keys are used to start an encrypted SSL
session, which the device requires before it sends protected data to the host or starts a
service Finder or Music app syncing, file transfers, Xcode development, and so on. To use
this encrypted session for all communication, the device requires connections from a host
over Wi-Fi, so it must have been previously paired over a physical connection (Thunderbolt
or USB). Pairing also enables several diagnostic capabilities. On devices with iOS 11 and
iPadOS 13.1, or later, if a pairing record hasn't been used for more than 30 days, it expires.

Certain diagnostic services, including com.apple.mobile.pcapd, are restricted to work
only over USB. Additionally, the com.apple.file_relay service requires an Apple-signed
configuration profile to be installed. On devices with iOS 11 and iPadOS 13.1, or later,
Apple TV can use the Secure Remote Password protocol to wirelessly establish a pairing
relationship.

A user can clear the list of trusted hosts with the Reset Network Settings or Reset Location
& Privacy options.
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Activating data connections securely

On iPad and iPhone devices and portable Mac computers with Apple silicon, if no data
connection has been established recently, users must use Face ID, Touch ID, or a passcode
to activate data connections through a Thunderbolt, USB, Lightning, Smart Connector,
or—in macOS 13.3 or later—the SD Extended Capacity (SDXC) cards interface. This limits
the attack surface against physically connected devices, such as malicious chargers,

while still enabling usage of other accessories within reasonable time constraints. If more
than an hour has passed since the iPad or iPhone has locked or since an accessory’s data
connection has been terminated, the device won't allow any new data connections to be
established until the device is unlocked. During this hour period, only data connections
from accessories that have been previously connected to the device while in an unlocked
state will be allowed. These accessories are remembered for 30 days after the last time
they were connected. Attempts by an unknown accessory to open a data connection during
this period inactivates all accessory data connections over those connections until the
device is unlocked again. This hour period:

- Helps ensure that frequent users of connections to a Mac or PC, to accessories, or
wired to CarPlay won't need to enter their passcodes every time they attach their device

- Is necessary because the accessory ecosystem doesn't provide a cryptographically
reliable way to identify accessories before establishing a data connection

In addition, if it's been more than three days since a data connection has been established
with an accessory, the device will disallow new data connections immediately after it locks.
This is to increase protection for users that don’'t often make use of such accessories.
These data connections are also inactive whenever the device is in a state where it requires
a passcode to reenable biometric authentication.

The user can choose to reenable always-on data connections in Settings (setting up some
assistive devices does this automatically).

Verifying accessories for Apple devices and services

The MFi licensing program provides vetted accessory manufacturers access to the iPod
Accessories Protocol (iAP) and the necessary supporting hardware components.

When an MFi accessory communicates with an iPad, iPhone, or Apple Watch, the
accessory must prove to Apple that it's been vetted. (The accessory-device connection

is with Thunderbolt, Lightning, Bluetooth, or for specific devices, USB-C.) As proof of
authorization, the accessory sends an Apple-provided certificate to the device, which the
device then verifies. The device then sends a challenge, which the accessory must answer
with a signed response. This process is entirely handled by a custom integrated circuit
(IC) that Apple provides to approved accessory manufacturers and is transparent to the
accessory itself.

Verified MFi accessories can request access to different transport methods and
functionality—for example, access to digital audio streams over the Thunderbolt cable,

or location information provided over Bluetooth. An authentication IC is designed to help
ensure that only approved MFi accessories are granted full access to the device. If an
accessory doesn't support authentication, its access is limited to analog audio and a small
subset of serial (UART) audio playback controls.
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AirPlay also uses the authentication IC to verify that receivers have been approved by
Apple. AirPlay audio and CarPlay video streams use the MFi-SAP (Secure Association
Protocol), which encrypts communication between the accessory and device using AES-
128 in counter (CTR) mode. Ephemeral keys are exchanged using ECDH key exchange
(Curve25519) and signed using the authentication IC's 1024-bit RSA key as part of the
Station-to-Station (STS) protocol.

Automatically unlock Apple devices

For greater convenience when using multiple Apple devices, some devices can
automatically unlock others in certain situations. Automatic unlocking can be done with the
following:

- An Apple Watch can be unlocked by an iPhone.
- A Mac can be unlocked by an Apple Watch.

- AniPhone can be unlocked by an Apple Watch when a user is detected with their nose
and mouth covered.

- An iPhone can be unlocked by an Apple Vision Pro.
- AniPhone can be unlocked and viewed on a Mac using iPhone Mirroring.

All use cases are built upon the same basic foundation: a mutually authenticated Station-
to-Station (STS) protocol, with Long-Term Keys exchanged at time of feature enablement
and unique ephemeral session keys negotiated for each request. Regardless of the
underlying communication channel, the STS tunnel is negotiated directly between the
Secure Enclaves in both devices, and all cryptographic material is kept within that secure
domain (with the exception of Mac computers without a Secure Enclave, which terminate
the STS tunnel in the kernel).

To unlock one device with another, both devices need to be signed into the same
Apple Account using two-factor authentication, and the user needs to enable each specific
unlocking relationship between the two devices.

Unlocking

A complete unlock sequence can be broken down in two phases.

- The device being unlocked (the target) generates a cryptographic unlock secret and
sends it to the device performing the unlock (the initiator).

- The initiator performs the unlock using the previously generated secret.

To prepare for devices to automatically unlock, the devices connect to each other using a
Bluetooth Low Energy (BLE) connection. Then a 32-byte unlock secret randomly generated
by the target device is sent to the initiator over the STS tunnel. During the next biometric
or passcode unlock, the target device wraps its passcode-derived key (PDK) with the
unlock secret and discards the unlock secret from its memory.
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To perform the unlock, the devices initiate a new BLE connection and then use peer-to-
peer Wi-Fi to securely approximate the distance between each other. If the devices are
within the specified range and the required security policies are met, the initiator sends

its unlock secret to the target through the STS tunnel. The target then generates a new
32-byte unlock secret and returns it to the initiator. If the current unlock secret sent by the
initiator successfully decrypts the unlock record, the target device is unlocked and the PDK
is rewrapped with a new unlock secret. Finally, the new unlock secret and PDK are then
discarded from the target's memory.

Mac unlock using Apple Watch

The unlocking flow described above is used when using an Apple Watch to unlock a
paired Mac, and can also be used to approve app requests—like viewing passwords or
downloading an app—without having to enter a password. When Apple Watch successfully
unlocks a paired iPhone, the watch displays a notification and plays an associated haptic.

Successfully unlocking a paired Mac from Apple Watch requires that all of the following
criteria be met:

- The Mac needs to be unlocked using another method at least once after the associated
Apple Watch was placed on wrist and unlocked.

- Distance measured between the Mac and Apple Watch needs to be 2-3 meters or less.
- Apple Watch needs to be unlocked.
- Apple Watch can’t be in bedtime mode.

iPhone unlock using Apple Watch

Additional security policies apply to iPhone unlock using Apple Watch. If the user taps the
Lock iPhone button in the notification, the watch sends the iPhone a lock command over
BLE. When the iPhone receives the lock command, it locks and disallows both Face ID and
unlock using other devices. The next iPhone unlock needs to be performed with the iPhone
passcode. Apple Watch can’t be used in place of Face ID on iPhone for other operations,
such as Apple Pay or app authorizations. When Apple Watch successfully unlocks a paired
iPhone, the watch displays a notification and plays an associated haptic.

Successfully unlocking a paired iPhone from Apple Watch (when enabled) requires that all
of the following criteria be met:

- iPhone needs to have been unlocked:

- Using another method at least once after the associated Apple Watch was placed on
wrist and unlocked.

At least once in the past 6.5 hours.

- Apple Watch or iPhone needs to have been unlocked recently, or Apple Watch needs to
have experienced physical motion indicating that the wearer is active (for example, not
asleep).

- Sensors need to be able to detect that the nose and mouth are covered.
- Distance measured between iPhone and Apple Watch needs to be 2-3 meters or less.
- Apple Watch can’t be in bedtime mode.

- iPhone needs to be in a state where Face ID is allowed to perform a device unlock. (For
more information, see Optic ID, Face ID, Touch ID, passcodes, and passwords.)
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iPhone unlock using Apple Vision Pro

Similar security policies apply to iPhone unlock with Apple Vision Pro. The user can

pair their Apple Vision Pro with an iPhone to enable automatic unlock of that iPhone by
Apple Vision Pro, and for in-app authentication using Apple Vision Pro in supported iPhone
apps. When Apple Vision Pro successfully unlocks a paired iPhone, the Apple Vision Pro
displays a notification. If the user taps the Lock iPhone button in the notification, the
Apple Vision Pro sends the iPhone a lock command over BLE. When the iPhone receives
the lock command, it locks and disallows both Face ID and unlock using other devices. The
next iPhone unlock needs to be performed with the iPhone passcode. Apple Vision Pro
can’t be used in place of Face ID on iPhone for Apple Pay.

Successfully unlocking a paired iPhone from Apple Vision Pro (when enabled) requires that
all of the following criteria be met:

- iPhone needs to be unlocked using another method at least once since it booted.
- Apple Vision Pro needs to be unlocked and in use.

- Apple Vision Pro needs to optically detect the iPhone is within approximately one meter
or less of the user, and that the user is looking at said iPhone.

- Distance measured between iPhone and Apple Vision Pro needs to be approximately
one meter or less.

- iPhone needs to be in a state where Face ID is allowed to perform a device unlock. (For
more information, see Optic ID, Face ID, Touch ID, passcodes, and passwords.)

Apple Watch unlock using iPhone

For added convenience, Apple Watch can be unlocked by an iPhone directly after initial
startup, without requiring the user to enter the passcode on the Apple Watch itself. To
achieve this, the random unlock secret (generated during the very first unlock sequence
after enablement of the feature) is used to create a long-term escrow record, which

is stored in the Apple Watch keybag. The escrow record secret is stored in the iPhone
keychain and used to bootstrap a new session after each Apple Watch restart.

iPhone Mirroring security

iPhone Mirroring allows a user to use their iPhone from their nearby Mac. While being
remotely used on the Mac the iPhone remains locked and users see a persistent
notification on the iPhone's Lock Screen. A banner is shown the first time the iPhone is
unlocked after a session has ended.

Notification forwarding

iPhone Mirroring lets users forward notifications from their iPhone to a Mac using the
same Apple Account. Users signed in to devices with the same Apple Account exchange
cryptographic identities using a local peer-to-peer protocol, encrypted using keys stored
in iCloud using end-to-end encryption. When the user enables iPhone Mirroring and enters
their passcode on the iPhone, the current cryptographic identity for the Mac is recorded.
The private key for this identity is protected in the Secure Enclave. This identity is pinned
so that if it changes, notifications aren’t forwarded to the Mac. Notifications are encrypted
in transit using end-to-end encryption.
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Remote unlock

Remote unlock for iPhone Mirroring uses the same remote unlock protocol as iPhone
unlock using Apple Watch but is initiated by the user launching the iPhone Mirroring app on
their paired Mac. Secure ranging isn't required for iPhone Mirroring.

When users set up iPhone Mirroring for the first time, they're prompted to choose to
either "Automatically authenticate,” or to "Ask every time." The Secure Enclave on the Mac
enforces this user choice and prompts the user to authenticate using their Mac password
(or Touch ID if supported). After the authentication policy is completed, the Mac connects
to the iPhone using a local wireless peer-to-peer connection and unlocks the iPhone
keybag to enable remote access for the duration of the remote session.

BlastDoor for Messages and IDS

Devices with iOS 14, iPadOS 14, macOS 11, watchOS 7, or later include a security feature
called BlastDoor. The goal of BlastDoor is to help protect the system by corralling
attackers—increasing the complexity of their efforts to exploit Messages and Apple Identity
Services (IDS). BlastDoor isolates, parses, transcodes, and validates untrusted data
arriving in Messages, IDS and other vectors to help prevent attacks.

BlastDoor does this by employing sandbox restrictions and memory safe validation of
output which creates a significant obstacle for attackers to overcome before reaching other
parts of the operating system. It's designed to drastically improve user protection against
attacks, particularly "0-click" attacks—those that don't require user interaction.

Finally, Messages treats traffic from known senders differently than traffic from unknown
senders, offering a different set of functionality to each group and segmenting known
versus unknown data into distinct BlastDoor instances.

Lockdown Mode security for Apple devices

Lockdown Mode is an optional, extreme protection that's designed for the very few
individuals who, because of who they are or what they do, might be personally targeted by
some of the most sophisticated digital threats such as targeted mercenary spyware. Most
people are never targeted by attacks of this nature.

When Lockdown Mode is turned on, a device doesn’t function the way it typically does. To
reduce the attack surface that potentially could be exploited, certain apps, websites, and
features are strictly limited for security, and some experiences might not be available at all.

Lockdown Mode is available in iOS 16, iPadOS 16, macOS 13, watchOS 10, or later.
Additional protections are available in iOS 17, iPadOS 17, macOS 14, and updates to
watchOS 10.1, or later. To take advantage of additional features of Lockdown Mode, devices
should be updated to the latest operating system. For more information, see the Apple
Support article About Lockdown Mode.

Lockdown Mode makes tradeoffs for increased security at the expense of functionality,
performance, or both. These tradeoffs impact:

«  Background services

- Connectivity
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- Device management
- FaceTime

+  GameCenter

- Mail

+ Messages

- Photos

- Safari

- System Settings

- WebKit

Overview of additional macOS system security
capabilities

Additional macOS system security capabilities

macOS operates on a broader set of hardware (for example, Intel-based CPUs, Intel-based
CPUs in combination with the Apple T2 Security Chip, and Apple silicon-based SoCs) and
supports a range of general-purpose computing use cases. Whereas some users use only
the preinstalled apps or those available from the App Store, others are kernel hackers who
need to make platform protections inactive so they can run and test their code with the
highest levels of trust. Most fall somewhere between, and many of those have peripherals
and software that require varying levels of access.

Apple designed the macOS platform with an integrated approach to hardware, software,
and services—a platform that provides security by design and makes it simple to configure,
deploy, and manage but that retains the configurability that users expect. macOS also
includes the key security technologies that an IT professional needs to help protect
corporate data and integrate within secure enterprise networking environments.

The following capabilities support and help secure the varied needs of macOS users. They
include:

- Signed system volume security

- System Integrity Protection

- Trust caches

- Protection for peripherals

- Rosetta 2 (automatic translation) support and security for a Mac with Apple silicon
- DMA support and protections

- Kernel extension (kext) support and security

+ Option ROM support and security

- UEFI firmware security for Intel-based Mac computers

68



Apple Platform Security

System Integrity Protection

macOS utilizes kernel permissions to limit writability of critical system files with a feature
called System Integrity Protection (SIP). This feature is separate and in addition to the
hardware-based Kernel Integrity Protection (KIP) available on a Mac with Apple silicon,
which protects modification of the kernel in memory. Mandatory access control technology
is leveraged to provide this and a number of other kernel level protections, including
sandboxing and Data Vault.

Mandatory access controls

macOS uses mandatory access controls—policies that set security restrictions, created
by the developer, that can't be overridden. This approach is different from discretionary
access controls, which permit users to override security policies according to their
preferences.

Mandatory access controls aren't visible to users, but they're the underlying technology
that helps enable several important features, including sandboxing, parental controls,
managed preferences, extensions, and SIP.

Restricting components

SIP restricts components to read-only in specific critical file system locations to help
prevent malicious code from modifying them. SIP is a computer-specific setting that's on
by default when a user upgrades to OS X 10.11 or later. On an Intel-based Mac, turning off
SIP removes protection for all partitions on the physical storage device. macOS applies this
security policy to every process running on the system, regardless of whether that process
is running sandboxed or with administrative privileges.

Trust caches

One of the objects included in the Secure Boot chain is the static trust cache, a trusted
record of all the Mach-0 binaries that are assembled into the signed system volume. Each
Mach-0 is represented by a code directory hash. For efficient searching, these hashes are
sorted before being inserted into the trust cache. The code directory is the result of the
signing operation performed by codesign(1). To enforce the trust cache, SIP must remain
active. To deactivate trust cache enforcement on a Mac with Apple silicon, secure boot
needs to be configured to Permissive Security.

When a binary runs (whether as part of spawning a new process or mapping executable
code into an existing process), its code directory is extracted and hashed. If the resulting
hash is found in the trust cache, the executable mappings created for the binary will

be granted platform privileges—that is, they may possess any entitlement and execute
without further verification as to the authenticity of the signature. This is in contrast to
an Intel-based Mac, where platform privileges are conveyed to operating system content
by the Apple certificate that signs the binaries. (This certificate doesn’t constrain which
entitlements the binary may possess.)

Nonplatform binaries (for example, notarized third-party code) must have valid certificate
chains to execute, and the entitlements they may possess are constrained by the signing
profile issued to the developer by the Apple Developer Program.
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All binaries shipped within macOS are signed with a platform identifier. On a Mac with
Apple silicon, this identifier is used to indicate that even though the binary is signed by
Apple, its code directory hash must be present in the trust cache to execute. On an Intel-
based Mac, the platform identifier is used to perform targeted revocation of binaries from
an older release of macQOS; this targeted revocation helps prevent those binaries from
executing on newer versions.

The static trust cache completely locks a set of binaries to a given version of macOS. This
behavior helps prevent legitimately Apple-signed binaries from older operating systems
from being introduced into newer ones for an attacker to gain advantage.

Platform code shipped outside the operating system

Apple ships some binaries—for example, Xcode and the development tools stack—that
aren't signed with a platform identifier. They're still permitted to execute with platform
privileges on a Mac with Apple silicon and a Mac with a T2 chip. Because this platform
software is shipped independently of macOS, it isn't subject to the revocation behaviors
imposed by the static trust cache.

Loadable trust caches

Apple ships certain software packages with loadable trust caches. These caches have

the same data structure as the static trust cache. Although there's only one static trust
cache—and its contents are always guaranteed to be locked into read-only ranges after the
kernel's early initialization is complete—loadable trust caches are added to the system at
runtime.

These trust caches are authenticated either through the same mechanism that
authenticates boot firmware (personalization using the Apple trusted signing service) or as
globally signed objects (whose signatures don't bind them to a particular device).

One example of a personalized trust cache is the cache, shipped with the disk image

that's used to perform field diagnostics on a Mac with Apple silicon. This trust cache is
personalized, along with the disk image, and loaded into the subject Mac computer’s kernel
while it's booted into a diagnostic mode. The trust cache allows the software within the
disk image to run with platform privilege.

An example of a globally signed trust cache is shipped with macOS software updates. This
trust cache permits a chunk of code within the software update—the update brain—to run
with platform privilege. The update brain performs any work to stage the software update
that the host system lacks the capacity to perform in a consistent fashion across versions.

Peripheral processor security in Mac computers

All modern computing systems have many built-in peripheral processors dedicated to tasks
such as networking, graphics, power management, and more. These peripheral processors
are often single-purpose and are much less powerful than the primary CPU. Built-in
peripherals that don't implement sufficient security become an easier target for attackers
to exploit, through which they can persistently infect the operating system. Having infected
a peripheral processor firmware, an attacker could target software on the primary CPU or
directly capture sensitive data (For example, an Ethernet device could see the contents of
packets that aren’t encrypted.)
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Whenever possible, Apple works to reduce the number of peripheral processors necessary

and avoid designs that require firmware. When separate processors with their own firmware
are required, efforts are taken to help ensure an attacker can’t persist on that processor by
verifying the processor in one of two ways:

+  Running the processor so that it downloads verified firmware from the primary CPU on
startup

- Having the peripheral processor implement its own secure boot chain, to verify the
peripheral processor firmware every time the Mac starts up

Apple works with vendors to audit their implementations and enhance their designs to
include desired properties such as:

- Ensuring minimum cryptographic strengths
- Ensuring strong revocation of known bad firmware
- Turning off debug interfaces

- Signing the firmware with cryptographic keys that are stored in Apple-controlled
hardware security modules (HSMs)

In recent years, Apple has worked with some external vendors to adopt the same “Image4”
data structures, verification code, and signing infrastructure used by Apple silicon.

When storage-free operation or storage plus secure boot is an option, the design mandates
that firmware updates be cryptographically signed and verified before the persistent
storage can be updated.

Rosetta 2 on a Mac with Apple silicon

A Mac with Apple silicon is capable of running code compiled for the x86_64 instruction
set using a translation mechanism called Rosetta 2. There are two types of translation
offered: just-in-time and ahead-of-time.

Just-in-time translation

In the just-in-time (JIT) translation pipeline, an x86_64 Mach object is identified early in
the image execution path. When these images are encountered, the kernel transfers control
to a special Rosetta translation stub rather than to the dynamic link editor, dy1ld(1).

The translation stub then translates x86_64 pages during the image's execution. This
translation takes place entirely within the process. The kernel still verifies the code hashes
of each x86_64 page against the code signature attached to the binary as the page is
faulted in. In the event of a hash mismatch, the kernel enforces the remediation policy
appropriate for that process.

Ahead-of-time translation

With the ahead-of-time (AOT) translation path, x86_64 binaries are read from storage at
times the system deems optimal for responsiveness of that code. The translated artifacts
are written to storage as a special type of Mach object file. That file is similar to an
executable image, but it's marked to indicate it's the translated product of another image.
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In this model, the AOT artifact derives its identity information from the original x86_64
executable image. To enforce this binding, a privileged userspace entity signs the
translation artifact using a device-specific key that's managed by the Secure Enclave. This
key is released only to the privileged userspace entity, which is identified as such using

a restricted entitlement. The code directory created for the translation artifact includes
the code directory hash of the original x86_64 executable image. The signature on the
translation artifact itself is known as the supplemental signature.

The AOT pipeline begins similarly to the JIT pipeline, with the kernel transferring control

to the Rosetta runtime rather than to the dynamic link editor, dyld(1). But the Rosetta
runtime then sends an interprocess communication (IPC) query to the Rosetta system
service, which asks whether there's an AOT translation available for the current executable
image. If found, the Rosetta service provides a handle to that translation, and it's mapped
into the process and executed. During execution, the kernel enforces the code directory
hashes of the translation artifact which are authenticated by the signature rooted in the
device-specific signing key. The original x86_64 image's code directory hashes aren’t
involved in this process.

Translated artifacts are stored in a Data Vault which isn't runtime-accessible by any

entity except the Rosetta service. The Rosetta service manages access to its cache by
distributing read-only file descriptors to individual translation artifacts; this limits access to
the AOT artifact cache. This service's interprocess communication and dependent footprint
are kept intentionally very narrow to limit its attack surface.

If the code directory hash of the original x86_64 image doesn’t match with the one
encoded into the AOT translation artifact’s signature, this result is considered the
equivalent of an invalid code signature, and appropriate enforcement action is taken.

If a remote process queries the kernel for the entitlements or other code identity properties
of an AOT-translated executable, the identity properties of the original x86_64 image are
returned to it.

Static trust cache content

macOS 11 or later ships with Mach “fat” binaries that contain slices of x86_64 and arm64
computer code. On a Mac with Apple silicon, the user may decide to execute the x86_64
slice of a system binary through the Rosetta pipeline—for example, to load a plug-in that
has no native arm64 variant. To support this approach, the static trust cache that ships
with macOS contains three code directory hashes per Mach object file:

- A code directory hash of the arm64 slice
« A code directory hash of the x86_64 slice
« A code directory hash of the AOT translation of the x86_64 slice

The Rosetta AOT translation procedure is deterministic in that it reproduces identical
output for any given input, irrespective of when the translation was performed or on what
device it was performed.

During the macOS build, every Mach object file is run through the Rosetta AOT translation
pipeline associated with the version of macOS being built, and the resulting code directory
hash is recorded into the trust cache. For efficiency, the actual translated products

don’t ship with the operating system and are reconstituted on demand when the user
requests them.
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When an x86_64 image is being executed on a Mac with Apple silicon, if that image's code
directory hash is in the static trust cache, the resulting AOT artifact's code directory hash
is also expected to be in the static trust cache. Such products aren’t signed by the device-
specific key, because the signing authority is rooted in the Apple secure boot chain.

Unsigned x86_64 code

A Mac with Apple silicon doesn’t permit native arm64 code to execute unless a valid
signature is attached. This signature can be as simple as an ad hoc code signature (cf.
codesign(1)) that doesn't bear any actual identity from the secret half of an asymmetric
key pair (it's simply an unauthenticated measurement of the binary).

For binary compatibility, translated x86_64 code is permitted to execute through Rosetta
with no signature information at all. No specific identity is conveyed to this code through
the device-specific Secure Enclave signing procedure, and it executes with precisely the
same limitations that native unsigned code executing on an Intel-based Mac.

Direct memory access protections for Mac computers

To achieve high throughput on high-speed interfaces like PCle, FireWire, Thunderbolt, and
USB, computers must support direct memory access (DMA) from peripherals. That is, they
must be able to read and write to RAM without continuous involvement of the CPU. Since
2012, Mac computers have implemented numerous technologies to protect DMA, resulting
in the best and most comprehensive set of DMA protections on any PC.

Protections for a Mac with Apple silicon

Apple systems on chip contain an Input/Output Memory Management Unit (IOMMU) for
each DMA agent in the system, including PCle and Thunderbolt ports. Because each
IOMMU has its own set of address translation tables to translate DMA requests, peripherals
connected by PCle or Thunderbolt can access only memory that has been explicitly
mapped for their use. Peripherals can’t access memory belonging to other parts of the
system—such as the kernel or firmware—memory assigned to other peripherals. If an
IOMMU detects an attempt by a peripheral to access memory that isn't mapped for that
peripheral’s use, it institutes a kernel panic.

Protections for an Intel-based Mac

Intel-based Mac computers with Intel Virtualization Technology for Directed I/O (VT-d)
initialize the IOMMU, enabling DMA remapping and interrupt remapping very early in the
boot process to mitigate various classes of security vulnerabilities. The Apple IOMMU
hardware begins operation with a default-deny policy, so the instant when the system is
powered on, it automatically begins blocking DMA requests from peripherals. After being
initialized by software, the IOMMUs begin allowing DMA requests from peripherals to
memory regions that have been explicitly mapped for their use.

Note: Interrupt remapping for PCle isn't necessary on a Mac with Apple silicon, because
each IOMMU handles MSIs for its own peripherals.
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Starting in macOS 11, all Mac computers with an Apple T2 Security Chip run UEFI drivers
that facilitate DMA in a restricted ring 3 environment when these drivers are pairing with
external devices. This property helps mitigate security vulnerabilities that may occur
when a malicious device interacts with a UEFI driver in an unexpected way at boot time. In
particular, it reduces the impact of vulnerabilities in a drivers handling of DMA buffers.

Securely extending the kernel in macOS

Starting with macOS 11, if third-party kernel extensions (kexts) are enabled, they can't

be loaded into the kernel on demand. Instead, they're merged into an Auxiliary Kernel
Collection (AuxKC), which is loaded during the boot process. For a Mac with Apple silicon,
the measurement of the AuxKC is signed into the LocalPolicy (for previous hardware, the
AuxKC resided on the data volume). Rebuilding the AuxKC requires the user's approval and
restarting of the macOS to load the changes into the kernel, and it requires that the secure
boot be configured to Reduced Security.

Important: Kexts are no longer recommended for macOS. Kexts risk the integrity and
reliability of the operating system, and Apple recommends users select solutions that don't
require extending the kernel.

In a Mac with Apple silicon

Kexts must be explicitly enabled for a Mac with Apple silicon by holding the power button
at startup to enter into One True Recovery (1TR) mode, then downgrading to Reduced
Security and checking the box to enable kernel extensions. This action also requires
entering an administrator password to authorize the downgrade. The combination of the
1TR and password requirement makes it difficult for software-only attackers starting
from within macOS to inject kexts into macOS, which they can then exploit to gain kernel
privileges.

After a user authorizes kexts to load, the above User-Approved Kernel Extension Loading
flow is used to authorize the installation of kexts. The authorization used for the above
flow is also used to capture an SHA-384 hash of the user-authorized kext list (UAKL) in the
LocalPolicy. The kernel management daemon (kmd) is then responsible for validating only
those kexts found in the UAKL for inclusion into the AuxKC:

- If System Integrity Protection (SIP) is turned on, the signature of each kext is verified
before being included in the AuxKC.

- If SIP is turned off, the kext signature isn't enforced.

This approach allows Permissive Security flows for developers or users who aren’t part of
the Apple Developer Program to test kexts before they are signed.
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After the AuxKC is created, its measurement is sent to the Secure Enclave to be signed
and included in an Image4 data structure that can be evaluated by iBoot at startup. As part
of the AuxKC construction, a kext receipt is also generated. This receipt contains the list
of kexts that were actually included in the AuxKC, because the set could be a subset of
the UAKL if banned kexts were encountered. An SHA-384 hash of the AuxKC Image4 data
structure and the kext receipt are included in the LocalPolicy. The AuxKC Image4 hash is
used for extra verification by iBoot at startup to help ensure that it isn't possible to start
up an older Secure Enclave-signed AuxKC Image4 file with a newer LocalPolicy. The kext
receipt is used by subsystems such as Apple Pay to determine whether there are any kexts
currently loaded that could interfere with the trustworthiness of macOS. If there are, then
Apple Pay capabilities may not be possible.

System extensions

macOS 10.15 allows developers to extend the capabilities of macOS by installing and
managing system extensions that run in user space rather than at the kernel level. By
running in user space, system extensions increase the stability and security of macOS.
Even though kexts inherently have full access to the entire operating system, extensions
running in user space are granted only the privileges necessary to perform their specified
function.

Developers can use frameworks, including DriverKit, EndpointSecurity, and
NetworkExtension, to write USB and human interface drivers, endpoint security tools (like
data loss prevention or other endpoint agents), and VPN and network tools, all without
needing to write kexts. Third-party security agents should be used only if they take
advantage of these APIs or have a robust road map to transition to them and away from
kernel extensions.

User-Approved Kernel Extension Loading

To improve security, user consent is required to load kernel extensions installed with or
after installing macOS 10.13. This process is known as User-Approved Kernel Extension
Loading. Administrator authorization is required to approve a kernel extension. Kernel
extensions don't require authorization if they:

- Were installed on a Mac when with macOS 10.12 or earlier
- Are replacing previously approved extensions

- Are allowed to load without user consent by using the spctl command-line tool
available when a Mac was booted from recoveryOS

- Are allowed to load using a device management service configuration

On devices with macOS 10.13.2 or later, users can use a device management service to
specify a list of kernel extensions that load without user consent. This option requires
a Mac that's enrolled in a device management service—through Apple School Manager,
Apple Business Manager, or device management enrollment done by the user.
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Option ROM security in macOS

Option ROM security in a Mac with the Apple T2 Security Chip

Both Thunderbolt and PCle devices can have an Option ROM (OROM) physically attached
to the device. (This is typically not a true ROM but instead a rewritable chip that stores
firmware.) On UEFI-based systems, that firmware is typically a UEFI driver, which is read

in by the UEFI firmware and ran. The running code is supposed to initialize and configure
the hardware it was retrieved from, so that the hardware can be made usable by the rest of
the firmware. This capability is required so that specialized third-party hardware can load
and operate during the earliest startup phases—for example, to start up from external RAID
arrays.

However, because OROMs are generally rewritable, if an attacker overwrites the OROM of a
legitimate peripheral, the attacker’s code executes early in the boot process and is able to
tamper with the execution environment and violate the integrity of software that's loaded
later. Likewise, if the attacker introduces their own malicious device to the system, they're
also able to execute malicious code.

In macOS 10.12.3, the behavior of Mac computers sold after 2011 changed to not run
OROMSs by default at the time the Mac booted unless a special key combination was
pressed. This key combination protected against malicious OROMs being inadvertently
introduced into the macOS boot sequence. The default behavior of the Firmware Password
Utility was also changed so that when the user set a firmware password, OROMs couldn’t
execute even if the key combination was pressed. This protected against a physically
present attacker intentionally introducing a malicious OROM. For users who still need

to run OROMs while they have a firmware password set, a nondefault option can be
configured using the firmwarepasswd command-line tool in macOS.
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In macOS 10.15, UEFI firmware was updated to contain a mechanism for sandboxing
OROMs and for stripping privileges from them. UEFI firmware typically executes all code,
including OROMs, at the maximum CPU privilege level, called ring 0, and has a single
shared virtual memory space for all code and data. Ring O is the privilege level where the
macOS kernel runs, whereas the lower privilege level, ring 3, is where apps run. The OROM
sandbox deprivileged OROMs by making use of virtual memory separation like the kernel
does and then making the OROMSs run in ring 3.

Virtual memory Virtual memory Virtual memory
space 1 space 2 space 3
Ring 3 OROM 1 OROM 2 OROM 3
(less privileged)
"I'm a storage "I'm a network "I'ma
driver (for card 1) driver (for card 1)" secure boot driver”
@ @ OROM sandbox driver @
Ring 0 Nonsandboxed UEFI drivers

(more privileged)

Core UEFI firmware

x86 CPU
Hardware
(more privileged)

PCle card 1 PCle card 2 PCle card 3

The sandbox further significantly restricts both the interfaces that the OROMSs can call
(much like system call filtering in kernels) and the type of device that an OROM can
register as (much like app approval.) The benefit of this design is that malicious OROMs
can no longer directly write anywhere within ring O memory. Instead, they are limited to a
very narrow and well-defined sandbox interface. This limited interface significantly reduces
attack surface and forces attackers to first escape the sandbox and escalate privilege.

Note: Option ROMs aren’t currently supported on a Mac with Apple silicon.

UEFI firmware security in an Intel-based Mac

An Intel-based Mac with an Apple T2 Security Chip offers security using UEFI (Intel)
firmware.

Since 2006, Mac computers with an Intel-based CPU use an Intel firmware based on the
Extensible Firmware Interface (EFI) and Extensible Development Kit (EDK) version 1 or
version 2. EDK2-based code conforms to the Unified Extensible Firmware Interface (UEFI)
specification. This section refers to the Intel firmware as the UEFI firmware. The UEFI
firmware was the first code to execute on the Intel chip.
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For an Intel-based Mac without the Apple T2 Security Chip, the root of trust for the UEFI
firmware is the chip where the firmware is stored. UEFI firmware updates are digitally
signed by Apple and verified by the firmware before updating the storage. To help prevent
rollback attacks, updates must always have a version newer than the existing one. However,
an attacker with physical access to the Mac could potentially use hardware to attach to

the firmware storage chip and update the chip to contain malicious content. Likewise, if
vulnerabilities are found in the early boot process of the UEFI firmware (before it write-
restricts the storage chip), this could also lead to persistent infection of the UEFI firmware.
This is a hardware architectural limitation common in most Intel-based PCs and present in
all Intel-based Mac computers without the T2 chip.

To help prevent physical attacks that subvert UEFI firmware, Mac computers were
rearchitected to root the trust in the UEFI firmware in the T2 chip. On these Mac
computers, the root of trust for the UEFI firmware is specifically the T2 firmware, as
described in Boot process.

Intel Management Engine (ME) subcomponent

One subcomponent stored within the UEFI firmware is the Intel Management Engine

(ME) firmware. The ME—a separate processor and subsystem within Intel chips—is used
primarily for audio and video copyright protection on a Mac that has only Intel-based
graphics. To reduce this subcomponent’s attack surface, an Intel-based Mac runs a custom
ME firmware from which most components have been removed. Because the resulting

Mac ME firmware is smaller than the default minimal build that Intel makes available, many
components that have been the subject of public attacks by security researchers in the
past are no longer present.

System Management Mode (SMM)

Intel processors have a special execution mode that's distinct from normal operation.
Called System Management Mode (SMM), it was originally introduced to handle time-
sensitive operations such as power management. However, to perform such actions, Mac
computers have historically used a discrete microcontroller called the System Management
Controller (SMC). No longer a separate microcontroller, the SMC has been integrated into
the T2 chip.

System security for watchOS

Apple Watch uses many of the same hardware-based platform security capabilities that
iOS and iPadOS use. For example, Apple Watch:

- Performs secure boot and secure software updates
+ Maintains operating system integrity

« Helps protect data, both on the device and when communicating with a paired iPhone or
the internet

Supported technologies include those listed in System Security (for example, KIP, SKP, and
SCIP) as well as Data Protection, keychain, and network technologies.
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Updating watchOS

watchOS can be configured to update overnight. For more information on how the
Apple Watch passcode gets stored and used during the update, see Keybags.

Wrist detection

If wrist detection is turned on, the device locks automatically soon after it's removed from
the user’s wrist. If wrist detection is turned off, Control Center provides an option for
locking Apple Watch. When Apple Watch is locked, Apple Pay can be used only by entering
the passcode on the Apple Watch. Wrist detection is turned off using the Watch app on
iPhone. This setting can also be enforced using a device management service.

Activation Lock

When Find My is turned on for an iPhone, its paired Apple Watch can also use Activation
Lock. Activation Lock makes it harder for anyone to use or sell an Apple Watch that's been
lost or stolen. Activation Lock requires the user’s Apple Account and password to unpair,
erase, or reactivate an Apple Watch. For more information, see Activation Lock security.

Secure pairing with iPhone

Apple Watch can be paired with only one iPhone at a time. When Apple Watch is unpaired,
iPhone communicates instructions to erase all content and settings from the watch.

Pairing Apple Watch with iPhone is secured using a secret encoded in an animated pattern
displayed by Apple Watch, which is captured by the camera on iPhone. A six-digit PIN is
also available as a fallback pairing method, if necessary. The way the secret or the PIN

is used depends on which operating system version is running on the Apple Watch and
iPhone.

When Apple Watch with watchOS 26 or later is paired to iPhone with iOS 26 or later,
pairing is performed by exchanging keys over a secure IKEv2 connection. This connection
is either authenticated using standard PSK authentication with the secret encoded in the
animated pattern or by a connection-specific secret derived from the PIN using SPAKE2+.
ML-KEM-1024 is used to provided quantum security in addition to the security provided by
elliptic-curve Diffie-Hellman.

After the connection is established, each device generates random Ed25519 public-private
key pairs, and the public keys are exchanged. The private keys are rooted in the Secure
Enclave on Apple Watch. This isn't possible on iPhone because a user restoring their
iCloud Backup to the same iPhone preserves the existing Apple Watch pairing without
requiring migration. Each device also generates and exchanges secrets for BLE 4.1 out-of-
band pairing.

When Apple Watch and iPhone are running older software versions, the secret encoded

in the animated pattern is used for for BLE 4.1 out-of-band pairing, and the six-digit PIN

is used for pairing standard BLE Passkey Entry. After the BLE session is established and
encrypted using the highest security protocol available in the Bluetooth Core Specification,
iPhone and Apple Watch exchange keys using either:

- A process adapted from Apple Identity Service (IDS) as described in the iMessage
security overview.
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- A key exchange using IKEv2/IPSec. The initial key exchange is authenticated using
either the Bluetooth session key (for pairing scenarios) or the IDS keys (for operating
system update scenarios). Each device generates Ed25519 public-private key pair,
and during the initial key exchange process, the public keys are exchanged. When an
Apple Watch with watchOS 10 or later is first paired, the private keys are rooted in its
Secure Enclave.

On an iPhone with iOS 17 or later, the private keys aren't rooted in the Secure Enclave,
because a user restoring their iCloud Backup to the same iPhone preserves the existing
Apple Watch pairing without requiring migration.

Note: The mechanism used for key exchange and encryption varies, depending on which
operating system versions are on the iPhone and Apple Watch. An iPhone with iOS 13 or
later when paired with an Apple Watch with watchOS 6 or later, use only IKEv2/IPSec for
key exchange and encryption.

After keys have been exchanged:

- The Bluetooth session key is discarded and all communications between iPhone and
Apple Watch are encrypted using one of the methods listed above—with the encrypted
Bluetooth, Wi-Fi, and cellular links providing a secondary encryption layer.

The BLE device address is also rotated at 15-minute intervals to reduce the risk of the
device being locally tracked if someone broadcasts a persistent identifier.

«  (IKEv2/IPsec only) The keys are stored in the System keychain and used for
authenticating future IKEv2/IPsec sessions between the devices. Encryption between
devices depends on the hardware and operating systems:

« AniPhone with iOS 26 or later paired with an Apple Watch with watchOS 26 or later
utilizes ML-KEM-768 for quantum security in addition to the security provided by
elliptic-curve Diffie-Hellman.

An iPhone with iOS 15 or later paired with an Apple Watch Series 4 or later with
watchOS 8 or later is encrypted and integrity protected using AES-256-GCM.

Older devices or devices with older operating system versions ChaCha20-Poly1305
with 256-bit keys.

To support apps that need streaming data, encryption is provided with methods described
in FaceTime security, using either the Apple Identity Service (IDS) provided by the paired
iPhone or a direct internet connection.

Apple Watch implements hardware-encrypted storage and class-based protection of files
and keychain items. Access-controlled keybags for keychain items are also used. Keys
used to communicate between Apple Watch and iPhone are also secured using class-based
protection. For more information, see Keybags for Data Protection.

Approve in macOS with Apple Watch

When Auto Unlock with Apple Watch is enabled, the Apple Watch can be used in place, or
together with Touch ID, to approve authorization and authentication prompts from:

- macOS and Apple apps that request authorization
- Third-party apps that request authentication
- Saved Safari passwords

- Secure Notes
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Secure use of Wi-Fi, cellular, iCloud, and Gmail

When Apple Watch isn't within Bluetooth range, Wi-Fi or cellular can be used instead.
Apple Watch automatically joins Wi-Fi networks that have already been joined on the paired
iPhone and whose credentials have synced to the Apple Watch while both devices were

in range. This Auto-Join behavior can then be configured on a per-network basis in the
Wi-Fi section of the Apple Watch Settings app. Wi-Fi networks that have never been joined
before on either device can be manually joined in the Wi-Fi section of the Apple Watch
Settings app.

When Apple Watch and iPhone are out of range, Apple Watch connects directly to iCloud
and Gmail servers to fetch mail, as opposed to syncing mail data with the paired iPhone
over the internet. For Gmail accounts, the user must authenticate to Google in the Mail
section of the Watch app on iPhone. The OAuth token received from Google is sent over to
Apple Watch in encrypted format over Apple Identity Service (IDS) so that it can be used to
fetch mail. This OAuth token is never used for connectivity with the Gmail server from the
paired iPhone.

Random number generation

Cryptographic pseudorandom number generators (CPRNGs) are an important building
block for secure software. To this end, Apple provides a trusted software CPRNG running
in the i0S, iPadOS, macOS, tvOS, visionOS, and watchOS kernels. It's responsible for
aggregating raw entropy from the system and providing secure random numbers to
consumers in both the kernel and user space.

Entropy sources

The kernel CPRNG is seeded from multiple entropy sources during boot and over the
lifetime of the device. These include (contingent on availability):

The Secure Enclave hardware TRNG
Timing-based jitter collected during boot
Entropy collected from hardware interrupts

A seed file used to persist entropy across boots

Intel random instructions—for example, RDSEED and RDRAND (only on an Intel-based
Mac)

The kernel CPRNG

The kernel CPRNG is a Fortuna-derived design targeting a 256-bit security level. It
provides high-quality random numbers to user-space consumers using the following APls:

The getentropy(2) system call
The random device (/dev/random)

The kernel CPRNG accepts user-supplied entropy through writes to the random device.
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Communicating emergency information using
satellites

Users with iPhone 14 or later can communicate over satellite links to provide various
services. Satellite links impose significant bandwidth constraints and require security
protocols with minimal bandwidth overhead. Regardless of communication type
(Emergency SOS, SMS, or iMessage), Apple establishes a secure session between the
off-grid device and an Apple datacenter. Devices preregister public key material with the
server over cellular or Wi-Fi to save bandwidth while off-grid.

Core security architecture

When a device requests a satellite service, it establishes a secure connection with the
Apple datacenter by referencing a truncated hash of its public key for key exchange. Each
public-private key pair supports only a single session, with a maximum validity of eight
hours. The server generates a corresponding public-private key pair for every client key
pair in advance and shares the public key with the client.

After the session expires or finishes, Apple servers and the device remove the
corresponding private keys, providing forward secrecy. Apple and devices register
additional keys at regular intervals and after coming back online following a private key
use, providing post-compromise security for satellite communications. Observers can't
identify users from session identifiers, as each device rotates identifiers on every session
to prevent linking.

Emergency and Roadside Assistance over satellite

When users employ SOS or Roadside Assistance over Satellite, the secure connection to
Apple (described above) protects the communication content. An additional encryption
layer ensures that the content remains encrypted all the way to the application server,
which forwards these messages to Apple emergency services and road assistance partners
with transport encryption.

iMessage over satellite

When exchanging iMessages over Wi-Fi or cellular, devices exchange key material along
with messages if any device in the sender’s or receiver’s group supports satellite service.
Through this mechanism, devices receive regularly updated keys that enable them to
encrypt and decrypt messages when cellular connectivity is unavailable and the device
connects to satellite. Due to key lifetime limitations, users need to exchange messages
within the last 30 days to communicate off-grid.

Each device generates symmetric key material and distributes it using iMessage encryption
to encrypt its own outgoing messages. Each message uses a unique symmetric key derived
through a Hash-based Key Derivation Function (HKDF) ratchet for its corresponding
message counter. Upon receiving a message, the recipient’s devices look up the sender’s
symmetric key material to derive the corresponding message key. When the device comes
back online, new symmetric keys are distributed for subsequent sessions.

The sending device sends iMessages using Satellite only after it receives a signed payload
from the recipient confirming that the device can receive messages over satellite.
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Note: iMessage using satellite supports one-to-one messaging only, not groups.

SMS over satellite

When users send or receive SMS messages using satellite, the messages go to or come
from a network Interworking Function (IWF). The IWF receives messages destined to the
off-grid client from the sender’s carrier (the client appears roaming while off-grid, as it
isn't on the carrier’s local network). Similarly, the IWF delivers outgoing messages from the
off-grid client to the recipient’s home carrier. Encryption and authentication protect SMS
messages exchanged between the off-grid client and the IWF, preventing both Apple and
those with satellite signal access from accessing or modifying the messages.

A Diffie-Hellman key exchange over the NIST P256 curve begins while a client is on-grid
and completes when the client goes off-grid and establishes the initial satellite connection.
Using HKDF-SHA-256, Apple and the device derive several keys from this key exchange.
One key symmetrically encrypts (using AES-GCM with a 256-bit key) client information
necessary for proper SMS routing (IMSI and SMSC). Another set provides bidirectional
encryption of messages between the client and the IWF, also using AES-GCM with a 256-
bit key.

Because satellite connections have lower bandwidth and higher latency than traditional
cellular communications, not all incoming SMS messages reach the client immediately
when it connects off-grid to prevent spam or low-value messages from delaying critical
SMS retrieval. Instead, the system transmits inbound messages to the client only if either:

1. The client, while off-grid, has sent a message to the sender within the recent 24-hour
period.

2. The sender is an approved sender (in the user’s emergency contacts or iCloud family
members).

Otherwise, Apple stores the message encrypted on its servers until the client comes back
online and retrieves the messages over traditional networks. To maintain user privacy,
Apple ensures that the IWF doesn’t learn the user’s approved sender list.

The client uses HMAC-SHA-256 with a key derived from the session’s primary key to
generate random pseudonyms for each phone number in each session. On session
establishment, the client sends the pseudonyms for each phone number on the allow list
to the Apple server. Similarly, it generates and sends a pseudonym to Apple each time the
client sends an SMS to a phone number. This allows Apple to maintain a list of permitted
sender pseudonyms for the session.

When someone sends the client an SMS after session establishment, the IWF encrypts

the message and calculates the sender’s phone number pseudonym. It communicates this
along with the encrypted message to Apple’s servers. The server compares the incoming
message's sender pseudonym against the allow list and forwards the encrypted message if
there is a match.
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Apple Security Research Device

The Apple Security Research Device is a specially-fused iPhone that allows security
researchers to perform research on iOS without having to defeat or inactivate the platform
security features. With this device, a researcher can side-load content that runs with
platform-equivalent permissions and perform research on a platform that more closely
models that of a production device.

To help ensure that user devices aren’t affected by the security research device execution
policy, the policy changes are implemented in a variant of iBoot and in the Boot Kernel
Collection, which fail to boot on a production device. The research iBoot checks for a new
fusing state and enters a panic loop if it's being run on nonresearch-fused hardware.

The cryptex subsystem allows a researcher to load a personalized trust cache and a disk
image containing corresponding content. A number of defense in-depth measures have
been implemented that are designed to ensure that this subsystem doesn’t allow execution
on user devices:

- launchd doesn't load the cryptexd property list if it detects a normal customer device.
- cryptexd aborts if it detects a normal customer device.

- ApplelImage4 doesn't vend the anti-replay value used for verifying a research cryptex
on a normal customer device.

- The signing server refuses to personalize a cryptex disk image for a device not on an
explicit allow list.

To respect the privacy of the security researcher, only the measurements (for example,
hashes) of the executables or kernel cache and the security research device identifiers
are sent to Apple during personalization. Apple doesn't receive the content of the cryptex
being loaded onto the device.

To avoid having a malicious party attempt to masquerade a research device as a user
device to trick a target into using it for everyday usage, the security research device has
the following differences:

- The security research device starts up only while charging. This can be using a
Lightning cable or a Qi-compatible charger. If the device isn't charging during startup,
the device enters Recovery mode. If the user starts charging and restarts the device, it
starts up as normal. As soon as XNU starts, the device doesn’t need to be charging to
continue operation.

+  The words Security Research Device are displayed below the Apple logo during iBoot
startup.

- The XNU kernel boots in verbose mode.

- The device is etched on the side with the message “Property of Apple. Confidential and
Proprietary. Call +1 877 595 1125."

The following are additional measures that are implemented in software that appears
after boot:

- The words Security Research Device are displayed during device setup.

- The words Security Research Device are displayed on the Lock Screen and in the
Settings app.

The Security Research Device researchers:
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Side-load executable code onto the device with arbitrary entitlements at the same
permission level as Apple operating system components

Start services at startup.
Persist content across restarts.

Use the research.com.apple.license-to—operate entitlement to permit a process
to debug any other process on the system, including system processes.

The research. namespace is respected only by the RESEARCH variant of the
AppleMobileFileIntegrity kernel extension; any process with this entitlement is
terminated on a customer device during signature validation.

Personalize and restore a custom kernel cache.

85



Apple Platform Security

Encryption and Data Protection

Encryption and Data Protection overview

The secure boot chain, system security, and app security capabilities all help to verify

that only trusted code and apps run on a device. Apple devices have additional encryption
features to safeguard user data, even when other parts of the security infrastructure have
been compromised (for example, if a device is lost or is running untrusted code). All of
these features benefit both users and IT administrators, protecting personal and corporate
information and providing methods for instant and complete remote wipe in the case of
device theft or loss.

iPad, iPhone, and Apple Vision Pro use a file encryption methodology called Data
Protection, whereas the data on an Intel-based Mac is protected with a volume encryption
technology called FileVault. A Mac with Apple silicon uses a hybrid model that supports
Data Protection, with two caveats: The lowest protection level Class (D) isn't supported,
and the default level (Class C) uses a volume key and acts just like the FileVault on an Intel-
based Mac. In all cases, key management hierarchies are rooted in the dedicated silicon

of the Secure Enclave, and a dedicated AES Engine supports line-speed encryption and
helps ensure that long-lived encryption keys aren't exposed to the kernel operating system
or CPU (where they might be compromised). (An Intel-based Mac with a T1 or lacking a
Secure Enclave doesn’t use dedicated silicon to protect its FileVault encryption keys.)

Besides using Data Protection and FileVault to help prevent unauthorized access to data,
Apple uses operating system kernels to enforce protection and security. The kernel uses
access controls to sandbox apps (which restricts what data an app can access) and a
mechanism called a Data Vault (which rather than restricting the calls an app can make,
restricts access to the data of an app from all other requesting apps).
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Quantum-secure cryptography in Apple operating
systems

Overview

Historically, communications protocols have used classical public key cryptography,
such as RSA, Elliptic Curve Diffie-Hellman key exchange and Elliptic Curve signature,

to establish secure connections between devices or between a device and a server. All
these algorithms rest on mathematical problems that computers have long considered
too computationally intensive to solve, even when accounting for Moore's law. However,
the rise of quantum computing threatens to change the equation. A sufficiently powerful
quantum computer could solve these classical mathematical problems in fundamentally
different ways, and—in theory—do so fast enough to threaten the security of end-to-end
encrypted communications.

Although quantum computers with this capability don’t exist yet, extremely well-resourced
attackers can already prepare for their arrival by exploiting the steep decrease in modern
data storage costs. The premise is simple: attackers can collect large amounts of today’s
encrypted data and file it all away for future reference. Even though they can't decrypt
any of this data today, they can retain it until they acquire a quantum computer that can
decrypt it in the future, an attack scenario known as Harvest Now, Decrypt Later.

To mitigate risks from future quantum computers, the cryptographic community has been
working on post-quantum cryptography (PQC): new public key algorithms that provide
the building blocks for quantum-secure protocols don't require a quantum computer—
protocols that can run on the classical, non-quantum computers in use today, but that will
remain secure from known threats posed by future quantum computers.

Apple’s approach to quantum-secure cryptography

When deploying quantum-secure cryptography, Apple is adopting hybrid cryptography,
which combines classic algorithms and new post-quantum algorithms so that updates
can’t make systems less secure than before. Hybrid cryptography is critical because it lets
Apple continue taking advantage of field-tested classic algorithm implementations, which
Apple has hardened against key recovery attacks exploiting CPU signals during algorithm
execution such as side-channel attacks.

Apple has deployed quantum-secure cryptography across a wide range of protocols,
prioritizing applications involving sensitive user information where attackers could harvest
encrypted communications at scale:

- [Message: Apple deployed iMessage PQ3 in iOS 17.4, iPadOS 17.4, macOS 14.4, and
watchOS 10.4, which advanced the state-of-the-art in quantum-secure messaging
at scale. For more information, see iMessage with PQ3: The new state of the art in
quantum-secure messaging at scale on the Apple Security Blog.

« TLS and HTTPS: Apple supports quantum-secure encryption in TLS in the developer
networking APIs URLSession and Network framework in iOS 26, iPadOS 26, macOS 26,
tvOS 26, and watchOS 26. These APIs enable it by default for all systems services and
apps that use them. This is an especially important protocol because it protects a vast
amount of personal data like internet browsing and email, transiting across networks
where attackers could harvest data. For more information, see TLS security.
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« VPN: Apple added quantum-secure encryption in the native VPN client support as well
as the developer IKEv2 APls, which also makes it easy for third-party VPN solutions to
enable quantum-secure encryption with iOS 26, iPadOS 26, macOS 26, tvOS 26, and
watchOS 26. For more information, see VPN security.

- SSH: Apple upgraded this protocol (commonly used on Mac to log in remotely and
transfer files) with a quantum-secure encryption key exchange in macOS 26. For more
information, see Allow a remote computer to access a Mac in the Mac User Guide.

- Apple Watch: Apple enabled quantum-secure encryption between iPhone and
Apple Watch in iOS 26 and watchOS 26 by adding additional key exchanges using ML-
KEM. For more information, see System security for watchOS.

- Developer cryptographic APIs: To enable developers to leverage Apple's native
implementation and transition their own protocols to post-quantum cryptography,
support was added in the Apple CryptoKit framework in iOS 26, iPadOS 26, macOS 26,
tvOS 26, and watchOS 26. For secure encryption, ML-KEM offers two parameters:
ML-KEM 768 and ML-KEM 1024. For quantum-secure authentication, developers can
use ML-DSA-65 and ML-DSA-87. Although these algorithms are robust in isolation,
developers must use them in well-analyzed protocols to ensure they correctly use and
combine them to achieve the application’s security needs. For more information, see
Apple CryptoKit on the Apple Developer website.

Important: Systems support quantum encryption only when they connect to supporting
servers.

Passcodes and passwords

To protect user data from malicious attack, Apple uses passcodes in iOS, iPadOS, and
visionOS, and passwords in macOS. The longer a passcode or password is, the stronger

it is—and the easier it is to discourage brute-force attacks. To further discourage attacks,
Apple enforces time delays (i0S, iPadOS, and visionOS) and a limited number of password
attempts (Mac).

On an iPad, iPhone, and Apple Vision Pro, setting up a device passcode or password,
the user automatically enables Data Protection. Data Protection is also enabled on other
devices that feature an Apple system on a chip (SoC)—such as a Mac with Apple silicon,
Apple TV, and Apple Watch. On devices with macOS, Apple uses the built-in volume
encryption program FileVault.

Increasing security with strong passcodes and passwords

i0S, iPadOS, and visionOS support six-digit, four-digit, and arbitrary-length alphanumeric
passcodes. Besides unlocking the device, a passcode or password provides entropy for
certain encryption keys. This means an attacker in possession of a device can't get access
to data in specific protection classes without the passcode.

The passcode or password is entangled with the device's UID, so brute-force attempts
need to be performed on the device under attack. A large iteration count is used to

make each attempt slower. The iteration count is calibrated so that one attempt takes
approximately 80 milliseconds. In fact, it would take more than five and one-half years to
try all combinations of a six-character alphanumeric passcode with lowercase letters and
numbers.
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The stronger the user passcode is, the stronger the encryption key becomes. And by
using Optic ID, Face ID and Touch ID, the user can establish a much stronger passcode
than would otherwise be practical. The stronger passcode increases the effective amount
of entropy protecting the encryption keys used for Data Protection, without adversely
affecting the user experience of unlocking a device multiple times a day.

If a passcode contains only numbers, a numeric keypad is displayed at the Lock Screen.
A longer numeric passcode may be easier to enter than a shorter alphanumeric password,
while providing similar security.

Users can specify a longer alphanumeric password by selecting Custom Alphanumeric
Code in the Passcode Options in Settings > [Optic ID], [Face ID], or [Touch ID] &
Passcode). If a password is alphanumeric, a full keypad is displayed at the Lock Screen.

Escalating time delays discourage brute-force attacks

On iPad, iPhone, Mac, and Apple Vision Pro, to further discourage brute-force passcode
attacks, there are escalating time delays after the entry of an invalid passcode, password,
or PIN (depending on the device and the state the device is in), as shown in the table

below.

Attempts 3 4 5 6 7 8 9 10 or more

i0OS and None 1 minute 5 minutes 15 minutes 1 hour 3 hours 8 hours Device

iPadOS Lock is locked

Screen and must
connect to
a Mac or
PC

watchOS None 1 minute 5 minutes 15 minutes 1 hour 3 hours 8 hours Device

Lock Screen is locked
and must
connect to
an iPhone

FileVault None 1 minute 5 minutes 15 minutes 1 hour 3 hours 8 hours 8 hours

Login

Window and

Lock Screen

macOS None 1 minute 5 minutes 15 minutes 1 hour 3 hours 8 hours See "How

Recovery escalating

Mode time
delays
discourage
brute-
force
attacks in
macOS”
below
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Attempts 3 4 5 6 7 8 9 10 or more

FileVault with None 1 minute 5 minutes 15 minutes 1 hour 3 hours 8 hours See "How

recovery key escalating

(Personal, time

Institutional, dfelays

or iCloud) discourage
brute-
force
attacks in
macOS”
below

macOS 1 minute 5 minutes 15 minutes 30 minutes 1 hour 1 hour 1 hour 1 hour

Remote lock

PIN code

If the Erase Data option is turned on for iPad, iPhone, or Apple Vision Pro (in Settings >
[Optic ID], [Face ID], or [Touch ID] & Passcode), after 10 consecutive incorrect attempts
to enter the passcode, all content and settings are removed from storage. Consecutive
attempts of the same incorrect passcode don’t count toward the limit. This setting is also
available as an administrative policy through a device management service that supports
this feature and through Microsoft Exchange ActiveSync, and can be set to a lower
threshold.

The delays are enforced by the Secure Enclave. If the device is restarted during a timed
delay, the delay is still enforced, with the timer starting over for the current period.

Escalating time delays discourage brute-force attacks in
macOS

To help prevent brute-force attacks, when a Mac starts up, no more than 10 password
attempts are allowed at the Login Window, and escalating time delays are imposed after
a certain number of incorrect attempts. The delays are enforced by the Secure Enclave. If
a Mac is restarted during a timed delay, the delay is still enforced, with the timer starting
over for the current period.

To help prevent malware from causing permanent data loss by trying to attack the user's
password, these limits aren't enforced after the user has successfully logged in to the Mac,
but they are reimposed after a restart. If the 10 attempts are exhausted, 10 more attempts
are available after restarting into recoveryOS. And if those are also exhausted, then 10
additional attempts are available for the configured FileVault recovery mechanism (iCloud
recovery, FileVault recovery key, and institutional key), for a maximum of 30 additional
attempts. After those additional attempts are exhausted, the Secure Enclave no longer
processes any requests to decrypt the volume or verify the password, and the data on the
drive becomes unrecoverable.

To help protect data in an enterprise setting, IT should define and enforce FileVault
configuration policies using a device management service. Organizations have several
options for managing encrypted volumes, including institutional recovery keys, personal
recovery keys (that can optionally be stored with a device management service for
escrow), or a combination of both. Key rotation can also be set as a policy in a device
management service.
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On a Mac with the Apple T2 Security Chip, the password serves a similar function except
that the key generated is used for FileVault encryption rather than Data Protection.

Data Protection

Data Protection overview

Apple uses a technology called Data Protection to protect data stored in flash storage on
the devices that feature an Apple SoC—such as iPad, iPhone, a Mac with Apple silicon,
Apple TV, Apple Vision Pro, and Apple Watch. With Data Protection, a device can respond
to common events such as incoming phone calls while at the same time providing a high
level of encryption for user data. Certain system apps (such as Calendar, Contacts, Mail,
Messages, Photos) and Health data values use Data Protection by default. Third-party
apps receive this protection automatically.

Implementation

Data Protection is implemented by constructing and managing a hierarchy of keys and
builds on the hardware encryption technologies built into Apple devices. Data Protection is
controlled on a per-file basis by assigning each file to a class; accessibility is determined
according to whether the class keys have been unlocked. Apple File System (APFS) allows
the file system to further subdivide the keys into a per-extent basis (where portions of a
file can have different keys).

Every time a file on the data volume is created, Data Protection creates a new 256-bit key
(the per-file key) and gives it to the hardware AES Engine, which uses the key to encrypt
the file as it's being written to flash storage.

- On A14 through A18 and M1 or later devices, the encryption uses AES-256 in XTS mode,
where the 256-bit per-file-key goes through a Key Derivation Function (NIST Special
Publication 800-108) to derive a 256-bit value and a 256-bit cipher key.

+ On A9 through A13 and S5 or later devices, the encryption uses AES-128 in XTS mode,
where the 256-bit per file key is split to provide a 128-bit value and a 128-bit cipher
key.

On a Mac with Apple silicon, Data Protection defaults to Class C (see Data Protection
classes) but uses a volume key rather than a per-extent or per-file key—effectively re-
creating the security model of FileVault for user data. Users must still opt in to FileVault to
receive the full protection of entangling the encryption key hierarchy with their password.
Developers can also opt in to a higher protection class that uses a per-file or per-

extent key.

Data Protection in Apple devices

On Apple devices with Data Protection, each file is protected with a unique per-file (or per-
extent) key. The key, wrapped using the NIST AED key wrap algorithm, is further wrapped
with one of several class keys, depending on how the file is meant to be accessed. The
wrapped per-file key is then stored in the file's metadata.
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Devices with APFS format may support cloning of files (zero-cost copies using copy-
on-write technology). If a file is cloned, each half of the clone gets a new key to accept
incoming writes so that new data is written to the media with a new key. Over time, the file
may become composed of various extents (or fragments), each mapping to different keys.
However, all of the extents that comprise a file are guarded by the same class key.

When a file is opened, the file system key decrypts its metadata, revealing the wrapped
per-file key and the protection class. The per-file (or per-extent) key is unwrapped with
the class key and then supplied to the hardware AES Engine, which decrypts the file as it's
read from flash storage. All wrapped file key handling occurs in the Secure Enclave; the file
key is never directly exposed to the Application Processor. At startup, the Secure Enclave
negotiates an ephemeral key with the AES Engine. When the Secure Enclave unwraps a
file's keys, they're rewrapped with the ephemeral key and sent back to the Application
Processor.

All file metadata is encrypted with a random value key, created when the operating system
is first installed or when the user completes Erase All Content and Settings. This key is
encrypted and wrapped by a key-wrapping key that's known only to the Secure Enclave for
long-term storage. The key-wrapping key changes every time a user erases their device.
On A9 or later SoCs, Secure Enclave relies upon entropy, backed by anti-replay systems,
to achieve effaceability and to protect its key wrapping key, among other assets. For more
information, see Secure nonvolatile storage.

Just like per-file or per-extent keys, the metadata key of the data volume is never directly
exposed to the Application Processor; the Secure Enclave provides an ephemeral, per-boot
version instead. When stored, the encrypted file system key is additionally wrapped by an
effaceable key stored in Effaceable Storage or using a media key-wrapping key, protected
by Secure Enclave anti-replay mechanism. This key doesn't provide additional data
confidentiality. Instead, it's designed to be quickly erased on demand (by the user with the
"Erase All Content and Settings” option, or by a user or administrator issuing a remote wipe
command from a device management service, Microsoft Exchange ActiveSync, or iCloud).

Important: Erasing the key in this manner renders all files cryptographically inaccessible.

The contents of a file may be encrypted with one or more per-file (or per-extent) keys that
are wrapped with a class key and stored in a file's metadata, which in turn is encrypted
with the file system key. The class key is protected with the hardware UID and, for some
classes, the user’s passcode. This hierarchy provides both flexibility and performance. For
example, changing a file's class only requires rewrapping its per-file key, and a change of
passcode just rewraps the class key.
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Data Protection classes

When a new file is created on devices supporting Data Protection, it's assigned a class

by the app that creates it. Each class uses different policies to determine when the data

is accessible. The basic classes and policies are described in the following sections.
Apple silicon-based Mac computers don't support Class D: No Protection, and a security
boundary is established around logging in and out (not locking or unlocking as on iPad and
iPhone).

Class Protection type
Class A: Complete NSFileProtectionComplete
Protection

Class B: Protected Unless NSFileProtectionCompleteUnlessOpen
Open

Class C: Protected Until NSFileProtectionCompleteUntilFirstUserAuthentication
First User Authentication

Note: macOS uses a
volume key to recreate
FileVault protection
characteristics.

Class D: No Protection NSFileProtectionNone

Note: Not supported in
macOS.

Complete Protection
NSFileProtectionComplete

The class key is protected with a key derived from the user passcode or password and
the device UID. Shortly after the user locks a device (10 seconds, if the Require Password
setting is Immediately), the decrypted class key is discarded, rendering all data in this
class inaccessible until the user enters the passcode again or unlocks (logs in to) the
device using Optic ID, Face ID, or Touch ID.

On devices with macOS, shortly after the last user is logged out, the decrypted class key
is discarded, rendering all data in this class inaccessible until a user enters the passcode
again or logs into the device using Touch ID.

Protected Unless Open
NSFileProtectionCompleteUnlessOpen

Some files may need to be written while the device is locked or the user is logged out. A
good example of this is a mail attachment downloading in the background. This behavior
is achieved by using asymmetric elliptic curve cryptography (ECDH) over Curve25519.
The usual per-file key is protected by a key derived using One-Pass Diffie-Hellman Key
Agreement as described in NIST SP 800-56A.
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The ephemeral public key for the Agreement is stored alongside the wrapped per-file key.
The KDF is Concatenation Key Derivation Function (Approved Alternative 1) as described
in 5.8.1 of NIST SP 800-56A. AlgorithmID is omitted. PartyUInfo and PartyVInfo are the
ephemeral and static public keys, respectively. SHA-256 is used as the hashing function.
As soon as the file is closed, the per-file key is wiped from memory. To open the file again,
the shared secret is re-created using the Protected Unless Open class’s private key and
the file's ephemeral public key, which are used to unwrap the per-file key that is then used
to decrypt the file.

On devices with macOS, the private part of NSFileProtectionCompleteUnlessOpen is
accessible as long as any users on the system are logged in or are authenticated.

Protected Until First User Authentication

NSFileProtectionCompleteUntilFirstUserAuthentication

This class behaves in the same way as Complete Protection, except that the decrypted
class key isn't removed from memory when the device is locked or the user logged out.
The protection in this class has similar properties to desktop full-volume encryption, and
protects data from attacks that involve a reboot. This is the default class for all third-party
app data not otherwise assigned to a Data Protection class.

On Mac computers, this class uses a volume key—accessible as long as the volume is
mounted—that functions just like FileVault.

No Protection

NSFileProtectionNone

This class key is protected only with the UID, and is kept in Effaceable Storage. Because all
the keys needed to decrypt files in this class are stored on the device, the encryption only
affords the benefit of fast remote wipe. If a file isn't assigned a Data Protection class, it is
still stored in encrypted form (as is all data on an iPad, iPhone, and Apple Vision Pro). This
isn't supported in macOS.

Note: On devices with macQOS, for volumes that don’t correspond to

a booted operating system, all data protection classes are accessible

as long as the volume is mounted. The default data protection class is
NSFileProtectionCompleteUntilFirstUserAuthentication. Per-extent key
functionality is available to both Rosetta 2 and native apps.

Keybags for Data Protection

The keys for both file and keychain Data Protection classes are collected and managed in
keybags in iOS, iPadOS, macOS, tvOS, visionOS, and watchOS. These operating systems
use the following keybags: user, device, backup, escrow, and iCloud Backup.

User keybag

The user keybag is where the wrapped class keys used in normal operation of the device
are stored. For example, when a passcode is entered, NSFileProtectionComplete is
loaded from the user keybag and unwrapped. It is a binary property list (.plist) file stored
in the No Protection class.
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For devices with SoCs earlier than the A9, the .plist file contents are encrypted with a
key held in Effaceable Storage. To give forward security to keybags, this key is wiped and
regenerated each time a user changes their passcode.

For devices with the A9 or later, S series, and M series SoCs (other than Mac computers),
the .plist file contains a key which indicates that the keybag is stored in a locker
protected by the Secure Enclave-controlled anti-replay value.

For Mac computers, the user’s keybag is stored in their Keychains folder inside a folder
named with the hardware UUID. For example:

~/Library/Keychains/123ABCDE-45FG-67HI-8910-1JK234L56M78/user. kb

For devices with the Secure Enclave, it manages the user keybag and can be queried
regarding a device's lock state. It reports that the device is unlocked only if all the class
keys in the user keybag:

- Are accessible

+  Have been unwrapped successfully

Device keybag

The device keybag is used to store the wrapped class keys used for operations involving
device-specific data.

i0S, iPadOS, and visionOS don't support cryptographic separation of per-user file system
content, which means the system uses class keys from the device keybag to wrap per-file
keys. The keychain, however, uses class keys from the user keybag to protect items in the
user keychain. On iPad and iPhone devices configured for use by a single user (the default
configuration), the device keybag and the user keybag are one and the same, and are
protected by the user’s passcode.

Note: iPad devices configured in Shared iPad mode sometimes require access to
credentials before any user has signed in. In this case, a keybag that isn't protected by the
user's passcode is required.

Backup keybag

The backup keybag is created when an encrypted backup is made by the Finder

(macOS 10.15 or later) or iTunes (in macOS 10.14 or earlier) and stored on the computer

to which the device is backed up. A new keybag is created with a new set of keys, and the
backed-up data is reencrypted to these new keys. As explained, nonmigratory keychain
items remain wrapped with the UID-derived key, allowing them to be restored to the device
they were originally backed up from but rendering them inaccessible on a different device.

The keybag—protected with the password set—is run through 10 million iterations of the
key derivation function PBKDF2. Despite this large iteration count, there's no tie to a
specific device, and therefore a brute-force attack parallelized across many computers
could theoretically be attempted on the backup keybag. This threat can be mitigated with a
sufficiently strong password.

If a user chooses not to encrypt the backup, the files aren’t encrypted regardless of their
Data Protection class but the keychain remains protected with a UID-derived key. This is
why keychain items migrate to a new device only if a backup password is set.
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Escrow keybag

The escrow keybag is used for syncing with the Finder or iTunes through USB and a device
management service. This keybag allows the Finder or iTunes to back up and sync without
requiring the user to enter a passcode, and it allows a device management service to

remotely clear a user’s passcode. It is stored on the computer that's used to sync with the
Finder or iTunes, or on the device management service that remotely manages the device.

The escrow keybag improves the user experience during device syncing, which potentially
requires access to all classes of data. When a passcode-locked device is first connected

to the Finder or iTunes, the user is prompted to enter a passcode. The device then creates
an escrow keybag containing the same class keys used on the device, protected by a newly
generated key. The escrow keybag and the key protecting it are split between the device
and the host or server, with the data stored on the device in the Protected Until First User
Authentication class. This is why the device passcode must be entered before the user
backs up with the Finder or iTunes for the first time after a reboot.

In the case of an over-the-air (OTA) software update, the user is prompted for their
passcode when initiating the update. This is used to securely create a one-time unlock
token, which unlocks the user keybag after the update. This token can't be generated
without entering the user's passcode, and any previously generated token is invalidated if
the user's passcode changed.

One-time unlock tokens are either for attended or unattended installation of a software
update. They're encrypted with a key derived from the current value of a monotonic
counter in the Secure Enclave, the UUID of the keybag, and the Secure Enclave UID.

On A9 (or later) SoCs, one-time Unlock token no longer relies on counters or Effaceable
Storage. Instead, it's protected by Secure Enclave-controlled anti-replay value.

The one-time unlock token for attended software updates expires after 20 minutes. In

i0S 13.1, iPadOS 13, visionOS 1, or later, the token is stored in a locker protected by

the Secure Enclave. Prior to iOS 13, this token was exported from the Secure Enclave

and written to Effaceable Storage or was protected by the Secure Enclave anti-replay
mechanism. A policy timer incremented the counter if the device hadn't rebooted within 20
minutes.

Unattended software updates occur when the system detects an update is available and
when one of the following is true:

- Automatic updates are configured in iOS 12 or later.
- The user chooses Install Later when notified of the update.

After the user enters their passcode, a one-time unlock token is generated and can remain
valid in Secure Enclave for up to 16 hours. If the update hasn’t yet occurred, this one-time
unlock token is destroyed on every lock and re-created on every subsequent unlock. Each
unlock restarts the 16-hour window. After 16 hours a policy timer invalidates the one-time
unlock token.

iCloud Backup keybag

The iCloud Backup keybag is similar to the backup keybag. All the class keys in this
keybag are asymmetric (using Curve25519, like the Protected Unless Open Data Protection
class does). An asymmetric keybag is also used to protect the backed-up keychain for
iCloud Keychain recovery.
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Protecting keys in alternate boot modes

Data Protection is designed to provide access to user data only after successful
authentication, and only to the authorized user. Data protection classes are designed to
support a variety of use cases, such as the ability to read and write some data even when
a device is locked (but after first unlock). Additional steps are taken to protect access to
user data during alternate boot modes such as those used for Device Firmware Update
(DFU) mode, Recovery mode, Apple Diagnostics, or even during software update. These
capabilities are based on a combination of hardware and software features, and have been
expanded as Apple-designed silicon has evolved.

Feature A10 A11 or later
S3 or later
M1 or later

Recovery: All Data Protection \/ \/

Classes protected

Alternate boots of DFU mode, >< \/
Recovery, and software updates:
Class A, B, and C data protected

The Secure Enclave AES Engine is equipped with lockable software seed bits. When keys
are created from the UID, these seed bits are included in the key derivation function to
create additional key hierarchies. How the seed bit is used varies according to the system
on a chip (SoC):

- Starting with the Apple A10 and S3 SoCs, a seed bit is dedicated to distinguish keys
protected by the user’s passcode. The seed bit is set for keys that require the user’s
passcode (including Data Protection Class A, Class B, and Class C keys), and cleared
for keys that don't require the user’s passcode (including the file system metadata key
and Class D keys).

- IniOS 13.1, iPadOS 13, visionOS 1, or later, on devices with an A10 or later, all user data
is rendered cryptographically inaccessible when devices are booted into Diagnostics
mode. This is achieved by introducing an additional seed bit whose setting governs
the ability to access the media key, which itself is needed to access the metadata (and
therefore contents of all files) on the data volume encrypted with Data Protection. This
protection encompasses files protected in all classes (A, B, C, and D), not just those
that required the user’s passcode.

- On devices with A12 SoCs, the Secure Enclave Boot ROM locks the passcode seed
bit if the Application Processor has entered Device Firmware Upgrade (DFU) mode or
Recovery mode. When the passcode seed bit is locked, no operation to change it is
allowed. This is designed to prevent access to data protected with the user’s passcode.

Restoring a device after it enters DFU mode returns it to a known good state with the
certainty that only unmodified Apple-signed code is present. DFU mode can be entered
manually.
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See the following Apple Support articles on how to place a device in DFU mode:

Device Apple Support article

iPad, iPhone If you forgot your iPhone passcode or your iPhone is
disabled

Apple TV If you see a warning symbol on Apple TV

A Mac with Apple silicon How to revive or restore Mac firmware

Protecting user data in the face of attack

Attackers attempting to extract user data often try a number of techniques: extracting
the encrypted data to another medium for brute-force attack, manipulating the operating
system version, or otherwise changing or weakening the security policy of the device to
facilitate attack. Attacking data on a device often requires communicating with the device
using physical interfaces like Thunderbolt, Lightning, or USB-C. Apple devices include
features to help prevent such attacks.

Apple devices support a technology called Sealed Key Protection (SKP) that's designed

to ensure that cryptographic material is rendered unavailable off device, or that's used

if manipulations are made to operating system versions or security settings without
appropriate user authorization. This feature isn't provided by the Secure Enclave; instead,
it's supported by hardware registers that exist at an even lower layer to provide an
additional protection to the keys necessary to decrypt user data independent of the Secure
Enclave.

SKP is available only on devices with the following Apple-designed SoCs:

- A1l or later
. S3or later
-« M1 or later

iPad and iPhone devices can also be configured to only activate data connections in
conditions more likely to indicate the device is still under the physical control of the
authorized owner.

Automatic Restart

Automatic Restart is a security mechanism in iOS 18.1 iPadOS 18.1 and or later that
leverages the Secure Enclave to monitor device unlock events. If a device remains locked
for a prolonged period, it automatically restarts, transitioning from an After First Unlock
state to a Before First Unlock state. During the restart, the device purges sensitive security
keys and transient data from memory.

For additional control, on devices with iOS 18.4, iPadOS 18.4,or later, the
IdleRebootAllowed setting to allow device management administrators to turn on or turn
off Automatic Restart. With this setting, administrators can programmatically to turn on

or turn off Automatic Restart behavior to align with organizational security protocols and
operational requirements.

Note: Automatic Restart is turned off by default on supervised devices.
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Although Automatic Restart enhances security, it can inadvertently cause devices to
lose their Wi-Fi connection upon restart. This loss of connectivity may disrupt device
management service operations, especially in environments where persistent network
access is critical.

Sealed Key Protection (SKP)

On Apple devices that support Data Protection, the key encryption key (KEK) is protected
(or sealed) with measurements of the software on the system, as well as being tied to the
UID available only from the Secure Enclave. On a Mac with Apple silicon, the protection of
the KEK is further strengthened by incorporating information about security policy on the
system, because macOS supports critical security policy changes (for example, turning off
secure boot or SIP) that are unsupported on other platforms. On a Mac with Apple silicon,
this protection encompass FileVault keys, because FileVault is implemented using Data
Protection (Class C).

The key that results from entangling the user password, long-term SKP key, and Hardware
key 1 (the UID from Secure Enclave) is called the password-derived key. This key is used
to protect the user keybag (on all supported platforms) and KEK (in macOS only), and then
enable biometric unlock or auto unlock with other devices such as Apple Watch.

Hardware
measurement User password == XART key =

of sepOS
mSaaerrv;?r::nt Lockable Crypto-hardware Long term v ey CEE Volume Volume
of LLB Image4 ™ hardware . resident 'S SKP [ = » 4 p ENCryption p, Fin

., registers derived key system key key
manifest 'y
LLB

measurement Hardware key 1 == Hardware key 2 =

of LocalPolicy

The Secure Enclave Boot Monitor captures the measurement of the Secure Enclave OS
that's loaded. When the Application Processor Boot ROM measures the Image4 manifest
attached to LLB, that manifest contains a measurement of all other system-paired firmware
that's loaded as well. The LocalPolicy contains the core security configurations for the
macOS which are loaded. The LocalPolicy also contains the nsih field which is a hash

of the macOS Image4 manifest. The macOS Image4 manifest contains measurements of

all of the macOS-paired firmware and core macOS boot objects such as the Boot Kernel
Collection or signed system volume (SSV) root hash.

If an attacker can unexpectedly change any of the above measured firmware, software, or
security configuration components, it modifies the measurements stored in the hardware
registers. The modification of the measurements causes the crypto-hardware-derived
system measurement root key (SMRK) to derive to a different value, effectively breaking
the seal on the key hierarchy. That causes the system measurement device key (SMDK) to
be inaccessible, which in turn causes the KEK, and the data, to be inaccessible.
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However, when the system isn’t under attack, it must accommodate legitimate software
updates that change the firmware measurements and the nsih field in the LocalPolicy to
point at new macOS measurements. In other systems that attempt to incorporate firmware
measurements but that don’t have a known good source of truth, the user is required to
stop security protections, update firmware, and then start the protections again so that a
new measurement baseline can be captured. This significantly increases the risk that the
attacker could tamper with firmware during a software update. The system is helped by the
fact that the Image4 manifest contains all the measurements needed. The hardware that
decrypts the SMDK with the SMRK when the measurements match during a normal boot
can also encrypt the SMDK to a proposed future SMRK. By specifying the measurements
that are expected after a software update, the hardware can encrypt an SMDK, which is
accessible in a current operating system, so that it remains accessible in a future operating
system. Similarly, when a customer legitimately changes their security settings in the
LocalPolicy, the SMDK must be encrypted to the future SMRK based on the measurement
for the LocalPolicy, which LLB computes on the next restart.

Role of Apple File System

Apple File System (APFS) is a proprietary file system designed with encryption in mind.
APFS works across all Apple's platforms—for iPad, iPhone, Mac, Apple TV, Apple Vision Pro,
and Apple Watch. Optimized for Flash/SSD storage, it features strong encryption, copy-on-
write metadata, space sharing, cloning for files and directories, snapshots, fast directory
sizing, atomic safe-save primitives, and improved file system fundamentals, as well as a
unique copy-on-write design that uses I/O coalescing to deliver maximum performance
while ensuring data reliability.

Space sharing

APFS allocates storage space on demand. When a single APFS container has multiple
volumes, the container’s free space is shared and can be allocated to any of the individual
volumes as needed. Each volume uses only part of the overall container, so the available
space is the total size of the container, minus the space used in all volumes in the
container.

Multiple volumes

In macOS 10.15 or later, an APFS container used to start up the Mac must contain at least
five volumes, the first three of which are hidden from the user:

- Preboot volume: This volume is unencrypted and contains data needed for booting each
system volume in the container.

- VM volume: This volume is unencrypted and is used by macOS for storing encrypted
swap files.

- Recovery volume: This volume is unencrypted and must be available without unlocking a
system volume to start up in recoveryQOS.

- System volume: Contains the following:
- All the necessary files to start up the Mac

- All apps installed natively by macOS (apps that used to reside in the /Applications
folder now reside in /System/Applications)
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Note: By default, no process can write to the System volume, even Apple system
processes.

- Data volume: Contains data that's subject to change, such as:
- Any data inside the user’s folder, including photos, music, videos, and documents
« Apps the user installed, including AppleScript and Automator applications

«  Custom frameworks and daemons installed by the user, organization, or third-party
apps

Other locations owned and writable by the user, as /Applications, /Library, /
Users, /Volumes, /usr/local, /private, /var, and /tmp

A data volume is created for each additional system volume. The preboot, VM, and
recovery volumes are all shared and not duplicated.

On devices with macOS 11 or later, the system volume is captured in a snapshot. The
operating system boots from a snapshot of the system volume, not just from a read-only
mount of the mutable system volume.

On devices with iOS, iPadOS, and visionOS, storage is divided into at least two APFS
volumes:

+  System volume

- Data volume

Keychain data protection

Many apps need to handle passwords and other short but sensitive bits of data, such
as keys and login tokens. The keychain provides a secure way to store these items. The
various Apple operating systems use differing mechanisms to enforce the guarantees
associated with the different keychain protection classes. On devices with macOS, Data
Protection isn’t used directly to enforce these guarantees.

Overview

Keychain items are encrypted using two different AES-256-GCM keys: a table key
(metadata) and a per-row key (secret key). Keychain metadata (all attributes other than
kSecValue) is encrypted with the metadata key to speed searches, and the secret value
(kSecValueData) is encrypted with the secret key. The metadata key is protected by the
Secure Enclave but is cached in the Application Processor to allow fast queries of the
keychain. The secret key always requires a round trip through the Secure Enclave.

The keychain is implemented as a SQLite database, stored on the file system. There is only
one database, and the securityd daemon determines which keychain items each process
or app can access. Keychain Access APIs result in calls to the daemon, which queries the
app's Keychain-access-groups, application-identifier, and application-group entitlements.
Rather than limiting access to a single process, access groups allow keychain items to be
shared between apps.

Keychain items can be shared only between apps from the same developer. To share
keychain items, third-party apps use access groups with a prefix allocated to them through
the Apple Developer Program in their application groups. The prefix requirement and
application group uniqueness are enforced through code signing, provisioning profiles, and
the Apple Developer Program.
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Keychain data is protected using a class structure similar to the one used in file Data

Protection. These classes have behaviors equivalent to file Data Protection classes but use

distinct keys and functions.

Availability File data protection Keychain data protection
When unlocked NSFileProtectionComplete kSecAttrAccessibleWhenUnlocked
While locked NSFileProtectionComplete ><
UnlessOpen
After first unlock NSFileProtectionComplete kSecAttrAccessibleAfterFirstUnlock

UntilFirstUserAuthentication

Always NSFileProtectionNone kSecAttrAccessibleAlways
Passcode X kSecAttrAccessibleWhen
enabled

PasscodeSetThisDeviceOnly

Apps that use background refresh services can use
kSecAttrAccessibleAfterFirstUnlock for keychain items that need to be accessed
during background updates.

The class kSecAttrAccessibleWhenPasscodeSetThisDeviceOnly behaves the same
as kSecAttrAccessibleWhenUnlocked; however, it's available only when the device is
configured with a passcode. This class exists only in the system keybag; they:

- Don't sync to iCloud Keychain
- Aren't backed up
- Aren’tincluded in escrow keybags

If the passcode is removed or reset, the items are rendered useless by discarding the
class keys.

Other keychain classes have a “"This device only” counterpart, which is always protected
with the UID when being copied from the device during a backup, rendering it useless if
it's restored to a different device. Apple has carefully balanced security and usability by
choosing keychain classes that vary according to the type of information being secured
and when it's needed by iOS, iPadOS, and visionOS.

Keychain data class protections

The class protections listed below are enforced for keychain items.

Item Accessible

Handoff advertisement encryption keys After first unlock
iCloud token After first unlock
iMessage keys After first unlock
LDAP, CalDAV, CardDAV After first unlock
Mail accounts After first unlock
Microsoft Exchange ActiveSync accounts After first unlock
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Social network account tokens After first unlock

VPN passwords After first unlock

Wi-Fi passwords After first unlock

Home sharing password When unlocked

Safari bookmarks When unlocked

Safari passwords When unlocked

Finder/iTunes backup When unlocked, nonmigratory
VPN certificates After first unlock, nonmigratory
Apple Push Notification service (APNs) token Always, nonmigratory
Bluetooth keys Always, nonmigratory

iCloud certificates and private key Always, nonmigratory

SIM PIN Always, nonmigratory

Find My token Always

Voicemail Always

On macOS, all keychain items installed by configuration profiles are always available

after unlocking FileVault. On iOS, iPadOS, and visionOS, keychain items installed by a
configuration profile have different accessibility depending on their type, how they're
referenced, and when they were installed. By default, keychain items installed using
configuration profiles are available after first unlock and nonmigratory. However, a keychain
item installed by a configuration profile is always available if it:

- Was installed before upgrading to iOS 15 or iPadQOS 15 or later
- Is a certificate (not an identity)

« Is an identity referenced by the IdentityCertificateUUID in a com.apple.mdm
payload

Keychain access control

Keychains can use access control lists (ACLs) to set policies for accessibility and
authentication requirements. Items can establish conditions that require user presence
by specifying that they can't be accessed unless authenticated using Optic ID, Face ID,
Touch ID, or by entering the device's passcode or password. Access to items can also

be limited by specifying that Optic ID, Face ID, or Touch ID enrollment hasn’'t changed
since the item was added. This limitation helps prevent an attacker from adding their own
fingerprint to access a keychain item. ACLs are evaluated inside the Secure Enclave and
are released to the kernel only if their specified constraints are met.
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Keychain architecture in macOS

macOS also provides access to the keychain to conveniently and securely stores user
names and passwords, digital identities, encryption keys, and secure notes. It can be
accessed by opening the Keychain Access app in /Applications/Utilities. Using a
keychain eliminates the requirement to enter—or even remember—the credentials for each
resource. An initial default keychain is created for each Mac user, though users can create
other keychains for specific purposes.

In addition to relying on user keychains, macOS relies on a number of system-level
keychains that maintain authentication assets that aren't user specific, such as network
credentials and public key infrastructure (PKI) identities. One of these keychains, System
Roots, is immutable and stores internet PKI root certificate authority (CA) certificates to
facilitate common tasks like online banking and e-commerce. The user can similarly deploy
internally provisioned CA certificates to managed Mac computers to help validate internal
sites and services.

FileVault

Volume encryption with FileVault in macOS

Mac computers offer FileVault, a built-in encryption capability, to secure all data at rest.
FileVault uses the AES-XTS data encryption algorithm to protect full volumes on internal
and removable storage devices.

FileVault on a Mac with Apple silicon is implemented using Data Protection Class C with
a volume key. On a Mac with Apple silicon and a Mac with an Apple T2 Security Chip,
encrypted internal storage devices directly connected to the Secure Enclave leverage
its hardware security capabilities as well as that of the AES Engine. After a user turns on
FileVault on a Mac, their credentials are required during the boot process.

For Mac computers:

- Prior to those with a T2 chip
- With internal storage that didn’t originally ship with the Mac
- With attached external storage

After FileVault is turned on, all existing files and any further data written are encrypted.
Data that was added and then deleted before turning on FileVault isn't encrypted and may
be recoverable with forensic data recovery tools.

Internal storage with FileVault turned on

Without valid login credentials or a cryptographic recovery key, the internal APFS volumes
remain encrypted and are protected from unauthorized access even if the physical storage
device is removed and connected to another computer. In macOS 10.15, this includes

both the system volume and the data volume. In macOS 11 or later, the system volume

is protected by the signed system volume (SSV) feature, but the data volume remains
protected by encryption. Internal volume encryption on a Mac with Apple silicon as well as
those with the T2 chip is implemented by constructing and managing a hierarchy of keys,
and builds on the hardware encryption technologies built into the chip. This hierarchy of
keys is designed to simultaneously achieve four goals:
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+ Require the user's password for decryption

+  Protect the system from a brute-force attack directly against storage media removed
from Mac

- Provide a swift and secure method for wiping content via deletion of necessary
cryptographic material

- Enable users to change their password (and in turn the cryptographic keys used to
protect their files) without requiring reencryption of the entire volume

XART key

Hardware key =» 4+ V°|”meken°’ypti°” — Volume data
ey

User password ~a

+—p Key encryption
key
Hardware key

On a Mac with Apple silicon and those with the T2 chip, all FileVault key handling occurs
in the Secure Enclave; encryption keys are never directly exposed to the CPU. All APFS
volumes are created with a volume encryption key by default. Volume and metadata
contents are encrypted with this volume encryption key, which is wrapped with a key
encryption key (KEK). The KEK is protected by a combination of the user’s password and
hardware UID when FileVault is turned on.

Internal storage with FileVault turned off

If FileVault isn’t turned on in a Mac with Apple silicon or a Mac with the T2 chip during the
initial Setup Assistant process, the volume is still encrypted but the volume encryption key
is protected only by the hardware UID in the Secure Enclave.

XART key

Volume

encryption key ’ Volume data

+—>

Hardware key

If FileVault is turned on later—a process that's immediate because the data has already
been encrypted—an anti-replay mechanism helps prevent the old key (based on hardware
UID only) from being used to decrypt the volume. The volume is then protected by a
combination of the user password with the hardware UID as previously described.
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Deleting FileVault volumes

When deleting a volume, its volume encryption key is securely deleted by the Secure
Enclave. This helps prevent future access with this key even by the Secure Enclave. In
addition, all volume encryption keys are wrapped with a media key. The media key doesn't
provide additional confidentiality of data; instead, it's designed to enable swift and secure
deletion of data because without it decryption is impossible.

On a Mac with Apple silicon and a Mac with the T2 chip, the media key is guaranteed to
be erased by the Secure Enclave supported technology—for example by remote device
management commands. Erasing the media key in this manner renders the volume
cryptographically inaccessible.

FileVault recovery

macOS offers an additional password recovery option if a user has lost their account
password. When FileVault is turned on, a recovery key is generated. The recovery key is

a sequence of 24 random numbers and letters. It can be viewed in System Settings under
Privacy & Security > FileVault, and is stored in the keychain so that it can be retrieved using
the Passwords app. Additional recovery key considerations are:

+ When using iCloud Keychain, the recovery key is securely synchronized along with other
user passwords.

- When not using iCloud, the user is presented with the FileVault recovery key which
should be stored in a safe location.

- The recovery key can be used in recoveryOS or at the Login Window when pressing
Shift-Option-Return instead of the user password to unlock FileVault.

- On managed Mac computers, the organization’'s device management service can
optionally escrow the key. For more information, see Managing FileVault.

Removable storage devices

Encryption of removable storage devices doesn't utilize the security capabilities of the
Secure Enclave and instead is performed in the same manner as an Intel-based Mac
without the T2 chip.

Managing FileVault in macOS

On devices with macQOS, organizations can manage FileVault using SecureToken or
Bootstrap Token.

Using Secure Token

Apple File System (APFS) in macOS 10.13 or later changes how FileVault encryption keys
are generated. In previous versions of macOS on CoreStorage volumes, the keys used

in the FileVault encryption process were created when a user or organization turned on
FileVault on a Mac. On devices with macOS on APFS volumes, the keys are generated
either during user creation, setting the first user’s password, or during the first login by a
user of the Mac. This implementation of the encryption keys, when they're generated, and
how they're stored are all part of a feature known as Secure Token. Specifically, a Secure
Token is a wrapped version of a key encryption key (KEK) protected by a user’s password.
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When deploying FileVault on APFS, the user can continue to:

- Use existing tools and processes, such as a personal recovery key (PRK) that can be
stored with a device management service for escrow

- Defer enablement of FileVault until a user logs into or out of the Mac
- Create and use an institutional recovery key (IRK)

In macOS 11, setting the initial password for the very first user on the Mac results in

that user being granted a Secure Token. In some workflows, that may not be the desired
behavior, as previously, granting the first Secure Token would have required the user
account to log in. To prevent this from happening, add ;DisabledTags;SecureToken to
the programmatically created user’s AuthenticationAuthority attribute prior to setting
the user's password, as shown below:

sudo dscl . append /Users/<user name> AuthenticationAuthority
":DisabledTags;SecureToken"

Using Bootstrap Token

macOS 10.15 introduced the Bootstrap Token to help with granting a Secure Token to
both mobile accounts and the optional device enrollment-created administrator account
("managed administrator”). Using the Bootstrap Token feature of macOS 10.15 or later
requires:

+ Mac enrollment in a device management service using Apple School Manager or Apple
Business Manager, which makes the Mac supervised

- Device management service developer support

In macOS 10.15.4 or later, a Bootstrap Token is generated and escrowed to a device
management service on the first login by any user who is Secure Token-enabled if the
device management service supports the feature. A Bootstrap Token can also be generated
and escrowed to a device management service using the profiles command-line tool, if
needed.

In macOS 11 or later, a Bootstrap Token:

- Can grant a Secure Token to any user logging in to a Mac computer, including local user
accounts.

- On a Mac with Apple silicon, a Bootstrap Token can be used to authorize the installation
of both kernel extensions and software updates when managed using a device
management service.

Institutional versus personal recovery keys

FileVault on both CoreStorage and APFS volumes supports using an institutional recovery
key (IRK, previously known as a FileVault Master identity) to unlock the volume. Though
an IRK is useful for command-line operations to unlock a volume or turn off FileVault
altogether, its utility for organizations is limited, especially in recent versions of macOS.
And on a Mac with Apple silicon, IRKs provide no functional value for two primary reasons:
IRKs can't be used to access recoveryQOS, and because target disk mode is no longer
supported, the volume can’t be unlocked by connecting it to another Mac.

Important: For those reasons and more, the use of an IRK is no longer recommended for
institutional management of FileVault on Mac computers. Instead, a personal recovery key
(PRK) should be used.
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Unlock FileVault using SSH

On a Mac with Apple silicon with macQOS 26 or later, FileVault can be unlocked over SSH
after a restart if Remote Login is turned on and a network connection is available.

How Apple protects users' personal data

Protecting app access to user data

In addition to encrypting data at rest, Apple devices help prevent apps from accessing a
user’s personal information without permission using various technologies including Data
Vault. In Settings in iOS, iPadOS, and visionOS, and in macOS System Settings (macOS 13
or later) or System Preferences (macOS 12 or earlier), users can see which apps they've
permitted to access certain information as well as grant or revoke any future access.
Access is enforced in the following cases:

- i0S, iPad0OS, macQOS, visionOS: Calendars, Camera, Contacts, Microphone, Photos,
Reminders, and Speech recognition

- [0S, iPadQS, visionOS: Bluetooth, Home, Media, Media apps and Apple Music, Motion
and fitness

- [0S, watchOS: Health

« macOS: Input monitoring (for example, keyboard strokes), Prompt, Screen recording
(for example, static screen shots and video), and System Settings (macOS 13 or later)
or System Preferences (macOS 12 or earlier)

On devices with iPadOS 13.4 or later and i 13.4 or later, all third-party apps automatically
have their data protected in a Data Vault. Data Vault helps protect against unauthorized
access to the data, even from processes that aren’t themselves sandboxed. Additional
classes iniOS 15 and iPadOS 15 or later include Local Network, Nearby Interactions,
Research Sensor & Usage Data, and Focus.

If the user signs in to iCloud, apps in iOS and iPadOS are granted access by default to
iCloud Drive. Users may control each app’s access under iCloud in Settings. iOS and
iPadOS also provide restrictions designed to prevent data movement between apps and
accounts installed by a device management service and those installed by the user.
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Protecting access to user’s health data

HealthKit provides a central repository for health and fitness data on iPhone and

Apple Watch. HealthKit also works directly with health and fitness devices, such as
compatible Bluetooth Low Energy (BLE) heart rate monitors and the motion coprocessor
built into many iOS devices. All HealthKit interaction with health and fitness apps,
healthcare institutions, and health and fitness devices require permission of the user. This
data is stored in the Data Protection class Protected Unless Open. Access to the data is
relinquished 10 minutes after the device locks, and data becomes accessible the next time
user enters their passcode or uses Face ID or Touch ID to unlock the device. For certain
workout-related features, an app with user-granted HealthKit data access can temporarily
display workout-related data on the Lock Screen. To support this experience, when an
app is using the HKWorkoutSession API, HealthKit data is accessible for the duration of
the workout session while the device is locked. Users can manage the display of workout-
related data on the Lock Screen through Settings > [Face ID][Touch ID] & Passcode >
Workout Health Data.

Collecting and storing health and fitness data

HealthKit also collects and stores management data, such as access permissions for apps,
names of devices connected to HealthKit, and scheduling information used to launch apps
when new data is available. This data is stored in the Data Protection class Protected Until
First User Authentication. Temporary journal files store health records that are generated
when the device is locked, such as when the user is exercising. These are stored in the
Data Protection class Protected Unless Open. When the device is unlocked, the temporary
journal files are imported into the primary health databases, then deleted when the merge
is completed.

Health data can be stored in iCloud. End-to-end encryption for Health data requires iOS 12
or later and two-factor authentication. Otherwise, the user’s data is still encrypted in
storage and transmission but isn’t encrypted end-to-end. After the user turns on two-
factor authentication and updates to iOS 12 or later, the user’s health data is migrated to
end-to-end encryption.

If the user backs up their device using the Finder (macOS 10.15 or later) or iTunes (in
macOS 10.14 or earlier), health data is stored only if the backup is encrypted.

Clinical health records

Users can sign in to supported health systems within the Health app to obtain a copy

of their clinical health records. When connecting a user to a health system, the user
authenticates using OAuth 2 client credentials. After connecting, clinical health record data
is downloaded directly from the health institution using a TLS 1.3 protected connection.
Once downloaded, clinical health records are securely stored alongside other health data.

Health data authenticity

Data stored in the database includes metadata to track the provenance of each data
record. This metadata includes an app identifier that identifies which app stored the
record. Additionally, an optional metadata item can contain a digitally signed copy of the
record. This is intended to provide data authenticity for records generated by a trusted
device. The format used for the digital signature is the Cryptographic Message Syntax
(CMS) specified in RFC 5652.
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Health data access by third-party apps

Access to the HealthKit APl is controlled with entitlements, and apps must conform to
restrictions about how the data is used. For example, apps aren’t allowed to use health
data for advertising. Apps are also required to provide users with a privacy policy that
details its use of health data.

Access to health data by apps is controlled by the user’s Privacy settings. Users are asked
to grant access when apps request access to health data, similar to Contacts, Photos, and
other iOS data sources. However, with health data, apps are granted separate access for
reading and writing data, as well as separate access for each type of health data. Users
can view, and revoke, permissions they've granted for accessing health data under Settings
> Health > Data Access & Devices.

If granted permission to write data, apps can also read the data they write. If granted
permission to read data, apps can read data written by all sources. However, apps can't
determine access granted to other apps. In addition, apps can't conclusively tell whether
they've been granted read access to health data. When an app doesn't have read access,
all queries return no data—the same response that an empty database would return. This is
designed to prevent apps from inferring the user’s health status by learning which types of
data the user is tracking.

Medical ID for users

The Health app gives users the option of filling out a Medical ID form with information that
could be important during a medical emergency. The information is entered or updated
manually and isn't synced with the information in the health databases.

The Medical ID information is viewed by tapping the Emergency button on the Lock Screen.
The information is stored on the device using the Data Protection class No Protection so
that it's accessible without having to enter the device passcode. Medical ID is an optional
feature that lets users decide how to balance both safety and privacy concerns. This data
is backed up in iCloud Backup in iOS 13 or earlier. In iOS 14 or later, Medical ID is synced
between devices using CloudKit and has the same encryption characteristics as the rest of
health data.

Health sharing

On an iPhone with iOS 15 or later, the Health app gives users the option of sharing their
Health data with other users. Health data is shared between the two users using end-to-
end iCloud encryption, and Apple can’t access data that's sent through Health sharing. To
use the feature, both the sending and receiving users must use iOS 15 or later and have
two-factor authentication turned on.

Users can also choose to share their Health data with their healthcare provider using

the Share with Provider feature in the Health app. Data shared using this feature is made
available only to the health institutions selected by the user using end-to-end encryption,
and Apple doesn't maintain or have access to the encryption keys to decrypt, view, or
otherwise access the Health data shared through the Share with Provider feature. Further
details about how the design of this service protects users' Health data can be found in the
Security and Privacy section of the Apple Registration Guide for Healthcare Organizations.
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Digital signing and encryption

Access control lists

Keychain data is partitioned and protected with access control lists (ACLs). As a result,
credentials stored by third-party apps can’t be accessed by apps with different identities
unless the user explicitly approves them. This protection provides a mechanism for
securing authentication credentials in Apple devices across a range of apps and services
within the organization.

Mail

In the Mail app, users can send messages that are digitally signed and encrypted. Mail
automatically discovers appropriate RFC 5322 case-sensitive email address subject

or subject alternative names on digital signing and encryption certificates on attached
Personal Identification Verification (PIV) tokens in compatible smart cards. If a configured
email account matches an email address on a digital signing or encryption certificate on an
attached PIV token, Mail automatically displays the signing button in the toolbar of a new
message window. If Mail has the recipient’s email encryption certificate or can discover it
in the Microsoft Exchange global address list (GAL), an unlocked icon appears in the new
message toolbar. A locked lock icon indicates the message is sent encrypted with the
recipient’s public key.

Per-message S/MIME

i0S, iPadOS, macOS, and visionOS support per-message S/MIME. This means that S/MIME
users can choose to always sign and encrypt messages by default or to selectively sign
and encrypt individual messages.

Identities used with S/MIME can be delivered to Apple devices using a configuration profile,
a device management service, the Simple Certificate Enrollment Protocol (SCEP), or
Microsoft Active Directory Certificate Authority.

Smart cards

On a Mac with macOS 10.12 or later, native support for PIV cards is included. These cards
are widely used in commercial and government organizations for two-factor authentication,
digital signing, and encryption.

Smart cards include one or more digital identities that have a pair of public and private
keys and an associated certificate. Unlocking a smart card with the personal identification
number (PIN) provides access to the private keys used for authentication, encryption, and
signing operations. The certificate determines what a key can be used for, what attributes
are associated with it, and whether it's validated (signed) by a certificate authority (CA)
certificate.
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Smart cards can be used for two-factor authentication. The two factors needed to unlock
a card are "something the user has” (the card) and “something the user knows" (the PIN).
macOS 10.12 or later also has native support for smart card Login Window authentication
and client certificate authentication to websites on Safari. It also supports Kerberos
authentication using key pairs (PKINIT) for Single Sign-on to Kerberos-supported services.
To learn more about smart cards and macQOS, see Intro to smart card integration in Apple
Platform Deployment.

Encrypted disk images

On a Mac, encrypted disk images serve as secure containers in which users can store or
transfer sensitive documents and other files. Encrypted disk images are created using
Disk Utility, located in /Applications/Utilities. Disk images can be encrypted using
either 128-bit or 256-bit AES encryption. Because a mounted disk image is treated as a
local volume connected to a Mac, users can copy, move, and open files and folders stored
in it. As with FileVault, the contents of a disk image are encrypted and decrypted in real
time. With encrypted disk images, users can safely exchange documents, files, and folders
by saving an encrypted disk image to removable media, sending it as a mail message
attachment, or storing it on a remote server. For more information on encrypted disk
images, see the Disk Utility User Guide.
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App security

App security overview

Today, apps are among the most critical elements of a security architecture. Even as apps
provide productivity benefits for users, they also have the potential to negatively impact
system security, stability, and user data if they're not handled properly.

Because of this, Apple provides layers of protection to help ensure that apps are free

of known malware and haven’t been tampered with. Additional protections enforce that
access from apps to user data is carefully mediated. These security controls provide a
stable, secure platform for apps, enabling thousands of developers to deliver hundreds
of thousands of apps for iOS, iPadOS, macOS, tvOS, visionOS, and watchOS—all without
impacting system integrity. And users can access these apps on their Apple devices
without undue fear of viruses, malware, or unauthorized attacks.

On iPad and iPhone, the design principle focuses on centralized distribution, code signing,
and strict sandboxing to provide the tightest controls. To reflect the Digital Market Act’s
requirements, users in the European Union (EU) can install apps from alternative app
marketplaces and directly from an authorized developer’s website, which introduces
additional risks. Apple introduced protections, including (but not limited to):

- Notarization for apps

- An authorization for marketplace developers

- Disclosures on alternative payments

- Install confirmations that provide the user Apple-verified information about the app

These help to reduce risks and deliver the best, most secure experience possible for users
in the EU. Even with these safeguards in place, many risks remain including a greater
prevalence of malware, fraud and scams, illicit and harmful content, and other privacy and
security threats. For more information, see Update on apps distributed in the European
Union on the Apple Developer website.

On Mac, many apps are obtained from the App Store, but Mac users also download and use
apps from the internet. To safely support internet downloading, macOS layers additional
controls. First, by default in macOS 10.15 or later, all Mac apps need to be notarized by
Apple to launch. This requirement helps ensure that these apps are free of known malware,
without requiring that the apps be provided through the App Store. Second, macOS
includes state-of-the-art antivirus protection to block—and if necessary remove—malware.
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As an additional control across platforms, sandboxing helps protect user data from
unauthorized access by apps. And in macOS, data in critical areas is itself protected—
which helps ensure that users remain in control of access to files in Desktop, Documents,
Downloads, and other areas from all apps, whether the apps attempting access are
themselves sandboxed or not.

Native capability Third-party equivalent

App notarization Built into macOS

Kext exclude list Built into macOS

Mandatory Access Controls Built into macOS

Mandatory app code signing Built into macOS

System Integrity Protection Built into macOS

Gatekeeper Endpoint protection; enforces code signing on apps to

help ensure that only trusted software runs

Application firewall Endpoint protection; firewalling

eficheck Endpoint protection; rootkit detection
(Necessary for a Mac without an Apple T2 Security

Chip)

Packet Filter (pf) Firewall solutions

File Quarantine Virus/Malware definitions

Plug-in unapproved list, Safari extension unapproved Virus/Malware definitions

list

XProtect/YARA signatures Virus/Malware definitions; endpoint protection

App code signing process in iOS, iPadOS, tvOS,
visionOS, and watchOS

On devices with iOS, iPadOS, tvOS, visionOS, and watchOS, Apple offers app security
through such things as mandatory code signing, strict developer sign-in, and more.

Mandatory code signing

After the kernel has started, it controls which user processes and apps can be run. To help
ensure that all apps come from a known and approved source and haven't been tampered
with, these operating systems require that all executable code be signed using an Apple-
issued certificate. Apps provided with the device, like Mail and Safari, are signed by Apple.
Third-party apps must also be validated and signed using an Apple-issued certificate.
Mandatory code signing extends the concept of chain of trust from the operating system
to apps and helps prevent third-party apps from loading unsigned code resources or using
self-modifying code.
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How developers sign their apps

Developers can sign their apps through certificate validation (through the Apple Developer
Program). They can also embed frameworks inside their apps and have that code validated
with an Apple-issued certificate (through a team identifier string).

- Certificate validation: To develop and install apps on iPad, iPhone, Apple TV,
Apple Vision Pro, and Apple Watch devices, developers must register with Apple and
join the Apple Developer Program. The real-world identity of each developer, whether
an individual or a business, is verified by Apple before their certificate is issued.
This certificate allows developers to sign apps and submit them to the App Store for
distribution. As a result, all apps in the App Store have been submitted by an identifiable
person or organization, serving as a deterrent to the creation of malicious apps. They
have also been reviewed by Apple to help ensure they generally operate as described
and don’t contain obvious bugs or other notable problems. In addition to the technology
already discussed, this curation process gives users confidence in the quality of the
apps they buy.

« Code signature validation: i0S, iPadOS, tvOS, visionOS, and watchOS allow developers
to embed frameworks inside of their apps, which can be used by the app itself or
by extensions embedded within the app. To protect the system and other apps from
loading third-party code inside of their address space, the system performs a code
signature validation of all the dynamic libraries that a process links against at launch
time. This verification is accomplished through the team identifier (Team ID), which
is extracted from an Apple-issued certificate. A team identifier is a 10-character
alphanumeric string—for example, 1A2B3C4D5F. A program may link against any
platform library that ships with the system or any library with the same team identifier in
its code signature as the main executable. Because the executables shipping as part of
the system don’t have a team identifier, they can only link against libraries that ship with
the system itself.

Verifying proprietary in-house apps

Eligible businesses have the ability to write proprietary in-house apps for use within their
organization and to distribute them to their employees. Businesses and organizations can
apply to the Apple Developer Enterprise Program (ADEP). For more information and to
review eligibility requirements, see the Apple Developer Enterprise Program website. After
an organization becomes a member of ADEP, it can register to obtain a provisioning profile
that permits proprietary in-house apps to run on devices it authorizes.

Users must have the provisioning profile installed to run these apps. This helps ensure that
only the organization’s intended users are able to load the apps onto their iPad, iPhone,

or Apple Vision Pro. Apps installed through a device management service are implicitly
trusted because the relationship between the organization and the device is already
established. Otherwise, users have to approve the app's provisioning profile in Settings.
Organizations can also restrict users from approving apps from unknown developers. On
first launch of any proprietary in-house app, the device must receive positive confirmation
from Apple that the app is allowed to run.
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App security in i0S, iPadOS, and visionOS

Intro to app security for i0S, iPadOS, and visionOS

Unlike other mobile platforms, iOS, iPadOS, and visionOS don’t allow users to install
potentially malicious unsigned apps from websites or to run untrusted apps. Instead,
(outside the EU) all apps must be downloaded from the App Store, where all apps come
from identified developers and must pass automated and human review. At runtime, code
signature checks of all executable memory pages are checked as they're loaded to help
ensure that an app hasn't been modified since it was installed or last updated.

After an app is verified to be from an approved source, iOS, iPadOS, and visionOS enforce
security measures designed to prevent it from compromising other apps or the rest of the
system.

About App Store security

The App Store is a trusted place where users can safely discover and download apps. On
the App Store, apps come from identified developers who have agreed to follow Apple
guidelines, and are securely distributed to users with cryptographic guarantees against
modification. Every single app and each app update is reviewed to evaluate whether

it meets requirements for privacy, security, and safety. This process, which is being
constantly improved, is designed to protect users by keeping malware, cybercriminals, and
scammers out of the App Store. In addition, apps designed for children must follow strict
guidelines around data collection and security designed to keep children safe, and must be
tightly integrated with iOS, iPadOS, and visionOS parental control features.

App Store security protections include:

- Automated scans for known malware: To help prevent it from ever making it onto the
App Store and thus ever reaching or harming users.

- Human review by a team of experts: To review the app description—including marketing
text and screenshots—for accuracy. This creates a high barrier against the most
common scams used to distribute malware: misrepresenting the malware as a popular
app, or claiming to offer enticing features that aren’t actually provided.

« Manual checks: To check that the app doesn’t unnecessarily request access to sensitive
data and extra evaluation of apps targeted at children to help ensure they comply with
stringent data collection and safety rules.

- Trustworthy, centralized user reviews: To help surface issues and significantly reduce
the attacker’s prospects of misleading many users. Even if a malicious app were able to
completely hide its behavior during the review process, users of the app who encounter
and report issues alert others—and Apple—thereby providing another avenue for
detection. The App Store aggressively combats fraudulent reviews to improve the value
of this signal.

- Processes for correction and removal: In a case where an app makes it into the App
Store but is later discovered to violate guidelines, Apple works with the developer to
quickly resolve the issue. In dangerous cases, involving fraud and malicious activity, the
app is immediately removed from the App Store and users who downloaded the apps
can be notified of the app's malicious behavior.
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Security of apps on iOS, iPadOS, and visionOS relies on a combination of all layers—
robust App Review to help prevent the installation of malicious apps, and robust platform
protections to limit the damage malicious apps can inflict. The security designed into iOS,
iPadOS, and visionOS provides users with powerful protections that are the best of any
consumer device, but those protections aren’t engineered to protect against choices a
user might be tricked into making. App Review enforces the App Store policies designed to
protect users from apps that may attempt to harm them or trick them into granting access
to sensitive data. And, in the very serious instances of malicious apps trying to bypass
on-device protections, App Review makes it harder for them to get on users’ devices in the
first place.

Though App Store security measures alone can never be perfect, as part of a defense-in-
depth strategy for platform security they contribute to making widespread attacks against
i0S, iPadOS, and visionOS users impractical and uneconomical for financially-driven
attackers. By reviewing every app before it becomes available on the App Store to help
ensure it's free of malware and accurately represented to users, and by swiftly removing
apps from distribution if they are found to be harmful and limiting the spread of future
variants, Apple protects the security of the ecosystem and provides peace of mind to
customers.

Security of runtime process in iOS, iPadOS, and visionOS

i0S, iPadOS, and visionOS help ensure runtime security by using a sandbox, declared
entitlements, and Address Space Layout Randomization (ASLR).

Sandboxing

All third-party apps are sandboxed. Sandboxing is designed to prevent apps from gathering
or modifying information stored by other apps or from making changes to the device. Each
app has a unique home directory for its files, which is randomly assigned when the app is
installed. If a third-party app needs to access information other than its own, it does so
only by using services explicitly provided by iOS, iPadOS, and visionOS.

System files and resources are also shielded from the users' apps. Most iOS, iPadOS, and
visionOS system files and resources run as the nonprivileged user mobile, as do all third-
party apps. The entire operating system partition is mounted as read-only. Unnecessary
tools, such as remote login services, aren't included in the system software, and APIs
don’t allow apps to escalate their own privileges to modify other apps or iOS, iPadOS, and
visionOS.

Use of entitlements

Access by third-party apps to user information, and to features such as iCloud and
extensibility, is controlled using declared entitlements. Entitlements are key-value pairs
that are signed in to an app and allow authentication beyond runtime factors, like UNIX
user ID. Since entitlements are digitally signed, they can’t be changed. Entitlements are
used extensively by system apps and daemons to perform specific privileged operations
that would otherwise require the process to run as root. This greatly reduces the potential
for privilege escalation by a compromised system app or daemon.

In addition, apps can only perform background processing through system-provided APlIs.
This allows apps to continue to function without degrading performance or dramatically
impacting battery life.
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Address Space Layout Randomization

Address Space Layout Randomization (ASLR) helps protect against the exploitation of
memory corruption bugs. Built-in apps use ASLR to help randomize all memory regions
upon launch. In addition to work upon launch, ASLR randomly arranges the memory
addresses of executable code, system libraries, and related programming constructs,
further reducing the likelihood of many exploits. For example, a return-to-libc attack
attempts to trick a device into executing malicious code by manipulating memory
addresses of the stack and system libraries. Randomizing the placement of these makes
the attack more difficult to execute, especially across multiple devices. Xcode, and the iOS
or iPadOS development environments, automatically compile third-party programs with
ASLR support turned on.

Execute Never feature

Further protection is provided by iOS and iPadOS using ARM's Execute Never (XN) feature,
which marks memory pages as nonexecutable. Memory pages marked as both writable and
executable can be used only by apps under tightly controlled conditions: The kernel checks
for the presence of the Apple-only dynamic code-signing entitlement. Even then, only a
single mmap call can be made to request an executable and writable page, which is given

a randomized address. Safari uses this functionality for its JavaScript just-in-time (JIT)
compiler.

App protection and app groups in iOS, iPadOS, and visionOS

With iPad, iPhone, and Apple Vision Pro, organizations can protect apps securely by using
the iOS SDK and by joining an App Group at the Apple Developer website.

Adopting Data Protection in apps

The Apple Software Development Kits (SDK) offer a full suite of APIs that make it easy for
third-party and in-house developers to adopt Data Protection and help ensure the highest
level of protection in their apps. Data Protection is available for file and database APIs,
including Core Data, NSData, NSFileManager, and SQLite.

The Mail app database (including attachments), managed books, Safari bookmarks, app
launch images, and location data are also stored through encryption, with keys protected
by the user’s passcode on their device. Calendar (excluding attachments), Contacts,
Reminders, Notes, Messages, and Photos implement the Data Protection entitlement
Protected Until First User Authentication.

User-installed apps that don’t opt in to a specific Data Protection class receive Protected
Until First User Authentication by default.

Joining an App Group

Apps and extensions owned by a given developer account can share content when
configured to be part of an App Group. It's up to the developer to create the appropriate
groups on the Apple Developer website and include the desired set of apps and extensions.
Once configured to be part of an App Group, apps have access to the following:

- A shared on-volume container for storage, which stays on the device as long as at least
one app from the group is installed
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- Shared preferences
- Shared keychain items

The Apple Developer website helps ensure that app group IDs (GIDs) are unique across the
app ecosystem.

App security in macOS

Intro to app security for macOS

App security in macOS consists of a number of overlapping layers, the first of which is the
option to run only signed and trusted apps from the App Store. In addition, macOS layers
protections to help ensure that apps downloaded from the internet are free of known
malware.

macOS offers technologies to detect and remove malware, and offers additional
protections designed to prevent untrusted apps from accessing user data. Apple services
such as Notarization and XProtect updates are designed to help prevent malware
installation. When necessary, these services locate malware that may have at first avoided
detection and then quickly and efficiently remove it. Ultimately, macOS users are free to
operate within the security model that makes sense for them, including running completely
unsigned and untrusted code.

App code signing process in macOS

All apps from the App Store are signed by Apple. This signing is designed to ensure that
they haven't been tampered with or altered. Apple signs any apps provided with Apple
devices.

On devices with macOS 10.15, all apps distributed outside the App Store must be signed by
the developer using an Apple-issued Developer ID certificate (combined with a private key)
and notarized by Apple to run under the default Gatekeeper settings. Apps developed in-
house should also be signed with an Apple-issued Developer ID so that users can validate
their integrity.

On devices with macOS, code signing and notarization work independently—and can

be performed by different actors—for different goals. Code signing is performed by

the developer using their Developer ID certificate (issued by Apple). Verification of this
signature proves to the user that a developer's software hasn't been tampered with since
the developer built and signed it. Notarization can be performed by anyone in the software
distribution chain and proves that Apple has been provided a copy of the code to check for
malware and no known malware was found. The output of Notarization is a ticket, which

is stored on Apple servers and can be optionally stapled to the app (by anyone) without
invalidating the signature of the developer.

Mandatory Access Controls (MACs) require code signing to enable entitlements protected
by the system. For example, apps requiring access through the firewall must be code
signed with the appropriate MAC entitlement.

119



Apple Platform Security

Gatekeeper and runtime protection in macOS

macOS offers the Gatekeeper technology and runtime protection to help ensure that only
trusted software runs on a user’s Mac.

Gatekeeper

macOS includes a security technology called Gatekeeper, which is designed to help ensure
that only trusted software runs on a user'’'s Mac. When a user downloads and opens an
app, a plug-in, or an installer package from outside the App Store, Gatekeeper verifies

that the software is from an identified developer, is notarized by Apple to be free of known
malicious content, and hasn’t been altered. Gatekeeper also requests user approval before
opening downloaded software for the first time to make sure the user hasn’t been tricked
into running executable code they believed to simply be a data file. Gatekeeper also tracks
the provenance of files written by downloaded software.

By default, Gatekeeper helps ensure that all downloaded software has been signed by the
App Store or signed by a registered developer and notarized by Apple. Both the App Store
review process and the notarization pipeline are designed to ensure that apps contain

no known malware. Therefore by default, all software in macOS is checked for known
malicious content the first time it’s opened, regardless of how it arrived on the Mac.

Users and organizations have the option to allow only software installed from the App
Store. Alternatively, users can override Gatekeeper policies to open any software unless
restricted by a device management service. This includes allowing software signed with
alternate identities. Gatekeeper can also be completely turned off, if necessary.

Gatekeeper also protects against the distribution of malicious plug-ins with benign
apps. Here, using the app triggers the loading of a malicious plug-in without the user’s
knowledge. When necessary, Gatekeeper opens apps from randomized, read-only
locations. This is designed to prevent the automatic loading of plug-ins distributed
alongside the app.

Runtime protection

System files, resources, and the kernel are shielded from a user’s app space. All apps from
the App Store are sandboxed to restrict access to data stored by other apps. If an app from
the App Store needs to access data from another app, it can do so only by using the APls
and services provided by macOS.

Protecting against malware in macOS

Apple operates a threat intelligence process to quickly identify and block malware.

Three layers of defense

Malware defenses are structured in three layers:

1. Prevent launch or execution of malware: App Store, or Gatekeeper combined with
Notarization

2. Block malware from running on customer systems: Gatekeeper, Notarization, and
XProtect

3. Remediate malware that has executed: XProtect
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The first layer of defense is designed to inhibit the distribution of malware, and prevent
it from launching even once—this is the goal of the App Store, and Gatekeeper combined
with Notarization.

The next layer of defense is to help ensure that if malware appears on any Mag, it's
quickly identified and blocked, both to halt spread and to remediate the Mac systems it's
already gained a foothold on. XProtect adds to this defense, along with Gatekeeper and
Notarization.

Finally, XProtect acts to remediate malware that has managed to successfully execute.

These protections, further described below, combine to support best-practice protection
from viruses and malware. There are additional protections, particularly on a Mac with
Apple silicon, to limit the potential damage of malware that does manage to execute. See
Protecting app access to user data for ways that macOS can help protect user data from
malware, and Operating system integrity for ways macOS can limit the actions malware can
take on the system.

Notarization

Notarization is a malware scanning service provided by Apple. Developers who want to
distribute apps for macOS outside the App Store submit their apps for scanning as part
of the distribution process. Apple scans this software for known malware and, if none is
found, issues a Notarization ticket. Typically, developers staple this ticket to their app so
Gatekeeper can verify and launch the app, even offline.

Apple can also issue a revocation ticket for apps known to be malicious—even if they've
been previously notarized. macOS regularly checks for new revocation tickets so that
Gatekeeper has the latest information and can block launch of such files. This process

can very quickly block malicious apps because checks for revocation tickets happen in

the background much more frequently than even the background updates that push new
XProtect signatures. In addition, this protection can be applied to both apps that have been
previously notarized and those that haven't.

XProtect

macOS includes built-in antivirus technology called XProtect for the signature-based
detection and removal of malware. The system uses YARA signatures, a tool used to
conduct signature-based detection of malware, which Apple updates regularly. Apple
monitors for new malware infections and strains, and updates signatures automatically—
independent from system updates—to help defend a Mac from malware infections.
XProtect automatically detects and blocks the execution of known malware. In macOS 10.15
or later, XProtect checks for known malicious content whenever:

« An app is first launched
- An app has been changed (in the file system)
- XProtect signatures are updated

When XProtect detects known malware, it blocks it and moves it to the Trash. Then it
alerts the user in the Finder. Users might be asked to share malware samples with Apple to
improve macOS security. If they agree, XProtect uploads only the malware executable or, if
it's in an app bundle, the entire bundle. Nothing else is shared.
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Note: Notarization is effective against known files (or file hashes) and can be used on
apps that have been previously launched. The signature-based rules of XProtect are more
generic than a specific file hash, so it can find variants that Apple hasn’t seen. XProtect
scans only apps that have been changed or apps at first launch.

Should malware make its way onto a Mac, XProtect also includes technology to remediate
infections. For example, it includes an engine that remediates infections based on updates
automatically delivered from Apple (as part of automatic updates of system data files and
security updates). This system removes malware upon receiving updated information, and
it continues to periodically check for infections; however, XProtect doesn’t automatically
restart the Mac. In addition, XProtect contains an advanced engine to detect unknown
malware based on behavioral analysis. Information about malware detected by this engine,
including what software was ultimately responsible for downloading it, is used to improve
XProtect signatures and macOS security.

Automatic XProtect security updates

Apple issues the updates for XProtect automatically based on the latest threat intelligence
available. By default, macOS checks for these updates daily. Notarization updates, which
are distributed using CloudKit sync are much more frequent.

How Apple responds when new malware is discovered

When new malware is discovered, a number of steps may be performed:

- Any associated Developer ID certificates are revoked.

- Notarization revocation tickets are issued for all files (apps and associated files).
- XProtect signatures are developed and released.

These signatures are also applied retroactively to previously notarized software, and
any new detections can result in one or more of the previous actions occurring.

Ultimately, a malware detection launches a series of steps over the next seconds, hours,
and days that follow to propagate the best protections possible to Mac users.

Gatekeeper bypass and XProtect events

macOS offers a secure API—the Endpoint Security API—for developers to create security
software. For a Mac with macOS 15 or later, third-party developers can now receive events
when a user bypasses Gatekeeper to run a program. This helps developers log these
events centrally. It's especially useful for security software and administrators, because

it signals when untrusted software is running on endpoints. Moreover, users can view this
event in the eslogger utility. which is built into macOS.

The Endpoint Security APl also provides insights into XProtect malware detections.
Developers can see:

- Specific files that XProtect detected
- The XProtect signature associated with the detection event

This additional information can be collected by third-party developers and stored for later
incident response and central logging.
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Controlling app access to files in macOS

Apple believes that users should have full transparency, consent, and control over what
apps are doing with their data. In macOS 10.15 or later, this model is enforced by the
system to help ensure that all apps have obtained user consent before accessing files in
Documents, Downloads, Desktop, iCloud Drive, and network volumes.

In macOS 10.13 or later, apps that require access to the full storage device must be
explicitly added in System Settings (macOS 13 or later) or System Preferences (macQOS 12
or earlier). In addition, accessibility and automation capabilities require user permission to
help ensure that they don't circumvent other protections. Depending on the access policy,
users may be asked, or required, to change the setting in:

- In macOS 13 or later: System Settings > Privacy & Security > Privacy

- In macOS 12 or earlier: System Preferences > Security & Privacy > Privacy

Item User prompted by app User needs to edit system privacy
settings

Accessibility >< \/

Full internal storage access >< \/

Files and folders \/ ><

Note: Includes Desktop, Documents,
Downloads, network volumes, and
removable volumes

Automation (Apple events) \/ ><

A user who turns on FileVault on a Mac is asked to provide valid credentials before
continuing the boot process and gain access to specialized startup modes. Without valid
login credentials or a recovery key, the entire volume remains encrypted and is protected
from unauthorized access, even if the physical storage device is removed and connected to
another computer.

To protect data in an enterprise setting, IT should define and enforce FileVault
configuration policies using a device management service. Organizations have several
options for managing encrypted volumes, including institutional recovery keys, personal
recovery keys (that can optionally be stored with a device management service for
escrow), or a combination of both. Key rotation can also be set as a policy in a device
management service.

Supporting extensions in iOS, iPadOS, macOS, and
visionOS

i0S, iPadOS, macOS, and visionOS allow apps to provide functionality to other apps by
providing extensions. Extensions are special-purpose signed executable binaries packaged
within an app. During installation, the system automatically detects extensions and makes
them available to other apps using a matching system.
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Extension points

A system area that supports extensions is called an extension point. Each extension point
provides APIs and enforces policies for that area. The system determines which extensions
are available based on extension point-specific matching rules. The system automatically
launches extension processes as needed and manages their lifetime. Entitlements can be
used to restrict extension availability to particular system apps. For example, a Today view
widget appears only in Notification Center, and a sharing extension is available only from
the Sharing pane. Examples of extension points are Today widgets, Share, Actions, Photo
Editing, File Provider, and Custom Keyboard.

How extensions communicate

Extensions run in their own address space. Communication between the extension and the
app from which it was activated uses interprocess communications mediated by the system
framework. They don’t have access to each other's files or memory spaces. Extensions

are designed to be isolated from each other, from their containing apps, and from the apps
that use them. They are sandboxed like any other third-party app and have a container
separate from the containing app’s container. However, they share the same access to
privacy controls as the container app. If a user grants an app access to Contacts, this grant
is extended to the extensions that are embedded within the app but not to the extensions
activated by the app.

How custom keyboards are used

Custom keyboards are a special type of extension, one that's enabled by the user for the
entire system. After a keyboard extension is enabled, it's used for any text field except

the passcode input and any secure text view. To restrict the transfer of user data, custom
keyboards run by default in a very restrictive sandbox that blocks access to the network,
to services that perform network operations on behalf of a process, and to APIs that would
allow the extension to exfiltrate typing data. Developers of custom keyboards can request
that their extension have Open Access, which lets the system run the extension in the
default sandbox after getting consent from the user.

Device management and extensions

For devices enrolled in a device management service, document and keyboard extensions
obey Managed Open In rules. For example, the device management service can help
prevent users from exporting a document from a managed app to an unmanaged Document
Provider, or help prevent them from using an unmanaged keyboard with a managed app.
Additionally, app developers can prevent the use of third-party keyboard extensions within
their app.

Secure features in the Notes app

The Notes app includes a secure notes feature—on iPad, iPhone, Mac, Apple Vision Pro,
and the iCloud website—that allows users to lock notes to protect the contents of specific
notes. The user can choose to either use the device passcode to unlock the note, or they
can set a separate password specifically for that note. Users can also securely share notes
with others.
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Secure notes

Secure notes are end-to-end encrypted using a user-provided passphrase that's required
to view the notes on supported devices, and the iCloud website. Each iCloud account
(including "On my" device accounts) can have a separate passphrase.

When a user secures a note, a 16-byte key is derived from the user’s passphrase using
PBKDF2 and SHA-256. The note and all of its attachments are encrypted using AES with
Galois/Counter Mode (AES-GCM). New records are created in Core Data and CloudKit to
store the encrypted note, attachments, tag, and initialization vector. After the new records
are created, the original unencrypted data is deleted. Attachments that support encryption
include images, sketches, tables, maps, and websites. Notes containing other types of
attachments can't be encrypted, and unsupported attachments can’t be added to secure
notes.

To view a secure note, the user must enter their passphrase or authenticate using Optic ID,
Face ID or Touch ID. After successfully authenticating the user, whether to view or create a
secure note, Notes opens a secure session. While the secure session is open, the user can
view or secure other notes without additional authentication. However, the secure session
applies only to notes protected with the passphrase. The user still needs to authenticate
for notes protected by a different passphrase. The secure session is closed when:

- The user taps the Lock Now button in Notes
- The iPad, iPhone, or Apple Vision Pro locks

- Notes is switched to the background for more than three minutes on an iPad, iPhone, or
Apple Vision Pro

- Notes is switched to the background for more than eight minutes on a Mac

To change the passphrase on a secure note, the user must enter the current passphrase,
because Optic ID, Face ID and Touch ID aren’t available when changing the passphrase.
After choosing a new passphrase, the Notes app rewraps, in the same account, the keys of
all existing notes that are encrypted by the previous passphrase.

If a user mistypes the passphrase three times in a row, Notes shows a user-supplied hint if
one was provided by the user at setup. If the user still doesn’t remember their passphrase,
they can reset it in Notes settings. This feature allows users to create new secure

notes with a new passphrase, but it won't allow them to see previously secured notes.

The previously secured notes can still be viewed if the old passphrase is remembered.
Resetting the passphrase requires the user’s iCloud account passphrase.

Shared notes

Notes that aren’t end-to-end encrypted with a passphrase can be shared with others.
Shared notes still use the CloudKit encrypted data type for any text or attachments that
the user puts in a note. Assets are always encrypted with a key that's encrypted in the
CKRecord. Metadata, such as the creation and modification dates, aren't encrypted.
CloudKit manages the process by which participants can encrypt and decrypt each
other’'s data.
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Secure features in the Shortcuts app

In the Shortcuts app, shortcuts are optionally synced across Apple devices using iCloud.

Shortcuts can also be shared with other users through iCloud. Shortcuts are stored locally

in an encrypted format.

Custom shortcuts are versatile—they're similar to scripts or programs. When downloading

shortcuts from the internet, the user is warned that the shortcut hasn’t been reviewed by
Apple and is given the opportunity to inspect the shortcut. To protect against malicious
shortcuts, updated malware definitions are downloaded to identify malicious shortcuts at
runtime.

Custom shortcuts can also run user-specified JavaScript on websites in Safari when
invoked from the share sheet. To protect against malicious JavaScript that, for example,
tricks the user into running a script on a social media website that harvests their data,
the JavaScript is validated against the aforementioned malware definitions. The first time
a user runs JavaScript on a domain, the user is prompted to allow shortcuts containing
JavaScript to run on the current webpage for that domain.
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Services security

Services security overview

Apple has built a robust set of services to help users get even more utility and productivity
out of their devices. These services provide powerful capabilities for cloud storage, sync,
password storage, authentication, payment, messaging, communications, and more, all
while protecting users' privacy and the security of their data.

This chapter covers security technologies used in iCloud, Sign in with Apple, Apple Pay,
Apple Wallet, iMessage, Apple Messages for Business, FaceTime, Find My, and Continuity.

Note: Not all Apple services and content are available in all countries or regions.

Apple Account and Managed Apple Account

Apple Account security overview

An Apple Account is the account used to sign in to Apple services. It's important for users
to keep their Apple Accounts secure to help prevent unauthorized access to their accounts.
To help with this, Apple Accounts require strong passwords that:

«  Must be at least eight characters in length

+ Must contain both letters and numbers

+  Must not contain three or more consecutive identical characters
« Can't be a commonly used password

Users are encouraged to exceed these guidelines by adding extra characters and
punctuation marks to make their passwords even stronger.

Apple also notifies users in email or push notifications or both when important changes are
made to their account—for example, if a password or billing information has been changed
or the Apple Account has been used to sign in on a new device. If anything looks unfamiliar,
users are instructed to change their Apple Account password immediately.

In addition, Apple employs a variety of policies and procedures designed to protect user
accounts. These include limiting the number of retries for sign-in and password reset
attempts, active fraud monitoring to help identify attacks as they occur, and regular policy
reviews that allow Apple to adapt to any new information that could affect user security.
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Two-factor authentication

To help users further secure their accounts, by default Apple uses two-factor
authentication—an extra layer of security for Apple Accounts. It's designed to ensure

that only the account’'s owner can access the account, even if someone else knows

the password. With two-factor authentication, a user’s account can be accessed on

only trusted devices, such as the user’s iPad, iPhone, or Mac, or on other devices after
completing a verification from one of these trusted devices or a trusted phone number.
To sign in for the first time on any new device, two pieces of information are required—
the Apple Account password and a six-digit verification code that's displayed on the
user's trusted devices or sent to a trusted phone number. By entering the code, the user
confirms that they trust the new device and that it's safe to sign in. Because a password
alone is no longer enough to access a user's account, two-factor authentication improves
the security of the user’'s Apple Account and all the personal information they store with
Apple. It's integrated directly into i0OS, iPadOS, macOS, tvOS, visionOS, watchOS, and the
authentication systems used by Apple websites.

When a user signs in to an Apple website using a web browser, a second factor request is
sent to all trusted devices associated with the user’s iCloud account, requesting approval
of the web session. If the user is signing in to an Apple website from a browser on a trusted
device, they see the verification code displayed locally on the device they're using. When
the user enters the code on that device, the web session is approved.

Password reset and account recovery

If an Apple Account password is forgotten, a user can reset it on a trusted device. If a
trusted device isn't available and the password is known, a user can use a trusted phone
number can be used to authenticate through SMS verification. In addition, to provide
immediate recovery for an Apple Account, a previously used passcode can be used to reset
in conjunction with SMS. If these options aren’t possible, the account recovery process
must be followed. For more information, see the Apple Support article How to use account
recovery when you can’t reset your Apple Account password.

Managed Apple Account security

Managed Apple Accounts function much like an Apple Account but are owned and
controlled by enterprise or educational organizations. These organizations can reset
passwords and turn off communications such as FaceTime and iMessage, and set up role-
based permissions for employees, staff members, teachers, and students.

For Managed Apple Accounts, some services aren't available (for example, Find My, Health,
and HomeKit).

Access management for Managed Apple Accounts

Organizations can use access management available in Apple Business Manager and Apple
School Manager to define where Managed Apple Accounts can be used and what services
are available to them.
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With access management, organizations can define whether users can sign in with a
Managed Apple Account on any device, on managed devices only, or on managed and
supervised devices only. Also, administrators can configure whether users are allowed to
sign in to iCloud on the web. This allows organizations to use the management state of the
device as a factor to decide if access to organizational data should be granted.

Additionally, administrators can define what iCloud services are available to their users.
This includes defining access to Apple Developer Programs, and the AppleSeed for IT beta
program, and determining whether users are allowed to access the Apple Privacy portal at
privacy.apple.com.

Managed Apple Accounts also support collaboration on documents using Keynote, Notes,
Numbers, Pages, and Reminders, as well as communication using FaceTime and iMessage.
For those services, organizations can define whether users can collaborate with anyone
or just with accounts created within the same Apple School Manager or Apple Business
Manager organization.

If access management rules change, they are reflected on devices the user is signed in to
with their Managed Apple Account. If requirements for the management state of a device
are changed, a Managed Apple Account is automatically signed out of a device if the
device state doesn’t meet the new requirements.

Note: The Managed Apple Account password policy of users with the role of Student can
be set by a user with the role of administrator in Apple School Manager if the account was
created manually or connected with a Student Information System (SIS).

Inspecting Managed Apple Accounts

Managed Apple Accounts created in Apple School Manager also support inspection,
which allows organizations to comply with legal and privacy regulations. A user with the
role of Administrator, Site Manager, People Manager, or Instructor can inspect specific
Managed Apple Account accounts.

Inspectors can monitor only accounts that are below them in the organization’s hierarchy.
For example, teachers can monitor students, managers can inspect teachers and students,
and administrators can inspect managers, teachers, and students.

When inspecting credentials are requested using Apple School Manager, a special account
is issued that has access to only the Managed Apple Account for which inspecting was
requested. The inspector can then read and modify the user’s content stored in iCloud

or in CloudKit-enabled apps. Every request for auditing access is logged in Apple School
Manager. The logs show who the inspector was, the Managed Apple Account the inspector
requested access to, the time of the request, and whether the inspection was performed.
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iCloud

iCloud security overview

iCloud stores a user’s contacts, calendars, photos, documents, and more and keeps the
information up to date across all of their devices automatically. iCloud can also be used by
third-party apps to store and sync documents as well as key values for app data as defined
by the developer. Users set up iCloud by signing in with an Apple Account and choosing
which services they would like to use. Certain iCloud features, such as iCloud Drive and
iCloud Backup, can be turned off by IT administrators using configuration profiles from a
device management service.

iCloud uses strong security methods and employs strict policies to protect user data. Most
iCloud data is first encrypted on the user’s device, using device-generated iCloud keys,
before being uploaded to iCloud servers. For data that isn’t end-to-end encrypted, the
user's device securely uploads these iCloud keys to iCloud Hardware Security Modules

in Apple data centers. This allows Apple to help the user with data recovery, and decrypt
the data on the user’s behalf whenever they need it, (for example, when they sign in on a
new device, restore from a backup, or access their iCloud data on the web). Data moving
between the user’s devices and iCloud servers is separately encrypted in transit with TLS,
and iCloud servers store user data with an additional layer of encryption at rest.

Encryption keys, when available to Apple, are secured in Apple data centers. When
processing data stored in a third-party data center, these encryption keys are accessed
only by Apple software running on secure servers, and only while conducting the
necessary processing. For additional privacy and security, many Apple services use
end-to-end encryption, which means the user’s iCloud data can be accessed only by the
users themselves, and only from the trusted devices where they are signed in with their
Apple Account.

Apple offers users two options to encrypt and protect the data they store in iCloud:

- Standard data protection (the default setting): The user's iCloud data is encrypted, the
encryption keys are secured in Apple data centers, and Apple can assist with data and
account recovery. Only certain iCloud data—14 data categories, including Health data
and passwords in iCloud Keychain—is end-to-end encrypted.

- Advanced Data Protection for iCloud: An optional setting that offers Apple’s highest
level of cloud data security. If a user chooses to turn on Advanced Data Protection, their
trusted devices retain sole access to the encryption keys for the majority of their iCloud
data, thereby protecting it using end-to-end encryption. When users turn on Advanced
Data Protection, the number of data categories that use end-to-end encryption rises to
23 and includes their iCloud Backup, Photos, Notes, and more.

The specific categories of iCloud data protected with end-to-end encryption are listed in
the Apple Support article iCloud data security overview.

iCloud encryption

Data encryption in iCloud is closely tied to the data storage model, starting with the
CloudKit frameworks and APIs that allow apps and system software to store data in iCloud
on behalf of the user, and keep everything up-to-date across devices and on the web.
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CloudKit encryption

CloudKit is a framework that lets app developers store key-value data, structured data,
and assets (large data stored separately from the database, such as images or videos) in
iCloud. CloudKit supports both public and private databases, grouped in containers. Public
databases are globally shared, typically used for generic assets, and aren't encrypted.
Private databases store each user’s iCloud data.

CloudKit uses a hierarchy of keys that matches the structure of the data. Each container’s
private database is protected by a key hierarchy, rooted in an asymmetric key called a
CloudKit Service key. These keys are unique to each iCloud user and generated on their
trusted device. When data is written to CloudKit, all record keys are generated on the
user's trusted device and wrapped to the appropriate key hierarchy before any data is
uploaded.

CloludKit Encrypted
Service key el

Encrypted
/ field

Zone key <= Record key «——— Assetkey g—— Asset

Many Apple services, listed in the Apple Support article iCloud data security overview,

use end-to-end encryption with a CloudKit service key that's protected in the same way
as iCloud Keychain syncing. For these CloudKit containers, the service keys are available
only on the user's trusted devices and can't be accessed by Apple or any third party.
These keys are synchronized between a user’s devices even if the user chooses not to use
iCloud Keychain to sync their passwords, passkeys, and other user data. In the event of
device loss, users can recover their iCloud Keychain data through the use of Secure iCloud
Keychain recovery, Account Recovery Contacts, or an Account Recovery Key.
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Encryption key management

Service key

Container
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Asset references
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The security of encrypted data in CloudKit relies on the security of the corresponding
encryption keys. CloudKit service keys are divided into two categories: end-to-end
encrypted and available-after-authentication.

- End-to-end encrypted service keys: For end-to-end encrypted iCloud services, the
relevant CloudKit service private keys are never made available to Apple servers.
Service key pairs, including the private keys, are created locally on a user’s trusted
device and transferred to the user’s other devices using iCloud Keychain security.
Although iCloud Keychain recovery and synchronization flows are mediated by Apple
servers, these servers are cryptographically prevented from accessing any of the
user's keychain data. In the worst case of losing access to iCloud Keychain and all of its
recovery mechanisms, the end-to-end encrypted data in CloudKit is lost. Apple can’t
help recover this data.

- Available-after-authentication service keys: For other services, such as Photos
and iCloud Drive, the service keys are stored in iCloud Hardware Security Modules in
Apple data centers, and can be accessed by some Apple services. When a user signs
in to iCloud on a new device and authenticates their Apple Account, these keys can
be accessed by Apple servers without further user interaction or input. For example,
after signing into iCloud.com, the user can immediately view their photos online. These
service keys are available-after-authentication keys.

Advanced Data Protection for iCloud

Advanced Data Protection for iCloud is an optional setting that offers Apple's highest
level of cloud data security. When a user turns on Advanced Data Protection, their trusted
devices retain sole access to the encryption keys for the majority of their iCloud data,
thereby protecting it with end-to-end encryption. For users who turn on Advanced Data
Protection, the total number of data categories protected using end-to-end encryption
rises from 14 to 23 and includes iCloud Backup, Photos, Notes, and more.
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Note: This feature may not be available in all countries or regions.

Conceptually, Advanced Data Protection is simple: All CloudKit Service keys that were
generated on device and later uploaded to the available-after-authentication iCloud
Hardware Security Modules (HSMs) in Apple data centers are deleted from those HSMs,
and instead kept entirely within the Apple Account'’s iCloud Keychain protection domain.
They are handled like the existing end-to-end encrypted service keys, which means Apple
can no longer read or access these keys.

Advanced Data Protection also automatically protects CloudKit fields that third-party
developers choose to mark as encrypted, and all CloudKit assets.

Enabling Advanced Data Protection

When the user turns on Advanced Data Protection, their trusted device performs two
actions: First, it communicates the user’s intent to turn on Advanced Data Protection to
their other devices that participate in end-to-end-encryption. It does so by writing a new
value, signed by device-local keys, into its iCloud Keychain device metadata. Apple servers
can’t remove or modify this attestation while it gets synchronized with the user’s other
devices.

Second, the device initiates the removal of the available-after-authentication service keys
from Apple data centers. As these keys are protected by iCloud HSMs, this deletion is
immediate, permanent, and irrevocable. After the keys are deleted, Apple can no longer
access any of the data protected by the user’s service keys. At this time, the device
begins an asynchronous key rotation operation, which creates a new service key for each
service whose key was previously available to Apple servers. If the key rotation fails, due
to network interruption or any other error, the device retries the key rotation until it's
successful.

After the service key rotation is successful, new data written to the service can't be
decrypted with the old service key. It's protected with the new key which is controlled
solely by the user’s trusted devices, and was never available to Apple.

Advanced Data Protection and iCloud.com web access

When a user first turns on Advanced Data Protection, web access to their data at iCloud.
com is automatically turned off. This is because iCloud web servers no longer have access
to the keys required to decrypt and display the user’s data. The user can choose to turn
on web access again, and use the participation of their trusted device to access their
encrypted iCloud data on the web.

After turning on web access, the user must authorize the web sign-in on one of their
trusted devices each time they visit iCloud.com. The authorization arms the device for
web access. For the next hour, this device accepts requests from specific Apple servers
to upload individual service keys, but only those corresponding to an allow list of services
normally accessible on iCloud.com. In other words, even after the user authorizes a web
sign-in, a server request is unable to induce the user’s device to upload service keys for
data that isn't intended to be viewed on iCloud.com, (such as Health data or passwords

in iCloud Keychain). Apple servers request only the service keys needed to decrypt the
specific data that the user is requesting to access on the web. Every time a service key is
uploaded, it is encrypted using an ephemeral key bound to the web session that the user
authorized, and a notification is displayed on the user’s device, showing the iCloud service
whose data is temporarily being made available to Apple servers.
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Preserving the user’s choices

The Advanced Data Protection and iCloud.com web access settings can be modified only
by the user. These values are stored in the user’s iCloud Keychain device metadata and can
only be changed from one of the user’s trusted devices. Apple servers can’t modify these
settings on behalf of the user, nor can they roll them back to a previous configuration.

Security implications of sharing and collaboration

In most cases, when users share content to collaborate with each other—for example, with
shared Notes, shared Reminders, shared folders in iCloud Drive, or iCloud Shared Photo
Library—and all the users have Advanced Data Protection turned on, Apple servers are
used only to establish sharing but don’t have access to the encryption keys for the shared
data. The content remains end-to-end encrypted and accessible only on participants’
trusted devices. For each sharing operation, a title and representative thumbnail may be
stored by Apple with standard data protection to show a preview to the receiving users.

Selecting the "anyone with a link” option when enabling collaboration will make the content
available to Apple servers under standard data protection, as the servers need to be able
to provide access to anyone who opens the URL.

Apple's collaborative productivity apps—Keynote, Numbers, and Pages, and the Shared
Albums feature in Photos don't support Advanced Data Protection. When users collaborate
on a Keynote, Numbers, or Pages document, or open one of those documents from a
shared folder in iCloud Drive, the encryption keys for the document are securely uploaded
to servers in Apple data centers. This is because real-time collaboration in Keynote,
Numbers, and Pages requires server-side mediation to coordinate document changes
between participants. Photos added to Shared Albums are stored with standard data
protection, as the feature permits albums to be publicly shared on the web.

Turn off Advanced Data Protection

The user can turn off Advanced Data Protection at any time. If they decide to do so:

1. The user’s device first records their new choice in iCloud Keychain participation
metadata, and this setting is securely synchronized to all their devices.

2. The user's device securely uploads the service keys for all available-after-authentication
services to the iCloud HSMs in Apple data centers. This never includes keys for services
that are end-to-end encrypted under standard data protection, such as iCloud Keychain
and Health.

The device uploads both the original service keys, generated before Advanced Data
Protection had been turned on, and the new service keys that were generated after

the user turned on the feature. This makes all data in these services accessible after
authentication and returns the account to standard data protection, where Apple can once
again help the user recover most of their data should they lose access to their account.

iCloud data not covered by Advanced Data Protection

Because of the need to interoperate with the global email, contacts, and calendar systems,
iCloud Calendar, Contacts, and Mail aren’t end-to-end encrypted.
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iCloud stores some data without the protection of user-specific CloudKit service keys, even
when Advanced Data Protection is turned on. CloudKit Record fields must be explicitly
declared as encrypted in the container’s schema to be protected, and reading and writing
encrypted fields requires the use of dedicated APIls. Dates and times when a file or object
was modified are used to sort a user’s information, and checksums of file and photo data
are used to help Apple de-duplicate and optimize the user’s iCloud and device storage—all
without having access to the files and photos themselves. Details about how encryption

is used for specific data categories is available in the Apple Support article iCloud data
security overview.

Decisions such as the use of checksums for data de-duplication—a well-known technique
called convergent encryption—were part of the original design of iCloud services when
they launched. This metadata is always encrypted, but the encryption keys are stored by
Apple with standard data protection. To continue to strengthen security protections for all
users, Apple is committed to ensuring more data, including this kind of metadata, is end-
to-end encrypted when Advanced Data Protection is turned on.

Advanced Data Protection requirements

The requirements to turn on Advanced Data Protection for iCloud include the following:

+  The user's account must support end-to-end encryption. End-to-end encryption
requires two-factor authentication for their Apple Account and a passcode or password
set on their trusted devices. For more information, see the Apple Support article Two-
factor authentication for Apple Account.

- Devices where the user is signed in with their Apple Account must be updated to
i0S 16.2, iPadOS 16.2, macOS 13.1, tvOS 16.2, watchOS 9.2, or later, and the latest
version of iCloud for Windows. This requirement prevents a previous version of iOS,
iPadOS, macOS, tvOS, or watchOS from mishandling the newly-created service keys by
re-uploading them to the available-after-authentication HSMs in a misguided attempt to
repair the account state.

- The user must set up at least one alternative recovery method—one or more recovery
contacts or a recovery key—which they can use to recover their iCloud data if they lose
access to their account.

If the recovery methods fail, such as if the recovery contact’s information is out of date,
or the user forgets them, Apple can’t help recover the user’s end-to-end encrypted
iCloud data.

Advanced Data Protection for iCloud can be turned on only for Apple Accounts.
Managed Apple Accounts and child accounts (varies by country or region) aren't
supported.
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iCloud Backup security

iCloud backs up information—including device settings, app data, photos, and videos in
the Camera Roll, and conversations in the Messages app—daily over Wi-Fi. iCloud Backup
occurs only when the device is locked, connected to a power source, and has Wi-Fi access
to the internet. Mindful of the storage encryption used in iOS and iPadOS, iCloud Backup
is designed to keep data secure while allowing incremental, unattended backup and
restoration to occur. By default, the iCloud Backup service key is securely backed up to
iCloud Hardware Security Modules in Apple data centers, and is part of the available-after-
authentication data category. For users who turn on Advanced Data Protection for iCloud,
the iCloud Backup service key is protected with end-to-end encryption, and available only
to users on their trusted devices.

When files are created in Data Protection classes that aren’t accessible when the

device is locked, their per-file keys are encrypted, using the class keys from the

iCloud Backup keybag and backing the files up to iCloud in their original, encrypted state.
All files are encrypted during transport and, when stored, encrypted using account-based
keys, as described in CloudKit encryption.

The iCloud Backup keybag contains asymmetric (Curve25519) keys for Data Protection
classes that aren’t accessible when the device is locked. The backup set is stored in the
user's iCloud account and consists of a copy of the user’s files and the iCloud Backup
keybag. The iCloud Backup keybag is protected by a random key, which is also stored with
the backup set. The user’s iCloud password isn't used for encryption, so changing the
iCloud password won't invalidate existing backups.

On restore, the backed-up files, iCloud Backup keybag, and the key for the keybag are
retrieved from the user’s iCloud account. The iCloud Backup keybag is decrypted using

its key, then the per-file keys in the keybag are used to decrypt the files in the backup set,
which are written as new files to the file system, thus reencrypting them according to their
Data Protection class.

The following content is backed up using iCloud Backup:

- Records for purchased music, movies, TV shows, apps, and books. A user’s
iCloud Backup includes information about purchased content present on the user’s
device, but not the purchased content itself. When the user restores from an
iCloud Backup, their purchased content is automatically downloaded from the iTunes
Store, the App Store, the Apple TV app, or Apple Books. Some types of content aren't
downloaded automatically in all countries or regions, and previous purchases may be
unavailable if they have been refunded or are no longer available in their respective
store. Full purchase history is associated with a user’s Apple Account.

- Photos and videos on a user’s devices. Note that if a user turns on iCloud Photos in
i0S 8.1, iPadOS 13.1, or OS X 10.10.3, or later, their photos and videos are already stored
in iCloud, so they aren’t included in the user’s iCloud Backup.

- Contacts, calendar events, reminders, and notes
- Device settings

- App data

- Home Screen and app organization

- HomeKit configuration

- Medical ID data
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- Voice Memos password (if necessary, requires the physical SIM card that was in use
during backup)

- Message, Apple Messages for Business, text (SMS), and MMS messages (if necessary,
requires the physical SIM card that was in use during backup)

iCloud Backup is also used to back up the local device keychain, encrypted with a key
derived from the Secure Enclave UID root cryptographic key of the device. This key is
unique to the device and not known to Apple. This allows the database to be restored only
to the same device from which it originated, and it means no one else, including Apple, can
read it. For more information, see The Secure Enclave.

Messages in iCloud

Messages in iCloud keeps a user's entire message history updated and available on all
devices.

With standard data protection, Messages in iCloud is end-to-end encrypted when

iCloud Backup is turned off. When iCloud Backup is turned on, the backup includes a
copy of the Messages in iCloud encryption key so Apple can help the user recover their
messages even if they have lost access to iCloud Keychain and their trusted devices. If
the user turns off iCloud Backup, a new key is generated on their device to protect future
Messages in iCloud. The new key is stored only in iCloud Keychain, only accessible to the
user on their trusted devices, and new data written to the container can't be decrypted
with the old container key.

With Advanced Data Protection, Messages in iCloud is always end-to-end encrypted.
When iCloud Backup is turned on, everything inside it is end-to-end encrypted, including
the Messages in iCloud encryption key. The iCloud Backup service key, as well as the
Messages in iCloud container key are both rolled when the user turns on Advanced Data
Protection. For more information, see the Apple Support article iCloud data security
overview.

iCloud Private Relay security

iCloud Private Relay helps protect users primarily when browsing the web with Safari, but it
also includes all DNS name resolution requests. This helps ensure that no single party, not
even Apple, can correlate the user’s IP address and their browsing activity. It does this by
using different proxies, an ingress proxy, managed by Apple and an egress proxy, managed
by a content provider. To use iCloud Private Relay, the user must have iOS 15, iPadOS 15,
macOS 12.0.1, visionOS 1, or later, and be signed in to their iCloud+ account with their
Apple Account. iCloud Private Relay can then be turned on in Settings > iCloud or System
Settings > iCloud.

For more information, see iCloud Private Relay Overview.

Account recovery contact security

Users can add up to five people they trust as account recovery contacts to help them
recover their iCloud account and data, including all of their end-to-end encrypted data,
whether or not they have turned on Advanced Data Protection. Neither Apple nor the
recovery contact have the necessary information individually to recover the user’s end-to-
end encrypted iCloud data.
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Recovery Contact is designed with user privacy in mind. A user's chosen recovery contacts
aren't known to Apple. Apple servers only learn information about a recovery contact

late in the course of a recovery attempt after the user asks the contact for help and their
contact begins actually assisting with the recovery. That information isn’t retained after the
recovery completes.

Recovery contact security process

When a user sets up an Account Recovery Contact, a key associated with that contact

is generated. This key protects access to the user’s iCloud data—including end-to-end
encrypted CloudKit Data. Next, a random 256-bit AES key is generated and used to
encrypt the Recovery Contact key to create a Recovery Contact Packet. The encrypted
packet is sent to the Recovery Contact for safekeeping, and the random AES key is

stored with Apple. Neither the AES key nor the packet provides any information about the
underlying key by itself. At recovery time, after the user’s device successfully obtains both
the Recovery Contact Packet from their Recovery Contact and the AES key from Apple, it
can combine the two to recover the original key and access the user’s iCloud data.

To set up an Account Recovery Contact, the user’s device communicates with Apple
servers to upload the share of the keying information Apple will hold (the AES key
mentioned above). It then establishes an end-to-end encrypted CloudKit container with
the recovery contact to share the portion the recovery contact needs (the Recovery
Contact Packet encrypted using the AES key). An authorization secret, created by Apple,
is also shared with the recovery contact. This will be used to recover the account and
help reset the password on the account. The communication to invite and accept recovery
contacts takes place through a mutually authenticated IDS channel. The recovery contact
automatically stores the received information in their iCloud Keychain. Apple can’t access
the contents of the CloudKit container, nor the iCloud Keychain that stores this information.
When the sharing is performed, Apple servers view only an anonymous ID for the recovery
contact.

Later, when a user needs to recover their account and iCloud data, they can request help
from their recovery contact. At that time a recovery code is generated by the recovery
contact’s device, which the recovery contact then provides to the user out of band (for
example in person or over a phone call). The user then enters the recovery code on their
device to establish a secure connection between devices using the SPAKE2+ protocol,
the contents of which isn't accessible by Apple. This interaction is orchestrated by Apple
servers, but Apple can’t initiate the recovery process.

After the secure connection is established and all required security checks are completed,
the recovery contact’s device returns their portion of the keying information and the
previously established authorization secret back to the user requesting recovery. The
user presents this authorization secret to an Apple server, which grants access to the
keying information Apple is keeping. Providing the authorization secret also authorizes the
account password reset to restore account access.

Finally, the user's device recombines the keying information received from Apple and the
Account Recovery Contact, and then uses it to decrypt and recover their iCloud data.

There are safeguards in place to prevent a recovery contact from initiating recovery
without the user’s consent, which include a liveness check on the user’s account. If the
account is in active use, recovery using a Recovery Contact also requires knowledge of an
iCloud Security Code.
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Legacy Contact security

If a user wants their data to be accessible to designated beneficiaries after their death,
they can set up Legacy Contacts on their account. A Legacy Contact is established much
like a Recovery Contact, except that the keying information used by a beneficiary doesn't
encompass the information necessary to decrypt the decedent’s iCloud Keychain. The

key structure used is the same as for account recovery contact, except that in this case
Apple stores the encrypted packet, and the beneficiary keeps the AES key. This allows the
portion the beneficiary receives to be shorter—and thus easier to print out if necessary—
while still providing the same property that neither part provides any information about the
underlying key by itself.

The keying information a beneficiary receives is referred to as an access key in user-facing
documentation. The access key is saved automatically on supported devices, but it can
also be printed and stored offline for use. For more information, see the Apple support
article How to add a Legacy Contact for your Apple Account.

After the user’s death, Legacy Contacts sign in to the Apple claim website to initiate
access. This requires a death certificate and is authorized in part with the authorization
secret mentioned in the previous section. After all the security checks are completed,
Apple issues a user name and password for the new account and releases the necessary
keying information to the Legacy Contact.

To more easily input the access key when needed, it's presented as an alphanumeric code
with an associated QR code. After it's entered, access to the decedent’s iCloud data is
restored. This can be performed on a device, or access can be established online. For more
information, see the Apple Support article Request access to an Apple account as a Legacy
Contact.

Passcode and password management

Password security overview

i0S, iPadOS, macOS, and visionOS make it easy for users to authenticate to third-party
apps and websites that use passwords. The best way to manage passwords is not to have
to use one. Sign in with Apple lets users sign in to third-party apps and websites without
having to create and manage an additional account or password while protecting the
sign-in with their two-factor authentication for Apple Account. For sites that don’t support
Sign in with Apple, the Automatic Strong Password feature enable a user’s devices to
automatically create, sync, and enter unique strong passwords for sites and apps. On iPad,
iPhone, and Apple Vision Pro, passwords are saved to a special Password AutoFill keychain
that's user controlled and manageable in Settings > Passwords.

On a Mac, saved passwords can be managed in Safari Passwords preferences. This sync
system can also be used to sync passwords that are manually created by the user.

Sign in with Apple security

Sign in with Apple is a privacy-friendly alternative to other Single Sign-on systems. It
provides the convenience and efficiency of one-tap sign-in while giving the user more
transparency and control over their personal information.
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Sign in with Apple allows users to set up an account and sign in to apps and websites using
the Apple Account they already have, and it gives them more control over their personal
information. Apps can only ask for the user’s name and email address when setting up an
account, and the user always has a choice: They can share their personal email address
with an app or choose to keep their personal email private and use the new Apple private
email relay service instead. This email relay service shares a unique, anonymized email
address that forwards to the user’s personal address so they can still receive useful
communication from the developer while maintaining a degree of privacy and control over
their personal information.

Sign in with Apple is built for security. Every Sign in with Apple user is required to have
two-factor authentication enabled for their Apple Account. Two-factor authentication helps
secure not only the user’s Apple Account but also the accounts they establish with their
apps. Furthermore, Apple has developed and integrated a privacy-friendly antifraud signal
into Sign in with Apple. This signal gives developers confidence that the new users they
acquire are real people and not bots or scripted accounts.

Automatic strong passwords

When iCloud Keychain is turned on, iOS, iPadOS, macOS, and visionOS create strong,
random, unique passwords when users sign up for or change their password on a website
in Safari. Automatic strong password generation is also available in apps. Users must opt
out of using strong passwords. Generated passwords are saved in the keychain and kept up
to date across devices with iCloud Keychain, when it's enabled.

By default, passwords generated are 20 characters long. They contain one digit, one
uppercase character, two hyphens, and 16 lowercase characters. These generated
passwords are strong, containing 71 bits of entropy.

Passwords are generated based on heuristics that determine whether a password-field
experience is for password creation. If the heuristic fails to recognize a context-specific
password being used at password creation, app developers can set UITextContentType.
newPassword on their text field and web developers can set autocomplete="new-
password" on their <input> elements.

To help ensure that generated passwords are compatible with the relevant services,
apps and websites can provide rules. Developers provide these rules using
UITextInputPasswordRules or the passwordrules attribute on their input elements.
Devices then generate the strongest password they can that fulfills these rules.

Password AutoFill security

Password AutoFill automatically fills credentials stored in the keychain. The iCloud Keychain
password manager and Password AutoFill provide the following features:

« Filling in credentials in apps and websites

«  Generating strong passwords

- Saving passwords in both apps and websites in Safari
- Sharing passwords securely to a users’ contacts

+  Providing passwords to a nearby Apple TV that's requesting credentials
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Generating and saving passwords within apps, as well as providing passwords to Apple TV,
are available only in iOS, iPadOS, and visionOS.

Password AutoFill in apps

i0S, iPadOS, and visionOS allow users to input saved user names and passwords into
credential-related fields in apps, similar to the way Password AutoFill works in Safari. On
iPad and iPhone, users tap a key affordance in the software keyboard’s QuickType bar.
On Mac, for apps built with Mac Catalyst, a Passwords drop-down menu appears below
credential-related fields.

When an app is strongly associated with a website that uses the same app-website
association mechanism and that's powered by the same apple—app—-site—association
file, the iOS and iPadOS QuickType bar and macOS drop-down menu directly suggest
credentials for the app, if any are saved to the Password AutoFill Keychain. This allows
users to choose to disclose Safari-saved credentials to apps with the same security
properties, without those apps having to adopt an API.

Password AutoFill exposes no credential information to an app until a user consents to
release a credential to the app. The credential lists are drawn from or presented out of the
app's process.

When an app and website have a trusted relationship and a user submits credentials within
an app, i0S, iPadOS, and visionOS may prompt the user to save those credentials to the
Password AutoFill keychain for later use.

App access to saved passwords

i0S, iPadOS, macOS, and visionOS apps can request the Password AutoFill keychain's
help with signing a user in using ASAuthorizationPasswordProvider and
SecAddSharedWebCredential. The password provider and its request can be used in
conjunction with Sign in with Apple, so that the same APl is called to help users sign into
an app, regardless of whether the user’s account is password based or was created using
Sign in with Apple.

Apps can access saved passwords only if the app developer and website administrator
have given their approval and the user has given consent. App developers express their
intent to access Safari saved passwords by including an entitlement in their app. The
entitlement lists the fully qualified domain names of associated websites, and the websites
must place a file on their server listing the unique app identifiers of apps approved by
Apple.

When an app with the com.apple.developer.associated—-domains entitlement is
installed, iOS, iPadOS, and visionOS make a TLS request to each listed website, requesting
one of the following files:

. apple-app-site—association
- .well-known/apple—-app-site—association

If the file lists the app identifier of the app being installed, then iOS, iPadOS, or visionOS
mark the website and app as having a trusted relationship. Only with a trusted relationship
will calls to these two APIs result in a prompt to the user, who must agree before any
passwords are released to the app, updated, or deleted.
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Password security recommendations

The Password AutoFill passwords list in i0S, iPadOS, macQOS, and visionOS indicates
which of a user’s saved passwords will be reused with other websites, passwords that are
considered weak, and passwords that have been compromised by a data leak.

Overview

Using the same password for more than one service may leave those accounts vulnerable
to a credential-stuffing attack. If a service is breached and passwords are leaked, attackers
may try the same credentials on other services to compromise additional accounts.

- Passwords are marked reused if the same password is seen used for more than one
saved password across different domains.

- Passwords are marked weak if they may be easily guessed by an attacker. iOS, iPadOS,
macOS, and visionOS detect common patterns used to create memorable passwords,
such as using words found in a dictionary, common character substitutions (such as
using p4sswOrd instead of password), patterns found on a keyboard (such as q12we34r
from a QWERTY keyboard), or repeated sequences (such as 123123). These patterns
are often used to create passwords that satisfy minimum password requirements for
services, but are also commonly used by attackers attempting to obtain a password
using brute force.

Because many services specifically require a four- or six-digit PIN code, these short
passcodes are evaluated with different rules. PIN codes are considered weak if they are
one of the most common PIN codes, if they are an increasing or decreasing sequence
such as 1234 or 8765, or if they follow a repetition pattern, such as 123123 or 123321.

- Passwords are marked /eaked if the Password Monitoring feature can claim they have
been present in a data leak. For more information, see Password Monitoring.

Weak, reused, and leaked passwords are either indicated in the list of passwords (macOS)
or present in the dedicated Security Recommendations interface (iOS, iPadOS, and
visionOS). If the user logs in to a website in Safari using a previously saved password that's
very weak or that's been compromised by a data leak, they're shown an alert strongly
encouraging them to upgrade to an automatic strong password.

Upgrading account authentication security in iOS, iPadOS, and visionOS

Apps that implement an Account Authentication Modification Extension (in the
Authentication Services framework) can provide easy, tap-of-a-button upgrades for
password-based accounts—namely, they can switch to using Sign in with Apple or an
automatic strong password. This extension point is available in iOS, iPadOS, and visionOS.

If an app has implemented the extension point and is installed on device, users see
extension upgrade options when viewing Security Recommendations for credentials
associated with the app in the iCloud Keychain password manager in Settings. The
upgrades are also offered when users sign in to the app with the at-risk credential. Apps
have the ability to tell the system not to prompt users with upgrade options after signing in.
Using new AuthenticationServices API, apps can also invoke their extensions and perform
upgrades themselves, ideally from an account settings or account management screen in
the app.
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Apps can choose to support strong password upgrades, Sign in with Apple upgrades, or
both. In a strong password upgrade, the system generates an automatic strong password
for the user. If necessary, the app can provide custom password rules to follow when
generating the new password. When a user switches an account from using a password to
using Sign in with Apple, the system provides a new Sign in with Apple credential to the
extension to associate the account with. The user's Apple Account email isn't provided as
part of the credential. After a successful Sign in with Apple upgrade, the system deletes
the previously used password credential from the user’s keychain if it's saved there.

Account Authentication Modification Extensions have the opportunity to perform additional
user authentication before performing an upgrade. For upgrades initiated within the
password manager or after signing in to an app, the extension provides the user name and
password for the account to upgrade. For in-app upgrades, only the user name is provided.
If the extension requires further user authentication, it can request to show a custom user
interface before moving on with the upgrade. The intended use case for showing this

user interface is to have the user enter a second factor of authentication to authorize the
upgrade.

Password Monitoring

Password Monitoring is a feature that matches passwords stored in the user’s Password
AutoFill keychain against a continuously updated and curated list of passwords known to
have been exposed in leaks from different online organizations. If the feature is turned
on, the monitoring protocol continuously matches the user’s Password AutoFill keychain
passwords against the curated list.

How monitoring works

The user’s device continuously performs round-robin checks on a user’s passwords,
querying an interval that's independent of the user’s passwords or their password manager
usage patterns. This helps ensure that verification states remain up to date with the
current curated list of leaked passwords. To help prevent leakage of information related to
how many unique passwords a user has, requests are batched and performed in parallel.

A fixed number of passwords are verified in parallel on each check, and if a user has fewer
than this number, random passwords are generated and added to the queries to make up
the difference.

How passwords are matched

Passwords are matched in a two-part process. The most commonly leaked passwords are
contained within a local list on the user’s device. If the user’s password occurs on this list,
the user is immediately notified without any external interaction. This is designed to ensure
that no information is leaked about the passwords a user has that are most at risk due to a
password breach.

If the password isn't contained on the most frequent list, it's matched against less
frequently leaked passwords.
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Comparing users' passwords against a curated list

To verify whether a password not present in the local list is a match involves some
interaction with Apple servers. To help ensure that legitimate users' passwords aren’t sent
to Apple, a form of cryptographic private set intersection is deployed that compares the
users' passwords against a large set of leaked passwords. This is designed to ensure that
for passwords less at risk of breach, little information is shared with Apple. For a user’s
password, this information is limited to a 15-bit prefix of a cryptographic hash. The removal
of the most frequently leaked passwords from this interactive process, using the local list
of most commonly leaked passwords, reduces the delta in relative frequency of passwords
in the web services buckets, making it impractical to infer user passwords from these
lookups.

The underlying protocol partitions the list of curated passwords, which contained
approximately 1.5 billion passwords at the time of this writing, into 2" different buckets.
The bucket a password belongs to is based on the first 15 bits of the SHA-256 hash
value of the password. Additionally, each leaked password, pw, is associated with an
elliptic curve point on the NIST P256 curve: Pw= a-Hg,,(PW), where a is a secret random
key known only to Apple and H,, is a random oracle function that maps passwords to
curve points based on the Shallue-van de Woestijne-Ulas method. This transformation
is designed to computationally hide the values of passwords and helps prevent revealing
newly leaked passwords through Password Monitoring.

To compute the private set intersection, the user’s device determines the bucket the user’s
password belongs to using A, the 15-bit prefix of SHA-256(upw), where upw is one of the
user’s passwords. The device generates their own random constant, 8, and sends the point
P_=B-Hg,,(upw) to the server, along with a request for the bucket corresponding to A.
Here B hides information about the user’s password and limits to A the information exposed
from the password to Apple. Finally, the server takes the point sent by the user’s device,
computes aP_ = af-H, ,(upw), and returns it, along with the appropriate bucket of points—
BA ={ Pow SHA-256(pw) begins with prefix A}—to the device.

The returned information allows the device to compute B, = {B-P_ | P € B,}. If aP_e B’,,
the user's password has been leaked.

Sending passwords to other users or Apple devices

Apple sends passwords securely to other users or Apple devices with AirDrop and on
Apple TV.

Saving credentials to another device with AirDrop

When iCloud is enabled, users can use AirDrop to send a saved credential to another
device. The credential includes the user’'s name and password and the websites it's saved
for. Sending credentials with AirDrop always operates in Contacts Only mode, regardless of
the user's settings. On the receiving device, after user consent, the credentials are stored
in the user’s Password AutoFill Keychain.

Filling in credentials in apps on Apple TV

Password AutoFill is available to fill credentials in apps on Apple TV. When the user focuses
on a user name or password text field in tvOS, Apple TV begins advertising a request for
Password AutoFill over Bluetooth Low Energy (BLE).
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Any nearby iPad or iPhone displays a prompt inviting the user to share a credential with
Apple TV. Here's how the encryption method is established:

- If the device and Apple TV uses the same iCloud account, encryption between the
devices happens automatically.

- If the device is signed in to an iCloud account other than the one used by Apple TV, the
user is prompted to establish an encrypted connection through use of a PIN code. To
receive this prompt, iPhone must be unlocked and in close proximity to the Siri Remote
paired to that Apple TV.

After the encrypted connection is made using BLE link encryption, the credential is sent to
Apple TV and is automatically filled in to the relevant text fields on the app.

Credential provider extensions

On devices with iOS, iPadOS, and macOS, users can designate a participating third-party
app as a credential provider for Password AutoFill in Passwords settings (iOS and iPadOS)
or in Extensions settings in System Settings (macOS 13 or later) or System Preferences
(macOS 12 or earlier). This mechanism is built on app extensions. The credential provider
extension needs to provide a view for choosing credentials. The extension can optionally
provide metadata about saved credentials so they can be offered directly on the QuickType
bar (i0OS and iPadOS) or in an autocomplete suggestion (macOS). The metadata includes
the website of the credential and the associated user name, but not its password. iOS,
iPadOS, and macOS communicate with the extension to get the password when the user
chooses to fill a credential into an app or a website in Safari. Credential metadata is stored
inside the credential provider app’s container and is automatically removed when an app is
uninstalled.

iCloud Keychain

iCloud Keychain security overview

iCloud Keychain allows users to securely sync their passwords and passkeys between

iPad, iPhone, Mac, Apple Watch, and Apple Vision Pro without exposing them to Apple.

In addition to strong privacy and security, other goals for the design and architecture of
iCloud Keychain were ease of use, and the ability to recover keychain contents even all of a
user's devices are inaccessible. iCloud Keychain consists of two services: keychain syncing
and keychain recovery.

iCloud Keychain and keychain recovery are designed such that a user’s passwords and
passkeys are still protected under the following conditions:

- Auser'siCloud account is compromised.
- iCloud is compromised by an external attacker or employee.

- A third party accesses user accounts.
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Password manager integration with iCloud Keychain

i0S, iPadOS, macOS, and visionOS can automatically generate cryptographically strong
random strings to use as account passwords in Safari. iOS, iPadOS, and visionOS can also
generate strong passwords for apps. Generated passwords are stored in the keychain and
synced to other devices. Keychain items are transferred from device to device, traveling
through Apple servers, but are encrypted end-to-end so that Apple and other devices can't
read their contents.

Secure keychain syncing

When a user turns on iCloud Keychain for the first time on a two-factor authentication
account, the device establishes and creates a syncing identity for itself. The syncing
identity consists of asymmetric elliptical keys (using P-384), which are stored in the
device's keychain. Each device maintains its own list of syncing identities of the user’s
other devices, and signs this list using one of its identity keys. These lists are stored in
CloudKit, allowing the user’s devices to reach consensus on how to securely sync keychain
data between themselves.

For compatibility with older iCloud devices, a similar syncing circle of trust is created

and another syncing identity is formed. The public key of the syncing identity is put in
the circle, and the circle is signed twice: first by the private key of the syncing identity,
and then again with an asymmetric elliptical key (using P-256) derived from the user's
iCloud account password. Also stored with the circle are the parameters (random salt and
iterations) used to create the key that's based on the user’s iCloud password.

iCloud storage of the syncing circle

For two-factor authentication accounts, each device’s list of trusted devices is stored in
CloudKit. The lists can't be read without knowing the user’s iCloud password, and they
can’t be modified without having the private keys of the owning device.

Similarly, the signed syncing circle is stored in the user's iCloud key-value storage area,
can't be read without knowing the user’s iCloud password, and is unable to be validly
modified without having the private key of the syncing identity of its member.

How a user’s other devices are added to the syncing circle

New devices, as they sign into iCloud, join the iCloud Keychain syncing circle in one of two
ways: either by pairing with and being sponsored by an existing iCloud Keychain device, or
by using iCloud Keychain recovery.

During the pairing flows, the applicant device creates new syncing identities for both the
syncing circle and the syncing lists (for two-factor authentication accounts) and presents
them to the sponsor. The sponsor adds the public key of the new member to the syncing
circle and signs it again with both its syncing identity and the key derived from the user’s
iCloud password. The new syncing circle is placed in iCloud, where it's similarly signed by
the new member of the circle. In two-factor authentication accounts, the sponsor device
also provides the joining device with a voucher signed by its identity keys, showing that
the applicant device should be trusted. It then updates its individual list of trusted syncing
identities to include the applicant.
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There are now two members of the signing circle, and each member has the public key

of its peer. They now begin to exchange individual keychain items through CloudKit, or
iCloud key-value storage, whichever is most appropriate for the situation. If both circle
members have updates to the same item, one or the other is chosen, resulting in eventual
consistency. Each item that’s synced is encrypted so that it can be decrypted only by a
device within the user’s circle of trust; it can't be decrypted by any other devices or by
Apple.

As new devices join the syncing circle, this “join process” is repeated. For example, when
a third device joins, it can be paired with either of the existing devices. As new peers are
added, each peer syncs with the new one. This is designed to ensure that all members
have the same keychain items.

Only certain items are synced

Some keychain items are device specific, such as iMessage keys, and so must stay on the
device. To prevent unexpected data transport, every item that will sync must be explicitly
marked with the kSecAttrSynchronizable attribute.

Apple sets this attribute for Safari user data (including user names, passwords, and
credit card numbers) as well as for Wi-Fi passwords, HomeKit encryption keys, and other
keychain items supporting end-to-end iCloud encryption.

Additionally, by default, keychain items added by third-party apps don't sync. Developers
must set the kSecAttrSynchronizable attribute when adding items to the keychain.

Secure iCloud Keychain recovery

iCloud Keychain escrows users’ keychain data with Apple without allowing Apple to

read the passwords and other data it contains. Even if the user has only a single device,
keychain recovery provides a safety net against data loss. This is particularly important
when Safari is used to generate random, strong passwords or passkeys for web accounts,
because the only record of those passwords is in the keychain.

A cornerstone of keychain recovery is secondary authentication and a secure escrow
service, created by Apple specifically to support this feature. The user's keychain is
encrypted using a strong passcode, and the escrow service provides a copy of the
keychain only if a strict set of conditions are met.

Use of secondary authentication
There are several ways to establish a strong passcode:

- If two-factor authentication is turned on for the user’s account, the device passcode is
used to recover an escrowed keychain.

- If two-factor authentication isn’t set up, the user is asked to create an iCloud security
code by providing a six-digit passcode. Alternatively, without two-factor authentication,
users can specify their own, longer code, or they can let their devices create a
cryptographically random code that they can record and keep on their own.
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Keychain escrow process

After the passcode is established, the keychain is escrowed with Apple. The device

first exports a copy of the user’s keychain and then encrypts it wrapped with keys in an
asymmetric keybag and places it in the user’s iCloud key-value storage area. The keybag
is wrapped with the user’s iCloud security code and with the public key of the hardware
security module (HSM) cluster that stores the escrow record. This becomes the user'’s
iCloud escrow record. For two-factor authentication accounts, the keychain is also stored
in CloudKit and wrapped to intermediate keys that are recoverable only with the contents
of the iCloud escrow record, thereby providing the same level of protection.

The contents of the escrow record also allow the recovering device to rejoin
iCloud Keychain, proving to any existing devices that the recovering device successfully
performed the escrow process and thus is authorized by the account’s owner.

Note: Besides establishing a security code, users need to register a phone number for their
iCloud account. This provides a secondary level of authentication during keychain recovery.
The user receives an SMS message that need to be replied to for the recovery to proceed.

Escrow security for iCloud Keychain

iCloud provides a secure infrastructure for keychain escrow to help ensure that only
authorized users and devices can perform a recovery. Topographically positioned behind
iCloud are clusters of hardware security modules (HSMs) that guard the escrow records.
As described previously, each has a key that's used to encrypt the escrow records under
their watch.

To recover a keychain, users must authenticate with their iCloud account and password and
respond to an SMS sent to their registered phone number. After this is done, users must
enter their iCloud security code. The HSM cluster verifies that a user knows their iCloud
security code using the Secure Remote Password (SRP) protocol; the code itself isn't sent
to Apple. Each member of the cluster independently verifies that the user hasn’t exceeded
the maximum number of attempts allowed to retrieve their record, as discussed below. If a
majority agree, the cluster unwraps the escrow record and sends it to the user’s device.

The device uses the escrowed data to unwrap the random keys used to encrypt the user’s
keychain. With that key, the keychain—retrieved from CloudKit and iCloud key-value
storage—is decrypted and restored onto the device. The escrow service allows only 10
attempts to authenticate and retrieve an escrow record. After several failed attempts, the
record is locked and the user must call Apple Support to be granted more attempts. After
the 10th failed attempt, the HSM cluster destroys the escrow record and the keychain is
lost forever. This provides protection against a brute-force attempt to retrieve the record,
at the expense of sacrificing the keychain data in response.

These policies are coded in the HSM firmware. The administrative access cards that permit
the firmware to be changed have been destroyed. Any attempt to alter the firmware or
access the private key causes the HSM cluster to delete the private key. Should this occur,
the owner of each keychain protected by the cluster receives a message informing them
that their escrow record has been lost. They can then choose to reenroll.
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Apple Pay

Apple Pay security overview

With Apple Pay, users can use supported iPad, iPhone, Mac, Apple Watch, and

Apple Vision Pro devices to pay in an easy, secure, and private way in stores, apps, and on
the web in Safari. Users can also add Apple Pay-enabled transit, student ID, and access
cards to Apple Wallet. It's simple for users, and it's built with integrated security in both
hardware and software.

Apple Pay is also designed to protect the user’s personal information. Apple Pay doesn't
collect any transaction information that can be tied back to the user. Payment transactions
are between the user, the merchant, and the card issuer.

Apple Pay component security

Apple Pay uses several hardware and software features to provide secure, reliable
purchases.

Secure Element

The Secure Element is an industry-standard, certified chip running the Java Card platform,
which is compliant with financial industry requirements for electronic payments. The
Secure Element IC and the Java Card platform are certified in accordance with the EMVCo
Security Evaluation process. After the successful completion of the security evaluation,
EMVCo issues unique IC and platform certificates.

The Secure Element IC has been certified based on the Common Criteria standard.

NFC controller

The NFC controller handles near field communication protocols and routes communication
between the Application Processor and the Secure Element, and between the Secure
Element and the point-of-sale terminal.

Apple Wallet

The Apple Wallet app is used to add and manage credit, debit, and store cards and to make
payments with Apple Pay. Users can view their cards and may be able to view additional
information provided by their card issuer, such as their card issuer’s privacy policy, recent
transactions, and more in Apple Wallet. Users can also add cards to Apple Pay in:

- Setup Assistant and Settings in iOS, iPadOS, macOS, and visionOS
- The Watch app for Apple Watch

- Wallet & Apple Pay in System Settings (macOS 13 or later) or System Preferences
(macOS 12 or earlier) for Mac computers with Touch ID

In addition, Apple Wallet allows users to add and manage transit cards, rewards cards,
boarding passes, tickets, gift cards, student ID cards, access cards, and more.
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Secure Enclave

The Secure Enclave manages the authentication process and allows authorized
transactions to proceed. Users can authorize using the following methods:

- Biometric authentication

- On Apple Watch, the device needs to be unlocked, and the user needs to double-click
the side button or enter the passcode.

- Password or passcode

The intent is detected and passed directly to the Secure Element or Secure Enclave, where
available, without going through the Application Processor.

Apple Pay servers

The Apple Pay servers manage the setup and provisioning of credit, debit, transit, student
ID, and access cards in Apple Wallet. The servers also manage the Device Account
Numbers stored in the Secure Element. They communicate both with the device and with
the payment network or card issuer servers. The Apple Pay servers are also responsible for
reencrypting payment credentials for payments within apps or on the web.

How Apple Pay keeps users' purchases protected

Secure Element

The Secure Element hosts a specially designed applet to manage Apple Pay. It also
includes applets certified by payment networks or card issuers. Credit, debit, or prepaid
card data is sent from the payment network or card issuer encrypted to these applets using
keys that are known only to the payment network or card issuer and the applets’ security
domain. This data is stored within these applets and protected using the Secure Element’s
security features. During a transaction, the terminal communicates directly with the

Secure Element through the near-field-communication (NFC) controller over a dedicated
hardware bus.

NFC controller

As the gateway to the Secure Element, the NFC controller helps ensure that all contactless
payment transactions are conducted using a point-of-sale terminal that's in close proximity
to the device. Only payment requests arriving from an in-field terminal are marked by the
NFC controller as contactless transactions.

Payment with a credit, debit, or prepaid card (including store cards) is authorized by the
cardholder after using one of the following methods:

- Biometric authentication
- Device passcode or password
- Double-clicking the side button of an unlocked Apple Watch

The payment applets in the Secure Element prepare contactless responses. The controller
then routes them to the NFC field. In this way, the payment details stay within the NFC field
and never reach the Application Processor. In contrast, payment details for in-app and web
payments first go to the Application Processor. However, they are encrypted by the Secure
Element before reaching the Apple Pay server.
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Credit, debit, and prepaid cards

Card provisioning security overview

When a user adds a credit, debit, or prepaid card (including store cards) to Apple Wallet,
Apple securely sends the card information, along with other information about user’s
account and device, to the card issuer or card issuer's authorized service provider (usually
the payment network). Using this information, the card issuer (or its service provider)
determines whether to approve the user’s request to add the card to Apple Wallet. As

part of the card provisioning process, Apple Pay uses three server-side calls to send and
receive communication with the card issuer or payment network:

- Required Fields
« Check Card
- Link and Provision

The card issuer or payment network uses these calls to enable the card issuer to verify,
approve, and add cards to Apple Wallet. These client-server sessions use TLS 1.2 or later
to transfer the data.

Full card numbers aren’t stored on the device or on Apple Pay servers. Instead, a unique
Device Account Number is created by the card issuer, sent encrypted to Apple, and then
stored in the Secure Element. This unique Device Account Number is encrypted in such a
way that Apple can’t access it. The Device Account Number is unique and different from
most credit or debit card numbers, in that the card issuer or payment network can prevent
its use on a magnetic stripe card, over the phone, or on websites. The Device Account
Number in the Secure Element is never stored on Apple Pay servers or backed up to iCloud,
and it's isolated from:

+ Devices that use biometric authentication
- Apple Watch
+  Mac computers with Apple silicon that use the Magic Keyboard with Touch ID

Users can add cards to Apple Watch for Apple Pay using either the Watch app on their
iPhone or the card issuer’s app. To add a card to Apple Watch:

- When paired with an iPhone: The watch must be within Bluetooth communications range
- When set up without an iPhone: The watch must have internet access using Wi-Fi

Cards are specifically enrolled for use with Apple Watch and have their own Device Account
Numbers, which are stored within the Secure Element on the Apple Watch.

When credit, debit, or prepaid cards (including store cards) are added, they appear in a list
of cards during Setup Assistant on devices that are signed in to the same iCloud account.
These cards remain in this list for as long as they are active on at least one device. Cards
are removed from this list after they have been removed from all devices for seven days.
This feature requires two-factor authentication to be enabled on the respective iCloud
account.

When a user provisions an eligible payment card, they can also provision the card to other
Apple Pay-capable devices using the same iCloud account. No information is copied from
the original device. The other devices provision the card using the same flow they would
use during device setup.
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Adding credit or debit cards to Apple Pay

Credit cards can be manually added to Apple Pay in Apple devices.

Adding credit or debit cards manually

To add a card manually, users need to enter the name, card number, expiration date, and
CVV. They can do this through Setup Assistant, Settings, Apple Wallet, or the Watch app.
The device's camera can also capture this information. Apple next tries to fill in the name,
card number, and expiration date. The photo is never saved to the device or stored in the
photo library. After all the fields are filled in, the Check Card process verifies the fields
other than the CVV. They are then encrypted and sent to the Apple Pay server for routing
to the card issuer or payment network.

If a terms and conditions ID is returned by the card issuer or payment network with the
Check Card process, Apple downloads and displays the terms and conditions of the card
issuer to the user. If the user accepts the issuer’s terms and conditions, Apple sends the
ID of the terms that were accepted as well as the CVV to the Link and Provision process.
Additionally, as part of the Link and Provision process, Apple shares information from the
device with the card issuer or network. This includes information about:

- The user’s iTunes and App Store account activity (for example, whether the user has a
long history of transactions within iTunes)

- The user’s device (for example, the phone number, name, and model of the user's
device plus any companion Apple device necessary to set up Apple Pay)

- The user's approximate location at the time the user adds their card (if the user has
Location Services enabled).

Using this information, the card issuer determines whether to approve adding the card to
Apple Pay

As the result of the Link and Provision process, two things occur:

- The device begins to download the Apple Wallet pass file representing the credit or
debit card.

- The device begins to bind the card to the Secure Element.

The pass file contains URLs to download card art, metadata about the card such as contact
information, the related issuer’s app, and supported features. It also contains the pass
state, which includes information such as whether the personalizing of the Secure Element
has completed, whether the card is currently suspended by the card issuer, or whether
additional verification is required before the card can make payments with Apple Pay.

Adding credit or debit cards from an iTunes Store account

For a credit or debit card on file with iTunes, the user may be required to reenter their
Apple Account password. The card number is retrieved from iTunes, and the Check

Card process is initiated. If the card is eligible for Apple Pay, the device downloads and
displays terms and conditions of the card issuer, then sends along the term’s ID and the
card security code to the Link and Provision process. Additional verification may occur for
iTunes account cards on file.
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Adding credit or debit cards from a card issuer’s app

When an app is registered for use with Apple Pay, keys are established for the app and for
the card issuer's server. These keys are used to encrypt the card information that's sent to
the card issuer. This is designed to prevent the information from being read by the Apple
device. The provisioning flow is similar to that used for manually added cards, described
previously, except one-time passwords are used in lieu of the CVV.

Adding credit or debit cards from a card issuer’s website

Some card issuers provide the ability to initiate the card provisioning process for

Apple Wallet directly from their websites. In this case, the user initiates the task by
selecting a card to provision on the card issuer’s website. The user is then redirected to a
self-contained Apple sign-in experience (contained within Apple's domain) and is asked to
sign in with their Apple Account. Upon successfully signing in, the user then chooses one
or more devices to provision the card to and is required to confirm the provisioning result
on each respective target device.

Adding credit or debit cards with Tap to Provision

On an iPhone with iOS 18 or later with the Tap to Provision feature, users can add eligible
credit or debit cards to Apple Wallet by tapping their card to the back of their iPhone
before completing CVV authentication with their card issuers.

On an iPhone with iOS 26 or later, users can complete the authentication with card issuers
using their PIN (if supported by the card issuer).

Note: The Tap to Provision feature isn’t available in all countries or regions.

Adding additional verification

A card issuer can decide whether a credit or debit card requires additional verification.
Depending on what's offered by the card issuer, the user may be able to choose between
different options to complete the verification—for example, with a text message, email, a
customer service call, or a method in the app of an approved card issuer. In the case of
text messages or email, the user is presented an option to select from contact information
the issuer already holds on file. A code is sent, which must be entered into Apple Wallet,
Settings, or the Apple Watch app. In the case of customer service or verification using an
app, the issuer performs their own communication process.

Payment authorization with Apple Pay

A payment can be made only after the Secure Element receives authorization from the
Secure Enclave. This involves verifying that the user has confirmed their intent to pay and
that the user has authenticated themselves using one of the following methods:

- Biometric authentication
- Device passcode or password
- Double-clicking the side button of an unlocked Apple Watch

Biometric authentication, if available, is the default method, but the passcode or password
can be used at any time and is automatically offered after three unsuccessful attempts to
match a fingerprint, or two unsuccessful attempts to match a face. After five unsuccessful
attempts, the passcode or password is required.
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A passcode or password is also required when biometric authentication isn’t configured or
turned on for Apple Pay.

Using a shared pairing key

The Secure Enclave and Secure Element communicate through a serial interface. The
Secure Element links to the NFC controller, which connects to the Application Processor.
Although the Secure Element and Secure Enclave don’t connect directly, they can,
however, communicate securely using a secret created during runtime. In the factory, both
are set up with each other's long-term public keys. The Secure Enclave's public key comes
from its UID key and the Secure Element’s identifier. The corresponding private key is
stored in hardware, hidden from software. During runtime, the long-term public keys create
a shared secret using the Elliptic Curve Diffie-Hellman (ECDH) key agreement protocol.
This shared secret ensures secure communication.

Authorizing a secure transaction

When the user authorizes a transaction, which includes a physical gesture communicated
directly to the Secure Enclave, the Secure Enclave then sends signed data about the type
of authentication and details about the type of transaction (contactless or e-commerce)
to the Secure Element, tied to an Authorization Random (AR) value. The AR value is
generated in the Secure Enclave when a user first provisions a credit card and persists
while Apple Pay is enabled, protected by the Secure Enclave encryption and anti-rollback
mechanism. It's securely delivered to the Secure Element by leveraging the pairing key.
On receipt of a new AR value, the Secure Element marks any previously added cards as
terminated.

Using a payment cryptogram for dynamic security

Payment transactions originating from the payment applets include a payment cryptogram
along with a Device Account Number. This cryptogram, a one-time code, is computed
using a transaction counter and a key. The transaction counter is incremented for each
new transaction. The key is provisioned in the payment applet during personalization and
is known by the payment network or the card issuer or both. Depending on the payment
scheme, other data may also be used in the calculation, including:

- A Terminal Unpredictable Number, for near-field-communication (NFC) transactions
- An Apple Pay server anti-replay value, for transactions within apps and at websites
- User verification results, such as Cardholder Verification Method (CVM) information

These security codes are provided to the payment network and to the card issuer, which
allows the issuer to verify each transaction. The length of these security codes may vary
based on the type of transaction.
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Paying with cards using Apple Pay

Apple Pay can be used to pay for purchases in stores, within apps, and at websites.

Paying with cards in stores

If iPhone or Apple Watch is on and detects an NFC field and if Apple Wallet is set as the
default Payments and Contactless app, the device presents the user with the requested
card (if automatic selection is turned on for that card) or the default card from Apple Wallet
(which is managed in Settings). The user can also go to Apple Wallet and choose a card or,
when the device is locked, can:

- Double-click the side button on devices with Face ID (if Apple Wallet is the default app)

- Double-click the Home button on devices with Touch ID (if Apple Wallet is the default
app)

- Using Accessibility features that allow Apple Pay from the Lock Screen

Next, before information is transmitted, the user must confirm their intent to pay and
authenticate themselves using one of the following methods:

- Biometric authentication
- Device passcode or password
- Double-clicking the side button of an unlocked Apple Watch

No payment information is sent without user authentication.

After the user’s identity is verified, the Device Account Number and a unique security code
are used to process the payment. Neither Apple nor the user’s device shares full card
numbers with merchants. However, Apple may get anonymous data, like the transaction’s
time and place. This information helps improve Apple Pay and other Apple services.

Paying with cards within apps

Apple Pay can also be used to make payments in iOS, iPadOS, macQOS, visionOS, and
watchOS apps. When users pay within apps using Apple Pay, Apple receives the encrypted
transaction information to route to the specific developer or merchant to which the user

is making a payment. Before that information is sent to the developer or merchant, Apple
reencrypts the transaction with a developer-specific key. This is to help ensure that

only an authorized developer with the key-pair can decrypt the information. Apple Pay
retains anonymous transaction information, such as approximate purchase amount. This
information can’t be tied to the user and never includes what the user is buying.

Besides the use of Apple Pay in stores, it also works within iOS, iPadOS, macQS, visionOS,
and watchQS, apps. When users pay in apps, Apple gets the encrypted transaction data.
It then sends this data to the right developer or merchant. Before this, Apple reencrypts
the data with a developer-specific key. This ensures that only authorized developers can
access it. Apple Pay keeps anonymous data, like the purchase amount. However, this data
isn't linked to users and doesn't reveal what they buy.

When an app initiates an Apple Pay payment transaction, the Apple Pay servers receive the
encrypted transaction from the device prior to the merchant receiving it. The Apple Pay
servers then reencrypt the transaction with a merchant-specific key before relaying it to
the merchant.
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When an app requests a payment, it calls an API to determine whether the device supports
Apple Pay and whether the user has credit or debit cards that can make payments on a
payment network accepted by the merchant. The app requests information it needs to
process and fulfill the transaction, such as the billing and shipping address, and contact
information. The app then asks iOS, iPadOS, macOS, watchOS, or visionOS to present

the Apple Pay. This sheet then requests information for the app and other necessary
information, such as the card to use.

At this time, the app is presented with city, state, and postal code information to calculate
the final shipping cost. The full set of requested information isn’t provided to the app until
the user authorizes the payment using one of the following methods:

- Biometric authentication
- Device passcode or password
- Double-clicking the side button of an unlocked Apple Watch

After the payment is authorized, the information presented in the Apple Pay sheet is
transferred to the merchant.

Paying with cards within App Clips

An App Clip is a small part of an app that allows a user do a task quickly (such as renting
a bike or paying for parking) without downloading the full app. If the App Clip supports
payments, the user can use Sign in with Apple (if configured by the app developer) and
then make a payment using Apple Pay. When a user makes a payment from within an App
Clip, all security and privacy measures are the same as when a user pays within an app.

How users authorize, and merchants verify, app payments

Users and merchants ensure secure app payments by passing information to the Apple Pay
servers, the Secure Element, the device, and the app’s API. First, the user authorizes an
app payment. The app then requests a cryptographic anti-replay value from the Apple Pay
servers. The servers send this value and other transaction data to the Secure Element,
which creates a payment credential, one that's encrypted with an Apple key. The Secure
Element then returns the payment credential to the Apple Pay servers, so that they can
decrypt it, verify its anti-replay value against the anti-replay value that the Apple Pay
servers originally sent, and reencrypt it with the merchant’s key. The servers then return
the payment to the device, which hands it back to the app API, with the API passing it
along to the merchant system for processing. Finally, the merchant verifies the payment
credential to confirm the transaction.

The APIs require a Merchant ID Entitlement that specifies the supported Merchant IDs. An
app can also include additional data (such as an order number or customer identity) to
send to the Secure Element to be signed, ensuring that the transaction can't be diverted
to a different customer. This is accomplished by the app developer, who can specify
application-specific data (applicationData) on the request for payment. A hash of this
datais included in the encrypted payment data. The merchant is then responsible for
verifying that their applicationData hash matches what's included in the payment data.
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Paying with cards at websites

Apple Pay can be used to make payments at websites with the following:

- Devices that use biometric authentication
- Apple Watch
+  Mac computers with Apple silicon that use the Magic Keyboard with Touch ID

Apple Pay transactions can also start on a Mac and be completed on an Apple Pay-
enabled iPhone or Apple Watch using the same iCloud account. If the user is transmitting
payment-related information this way, Apple Pay Handoff uses the end-to-end encrypted
Apple Identity Service (IDS) protocol to transmit payment-related information between the
user's Mac and the authorizing device. The IDS client on Mac uses the user’s device keys
to perform encryption so no other device can decrypt this information. These keys aren't
available to Apple.

Device discovery for Apple Pay Handoff contains the type and unique identifier of the
user's credit cards along with some metadata. The Device Account Number of the user’s
card isn't shared, and it continues to remain stored securely on the user’s iPhone or

Apple Watch. Apple also securely transfers the user’s recently used contact, shipping, and
billing addresses over iCloud Keychain.

After the user authorizes a payment, a payment token—uniquely encrypted to each
website’'s merchant certificate—is securely transmitted from the user’s iPhone or
Apple Watch to their Mac and then delivered to the merchant's website.

Note: Only devices in proximity to each other may request and complete payment.
Proximity is determined through Bluetooth Low Energy (BLE) advertisements.

Apple Pay on the web also requires that all participating websites register with Apple. After
the domain is registered, domain name validation is performed only after Apple issues a
TLS client certificate. Websites supporting Apple Pay are required to:

- Serve their content over HTTPS

- Obtain a secure and unique merchant session (for each payment transaction) with an
Apple server using the Apple-issued TLS client certificate

Merchant session data is signed by Apple. After a merchant session signature is verified,
a website may query whether the user has an Apple Pay—capable device and whether they
have a credit, debit, or prepaid card activated on the device. No other details are shared.
If the user doesn't want to share this information, they can turn off Apple Pay queries in
Safari privacy settings on iPad, iPhone, and Mac devices.

If the website is using the latest version of the Apple Pay JS SDK, then Apple Pay
transactions can also be started using any third-party web browser on any operating
system, and be completed on an Apple Pay-enabled iPhone or iPad with iOS 18,iPadOS 18,
or later. For this to occur, a code must be scanned using the device's camera to establish
a connection with the website. When the website presents this code, a secure WebSocket
connection is made between the website and Apple’s servers. Upon scanning this code,
an additional separate secure WebSocket connection is made between the Apple Pay-
enabled device and Apple's servers. This completes the bidirectional connection required
between the website and Apple Pay-enabled device, using Apple’s servers as a relay.

Any communication made between these two parties then follows the usual process for
Apple Pay web transactions.
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After a merchant session is validated, all privacy and security measures are the same as
when a user pays within an app.

Automatic payments and Merchant Tokens

Devices with iOS 16, iPadOS 16, macOS 13, or later, can use Apple Pay merchant tokens,
which ensure secure payments across a user’s devices. The updated Apple Pay payment
sheet optimizes preauthorized payments. The Apple Pay API also supports new transaction
types, allowing developers to customize the payment sheet for specific uses, such as
subscriptions, recurring bills, installment payments, and automatic reloading of card
balances.

Merchant tokens aren’t device specific, and therefore allow for continuity of recurring
payments if the user removes a payment card from the device.

Payments to multiple merchants

In iOS 16 or later, Apple Pay includes the ability to specify purchase amounts for multiple
merchants within a single Apple Pay payment sheet. This allows the flexibility to let
customers make a bundled purchase, such as a travel package with flight, rental car, and
hotel, then send payments to individual merchants.

Contactless passes in Apple Pay

To transmit data from supported passes to compatible NFC terminals, Apple uses the
Apple Value Added Services (Apple VAS) protocol. The VAS protocol can be implemented
on third-party contactless terminals or in iPhone apps and uses NFC to communicate with
supported Apple devices. The VAS protocol works over a short distance and can be used to
present contactless passes independently or as part of an Apple Pay transaction.

When the device is held near the NFC terminal, the terminal initiates receiving the pass
information by sending a request for a pass. If the user has a pass with the pass provider's
identifier, the user is asked to authorize its use using one of the following methods:

- Biometric authentication
- Device passcode or password
- Double-clicking the side button of an unlocked Apple Watch

The pass information, a timestamp, and a single-use random ECDH P-256 key are used
with the pass provider’s public key to derive an encryption key for the pass data, which is
sent to the terminal.

From iOS 12.0.1 through iOS 13, users may manually select a pass before presenting it
to the merchant’'s NFC terminal. On devices with iOS 13.1 or later, pass providers can
configure manually selected passes to either require user authentication or be used
without authentication.
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Rendering cards unusable with Apple Pay

Credit, debit, and prepaid cards added to the Secure Element can be used only if

the Secure Element is presented with authorization using the same pairing key and
Authorization Random (AR) value from when the card was added. On receipt of a new AR
value, the Secure Element marks any previously added cards as terminated. This allows the
operating system to instruct the Secure Enclave to render cards unusable by marking its
copy of the AR as invalid under the following scenarios:

Card termination method Device

The passcode is inactive. iPad, iPhone, Apple Watch, Apple Vision Pro

The password is inactive. Mac

The user signs out of iCloud. iPad, iPhone, Mac, Apple Watch, Apple Vision Pro
The user selects Erase All Content and Settings. iPad, iPhone, Mac, Apple Watch, Apple Vision Pro
The device is restored from Recovery Mode. iPad, iPhone, Mac, Apple Watch, Apple Vision Pro
Unpairing Apple Watch

When a user erases the entire device—using Erase All Content and Settings, using Find My,
or restoring their device—that device instructs the Secure Element to mark all cards as
terminated. This has the effect of immediately changing the cards to an unusable state
until the Apple Pay servers can be contacted to fully erase the cards from the Secure
Element. Independently, the Secure Enclave marks the AR value as invalid so that further
payment authorizations for previously enrolled cards aren’t possible. When the device is
online, it attempts to contact the Apple Pay servers to help ensure that all cards in the
Secure Element are erased.

Suspending, removing and erasing cards

Users can suspend Apple Pay, or remove and erase their cards on devices using the
following methods.

Device Method to suspend Apple Pay Methods to remove and erase cards
from Apple Pay

iPad, iPhone, Mac Place device in Lost Mode using Find My
Find My Apple Wallet
Remove device from icloud.com

Remove device from the
Apple Account

Delete the Apple Account from the
Apple Data and Privacy page
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Device Method to suspend Apple Pay Methods to remove and erase cards
from Apple Pay

Apple Watch Place device in Lost Mode using Find My
Find My Apple Wallet
Remove device from icloud.com

Remove device from the
Apple Account

Delete the Apple Account from the
Apple Data and Privacy page

Remove from the Watch app on
paired iPhone

Apple Vision Pro NA Apple Wallet
Remove device from icloud.com

Remove device from the
Apple Account

Delete the Apple Account from the
Apple Data and Privacy page

When a user suspends or removes cards from Apple Pay, the ability to make payments
using those cards is suspended or revoked by the card issuer or respective payment
network, even if the device is offline and not connected to a Wi-Fi or cellular network.
Users can also contact their card issuer to suspend or remove cards from Apple Pay.

Apple Card security

On supported models of iPhone and Mac, a user can securely apply for an Apple Card.

Apple Card application

On devices with i0S 12.4, iPadOS 13.1, macOS 10.14.6, watchOS 5.3, visionOS 1, or later,
Apple Card can be used with Apple Pay to make payments in stores, in apps, and on
the web.

To apply for Apple Card, the user must be signed into their iCloud account on an

Apple Pay—-compatible iPad or iPhone and have two-factor authentication set up on the
iCloud account, or they can apply at apply.applecard.apple after signing in with their

Apple Account. When the application is approved, Apple Card is available in Apple Wallet or
within Settings > Wallet & Apple Pay across any of the eligible devices the user has signed
in with their Apple Account.

When a user applies for Apple Card, user identity information is securely verified by Apple's
identity provider partners and then shared with Goldman Sachs Bank USA for the purposes
of identity and credit evaluation.

Information such as the social security number or ID document image provided during the
application is securely transmitted to Apple’s identity provider partners and/or Goldman
Sachs Bank USA encrypted with their respective keys. Apple can't decrypt this data.

The income information provided during the application, and the bank account information
used for bill payments, are securely transmitted to Goldman Sachs Bank USA encrypted
with their key. The bank account information is saved in the keychain. Apple can’t decrypt
this data.
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When adding Apple Card to Apple Wallet, the same information as when a user adds a
credit or debit card may be shared with Apple’s partner bank Goldman Sachs Bank USA,
and with Apple Payments Inc. This information is used only for troubleshooting, fraud
prevention, and regulatory purposes.

On devices with iOS 14.6, iPadOS 14.6, and watchOS 7.5, or later, the organizer of an iCloud
family with an Apple Card can share their card with their iCloud Family members over the
age of 13. User authentication is required to confirm the invitation. Apple Wallet uses a key
in the Secure Enclave to compute a signature that binds the owner and the invitee. That
signature is validated on Apple servers.

Optionally, the organizer can set a transaction limit for the participants. Participant cards
can also be locked to pause their spending at any time through Apple Wallet. When a
co-owner or participant over the age of 18 accepts the invitation and applies, they go
through the same application process as defined in the Apple Card application section in
Apple Wallet.

Apple Card usage

A physical card can be ordered from Apple Card in Apple Wallet. After the user receives
the physical card, it's activated using the NFC tag that’s in the bifold envelope of the
physical card. The tag is unique per card and can't be used to activate another user’s card.
Alternatively, the card can be manually activated in Apple Wallet settings. Additionally, the
user can also choose to lock or unlock the physical card at any time from Apple Wallet.

Apple Card payments and Apple Wallet pass details

Payments due on the Apple Card account can be made from a web browser or Apple Wallet
in i0S with Apple Cash and a bank account. Bill payments can be scheduled as recurring or
as a one-time payment at a specific date with Apple Cash and a bank account. When a user
makes a payment, a call is made to the Apple Pay servers to obtain a cryptographic anti-
replay value similar to Apple Cash. The anti-replay value, along with the payment setup
details, is passed to the Secure Element to compute a signature. The signature is then
returned to the Apple Pay servers. The authentication, integrity, and correctness of the
payment are verified through the signature and the anti-replay value by Apple Pay servers,
and the order is passed on to Goldman Sachs Bank USA for processing.

The Apple Card number is retrieved by Apple Wallet by presenting a certificate. The

Apple Pay server validates the certificate to confirm the key was generated in the Secure
Enclave. It then uses this key to encrypt the Apple Card number before returning it to
Apple Wallet, so that only the iPhone that requested the Apple Card number can decrypt it.
After decryption, the Apple Card number is saved in iCloud Keychain.

Displaying the Apple Card number details in the pass using Apple Wallet requires user
authentication with Face ID, Touch ID, or a passcode. It can be replaced by the user in the
card information section and turns off the previous one.

Advanced Fraud Protection

On devices with iOS 15 and iPadOS 15 or later, the Apple Card user can enable Advanced
Fraud Protection in Apple Wallet. When enabled, the Card Security Code refreshes every
few days.
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Apple Cash security

On devices with i0OS 11.2, iPadOS 13.1, visionOS 1, watchOS 4.2, or later, Apple Cash can
be used on an iPad, iPhone, Apple Vision Pro, or Apple Watch to send, receive, and request
money from other users. When a user receives money, it's added to an Apple Cash account
that can be accessed in Apple Wallet or within Settings > Wallet & Apple Pay across any of
the eligible devices the user has signed in with their Apple Account.

Note: Apple Cash is currently available only to users in the United States.

On devices with iOS 14, iPadOS 14, visionOS 1, watchOS 7, or later, the organizer of an
iCloud family who has verified their identity with Apple Cash can enable Apple Cash for
their family members under the age of 18. Optionally, the organizer can restrict the money
sending capabilities of these users to family members only or contacts only. If the family
member under the age of 18 goes through an Apple Account recovery, the organizer of
the family must manually reenable the Apple Cash card for that user. If the family member
under the age of 18 is no longer part of the iCloud family, their Apple Cash balance is
automatically transferred to the organizer's account.

When the user sets up Apple Cash, the same information as when the user adds a credit or
debit card may be shared with Apple’s partner bank in the United States, Green Dot Bank,
and with Apple Payments Inc., a wholly owned subsidiary created to protect the user’s
privacy by storing and processing information separately from the rest of Apple, and in a
way that the rest of Apple doesn’t know. This information is used only for troubleshooting,
fraud prevention, and regulatory purposes.

Using Apple Cash in iMessage

To use person-to-person payments and Apple Cash, a user needs to be signed in with
their personal Apple Account on an Apple Cash-compatible device and have two-factor
authentication enabled. Money requests and transfers between users are initiated from
within the Messages app (in both individual and group messages), from the Wallet app,
and by asking Siri. When a user attempts to send money, the Apple Cash payment sheet
is displayed within Messages. The user can elect to send from the Apple Cash balance, or
from a debit card added to Apple Wallet. If the Apple Cash balance doesn’t cover the full
payment amount, the debit card is used for the remaining balance.

Using Tap to Cash

When using Tap to Cash, a user must be signed in to their iCloud account on iPhone or
Apple Watch and have two-factor authentication set up on the account. To send money,
customers must enter the amount to send, hold their device near another device, and
authenticate using the following methods:

- Biometric authentication
- Device passcode
- Double-clicking the side button of an unlocked Apple Watch

After authentication, devices must be held together for several seconds to establish a
connection that results in the money being sent.
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Using Apple Cash in stores, apps, and on the web

The Apple Cash card in Apple Wallet can be used with Apple Pay to make payments in
stores, in apps, and on the web. Money in the Apple Cash account can also be transferred
to a bank account. In addition to money being received from another user, money can be
added to the Apple Cash account from a debit or prepaid card in Apple Wallet.

Apple Payments Inc. stores, and may use, the user’s transaction data for troubleshooting,
fraud prevention, and regulatory purposes once a transaction is completed. The rest of
Apple doesn't know who the user sent money to, received money from, or where the user
made a purchase with their Apple Cash card.

When the user sends money with Apple Pay, adds money to an Apple Cash account, or
transfers money to a bank account, a call is made to the Apple Pay servers to obtain a
cryptographic anti-replay value, which is similar to the value returned for Apple Pay within
apps. The anti-replay value, along with other transaction data, is passed to the Secure
Element to compute a payment signature. The signature is returned to the Apple Pay
servers. The authentication, integrity, and correctness of the transaction is verified through
the payment signature and the anti-replay value by Apple Pay servers. Money transfer is
then initiated, and the user is notified of a completed transaction.

If the transaction involves:

- A debit card for adding money to Apple Cash
- Providing supplemental money if the Apple Cash balance is insufficient

An encrypted payment credential is also produced and sent to Apple Pay servers, similar to
how Apple Pay works within apps and websites.

After the balance of the Apple Cash account exceeds a certain amount or if unusual activity
is detected, the user is prompted to verify their identity. Information provided to verify the
user's identity—such as social security number or answers to questions (for example, to
confirm a street name the user lived on previously)—is securely transmitted to the Apple
partner and encrypted using their key. Apple can't decrypt this data. The user is prompted
to verify their identity again if they perform an Apple Account recovery, before regaining
access to their Apple Cash balance.

Tap to Pay on iPhone security

With Tap to Pay on iPhone and a supported payment app, merchants can accept all types
of in-person, contactless payments right on their iPhone—from physical debit and credit
cards to Apple Pay and other digital wallets. No extra payment terminals, readers, or
hardware needed.

Tap to Pay on iPhone uses the built-in security and privacy features of iPhone to help
protect the business and customer data. Apple doesn't store card numbers on Apple
servers. Tap to Pay on iPhone doesn’t collect transaction information that can be tied back
to the payer. Payment card data such as Credit/Debit Card Number (PAN) is secured by the
Secure Element and isn't visible to the acceptance device. Apple only gives access to the
payment card data to the merchant’s Payment Service Provider. In addition, the Tap to Pay
on iPhone doesn't collect payer’s names, addresses or phone numbers.

Note: Encrypted card numbers are temporarily stored on iPhone only for transactions made
in Store and Forward mode.
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Tap to Pay on iPhone has been evaluated by an accredited security laboratory and
approved for use by all accepted payment networks in the territories it's available. On an
iPhone with iOS 18.4 or later, Tap to Pay on iPhone is a PClI MPoC validated solution, and
listed on the PCI website.

Contactless payment component security

- Secure Element: The Secure Element hosts the payment acceptance applets and kernel
configurations which read and secure the contactless payment card data.

« NFC Controller: The NFC controller handles Near Field Communication protocols and
routes communication between the Application Processor and the Secure Element, and
between the Secure Element and the contactless payment card.

- Tap to Pay on iPhone servers: The Tap to Pay on iPhone servers manage the setup and
provisioning of the payment kernels in the device. The servers also monitor the security
of the Tap to Pay on iPhone devices in a manner compatible with the Mobile Payments
on COTS (MPoC) standard from the Payment Card Industry Security Standards Council
(PCI SSC) and are PCI DSS compliant.

How Tap to Pay on iPhone reads credit, debit, and prepaid cards

Provisioning security overview

Upon first use of Tap to Pay on iPhone using a sufficiently entitled app, the Tap to Pay
on iPhone server determines whether the device meets the eligibility criteria such as
Device Model, iOS version, and whether a passcode has been set. After this verification
is complete, the payment acceptance applets are downloaded from the Tap to Pay on
iPhone server and installed on the Secure Element, along with the associated kernel
configurations. This operation is performed securely between the Tap to Pay on iPhone
servers and the Secure Element. The Secure Element validates the integrity and
authenticity of this data prior to installation.

Card read security overview

When a Tap to Pay on iPhone app requests a card read from the ProximityReader
framework, a sheet—controlled by iOS—is displayed and prompts the user to tap a payment
card. iOS initializes the Payment Card Reader and then requests the payment kernels in the
Secure Element to initiate a card read.

At this point, the Secure Element assumes control of the NFC controller in Reader Mode.
This mode allows card data to be exchanged only between the payment card and the
Secure Element through the NFC controller.

After the payment acceptance applet on the Secure Element has completed the payment
card read, it encrypts and signs the payment card data. The payment card data remains
encrypted and authenticated until it reaches the Payment Service Provider. Only the
Payment Service Provider used by the app to request the card read can decrypt the
payment card data. The Payment Service Provider must request the payment card data
decryption key from the Tap to Pay on iPhone server. The Tap to Pay on iPhone server
emits decryption keys to the Payment Service Provider after validation of the integrity and
authenticity of the data, and after verifying that the card read was performed within 60
seconds of the request for the payment card data decryption key.

This model helps ensure that the payment card data cannot be decrypted by anyone other
than the Payment Service Provider, which processes this transaction for the merchant.
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Store and Forward Mode

To support use cases with limited connectivity, Tap to Pay on iPhone can be configured

to run in Store and Forward mode. This allows Tap to Pay on iPhone to read and encrypt
payment card data while not connected to the internet. For Store and Forward transactions
the Payment Service Provider may request the payment card data decryption key for up

to 14 days after the card was read. With encryption on the Secure Element, Tap to Pay on
iPhone is designed to protect the integrity and confidentiality of the payment card data
while it is temporarily stored on iPhone. PIN entry isn't supported for Store and Forward
transactions.

Card PIN entry security overview

PIN entry allows the payer to enter their PIN on the acceptance device to authorize the
transaction. The PIN entry screen may be initiated immediately after the tap based on the
information exchanged with the payment card. Alternatively, the Payment Service Provider
can initiate the PIN screen by providing a signed token, which is valid for one specific
transaction only.

The PIN entry mechanism has been evaluated by an accredited security laboratory and is
approved for use by all accepted payment networks in the territories where it's available.
Tap to Pay on iPhone is designed to prevent all photo, video, screenshot and screen-
recording features from capturing PIN information.

The PIN digits entered are securely captured by the Secure Element. Using these PIN
digits, the Secure Element creates a payment industry standard compliant encrypted PIN
block. To decrypt the PIN block, the Payment Service Provider must request the PIN block
decryption key from the Tap to Pay on iPhone server.

The PIN value is:

- Never available to the merchant on their acceptance device.
- Never decrypted by Apple.
- Never stored by Apple.

Securing the merchant device during PIN entry

During the PIN entry process, the device will be facing the payer, and may be held

away from the merchant. To ensure the protection of the merchant device and data, the
merchant has the option to enable the Tap to Pay on iPhone Screen Lock setting. This
option is found in the settings for each App that supports Tap to Pay on iPhone. Enabling
this option will lock the merchant’s device while showing the PIN entry screen. After the
payer enters their card PIN, the merchant will need to perform a Face ID, Touch ID or
Passcode unlock to further operate the device, ensuring the payer cannot access the
merchant’s device.
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Using Apple Wallet

Access using Apple Wallet

In Apple Wallet on supported iPhone and Apple Watch devices, users can store multiple
types of keys. When a user arrives at a door, the right key can even be automatically
presented (if Express Mode is supported by that key and was turned on), allowing them to
enter with just a tap using Near Field Communication (NFC).

User convenience

Express Mode

When a key is added to Apple Wallet, Express Mode is turned on by default. Keys in
Express Mode interact with accepting terminals without Face ID, Touch ID, passcode
authentication, or double-clicking the side button on Apple Watch. To turn off this feature,
users can turn off Express Mode by tapping the More button on the front of the card
representing key in Apple Wallet. To turn Express Mode back on, the user needs to use
Face ID, Touch ID, or a passcode.

Key sharing
On an iPhone with iOS 16 or later, key sharing is available for certain key types.

Users can share access to a key (for example a house or car key), with security and privacy
enforced from the key owner’s iPhone to the invited key recipient’s iPhone. Keys are shared
by tapping on the share icon of the key in Apple Wallet and can be shared using methods
that appear in the share sheet. Key owners can also choose the access level and valid time
period for each shared key. The key owner has visibility over all the keys that they shared
and can revoke access for any shared key, including any instances where the key is shared
again to another user by the initial key recipient.

The key sharing invitation is stored anonymized and secured by a dedicated server inside
a mailbox, and protected with an AES 128 or 256 encryption key. The encryption key is
never shared with the server or anyone, apart from intended key recipient, and only the
key recipient can decrypt the invitation. Upon mailbox creation, the key owner’s iPhone
provides a device claim that's bound only to that mailbox by the server. When the key
recipient’s iPhone initially accesses this mailbox, it presents a key recipient device claim.
Only the key owner and key recipient iPhone devices that present valid device claims can
access that mailbox. Each iPhone device claim has its unique UUID value as per RFC 4122.

As an additional security measure, the key owner can turn on a 6-digit randomly-generated
activation code that’'s required on the key recipient’'s iPhone. The number of code retries

is enforced and validated either by key owner or partner server. This activation code must
be communicated by the key owner to the key recipient and the key recipient must present
that code when prompted for its validation either by key owner or partner server.

After an invitation is redeemed by the key recipient, it's immediately wiped from the server
by the receiving iPhone. The mailbox containing the key sharing invitation also has a
limited lifetime, which is set upon mailbox creation and enforced by the server. Any expired
invitations are automatically erased by the server.

Depending on the original manufacturer, keys may also be shared with non-Apple devices
however, their method of securing key sharing may be different than Apple's.
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Privacy and security

Access keys in Apple Wallet take full advantage of the privacy and security built into
iPhone and Apple Watch. When or where a person uses their keys in Apple Wallet is never
shared with Apple or stored on Apple servers, and credentials are securely stored inside
the Secure Element of supported devices. The Secure Element hosts specially designed
applets to securely manage keys, ensuring that they can’t be extracted or leak.

Before provisioning any keys, a user must be signed in to their iCloud account on a
compatible iPhone and have two-factor authentication turned on for their iCloud account,
with the exception of a student ID (which doesn’t require two-factor authentication to be
turned on).

When a user initiates the provisioning process, similar steps as those involved in credit
and debit card provisioning take place, such a link and provisioning. During a transaction,
the reader communicates with the Secure Element through the near-field-communication
(NFC) controller using an established secure channel.

The number of devices, including iPhone and Apple Watch, that can be provisioned
with a key is defined and controlled by each partner and can vary from one partner to
another. This approach allows each partner to have control over the maximum number
of provisioned keys per device type to suit their specific needs. For this purpose, Apple
supplies partners with device type and anonymized device identifiers. Identifiers are
different for every partner for privacy and security reasons.

Partners also receive user identifiers, which are anonymized and unique-per-partner. This
lets them securely bind the key to the user iCloud account during the initial provisioning.
This measure protects keys from being provisioned by a different user in case a user
account created with the partner was compromised, for example, in account takeover
attack scenario.

Keys can be made inactive or removed by:

- Erasing the device remotely with Find My

- Enabling Lost Mode with Find My

+ Receiving a device management remote wipe command

- Removing all cards from their Apple Account account page
+ Removing all cards from iCloud.com

+ Removing all cards from Apple Wallet

- Removing the card in the issuer’s app

On an iPhone with iOS 15.4 or later, when a user double-clicks the side button on an iPhone
with Face ID or double-clicks the Home button on an iPhone with Touch ID, their passes
and access key details aren't displayed until they authenticate to the device. Either Face ID,
Touch ID, or passcode authentication is required before pass specific information including
hotel booking details are displayed in Apple Wallet.
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Access key types

There are different types of access from Apple Wallet, such as hospitality, corporate
badges, student IDs, home keys, and car keys.

Hospitality

Hotel room keys in Apple Wallet help deliver an easy and contactless experience from
check-in to check-out, while providing additional privacy and security benefits for guests
on top of traditional hotel key cards. Hotel guests at supported locations can tap to unlock
with room keys in Apple Wallet on their compatible iPhone and Apple Watch Series 4 or
later.

The capabilities in Apple Wallet are specifically designed to reduce friction for the
customer:

- Prearrival provisioning from the hotel's app, to add a pass to Apple Wallet ahead of a
stay

- Check-in pass tiles, to initiate check-ins and room assignments from Apple Wallet
- Post-provisioning key updates, to support extending or modifying current stays
- Multiroom key support for a single pass in Apple Wallet

- Auto-archiving of expired keys in Apple Wallet

Disney MagicMobile passes

Users can add a Disney MagicMobile Pass to Apple Wallet on iPhone or Apple Watch to
enter participating Disney theme parks. MagicMobile Passes can be used for entry into the
park as well as at other applicable readers throughout the parks.

To add a Disney MagicMobile Pass, in addition to having two-factor authentication enabled
on their iCloud account, a user must have tickets or reservations to a participating

theme park associated with a valid My Disney Experience account. From the My Disney
Experience app on their iPhone, the user can select one or more passes to add to

Apple Wallet. If the user has a paired Apple Watch, the selected passes are automatically
provisioned onto both the user’s iPhone and their paired Apple Watch. Express Mode is
turned on by default for passes added to both iPhone and Apple Watch devices. For ease
of use, when Express Mode is turned on, it's turned on for all MagicMobile passes currently
on the device.

Multiple passes can be added to a single device so users can manage the passes for all
members in their party. Users may also choose to use the My Disney Experience app to
share passes with other users. Recipients can add the shared passes to their Apple Wallet.

Corporate badges

Employee badges of supported partners can be added to Apple Wallet on iPhone and
Apple Watch, allowing employees around the world contactless access to their workplaces.
To add a badge, an employee must have multifactor authentication enabled for their
account used to sign in to the app provided by their employer.

Employee badge takes advantage of Apple's access capabilities, allowing users to:

- Automatically add an employee badge to their paired Apple Watch through push
provisioning that doesn’t require installing a partner’s app
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- Seamlessly access office amenities utilizing Express Mode

- Gain access to the workplace even after their iPhone runs out of battery

Student ID cards

On an iPhone with iOS 12 or later, students, faculty, and staff at participating campuses can
add their student ID card to Apple Wallet on supported models of iPhone and Apple Watch
to access locations and pay wherever their card is accepted.

A user adds their student ID card to Apple Wallet through an app provided by the card
issuer or participating school. The technical process by which this occurs is the same as
the one described in Adding credit or debit cards from a card issuer’s app. In addition,
issuing apps must support two-factor authentication on the accounts that guard access
to their student IDs. A card may be set up simultaneously on a user's iPhone and a paired
Apple Watch.

Multifamily homes

Tenants and staff of supported partner facilities can use their home key in Apple Wallet

to access their building, unit, and common areas. The home key can be provisioned

from the app provided by the partner. For partners that support frictionless provisioning,
property managers can send tenants a link to initiate provisioning using their preferred
messaging channel (for example, email or SMS) so that the tenant only needs to click the
link to redeem the key. App Clips also provide a secure and seamless experience, making it
possible to provision a key without installing a partner’s app. For more information, see the
Apple Support article Use App Clips on iPhone.

Multifamily home key can also be used in Express Mode and can be securely shared with
friends and family members. For more information, see Key sharing.

Home key

A home key in Apple Wallet can be used with supported NFC-enabled door locks with a
simple tap of an iPhone or Apple Watch. For more information about how a user can set up
and use a home key, see the Apple Support article Unlock your door with a home key on
iPhone.

When a user sets up a home key, all residents in their household also automatically receive
the home key. To further share a home key or remove a member of a shared home, the
owner of a home can use the Home app to manage invitations and members. When a user
chooses to accept an invitation to join a home with a home key, this initiates provisioning
of the home key into Apple Wallet on their devices. If a user chooses to leave a home or

if the home owner withdraws their access, these actions also remove the home key from
Apple Wallet.

Car key

Storing car keys digitally in Apple Wallet is available natively in supported iPhone devices
and paired Apple Watch devices. Car keys are represented as passes (created by Apple

on behalf of the automaker) in Apple Wallet and support the full Apple Pay card life cycle
(iCloud Lost Mode, Remote Wipe, local pass deletion, and Erase All Content and Settings).
As with standard Apple Pay cards, shared car keys can be deleted from the owner's iPhone,
Apple Watch, and in the vehicle’'s Human Machine Interface (HMI).
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Car keys can be used, for example, to unlock and lock the vehicle, open and close the
trunk, turn the alarm on and off, start the engine, or set the vehicle into drive mode. The
standard transaction offers mutual authentication and is mandatory for engine start.
Unlock and lock transactions might use the fast transaction when required for performance
reasons.

Keys are created by connecting (or pairing) an iPhone with an owned and supported
vehicle. All keys are created inside Secure Element based on elliptic curve (NIST

P-256) on-board key generation (ECC-OBKG), and the private keys never leave the
Secure Element. Communication between devices and the vehicle uses either NFC or a
combination of Bluetooth LE and Ultra-WideBand (UWB). Key management uses an Apple
to automaker server APl with mutually authenticated TLS. After a key is paired with an
iPhone, any Apple Watch paired with that iPhone can also receive a key. When a key is
deleted either in the vehicle or on the device, it can’t be restored. Keys on lost or stolen
devices can be suspended and resumed, but reprovisioning them on a new device requires
a new pairing or sharing.

Car keys can also be used in Express Mode and can be securely shared with friends and
family members. For more information, see Key sharing. For more information on security
and privacy of the digital car keys, see Car key security.

Scooter key

On an iPhone with iOS 17 or later and in certain countries or regions with supported
partners, users can get a scooter key provisioned from the partner app directly into
Apple Wallet on supported an iPhone and paired Apple Watch for the following purposes:

- Tap to lock or unlock the scooter
- Tap to lock or unlock the scooter’s trunk (if available)

A dedicated applet in the Secure Element securely handles cryptographic credentials
associated with the scooter key and allows secure transactions the with scooter.

On the back of the pass users can access additional information about their scooters,
such as the last four digits of vehicle identification number (VIN) and its license or number
plate. Such information may be considered private and can be accessed only when using
biometric authentication or the device passcode.

The scooter key can also be used in Express Mode and can be securely shared with friends
and family members. For more information, see Key sharing.
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Car key security

Car key security in i0OS

Developers can support secure keyless access to a vehicle with a supported iPhone and a
paired Apple Watch.

Owner pairing

The owner must prove possession of the vehicle (the method is dependent on the
automaker, often they have to bring one or two key fobs) and can start the pairing process
in the automaker's app, by using an email link received from the automaker or from

the vehicle menu. In all cases, the owner must present a confidential one-time pairing
password to the iPhone, which is used to generate a secure pairing channel using the
SPAKE2+ protocol with the NIST P-256 curve to create an Global Platform SCP03 secure
channel to transfer data between the device and the vehicle. When using the app or the
email link, the password is automatically transferred to the iPhone, where it needs to be
entered manually when pairing is started from the vehicle.

In the owner pairing process, the vehicle sends a request through the SCP03 channel
instructing the device’'s Secure Element to generate an Elliptic Curve Cryptography (ECC)
key pair. The vehicle identifier and the vehicle public key are then securely bound to

this key pair. The device public key (device.PK) is sent back to the vehicle in an X.509
certificate format together with a certificate chain that's verifiable with the automaker root
certificate public key (root.PK), which is embedded in the vehicle at production. This
allows for verification and acceptance of the device public key as the owner key.

The owner key in the device Secure Element also securely binds the automaker root.PK,
which is provided by the vehicle through the SCP03 channel, to the device.PK for key
sharing.

If required for insurance purposes, each owner's key needs to be registered with the
automaker's server. The device sends its device.PK certificate chain to the key tracking
server (KTS) which sends back a signature to confirm the registration. The device provides
the signature to the vehicle at the end of the owner pairing process or at the next standard
transaction with the vehicle (see below), and the vehicle enables the owner key if the KTS
signature has been successfully verified. The KTS signature keys are proprietary to the
automaker.

Key sharing

The sender’s iPhone can share keys to eligible devices by sending an invitation URL to the
recipient through any communication channel for example email, iMessage, WhatsApp,
WeChat or AirDrop. The URL directs the receiver to a privacy-protected mailbox on a relay
server which is implemented based on an IETF specification. The privacy encryption key is
sent as a fragment in the sharing URL.

During this process, the sender’s iPhone requests a user authentication (Face ID, Touch ID,
or passcode entry) and a secure user intent described in Uses for Optic ID, Face ID,

and Touch ID. The sender authorization is stored temporarily in the Secure Element for
consumption later when the recipient device returns the signing request.
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For added security, to activate the shared key, the sender may require recipient to use one
of the available activation options supported by their automaker or passcode entered on
recipient device.

Upon acceptance of the invitation, the recipient’s device retrieves key creation data

from the relay server mailbox and creates a digital key according to the CCC Digital Key
Specification. As a part of key creation process, the key is signed by the sender. The
recipient device sends the key creation certificate chain back using the relay server to the
sender’s iPhone. The sender’s iPhone then uses the root.PK embedded in the Secure
Element to verify that the recipient key was created using the expected certificate chain. If
successful, the sender’s iPhone signs the ECC-public key of the recipient device and sends
the signature back to the recipient using the relay server. The signature is authorized by
consuming the sender authorization previously stored in the Secure Element.

The key entitlements and the sender signature are provided to the vehicle during the first
use of the shared key on the vehicle (see Standard transactions). Entitlements describe the
following:

- Access level: For example, unlock or drive.

« Resharing policy: For example, no resharing, limited resharing, or unlimited resharing (in
terms of sharing chain length).

Some automakers require each shared key to be registered with the automaker's server.
If required, the recipient device sends its device.PK certificate chain to the automaker’s
KTS which returns a signature to confirm the registration. The recipient device presents
that signature to the vehicle in the first transaction with the vehicle (see Standard
transactions). The vehicle validates the signature and—if the KTS signature has been
successfully verified—enables the shared key. These signature keys are proprietary to the
automaker.

Key deletion

Keys can be deleted the following ways:

+ On the keyholder device

- From the owner's device

- From a sharer device with the proper authorizations
+  While inside the vehicle

Deletions on the keyholder iPhone are effective immediately, even if the keyholder is using
the key or if the device isn't connected to the internet.

Deletion of keys in the vehicle might be possible, at discretion of the automaker policy:
- Anytime

- Only when the vehicle is online

- Only when a key fob is present (to avoid being stranded without key)

In each case, the deletion on keyholder device or vehicle is reported to the KTS on the
automaker side, which registers issued keys to a vehicle for insurance purposes.
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The owner and eligible users can request a deletion using a remote termination request
signed by the requester’s private key (device.SK) by selecting the users in the shared
keyholder accounts list on the back of their car key pass in Apple Wallet. The request is
first sent to the automaker for key removal in the vehicle. The conditions for removing the
key from the vehicle are defined by the automaker (as listed above). Only when the key

is removed from the vehicle will the automaker server send a signed remote termination
request to the keyholder device.

When a key is terminated in a device, the applet that manages the digital car keys creates a
cryptographically signed termination attestation, which is used as proof of deletion by the
automaker and used to remove the key from the KIS.

Privacy

The automaker's KTS doesn’t store the device ID, SEID, or Apple Account. It stores only a
mutable identifier—the instance CA identifier. This identifier isn’'t bound to any private data
in the device or by the server, and it's deleted when the user initiates an Erase All Contents
and Settings.

The CCC standard also mandates that the KTS information is kept confidential on the
automaker side and is only used in case of insurance or other eligible requests.

Key registration data (key identifier, vehicle identifier, vehicle public key, device public

key certificate chain, key entitlements) that's sent by the device to the KTS is encrypted
against a KTS privacy encryption public key. Apple servers transmitting the key registration
data from the device to the automaker server aren't able to decrypt this data. Apple
doesn’t know who the owner shared keys for their vehicle with.

Any other accessory to iPhone or Apple Watch which isn’t able to authenticate to the
device is unable to receive a stable identifier through a standard or fast transaction over
NFC or Bluetooth. If the device doesn’t recognize the vehicle identifier (for example,
attempting by mistake to access a vehicle that looks similar to the keyholder’s vehicle)
then the applet in the Secure Element uses a substitute key that generates random values
instead of meaningful keys or cryptograms.

The initial Bluetooth connection is protected by the use of temporary keys that are
provided when sharing the car key or by the automaker in the response to the key tracking
request.
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Car key transactions

Car key can use various types of transactions.

Fast transactions

The fast transaction is used only to unlock the vehicle over NFC.

The iPhone generates an AES-128 cryptogram based on a secret previously generated
on both sides during a standard transaction. This cryptogram allows the vehicle to
quickly authenticate the device in performance sensitive scenarios as only symmetric
cryptography is used and only one transfer between the NFC reader and the processing
Electronic Control Unit (ECU) is required. If the vehicle requires read or write access to
either the private mailbox, the confidential mailbox, or both (each car key in the Secure
Element has its pair of mailboxes), a Global Platform SCP03 secure channel between the
vehicle and the device is established by deriving session keys from a secret previously
shared during a standard transaction and a new ephemeral key pair. The ability of the
vehicle to establish the secure channel authenticates the vehicle to the iPhone. If the
vehicle stores keys for multiple devices it must use a “try and error” method with a
"most used first” scheme to find the right symmetric key as the device doesn’t give out
a trackable identifier in the fast transaction where the vehicle isn't authenticated by the
device.

If no symmetric keys have been established for the transacting device, the vehicle uses the
ephemeral vehicle public key (vehicle.PK) to continue with a standard transaction (see
Standard transactions below.

Standard transactions

The standard transaction is used to unlock the vehicle over NFC if no symmetric keys for
a fast transaction are established through a prior standard transaction or when a newly
shared key transacts with the vehicle for the first time (first friend key transaction, FFT).
It's always used to authorize driving.

The vehicle initiates a secure channel between the vehicle and an iPhone by generating
ephemeral ECC key pairs on the reader and the iPhone side. Using a ECKA-DH key
agreement method, a shared secret can be derived on both sides and used for generation
of a shared symmetric key for the fast transaction using Diffie-Hellman, a HKDF key
derivation function (RFC 5869), and signatures from the long-term key established during
pairing.

The ephemeral public key generated on the vehicle side is signed with the reader’s long-
term private key, which results in an authentication of the vehicle by the iPhone. From the
iPhone perspective, this protocol is designed to prevent privacy-sensitive data from being
revealed to an adversary intercepting the communication or impersonating a vehicle.

The iPhone uses the established, nonauthenticated secure channel to encrypt its public
key identifier along with the signature computed on a reader’s data-derived challenge and
some additional app-specific data. This verification of the iPhone signature by the vehicle
allows the reader to authenticate the device.
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The NFC standard transaction is also used for the first approach (FFT) of a newly shared
key to the vehicle, as the vehicle doesn’t yet know the new device.PK). When the user
approaches the door handle, the vehicle starts a fast transaction but wouldn’t be able to
verify the cryptogram. It then continues with a standard transaction (the reader command
for the fast transaction, AUTHO, is also the first command for the standard transaction),
creates a GP SCP03 secure channel and reads the private mailbox content that should
contain an attestation of the new device.PK, signed by the sharer (sharer.PK or owner.
PK are already known to the vehicle) and signed by the KTS using automaker proprietary
cryptography. After verification of the signatures the vehicle accepts the device.PK as a
new key.

BLE/UWB standard transactions

For vehicles using a ultra-wideband-enabled (UWB) key, a Bluetooth LE session is
established between the vehicle and the iPhone. Similar to the NFC transaction, a shared
secret is derived on both sides and used for the establishment of a secure session. This
session is used to subsequently derive and agree a UWB Ranging Secret Key (URSK). The
URSK is provided to UWB radios in the user’s device and, in a vehicle OEM-proprietary
secure channel, to UWB anchors.

Note: Anchors are generally placed on the four corners of a vehicle, inside, and optionally
in the trunk of the vehicle to enable accurate and authenticated localization of the user's
device to a specific position near to or inside the vehicle. The vehicle then uses the device
position to make decisions about allowing unlocking or starting of the vehicle.

URSKs have a predefined expiration time (time-to-live, or TTL). To avoid interruption of
ranging when a TTL expires, URSKs can be prederived in the device Secure Element and
the vehicle hardware security module (HSM)/Secure Element while secure ranging isn't
active but Bluetooth is connected. This avoids the need for a standard transaction to derive
a new URSK in a time-critical situation. The prederived URSK can be transferred very
quickly to the UWB radios of car and device to avoid interrupting the UWB ranging.

Adding transit and eMoney cards to Apple Wallet

In many global markets, users can add supported transit and eMoney cards to Apple Wallet
on supported models of iPhone and Apple Watch. Depending on the operator, this may

be done by transferring the value or commuter pass (or both) from a physical card into its
digital Apple Wallet representation, or by provisioning a new transit or eMoney card from
Apple Wallet or the card issuer’s app. After transit cards are added to Apple Wallet, users
can ride transit simply by holding their iPhone or Apple Watch near the transit reader. Some
transit cards can also be used to make payments.

How transit and eMoney cards work

Added transit and eMoney cards are associated with a user’s iCloud account. If the
user adds more than one card to Apple Wallet, Apple or the card issuer may be able to
link the user’s personal information and the associated account information between
cards. Transit and eMoney cards and transactions are protected by a set of hierarchical
cryptographic keys.
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During the process of transferring the balance from a physical card to Apple Wallet, users
are required to enter card-specific information. Users may also need to provide personal
information for proof of card possession. When transferring passes from iPhone to

Apple Watch, both devices must be online.

The balance can be recharged with funds from credit, debit, and prepaid cards through
Apple Wallet or from the transit or eMoney card issuer’s app. To understand the security
of reloading the balance when using Apple Pay, see Paying with cards within apps. To learn
how the card is provisioned from within the card issuer’s app, see Adding credit or debit
cards from a card issuer’s app.

If provisioning from a physical card is supported, the transit or eMoney card issuer has the
cryptographic keys needed to authenticate the physical card and verify the user’s entered
data. After the data is verified, the system can create a Device Account Number for the
Secure Element and activate the newly added pass in Apple Wallet with the transferred
balance. For some cards, after provisioning from the physical card is complete, the
physical card is inactive.

At the end of either type of provisioning, if the card balance is stored on the device, it's
encrypted and stored to a designated applet in the Secure Element. The operator has the
keys to perform cryptographic operations on the card data for balance transactions.

By default, transit card users benefit from the seamless Express Transit experience that
allows them to pay and ride without requiring Face ID, Touch ID, or a passcode. Information
such as recently visited stations, transaction history, and additional tickets may be
accessed by any nearby contactless card reader with Express Mode enabled. Users can
turn on the Face ID, Touch ID, or the passcode authorization requirement in the Wallet

& Apple Pay settings by turning off Express Transit. Express Mode isn't supported for
eMoney cards.

As with other Apple Pay cards, users can suspend or remove eMoney cards by:

- Erasing the device remotely with Find My

- Enabling Lost Mode with Find My

- Entering a device management service remote wipe command
- Removing all cards from their Apple Account page

- Removing all cards from iCloud.com

- Removing all cards from Apple Wallet

- Removing the card in the issuer’s app

Apple Pay servers notify the card operator to suspend or make those cards inactive. If a
user removes a transit or eMoney card from an online device, the balance can be recovered
by adding it back to a device signed in with the same Apple Account. If a device is offline,
powered off, or unusable, recovery may not be possible.
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Adding transit and eMoney cards to a family member’s Apple Watch

On devices with iOS 15 and watchOS 8, or later, the organizer of an iCloud family can
add transit and eMoney cards to their family members’ Apple Watch devices through the
Watch app on their iPhone. When provisioning one of these cards to a family member’s
Apple Watch, the watch is required to be nearby and connected to the organizer's iPhone
using Wi-Fi or Bluetooth. Family members are required to have two-factor authentication
enabled for their Apple Account for this to occur.

Family members can send a request to add money to a transit or eMoney card from their
Apple Watch using iMessage. The content of the message is protected by end-to-end
encryption, as described in iMessage security overview. Adding money to a card on a
family member’'s Apple Watch can be done remotely using a Wi-Fi or cellular connection.
Proximity isn't required.

Note: This feature may not be available in all countries or regions.

Credit and debit cards

In some cities, transit readers accept EMV (smart) cards to pay for transit rides. When
users present an EMV credit or debit card to those readers, user authentication is required,
just as with "Pay with credit and debit cards in the stores.”

On devices with iOS 12.3 and watchOS 5.2.1, or later, some existing EMV credit or debit
cards in Apple Wallet can be enabled for Express Transit. Express Transit lets users

pay for a trip at supported transit operators without requiring Face ID, Touch ID, or a
passcode. When a user provisions an EMV credit or debit card, the first card provisioned to
Apple Wallet is enabled for Express Transit. The user can tap the More button on the front
of the card in Apple Wallet and turn off Express Transit for that card by setting Express
Transit Settings to None. The user can also select a different credit or debit card as their
Express Transit card using Apple Wallet. To reenable or select a different card for Express
Transit, the user must use one of the following methods:

- Biometric authentication
- Device passcode
- Double-clicking the side button of an unlocked Apple Watch

Note: Apple Card and Apple Cash are eligible for Express Transit.

IDs in Apple Wallet

IDs in Apple Wallet

On iPhone 8 or later with iOS 15.4 or later and Apple Watch Series 4 or later with
watchQOS 8.4 or later, users in participating U.S. states can add their state ID or driver’s
license to Apple Wallet and tap their iPhone or Apple Watch to seamlessly and securely
present it at participating locations.

On iPhone 8 or later with iOS 18.5 or later, users can add their Japanese My Number Card
to Apple Wallet on iPhone, and with iOS 26.1 or later and watchOS 26.1 or later, users with
a valid U.S. passport can create a Digital ID in Apple Wallet on iPhone or Apple Watch.

IDs in Apple Wallet use security features built into the hardware and software of the user's
device to help protect their identity and help keep their personal information secure.
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Add a driver’s license or state ID to Apple Wallet

On iPhone, users can tap the Add button (+) at the top of the screen in Apple Wallet

to begin adding their license or ID. If users have an Apple Watch paired at the time of
setup, they are prompted to also add their driver’s license or ID to their Apple Wallet on
Apple Watch.

Users are first asked to use their iPhone to scan the front and back of their physical
driver’s license or state ID card. The iPhone evaluates the quality and type of images to
help ensure that the images provided are acceptable by the state issuing authority. These
identity card images are encrypted to the state issuing authority's key on the device and
then sent to the state issuing authority.

To help ensure that the person adding the identity card to Apple Wallet is the same person
to whom the identity card belongs, the user is asked to take a Live Photo or a selfie.

In some cases, the user might be prompted to also complete a series of facial or head
movements. These movements are evaluated by the user’s device and by Apple to help
reduce the risk of someone using a photograph, video, or mask to add someone else's ID
to Apple Wallet. Results from the analysis of these movements are sent to the state issuing
authority, but not the video of the movements themselves.

Before submitting the user’s selfie to the state issuing authority, Apple servers and the
user's device compare the selfie with the likeness of the person who performed the series
of facial and head movements. After completing the comparison, the device encrypts the
selfie and sends it to the state issuing authority, which compares it against their image on
file for the ID.

Last, users are asked to perform a Face ID or Touch ID authentication. The user’s device
ties this single matched Face ID or Touch ID biometric to the state ID to help ensure that
only the person who added the ID to this iPhone can present it; other enrolled biometric
information can’t be used to authorize presentation of the ID. This occurs strictly on device
and isn't sent to the state issuing authority.

The state issuing authority will receive information necessary to set up the digital ID. This
includes images of the front and back of the user’s ID, data read from the PDF417 barcode
as well as the selfie the user took as part of the ID verification process. The issuing state
also receives a single-digit value, used to help prevent fraud, that's based on the user’s
device use patterns, settings data, and information about their personal Apple Account.
It's then ultimately the issuing state’s decision to approve or deny the ID being added to
Apple Wallet.

After the state issuing authority authorizes adding the state ID or Driver's License to
Apple Wallet, a key pair is generated in the Secure Element by iPhone that anchors the
user’s ID to that specific device. If adding to Apple Watch, a key pair is generated in the
Secure Element by Apple Watch.

After the ID is on iPhone, the information reflected on the user’s ID in Apple Wallet is
stored in an encrypted format protected by the Secure Enclave.

Add a My Number Card to Apple Wallet

On iPhone, users can add their My Number Card to Apple Wallet through the Mynaportal
app. My Number Card in Apple Wallet supports both mobile identity document and Japan
Public Key Infrastructure (JPKI) functionality within a single ID pass. The setup process
includes security measures enforced by Apple and the card issuer to help ensure that only
the legitimate cardholder can add and present their ID.
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In the Mynaportal app, users need to enter the 4-digit PIN and alphanumeric password
associated with their physical My Number Card. These credentials are required to
authenticate to the card, allowing the app to read data from the contactless integrated
circuit (IC) which the issuer verifies to help ensure that the person adding it has legitimate
access. At this time, users are also asked to input a PIN and password for use with the JPKI
applet backed functionality of their My Number Card in Apple Wallet. These values never
leave the user’s device and are independent from the PIN and password for the user’s
physical card.

Note: Too many incorrect attempts on a PIN or password block the physical card and
prevent it from being used or added to Apple Wallet until it's unlocked.

To help ensure that the person adding the My Number Card to Apple Wallet is the rightful
owner, users are asked to take a selfie and perform a liveness check. The selfie and
liveness data is evaluated by the issuer along with the physical card information to help
reduce the risk of someone fraudulently adding another person’s ID to Apple Wallet.

Users perform a Face ID or Touch ID authentication to tie a single biometric to the My
Number Card in Apple Wallet. This helps ensure that only the same person who added
a card to an iPhone can present it; other enrolled biometric information can’t be used to
either authorize presentation of the ID or perform JPKI user authentication operations.

The issuing authority validates all submitted evidence and makes the decision whether
to authorize adding the My Number Card to Apple Wallet. If authorized, they create and
digitally sign the mobile identity document to protect against tampering or forgery. A
key pair generated by the iPhone in the Secure Element anchors the user’s My Number
Card in Apple Wallet to that specific device, ensuring it cannot be copied and used by
someone else.

The JPKI applet, which protects the user’s digital signing and user identification
certificates, associated private keys, and PIN and password, is provisioned within the
Secure Element. This ensures that cryptographic operations for digital signing in addition
to PIN or password comparison operations are performed within the hardware-protected
environment’s boundary, and private keys are never available outside the Secure Element.

After the My Number Card is on iPhone, both the identity information reflected on the
user's ID in Apple Wallet and the JPKI applet data are stored in an encrypted format
protected by the Secure Enclave or Secure Element, respectively. The issuer ensures that
users can only add one My Number Card to a device and that each unique identity can only
be added to one device, providing additional protection against fraud.

Add a Digital ID to Apple Wallet

On iPhone, users can tap the Add button (+) at the top of the screen in Apple Wallet to
begin creating their Digital ID. If users have an Apple Watch paired at the time of setup,
they are prompted to also add their Digital ID to their Apple Wallet on Apple Watch.
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Users are first asked to use their iPhone to scan the machine-readable portion of their
physical passport photo page. If the data indicates that the passport is from a supported
region, not expired, and eligible, the iPhone then guides the user to read the passport chip
using NFC. The relevant machine-readable fields are used to establish a session with the
chip, in accordance with ICAO 9303 specified protocols. Data read from the chip includes
data elements like the document holder’s name and portrait, along with the Document
Security Object. To verify the data's authenticity, Apple servers validate the Document
Security Object, including data group hashes, the issuing government’s signature,

and Document Signer Certificate using Passive Authentication. The Document Signer
Certificate is validated against the corresponding Country Signing Certificate Authority
Certificate to ensure authenticity and confirm it hasn’t been revoked.

To help ensure that the person creating the Digital ID in Apple Wallet is the same person
the passport belongs to, the user is asked to take a selfie and complete a liveness check.
The device coaches the user to successfully complete the required steps, which may
include a series of facial and head movements. The resulting selfie photo and liveness
video are encrypted on device and uploaded for evaluation by Apple servers. The selfie
photo is compared with the likeness of the person who performed the liveness check and
against the validated portrait retrieved from the passport chip.

Users also need to perform a Face ID or Touch ID authentication to tie the biometric to the
ID pass. This mechanism, supported by all IDs in Apple Wallet, and helps ensure that only
the person who added the ID can present it.

Apple evaluates the submitted evidence including data read from the passport chip, the
selfie and liveness video collected during the ID verification process, and a confidence
assessment score, to make the decision to approve or deny adding the Digital ID to
Apple Wallet. The confidence assessment score, used to help prevent fraud, is based
on the user’s device use patterns, settings data, and information about their personal
Apple Account.

If approved, Apple creates and signs a Digital ID derived from the verified passport data.
A key pair is generated in the Secure Element in the iPhone that anchors the user’s ID to
that specific device. If the user adds the ID to Apple Watch, a key pair is generated in the
Secure Element in the Apple Watch. Although the expiry date and other identity data are
common, the Digital ID in Apple Wallet is independent from the passport used to create it.
This means that the user needs to delete the Digital ID from their devices and go through
the steps to add a new one in any situation where their physical passport is revoked or
reissued.

After creating the Digital ID, it's encrypted and sent to the device. After the device receives
it, the information reflected on the user’s Digital ID in Apple Wallet is reencrypted with a
device specific key and stored and protected by the Secure Enclave.

Using an ID in Apple Wallet with an identity reader

To use their ID in Apple Wallet, users need to authenticate with the Face ID or Touch ID
device associated with the ID in Apple Wallet before iPhone presents the information to the
identity reader.
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To use their ID in Apple Wallet on Apple Watch, users need to unlock their iPhone using
the associated Face ID appearance or Touch ID fingerprint each time they put on their
Apple Watch. Then, they can use their ID in Apple Wallet without authenticating until
they take their Apple Watch off again. This capability leverages foundational Auto Unlock
capabilities detailed in System security for watchOS.

When users hold their iPhone or Apple Watch near the identity reader, users see a prompt
on device displaying which specific information is being requested, by whom, and if they
intend on storing it. After authorizing with the associated Face ID or Touch ID on iPhone
or double-clicking the side button on Apple Watch, the requested identity information is
released from the device.

Important: Users don’'t need to show, or hand over their device to present their ID.

If users have an accessibility feature like Voice Control, Switch Control, or Assistive Touch
instead of having Face ID or Touch ID enabled, they can use their passcode to access and
present their information.

Transmission of identity data to the identity reader follows the ISO/IEC 18013-5 standard,
which provides for multiple security mechanisms available that are able to detect, deter
and mitigate security risks. These consist of identity data integrity and antiforgery, device
binding, informed consent, and user data confidentiality over radio links.

Presentation history is stored on device and available for users to view and delete in
Apple Wallet, and—for IDs on Apple Watch—in the Watch app on the paired iPhone. Each
presentation record includes the fields requested, the geolocation of the presentation,
and whether the business intends to store the data or not. For authenticated readers, the
business’s name and icon are also included.

Using an ID in Apple Wallet with iOS apps

Users can also share their ID information in Apple Wallet with iOS apps. When a user
shares their ID with an app, Apple Wallet fetches and validates an encryption certificate
that's registered with the app developer. This certificate is used to encrypt the information
that the user has agreed to share.

A presentation sheet displays which specific information is being requested, by which app,
if the app intends on storing it and for how long, and the reason for requesting it. After
authorizing with the associated Face ID or Touch ID, the requested information is encrypted
by Apple Wallet using HPKE and is never made available to Apple. Apple Wallet periodically
queries Apple servers to verify that the ID authentication key hasn't been revoked and that
the ID is still valid. If no check has been performed recently, one may occur when the user
shares their ID with an app.

Presentation history is stored on device and available for users to view and delete in
Apple Wallet. Each presentation record includes the app, reason, fields requested, and
whether it intended to store the data and for how long.
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Using an ID in Apple Wallet on websites

Users can share their ID information from Apple Wallet with websites. Participating
websites use the W3C Digital Credentials API to request identity information from

mobile document providers. To support acceptance of IDs in Apple Wallet, in addition

to the document type and data elements, the request must contain an anti-replay

value, encryption information for response encryption, and a signature for the device to
authenticate the request. The website's server generates an encryption key pair for the
request and is responsible for securely retaining the private key for response decryption.
Apple Wallet utilizes the reader authentication mechanism to authenticate the request (as
defined by ISO/IEC 18013-5 and ISO/IEC 18013-7 Annex C), leveraging a signing certificate
the website owner obtains from Apple. It also performs domain validation on the requesting
website to help ensure the request is coming from a valid source.

A presentation sheet displays which specific information is being requested, by which
website, if the website intends on storing it, and the reason for requesting it. After the
user authorizes presentation of the requested identity information, it is encrypted by
Apple Wallet directly to the website's server using HPKE and is never made available to
Apple nor the browser. Apple Wallet periodically queries Apple servers to verify that the
ID authentication key hasn't been revoked and the ID is still valid. If no check has been
performed recently, one may occur when the user shares their ID with a website.

Upon receiving the encrypted response, the website’s server must verify the authenticity
of the identity data. This includes performing issuer authentication by validating the
document signer certificate, verifying the cryptographic signature from the issuer, and
checking hashes over the requested data elements. Additionally, mobile document
authentication needs to be performed to ensure the document originated from the specific
device it was issued to, preventing unauthorized duplication.

To allow users to present their ID in Apple Wallet on iPhone to other devices where they
may want to verify their identity on the web, both handoff between Apple devices and
cross-platform presentment are supported.

Handoff between Apple devices allows identity presentation to a website on an iPad or Mac
using an ID in Apple Wallet on iPhone. In this case the system:

- Verifies that the iPhone is associated with the same personal Apple Account.
- Supports the functionality.
- Is compatible with the request.

A secure connection is then established between the devices, and a notification appears
on the iPhone, allowing the user to view and authorize the request from the iPhone. Cross-
platform support also allows users to present their ID in Apple Wallet to other standards
compliant devices and browsers. This leverages the FIDO CTAP protocol to protect the
integrity and confidentiality of the communication channel for request and response data
transfer between devices.

With both handoff between Apple devices and cross-platform support, the same security
capabilities as described above exist for request validation, response data encryption,
identity data authentication, and device authentication.

Presentation history is stored on device and available for users to view and delete in
Apple Wallet. Each presentation record includes the website, reason, fields requested, and
whether the website intended to store the data.
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Security of IDs in Apple Wallet

The following features help increase the security of using IDs in Apple Wallet.

Identity data integrity and antiforgery

IDs in Apple Wallet use an issuer-provided signature to allow any ISO/IEC 18013-5
compliant reader to verify a user’s ID in Apple Wallet. In addition, all data elements on ID in
Wallet are individually protected against forgery. This allows the identity reader to request
a specific subset of the data elements present on the ID in Apple Wallet and for the ID in
Apple Wallet to respond with that same subset, thus only sharing the requested data and
maximizing the user’s privacy.

Device binding

IDs in Apple Wallet authentication use a device signature to protect against the cloning
of an ID and the replay of an identity presentation. Apple Wallet stores the private key for
ID authentication in the iPhone device's Secure Element, so the ID is bound to the same
device that the state issuing authority created the ID for.

Informed consent

IDs in Apple Wallet may use authentication to identify the reader using the protocol defined
in the ISO/IEC 18013-5 standard. During presentation, if the reader has its own certificate
that's trusted by Apple Wallet, an icon is shown to them to give the user an assurance that
they're interacting with the intended party.

User data confidentiality over radio links

Session encryption helps ensure that all personally identifiable information (PIl) exchanged
between the ID in Apple Wallet and that the identity reader is encrypted. Encryption is
performed by the application layer. The security of session encryption is therefore not
reliant on the security provided by the transmission layer (for example, NFC, Bluetooth, and
Wi-Fi).

IDs in Apple Wallet help keep users’ information private

IDs in Apple Wallet adhere to the “device retrieval” process outlined in ISO/IEC 18013-
5. Device retrieval obviates the need to make server calls during presentment, thereby
protecting users from being tracked by Apple and the issuer.
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As described in Identity data integrity and antiforgery, elements like the issuer-provided
signature are included in the Mobile Security Object (MSO) for a reader to verify an ID.

In order to reduce traceability of these static elements and help prevent tracking ID
presentations between relying parties, the device manages multiple ID authentication
keys for each ID in Apple Wallet. The ID issuer generates unique MSO payloads during

ID issuance and updates for each of these ID authentication keys which are sent to and
stored encrypted on the user's device. During presentation, the device selects a random
ID authentication key and its associated MSO to use for the transaction. This is beneficial
when the user is presenting non-identifiable information, such as age_over_18 or other
age elements, as it reduces the potential for multiple parties to reliably match elements
and identify a specific user. To reduce overhead, keys may be reused in some situations,
such as during presentation to the same relying party or when presentation already
includes inherently linkable information. When all ID authentication keys are used at least
once, if the issuer has opted in to support early rotation, the device initiates the process to
generate a new batch of keys and request refreshed payloads.

ID verifier security

On an iPhone with iOS 17 or later, U.S. businesses and organizations can use iPhone

to seamlessly and securely read ISO 18013-5 or ISO 23220-1 compliant mobile IDs in
person—without the need for external hardware. ID Verifier can be used in two different
ways, depending on the verification use case:

- ID Verifier Display Only: This enables use of an iOS user interface to display Name,
Age, ID Photo, and Age Over N data for use cases that only require visual confirmation.
It is also designed to prevent all screenshot and screen-recording features from
capturing the displayed information. This service doesn’'t permit personally identifiable
information (Pll) collection that can be tied back to the presenter.

- ID Verifier Data Transfer: This enables apps to request additional data elements, such
as date of birth and address, in order to meet legal verification requirements. Access to
the ID Verifier Data Transfer APl is managed with entitlements, and apps must conform
to requirements with respect to how data is used. For example, apps must demonstrate
a legal requirement to request identity data. Apps are also required to maintain a
privacy policy that details its processing, storage, or other use of the requested identity
data.

Reading a mobile ID

ID Verifier follows the protocol defined in the ISO/IEC 18013-5 standard. When an app using
the ID Verifier APl requests to read a mobile ID, a sheet—controlled by iOS—is displayed
and prompts the mobile ID holder to hold their device near the identity reader. That initial
NFC engagement (as defined by the ISO/IEC 18013-5 standard, a QR code can be used to
initiate a Bluetooth handover process instead of NFC) establishes a secure Bluetooth Low
Energy (BLE) connection between both devices. At that point, the mobile ID holder can
review on their device the information that's being requested. After the mobile ID holder
consents, the requested identity data is transferred to the reading device. Apps using the
ID Verifier Data Transfer API receive the response data for processing, while apps using the
ID Verifier Display Only API see data displayed by iOS directly.
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The ISO/IEC 18013-5 standard provides for multiple security mechanisms to detect, deter,
and mitigate security risks. Among those, ID Verifier performs both issuer signature and
device signature validation. Additionally, ID Verifier supports reader authentication using
the protocol defined in the ISO/IEC 18013-5 standard. Apps can choose to display an icon
and name to deliver assurance that the ID holder is interacting with the intended party
using the reader’s certificate.

Issuer and device validation

As a protection against forgery, ID Verifier validates the signature of the Mobile Security
Object by the trusted issuer of the mobile identity. ID Verifier Data Transfer also provides
an API that enables apps to conduct their own signature validation, instead of iOS, if
desired. To deliver an assurance to the business or organization that the mobile ID has
not been copied from one device to another, ID Verifier validates the signature over
session data.

Reader authentication

At the time of presentment, the ID Verifier reader request is signed by the private key
associated with the reader authentication certificate that chains up to the Apple Root
certificate authority (CA), which contains relevant x509 custom extensions to indicate

to the holder if the business intends to store the data. If an application would like to
display name and icon to the ID holder, the app administrator is required to register using
Apple Business Register and provide accurate branding information. After the submitted
information is successfully verified, at the time of a transaction, the reader authentication
certificate provides the ID holder with the information about the entity from Apple Register
via the reader authentication certificate.

iMessage

iMessage security overview

Apple iMessage is a messaging service for iPad, iPhone, Mac, Apple Watch, and

Apple Vision Pro. Relying on the Apple Push Notification service (APNs), iMessage lets
users send texts and attachments like photos, contacts, locations, links, and emoji.
Messages sync across all devices, enabling seamless conversations. Apple doesn’t store
message content or attachments, which are all secured with end-to-end encryption so that
no one but the sender and receiver can access them. Apple can't decrypt the data.

When a user turns on iMessage on a device, the device generates encryption and signing
pairs of keys for use with the service. The public keys are sent to Apple Identity Service
(IDS), where they are associated with the user’s phone number or email address, along
with the device's APNs address.
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As users enable additional devices for use with iMessage, their encryption and signing
public keys, APNs addresses, and associated phone numbers are added to the directory
service. Users can also add more email addresses, which are verified by sending a
confirmation link. Phone numbers are verified by the carrier network and SIM. With some
networks, this requires using SMS (the user is presented with a confirmation dialog if

the SMS isn't zero rated). Phone number verification may be required for several system
services in addition to iMessage, such as FaceTime and iCloud. All of the user’s registered
devices display an alert message when a new device, phone number, or email address is
added.

How iMessage sends and receives messages securely

Users start a new iMessage conversation by entering an address or name. If they enter

a phone number or email address, the device contacts the Apple Identity Service (IDS)
to retrieve the public keys and APNs addresses for all of the devices associated with the
addressee. If the user enters a name, the device first uses the user’'s Contacts app to
gather the phone numbers and email addresses associated with that name and then gets
the public keys and APNs addresses from IDS.

The user’s outgoing message is individually encrypted for each of the receiver’s devices.
The public encryption keys and signing keys of the receiving devices are retrieved from
IDS. For each receiving device, the sending device generates a random 88-bit value and
uses it as an HMAC-SHA-256 key to construct a 40-bit value derived from the sender and
receiver public key and the plaintext. The concatenation of the 88-bit and 40-bit values
makes a 128-bit key, which encrypts the message with it using AES in Counter (CTR)
Mode. The 40-bit value is used by the receiver side to verify the integrity of the decrypted
plaintext. This per-message AES key is encrypted using RSA-OAEP to the public key of
the receiving device. The combination of the encrypted message text and the encrypted
message key is then hashed with SHA-1, and the hash is signed with the Elliptic Curve
Digital Signature Algorithm (ECDSA) using the sending device's private signing key. On an
an iPhone with iOS 13 or later and an iPad with iPadOS 13.1 or later , devices may use an
Elliptic Curve Integrated Encryption Scheme (ECIES) encryption instead of RSA encryption.

The resulting messages, one for each receiving device, consist of the encrypted message
text, the encrypted message key, and the sender’s digital signature. They are then
dispatched to the APNs for delivery. Metadata, such as the timestamp and APNs routing
information, isn't encrypted. Communication with APNs is encrypted using a forward-
secret TLS channel.
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APNs can only relay messages up to 4 or 16 KB in size, depending on the iOS or iPadOS
version. If the message text is too long or if an attachment such as a photo is included, the
attachment is encrypted using AES in CTR mode with a randomly generated 256-bit key
and uploaded to iCloud. The AES key for the attachment, its Uniform Resource Identifier
(URI), and an SHA-1 hash of its encrypted form are then sent to the recipient as the
contents of an iMessage, with their confidentiality and integrity protected through normal
iMessage encryption, as shown in the following diagram.

Attachment
encrypted with
random key

L
<

iCloud

APNs

Signed and encrypted
message for user 2 with URI and
key for attachment

User 1

Request Request

from user Response Response from user
from IDS from IDS
Public key Public key
and APNs token and APNs token

for user 2 for user 1

IDS

For group conversations, this process is repeated for each recipient and their devices.

On the receiving side, each device receives its copy of the message from APNs and, if
necessary, retrieves the attachment from iCloud. The incoming phone number or email
address of the sender is matched to the receiver's contacts so that a name can be
displayed when possible.

As with all push notifications, the message is deleted from APNs when it's delivered. Unlike
other APNs notifications, however, iMessage messages are queued for delivery to offline
devices. Messages are stored on Apple servers for up to 30 days.
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Check In security

Check In allows a user to choose a contact that's notified if the user’s supported device
doesn't arrive at a predetermined destination. When the user chooses a contact to start
Check In with, an iMessage is sent to that contact with details about the session including
their destination. The initiating user’s device also generates an access token and Check In
encryption key. The Check In encryption key is sent in a second iMessage; however, this
message is held by iMessage servers rather than being immediately delivered. Because
this message is end-to-end encrypted between the user and their designated contact, its
contents are not available to Apple.

While the initiating user’s device is making progress toward its destination, it periodically
sends a heartbeat message to iMessage servers, which extends the expiry time before

the Check In encryption key message is delivered. If the device is turned off or loses
connectivity, iMessage servers automatically release the iMessage containing the
encryption key to the contact when the expiry time is reached. The Check In encryption key
message can also be released if the device isn't making progress toward its destination.
When released in this fashion, the access token is included.

During a Check In session, the initiating user’s device periodically collects relevant Check
In data (for example, location and battery level), encrypts it with the Check In key, and
uploads it to iCloud. Apple doesn’t have access to the Check In key and can’t access the
uploaded data.

Ending a Check In session requires user authentication. If the user cancels a session, the
encrypted data and iMessage containing the Check In encryption key are securely deleted
from the server.

If the Check In device hasn't arrived at its destination as expected, or the configured timer
expires, the chosen contact receives the iMessage containing the Check In encryption key.
There are two scenarios where this could happen:

- After a loss of connectivity: In this case, the designated contact doesn’t have the
access token and the contact’s device performs a second check to determine whether
enough time has elapsed since the last heartbeat. The contact’s device requests the
encrypted Check In data from the server, and the server performs a third check to
further confirm if sufficient time has passed since the last heartbeat. If so, the server
provides the contact with the encrypted Check In data, and the contact can decrypt it
with their Check In key.

- After the user’s device determines they aren’t making progress toward their destination:
In this case, unless the user cancels or extends the Check In when prompted, the
designated contact is provided both the access token and Check In encryption key. The
contact’s device provides the access token to the server, allowing it to download the
encrypted Check In data. The data can then be decrypted with the Check In key.

Secure iMessage name and photo sharing

iMessage Name and Photo Sharing allows a user to share a Name and Photo using
iMessage. The user may select their My Card information, or customize the name and
include any image they choose. iMessage Name and Photo sharing uses a two-stage
system to distribute the name and photo.
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The data is subdivided in fields, each encrypted and authenticated separately as well as
authenticated together with the process below. There are three fields:

- Name
- Photo
- Photo filename

One of the first steps in creating the data is to randomly generate a record 128-bit key on
the device. This record key is then derived with HKDF-HMAC-SHA-256 to create three
subkeys: Key 1:Key 2:Key 3 = HKDF(record key, “nicknames”). For each field, a random
96-bit Initialization Vector (1V) is generated and the data is encrypted using AES-CTR and
Key 1. A message authentication code (MAC) is then computed with HMAC-SHA-256 using
Key 2 and covering the field name, the field 1V, and the field ciphertext. Finally, the set

of individual field MAC values are concatenated and their MAC is computed with HMAC-
SHA-256 using Key 3. The 256-bit MAC is stored along side the encrypted data. The first
128 bits of this MAC is used as RecordID.

This encrypted record is then stored in the CloudKit public database under the RecordID.
This record is never mutated, and when the user chooses to change their name and photo,
a new encrypted record is generated each time. When user 1 chooses to share their name
and photo with user 2, they send the record key along with the RecordID inside their
iMessage payload, which is encrypted.

When user 2's device receives this iMessage payload, it notices that the payload contains
a Nickname and Photo RecordID and key. User 2's device then goes out to the public
CloudKit database to retrieve the encrypted name and photo at the record ID and sends it
across using iMessage.

After the message is retrieved, user 2's device decrypts the payload and verifies the
signature using the RecordID itself. If this passes, user 2 is presented with the name and
photo and they can choose to add this to their contacts, or use it for Messages.

Secure Apple Messages for Business

Apple Messages for Business is a messaging service that allows users to communicate
with businesses using the Messages app. With Apple Messages for Business, the user is
always in control of the conversation. They can also delete the conversation and block

the business from messaging them in the future. For privacy, the business doesn’t receive
the user’s phone number, email address, or iCloud account information. Instead, a custom
unique identifier called the Opaque ID is generated by the Apple Identity Service (IDS) and
shared with the business. The Opaque ID is unique to the relationship between the user's
Apple Account and the business’s Business ID. A user has a different Opaque ID for every
business they contact using Apple Messages for Business. The user decides if and when to
share personal identifying information with the business and Apple Messages for Business
service never stores conversation history.

Apple Messages for Business supports Managed Apple Accounts from Apple Business
Manager and determines whether they are turned on for iMessage and FaceTime in Apple
School Manager.
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Messages sent to the business are encrypted between the user’s device and Apple's
messaging servers, using the same security and Apple messaging servers as iMessages.
Apple messaging servers decrypt these messages in RAM, and relay them to the business
over an encrypted link using TLS 1.2. Messages are never stored in unencrypted form while
transiting through the Apple Messages for Business service. Businesses' replies are also
sent using TLS 1.2 to the Apple messaging servers, where they are encrypted using the
unique public keys of each recipient device.

If user devices are online, the message is delivered immediately and isn't cached on the
Apple messaging servers. If a user’s device isn't online, the encrypted message is cached
for up to 30 days to enable the user to receive it when the device is back online. As soon
as the device is back online, the message is delivered and deleted from cache. After 30
days, an undelivered cached message expires and is permanently deleted.

FaceTime security

FaceTime is Apple's video and audio calling service. Like iMessage, FaceTime calls use
the Apple Push Notification service (APNs) to establish an initial connection to the user’s
registered devices. The audio/video contents of FaceTime calls are protected by end-
to-end encryption, so no one but the sender and receiver can access them. Apple can’t
decrypt the data.

The initial FaceTime connection is made through an Apple server infrastructure that relays
data packets between the users' registered devices. Using APNs notifications and Session
Traversal Utilities for NAT (STUN) messages over the relayed connection, the devices
verify their identity certificates and establish a shared secret for each session. The shared
secret is used to derive session keys for media channels streamed using the Secure Real-
time Transport Protocol (SRTP). SRTP packets are encrypted using AES-256 in Counter
Mode and authenticated with HMAC-SHA-1. After the initial connection and security setup,
FaceTime uses STUN and Internet Connectivity Establishment (ICE) to establish a peer-to-
peer connection between devices, if possible.

Group FaceTime extends FaceTime to support up to 33 concurrent participants. As

with classic one-to-one FaceTime, calls are end-to-end encrypted among the invited
participants’ devices. Even though Group FaceTime reuses much of the infrastructure and
design of one-to-one FaceTime, these group calls feature a key-establishment mechanism
built on top of the authenticity provided by Apple Identity Service (IDS). This protocol
provides forward secrecy, meaning that the compromise of a user’s device won't leak the
contents of past calls. Session keys are wrapped using AES-SIV and are distributed among
participants using an Elliptic Curve Integrated Encryption Scheme (ECIES) construction
with ephemeral P-256 ECDH keys.

When a new phone number or email address is added to an ongoing Group FaceTime call,
active devices establish new media keys and never share previously used keys with the
newly invited devices.
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Find My security

The Find My app for Apple devices is built on a foundation of advanced public key
cryptography.

Overview

The Find My app combines Find My iPhone and Find My Friends into a single app in iOS,
iPadOS, and macOS. Find My can help users locate a missing device, even an offline Mac.
An online device can simply report its location to the user via iCloud. Find My works offline
by sending out short range Bluetooth signals from the missing device that can be detected
by other Apple devices in use nearby. Those nearby devices then relay the detected
location of the missing device to iCloud so users can locate it in the Find My app—all while
protecting the privacy and security of all the users involved. Find My even works with a
Mac that's offline and asleep.

Using Bluetooth and the hundreds of millions of iPad, iPhone, and Mac devices in active
use around the world, a user can locate their missing device even if it can’t connect to

a Wi-Fi or cellular network. Any iPad, iPhone, or Mac with "offline finding” turned on

in Find My settings can act as a "finder device.” This means the device can detect the
presence of another missing offline device using Bluetooth and then use its network
connection to report an approximate location back to the owner. When a device has offline
finding enabled, it also means that it can be located by other participants in the same way.
This entire interaction is end-to-end encrypted, anonymous, and designed to be battery
and data efficient. There is minimal impact on battery life and cellular data plan usage, and
user privacy is better protected.

Note: Find My may not be available in all countries or regions.

End-to-end encryption

Find My is built on a foundation of advanced public key cryptography. When offline
finding is turned on in Find My settings, an elliptic curve (EC) P-224 private encryption
key pair noted {d,P} is generated directly on the device where d is the private key and P

is the public key. Additionally, a 256-bit secret SK and a counter , is initialized to zero.
This private key pair and the secret are never sent to Apple and are synced only among
the user's other devices in an end-to-end encrypted manner using iCloud Keychain. The
secret and the counter are used to derive the current symmetric key SK; with the following
recursive construction: SK, = KDF(SK,_, "update”).

Based on the key SK, two large integers u, and v, are computed with (u,v,) = KDF(SK,
"diversify"”). Both the P-224 private key denoted d and corresponding public key referred
to as P are then derived using an affine relation involving the two integers to compute a
short-lived key pair: The derived private key is d,, where d, = u, * d + v, (modulo the order of
the P-224 curve) and the corresponding public part is P, and verifies that P, = u*P + v,*G.
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When a device goes missing and can't connect to Wi-Fi or cellular—for example, a
MacBook Pro is left on a park bench—it begins periodically broadcasting the derived
public key P, for a limited period of time in a Bluetooth payload. By using P-224, the public
key representation can fit into a single Bluetooth payload. The surrounding devices can
then help in the finding of the offline device by encrypting their location to the public

key. Approximately every 15 minutes, the public key is replaced by a new one using an
incremented value of the counter and the process above so that the user can't be tracked
by a persistent identifier. The derivation mechanism is designed to prevent the various
public keys P, from being linked to the same device.

Keeping users and devices anonymous

In addition to making sure that location information and other data are fully encrypted,
participants’ identities remain private from each other and from Apple. The traffic sent to
Apple by finder devices contains no authentication information in the contents or headers.
As a result, Apple doesn't know who the finder is or whose device has been found. Further,
Apple doesn't log information that would reveal the identity of the finder and retains no
information that would allow anyone to correlate the finder and owner. The device owner
receives only the encrypted location information that's decrypted and displayed in the
Find My app with no indication as to who found the device.

Using Find My to locate missing Apple devices

Any Apple devices within Bluetooth range that have offline finding enabled can detect

a signal from another Apple device configured to allow Find My and read the current
broadcast key P,. Using an ECIES construction and the public key P, from the broadcast,
the finder devices encrypt their current location information and relay it to Apple. The
encrypted location is associated with a server index which is computed as the SHA-256
hash of the P-224 public key P, obtained from the Bluetooth payload. Apple never has the
decryption key, so Apple can’t read the location encrypted by the finder. The owner of the
missing device can reconstruct the index and decrypt the encrypted location.

EC P-224 FindMy
EC P-224 public key
derived + Secret
public key + Counter

@

Nearby device
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When trying to locate the missing device, an expected range of counter values is estimated
for the location search period. With the knowledge of the original private P-224 key d and
secret values SK, in the range of counter values of the search period the owner can then
reconstruct the set of values {d, SHA-256(P)} for the entire search period. The owner
device used to locate the missing device can then perform queries to the server using the
set of index values SHA-256(P,) and download the encrypted locations from the server. The
Find My app then locally decrypts the encrypted locations with the matching private keys
d, and shows an approximate location of the missing device in the app. Location reports
from multiple finder devices are combined by the owner’s app to generate a more precise

location.

< '
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Locating devices that are offline

If a user has Find My iPhone enabled on their device, offline finding is turned on by default
when they upgrade a device t0iOS 13, iPadOS 13.1, and macOS 10.15, or later. This is
designed to ensure that every user has the best possible chance to locate their device if it
goes missing. However, if at any time the user prefers not to participate, they can turn off
offline finding in Find My settings on their device. When offline finding is turned off, the
device no longer acts as a finder nor is it detectable by other finder devices. However, the
user can still locate the device as long as it can connect to a Wi-Fi or cellular network.

When a missing offline device is located, the user receives a notification and email
message to let them know the device has been found. To view the location of the missing
device, the user opens the Find My app and selects the Devices tab. Rather than showing
the device on a blank map as it would have prior to the device being located, Find My
shows a map location with an approximate address and information on how long ago

the device was detected. If more location reports come in, the current location and time
stamp both update automatically. Although users can’t play a sound on an offline device or
erase it remotely, they can use the location information to retrace their steps or take other
actions to help them recover it.

Continuity

Continuity security overview

Continuity takes advantage of technologies like iCloud, Bluetooth, and Wi-Fi to enable
users to continue an activity from one device to another, make and receive phone calls,
send and receive text messages, and share a cellular internet connection.
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Handoff security

Apple handles handoffs securely, whether from one device to another, between a native
app and a website—even handoffs of large amounts of data.

How Handoff works securely

With Handoff, when a user’s iOS, iPadOS, and macOS devices are near each other, the user
can automatically pass whatever they're working on from one device to the other. Handoff
lets the user switch devices and instantly continue working.

When a user signs in to iCloud on a second Handoff-capable device, the two devices
establish a Bluetooth Low Energy (BLE) 4.2 pairing out-of-band using APNs. The individual
messages are encrypted much like messages in iMessage are. After the devices are paired,
each device generates a symmetric 256-bit AES key that gets stored in the device's
keychain. This key can encrypt and authenticate the BLE advertisements that communicate
the device's current activity to other iCloud paired devices using AES-256 in GCM mode,
with replay protection measures.

The first time a device receives an advertisement from a new key, it establishes a BLE
connection to the originating device and performs an advertisement encryption key
exchange. This connection is secured using standard BLE 4.2 encryption as well as
encryption of the individual messages, which is similar to how iMessage is encrypted. In
some situations, these messages are sent using APNs instead of BLE. The activity payload
is protected and transferred in the same way as an iMessage.

Handoff between native apps and websites

Handoff allows an iOS, iPadOS, or macOS native app to resume user activity on a webpage
in domains legitimately controlled by the app developer. It also allows the native app user
activity to be resumed in a web browser.

To help prevent native apps from claiming to resume websites not controlled by the
developer, the app must demonstrate legitimate control over the web domains it wants to
resume. Control over a website domain is established using the mechanism for shared web
credentials. For details, see App access to saved passwords. The system must validate an
app’'s domain name control before the app is permitted to accept user activity Handoff.

The source of a webpage Handoff can be any browser that has adopted the Handoff APlIs.
When the user views a webpage, the system advertises the domain name of the webpage
in the encrypted Handoff advertisement bytes. Only the user’s other devices can decrypt
the advertisement bytes.

On a receiving device, the system detects that an installed native app accepts Handoff
from the advertised domain name and displays that native app icon as the Handoff option.
When launched, the native app receives the full URL and the title of the webpage. No other
information is passed from the browser to the native app.

In the opposite direction, a native app may specify a fallback URL when a Handoff receiving
device doesn't have the same native app installed. In this case, the system displays the
user's default browser as the Handoff app option (if that browser has adopted Handoff
APIs). When Handoff is requested, the browser is launched and given the fallback URL
provided by the source app. There is no requirement that the fallback URL be limited to
domain names controlled by the native app developer.
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Handoff of larger data

In addition to using the basic feature of Handoff, some apps may elect to use APIs that
support sending larger amounts of data over Apple-created peer-to-peer Wi-Fi technology
(much like AirDrop). For example, the Mail app uses these APls to support handoff of a mail
draft, which may include large attachments.

When an app uses these API's, the exchange between the two devices starts off just as

in Handoff. But, after receiving the initial payload using Bluetooth Low Energy (BLE), the
receiving device initiates a new connection over Wi-Fi. This connection is encrypted (with
TLS), and it derives trust through an identity shared through iCloud Keychain. The identity
in the certificates is verified against the user's identity. Further payload data is sent over
this encrypted connection until the transfer is complete.

Universal Clipboard

Universal Clipboard leverages Handoff to securely transfer the content of a user’s
clipboard across devices so they can copy on one device and paste on another. Content is
protected in the same way as other Handoff data and is shared by default with Universal
Clipboard unless the app developer chooses to disallow sharing.

Apps have access to clipboard data regardless of whether the user has pasted the
clipboard into the app. With Universal Clipboard, this data access extends to apps on the
user’s other devices (as established by their iCloud sign-in).

iPhone cellular call relay security

When a user's Mac, iPad, or HomePod is on the same Wi-Fi network as their iPhone, it
can make and receive phone calls using the cellular connection on iPhone. Configuration
requires the devices to be signed in to both iCloud and FaceTime using the same

Apple Account.

When an incoming call arrives, all configured devices are notified using the Apple Push
Notification service (APNs), with each notification using the same end-to-end encryption
as iMessage. Devices that are on the same network present the incoming call notification
user interface. When the user answers the call, the audio is seamlessly transmitted from
the user's iPhone using a secure peer-to-peer connection between the two devices.

When a call is answered on one device, ringing of nearby iCloud-paired devices is
terminated by briefly advertising using Bluetooth Low Energy (BLE). The advertising bytes
are encrypted using the same method as Handoff advertisements.

Outgoing calls are also relayed to iPhone using APNs, and audio is similarly transmitted
over the secure peer-to-peer link between devices. Users can turn off phone call relay on a
device by turning off iPhone Cellular Calls in FaceTime settings.

iPhone Text Message Forwarding security

Text Message Forwarding automatically sends SMS text messages received on an iPhone
to a user’s enrolled iPad or Mac. Each device must be signed in to the iMessage service
using the same Apple Account. When Text Message Forwarding is turned on, enrollment is
automatic on devices within a user’s circle of trust if two-factor authentication is enabled.
Otherwise, enrollment is verified on each device by entering a random six-digit numeric
code generated by iPhone.
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After devices are linked, iPhone encrypts and forwards incoming SMS text messages to
each device, utilizing the methods described in iMessage security overview. Replies are
sent back to iPhone using the same method, and then iPhone sends the reply as a text
message using the carrier’'s SMS transmission mechanism. Text Message Forwarding can
be turned on or off in Messages settings.

Instant Hotspot security

Instant Hotspot connects other Apple devices to a personal iPad or iPhone hotspot.

iPad and iPhone devices that support Instant Hotspot use Bluetooth Low Energy (BLE)

to discover and communicate to all devices that have signed in to the same individual
personal Apple Account or other personal Apple Accounts used with Family Sharing (in
iOS 13 and iPadOS 13.1). Compatible Mac computers with OS X 10.10 or later use the same
technology to discover and communicate with Instant Hotspot iPad and iPhone devices.

Initially, when a user enters Wi-Fi settings on a device, it emits a BLE advertisement
containing an identifier that all devices signed in to the same iCloud account agree upon.
The identifier is generated from a DSID (Destination Signaling Identifier) that's tied to the
iCloud account and rotated periodically. When other devices signed in to the same iCloud
account are in close proximity and support Personal Hotspot, they detect the signal and
respond, indicating the availability to use Instant Hotspot.

When a user who isn't part of Family Sharing chooses an iPad or iPhone for Personal
Hotspot, a request to turn on Personal Hotspot is sent to that device. The request is sent
across a link that's encrypted using BLE encryption, and the request is encrypted in a
fashion similar to iMessage encryption. The device then responds across the same BLE link
using the same per-message encryption with Personal Hotspot connection information.

For users that are part of Family Sharing, Personal Hotspot connection information is
securely shared using a mechanism similar to that used by HomeKit devices to sync
information. Specifically, the connection that shares hotspot information between users is
secured with an ECDH (Curve25519) ephemeral key that's authenticated with the users'’
respective device-specific Ed25519 public keys. The public keys used are those that had
previously synced between the members of Family Sharing using IDS when the Family
Share was established.
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Network security

Network security overview

In addition to the built-in safeguards Apple uses to protect data stored on Apple devices,
there are many measures organizations can take to keep information secure as it travels to
and from a device. All of these safeguards and measures fall under network security.

Because users must be able to access corporate networks from anywhere in the world, it's
important to help ensure that they are authorized and that their data is protected during
transmission. To accomplish these security objectives, i0OS, iPadOS, macOS, visionOS, and
watchOS integrate proven technologies and the latest standards for both Wi-Fi and cellular
data network connections. That's why our operating systems use—and provide developer
access to—standard networking protocols for authenticated, authorized, and encrypted
communications.

TLS security

i0S, iPadOS, and macOS support Transport Layer Security (TLS 1.0, TLS 1.1, TLS 1.2,

TLS 1.3) and Datagram Transport Layer Security (DTLS). The TLS protocol supports both
AES-128 and AES-256, and prefers cipher suites with forward secrecy. Internet apps

such as Safari, Calendar, and Mail automatically use this protocol to enable an encrypted
communication channel between the device and network services. High-level APIs (such
as CFNetwork) make it easy for developers to adopt TLS in their apps, while low-level APIs
(such as Network.framework) provide fine-grained control. CFNetwork disallows SSL 3,
and apps that use WebKit (such as Safari) are prohibited from making an SSL 3 connection.

On devices with iOS 11, iPadOS 13.1, macOS 10.13, or later, SHA-1 certificates are no longer
allowed for TLS connections unless trusted by the user. Certificates with RSA keys shorter
than 2048 bits are also disallowed. The RC4 symmetric cipher suite is deprecated in iOS 10
and macOS 10.12. By default, TLS clients or servers implemented with SecureTransport
APIs don't have RC4 cipher suites enabled and are unable to connect when RC4 is the only
cipher suite available. To be more secure, services or apps that require RC4 should be
upgraded to use secure cipher suites.

On devices with i0OS 12.1, certificates issued after October 15, 2018, from a system-trusted
root certificate must be logged in a trusted Certificate Transparency log to be allowed for
TLS connections.

On devices with iOS 12.2 or later, TLS 1.3 is enabled by default for Network.framework
and NSURLSession APIs. TLS clients using the SecureTransport APIs can't use TLS 1.3.
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On devices with iOS 26, iPadOS 26, or later, TLS 1.3 with quantum-secure encryption (with
the X25519MLKEM768 key exchange algorithm) is enabled by default for URLSession
framework and the Network APIs. For more information about this feature and steps for
troubleshooting connections, see the Apple Support article Prepare your network for
quantum-secure encryption in TLS.

App Transport Security

App Transport Security provides default connection requirements so that apps adhere

to best practices for secure connections when using NSURLConnection, CFURL, or
NSURLSession APIs. By default, App Transport Security limits cipher selection to include
only suites that provide forward secrecy, specifically:

- ECDHE_ECDSA_AES and ECDHE_RSA_AES in Galois/Counter Mode (GCM)
- Cipher Block Chaining (CBC) mode

Apps are able to turn off the forward secrecy requirement per domain, in which case RSA_
AES is added to the set of available ciphers.

Servers must support TLS 1.2 and forward secrecy, and certificates must be valid and
signed using SHA-256 or stronger with a minimum 2048-bit RSA key or 256-bit elliptic
curve key.

Network connections that don't meet these requirements fail unless the app overrides App
Transport Security. Invalid certificates always result in a hard failure and no connection.
App Transport Security is automatically applied to apps that are compiled for iOS 9,
iPadOS 13.1, OS X 10.11, tvOS 9, watchOS 2, visionOS 1, or later.

Certificate validity checking

Evaluating the trusted status of a TLS certificate is performed in accordance with
established industry standards, as set out in RFC 5280, and incorporates emerging
standards such as RFC 6962 (Certificate Transparency). On devices with iOS 11 or later
and macOS 10.13 or later, Apple devices are periodically updated with a current list of
revoked and constrained certificates. The list is aggregated from certificate revocation
lists (CRLs), which are published by each of the built-in root certificate authorities trusted
by Apple, as well as by their subordinate CA issuers. The list may also include other
constraints at Apple's discretion. This information is consulted whenever a network API
function is used to make a secure connection. If there are too many revoked certificates
from a CA to list individually, a trust evaluation may instead require that an online
certificate status response (OCSP) is needed, and if the response isn't available, the trust
evaluation will fail.
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IPv6 security

All Apple operating systems support IPv6, implementing several mechanisms to protect
the privacy of users and the stability of the networking stack. When Stateless Address
Autoconfiguration (SLAAC) is used, the IPv6 addresses of all interfaces are generated in a
way that helps prevent tracking devices across networks and at the same time allows for a
good user experience by ensuring address stability when no network changes take place.
The address generation algorithm is based on cryptographically generated addresses as
of RFC 3972, enhanced by an interface-specific modifier to warrant that even different
interfaces on the same network eventually have different addresses. Furthermore,
temporary addresses are created with a preferred lifetime of 24 hours, and these are
used by default for any new connections. The Private Wi-Fi address feature, in which
unique link-local address is generated for every Wi-Fi network that a device joins, was
introduced in:

- i0S14

- iPadOS 14

+ macO0S 12

+ visionOS 1
- watchOS 7

The network's SSID is incorporated as an additional element for the address generation,
similar to the Network_ID parameter as of RFC 7217.

To protect against attacks based on IPv6 extension headers and fragmentation, Apple
devices implement protection measures specified in RFC 6980, RFC 7112, and RFC 8021.
Among other measures, these inhibit attacks where the upper-layer header can be found
only in the second fragment (as shown below), which in turn could cause ambiguities for
security controls like stateless packet filters.

Headers IPv6 datagram, unfragmented Payload
L L Upper-layer g
IPV6 Hop-by-hop Destination ven Destination header, e.g. Upper-layer

options options TCP payload

Headers First fragment / m‘ Second fragment Payload
oot Destination

Destination . Upper-layer
IPv6 Hop-by-hop options oo %pet;%ﬁ IPv6 Hop-by-hop Upper-layer payload

In addition, to help ensure the reliability of the IPv6 stack of Apple operating systems,
Apple devices enforce various limits on IPv6-related data structures, such as the number
of prefixes per interface.
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Virtual private network (VPN) security

Secure network services such as virtual private networking (VPN) typically require minimal
setup and configuration to work with iPad, iPhone, Mac, Apple Vision Pro, and Apple Watch
devices.

Protocols supported

These devices work with VPN servers that support the following protocols and
authentication methods:

IKEv2/IPsec with authentication by shared secret, RSA Certificates, Elliptic Curve Digital
Signature Algorithm (ECDSA) Certificates, EAP-MSCHAPv2, or EAP-TLS. Devices with
iOS 26, iPadOS 26, macOS 26, tvOS 26, visionOS 26, and watchOS 26, or later can be
configured to perform additional key exchanges using ML-KEM to provide quantum
security.

IKEv2/IPsec with authentication by shared secret, RSA Certificates, Elliptic Curve Digital
Signature Algorithm (ECDSA) Certificates, EAP-MSCHAPV2, or EAP-TLS.

SSL-VPN using the appropriate client app from the App Store.

L2TP/IPsec with user authentication by MS-CHAPV2 password and machine
authentication by shared secret (i0S, iPadOS, macOS, tvOS, and visionOS) and RSA
SecurlD or CRYPTOCard (macOS only).

Cisco IPsec with user authentication by password, RSA SecurlD or CRYPTOCard, and
machine authentication by shared secret and certificates (macOS only).

VPN deployments supported

i0S, iPadOS, macOS, tvOS, and visionOS support the following:

VPN On Demand: For networks that use certificate-based authentication. IT policies
specify which domains require a VPN connection by using a VPN configuration profile.

i0S, iPad0OS, macOS, vision0OS, and supervised watchOS support the following:

Per-app VPN: For facilitating VPN connections on a much more granular basis. A device
management service can specify a connection for each managed app and specific
domains in Safari. This helps ensure that secure data always goes to and from the
corporate network—and that a user’s personal data doesn't.

i0S, iPadOS, and visionOS support the following:

Always On VPN: For devices managed through a device management service and
supervised using Apple Configurator for Mac, Apple School Manager, or Apple Business
Manager. Always On VPN eliminates the need for users to turn on VPN to enable
protection when connecting to cellular and Wi-Fi networks. It also gives an organization
full control over device traffic by tunneling all IP traffic back to the organization. The
default exchange of parameters and keys for the subsequent encryption, IKEv2, secures
traffic transmission with data encryption. The organization can monitor and filter traffic
to and from its devices, secure data within its network, and restrict device access to the
internet.
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Wi-Fi security and privacy

Security features when connecting to wireless networks

All Apple platforms support industry-standard Wi-Fi authentication and encryption
protocols, to provide authenticated access and confidentiality when connecting to the
following secure wireless networks:

WPA?2 Personal

WPA?2 Enterprise

WPA2/WPA3 Transitional

WPA3 Personal

WPA3 Enterprise

WPA3 Enterprise 192-bit Security

WPA2 and WPAS3 authenticate each connection and provide 128-bit AES encryption to
help ensure confidentiality of data sent over the air. This grants users the highest level
of assurance that their data remains protected when they're sending and receiving
communications over a Wi-Fi network connection.

WPA3 support
WPA3 is supported on the following Apple devices:

All iPhone models starting with iPhone 7 or later

All iPad models starting with iPad (5th generation) or later

All Mac computers (late 2013 or later, with 802.11ac or later)

All Apple TV models starting with Apple TV 4K (1st generation) or later
All Apple Watch models starting with Apple Watch Series 3 or later
Apple Vision Pro

All HomePod models

Newer devices support authentication with WPA3 Enterprise 192-bit security, which
includes support for 256-bit AES encryption when connecting to compatible wireless
access points (APs). This encryption provides even stronger confidentiality protections

for traffic sent over the air. WPA3 Enterprise 192-bit security is supported in all iPhone 11

models or later, all iPad models starting with the iPad (7th generation), and all Mac
computers with Apple silicon.

WPA3 R3

The R3 WPA3 Personal update (WPA R3) was launched in order to enhance the security

and privacy of Wi-Fi, with a focus on certain handshake vulnerabilities. On Apple platforms,

the following WPA3 R3 features are supported:

Transition Terminated Indication
Hash-To-Element (H2E) Support and H2E Fast Transition

Mitigation for Group Downgrade Attacks
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- Anticlogging Token Container Element

These improvements target protection against downgrade attacks (for example, Transition
Terminated Indication) and password element generation (for example, the use of Hash-
To-Element, which uses a non-iterative algebraic algorithm to derive the secret key, an
improvement to the "Hunt-and-Peck” method). These WPA3 R3 features were introduced
in i0OS 16, iPadOS 16, macOS 13, and tvOS 16, and are supported on the following Apple
devices:

- All iPhone models starting with iPhone 11 or later
+ All iPad models from late 2020 or later
+ All Mac computers from late 2020 or later

- All Apple TV models starting with Apple TV 4K (2nd generation) or later

Protected Management Frame support

In addition to protecting data sent over the air, Apple platforms extend WPA2 and WPA3
level protections to unicast and multicast management frames through the Protected
Management Frame (PMF) service defined in 802.11w. PMF support is available on the
following Apple devices:

- All iPhone models starting with theiPhone 6 or later

- All iPad models starting with theiPad Air 2 or later

- All Mac computers (late 2013 or later, with 802.11ac or later)

- All Apple TV models starting with theApple TV HD or later

- All Apple Watch models starting with the Apple Watch Series 3 or later
- Apple Vision Pro

« All HomePod models

With support for 802.1X, Apple devices can be integrated into a broad range of RADIUS
authentication environments. 802.1X wireless authentication methods supported include
EAP-TLS, EAP-TTLS, EAP-FAST, EAP-SIM, PEAPVO, and PEAPV1.

Platform protections

Apple operating systems protect the device from vulnerabilities in network processor
firmware. This means that network controllers with Wi-Fi have limited access to Application
Processor memory. Each network processor is on its own isolated PCle bus. An Input/
Output Memory Management Unit (IOMMU) on each PCle bus further limits the network
processor’s DMA access to only memory and resources containing its network packets and
control structures.

Deprecated protocols

Apple products support the following deprecated Wi-Fi authentication and encryption
protocols:

- WEP Open, with both 40-bit and 104-bit keys
- WEP Shared, with both 40-bit and 104-bit keys
- Dynamic WEP

Apple Platform Security 202



Apple Platform Security

- Temporal Key Integrity Protocol (TKIP)
- WPA
- WPA/WPA2 Transitional

These protocols are no longer considered secure, and their use is strongly discouraged
for compatibility, reliability, performance, and security reasons. They are supported for
backward compatibility purposes only and may be removed in future software versions.

It's recommended that all Wi-Fi implementations be migrated to WPA3 Personal or WPA3
Enterprise, to provide the most robust, secure, and compatible Wi-Fi connections possible.

Wi-Fi security with Apple devices

Apple devices have features designed to help devices maintain secure Wi-Fi connections.

Auto-join

In order to enhance user security, open and captive portal networks are not auto-joined if
they haven't been joined within the past two weeks. For more information about auto-join
policies, see the Apple Support article How iOS, iPadOS, and macOS decide which wireless
network to auto-join.

Opportunistic Wireless Encryption

Opportunistic Wireless Encryption (OWE), was introduced in an effort to improve security
on open networks encrypting the air model to prevent traffic snooping and other related
attacks. It provides protection against passive surveillance by encrypting over-the-air
traffic on unauthenticated networks. Support was added on the following devices with
i0S 16.1, iPadOS 16,macOS 13, tvOS 16, or later:

- All iPhone models starting with iPhone 11 or later
+ All iPad models from late 2020 or later
+ All Mac computers from late 2020 or later

- All Apple TV models starting with Apple TV 4K (1st generation) or later

Personal Hotspot and Internet Sharing security

By default, all Apple platforms provide a system-suggested, default secure & random
password for access point modes (Personal Hotspot and Internet Sharing).

Personal Hotspot on iOS and iPadOS support:

- WPA2/WPA3 Personal Security (default)

- WPA2 Personal (if maximize compatibility switch is enabled)
Personal Hotspot on macOS supports:

- WPA2/WPA3 Personal Security (default)

+ WPA3 Personal
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Maximize Compatibility Mode

On iPhone 12 or later, users can turn on Maximize Compatibility Mode for Personal Hotspot.
For compatibility with client devices, Maximize Compatibility Mode does the following:

- Turns off 5GHz (and, if applicable, 6GHz)
- Restricts the device to the use of only 2.4GHz

- Enforces a WPA2 Personal Security Mode

Privacy features when connecting to wireless networks

Scan privacy

Apple platforms use a randomized Media Access Control address (MAC address) when
performing Wi-Fi scans when not associated with a Wi-Fi network. These scans can be
performed to find and connect to a known Wi-Fi network or to assist Location Services for
apps that use geofences, such as location-based reminders or fixing a location in Apple
Maps. Note that Wi-Fi scans that happen while trying to connect to a preferred Wi-Fi
network aren’t randomized.

Because a device's MAC address changes when disconnected from a Wi-Fi network,

it can't be used to persistently track a device by passive observers of Wi-Fi traffic,

even when the device is connected to a cellular network. Apple has informed Wi-Fi
manufacturers that iOS and iPadOS Wi-Fi scans use a randomized MAC address and that
neither Apple nor manufacturers can predict these randomized MAC addresses.

Wi-Fi frame privacy

Wi-Fi frames include a sequence number, which is used by the low-level 802.11 protocol
to enable efficient and reliable Wi-Fi communications. Because these sequence numbers
increment on each transmitted frame, they could be used to correlate information
transmitted during Wi-Fi scans with other frames transmitted by the same device.

To guard against this, Apple devices randomize the sequence numbers whenever a MAC
address is changed to a new randomized address. This includes randomizing the sequence
numbers for each new scan request that's initiated while the device is unassociated. This
randomization was introduced in iOS 16.1, iPadOS 16.1, macOS 13.1, tvOS 16.1, watchOS 9.1,
and visionOS 1, and is supported on the following devices:

- All iPhone models starting with the iPhone 7 or later

- All iPad models starting with theiPad (5th generation) or later

- All Mac computers from late 2018 or later

- iMac Pro (2017) or later

- All Apple TV models starting with theApple TV 4K (1st generation) or later
- All Apple Watch models starting with the Apple Watch Series 3 or later

- Apple Vision Pro

- All HomePod models
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Additionally, in an effort to increase user privacy and mitigate device fingerprinting, Apple
devices randomize the seed value used for scrambling. This value is changed for every
probe request and discovery frame, whenever an interface is started or stopped, on
association and disassociation, on roam, and at random intervals.

Apple devices also randomize dialogue token fields in Information Elements (IEs) by
selecting a new random value in each transaction. This helps ensure that there's no
predictable pattern to the value of these fields across multiple transactions, and that said
pattern can’t be used to distinguish a given device. This applies to IEs across all interfaces
(client, Access Point modes, and P2P).

Wi-Fi privacy with Apple devices

Apple devices have features designed to help devices maintain private Wi-Fi connections.

Private Wi-Fi address

On devices with iOS 14, iPadOS 14, macOS 14, visionOS 1, watchOS 7, or later, when
connecting to a Wi-Fi network, the device has the ability to identify itself with a unique and
random Wi-Fi (MAC) address. This assists in reducing tracking of devices and enhances
user privacy.

Note: This feature can be turned off by a device management service (requires visionOS 1.1
or later). If the feature is turned off, the operating system shows a privacy warning in
Settings indicating that the network has reduced privacy protections.

On devices with iOS 18, iPadOS 18, macOS 15, visionOS 2, watchOS 11, or later, the Private
Wi-Fi Address feature has been updated to support three operating modes, selectable on a
per-network basis:

- Off: Uses the device's hardware Wi-Fi address, allowing tracking by networks and
nearby Wi-Fi devices.

- Fixed: A fixed private address reduces cross-network tracking by using a unique Wi-Fi
address on the network. Used as default for secure network connections, such as WPA2
Personal, WPA2 Enterprise, WPA3 Personal, WPA3 Enterprise, WPA3 Enterprise 192-bit
Security, and R3 WPA3 Personal.

- Rotating: A rotating private address reduces tracking by periodically changing this
device's Wi-Fi address on the network. Used as default for connections that use weaker
authentication or encryption methods, such as WPA, OWE, WEP, captive portals, and
open networks.

For more information, see the Apple Support article Use private Wi-Fi addresses on iPad,
iPhone, and Apple Watch.

Hidden networks

Wi-Fi networks are identified by their network name, known as a service set identifier
(SSID). Some Wi-Fi networks are configured to hide their SSID, which results in the wireless
access point not broadcasting the network’s name. These are known as hidden networks.
Apple devices automatically detect when a network is hidden. If a network is hidden, the
device sends a probe with the SSID included in the request—not otherwise. This helps
prevent the device from broadcasting the name of previously hidden networks a user was
connected to, thereby further ensuring privacy.
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Personal Hotspot, Internet Sharing, and peer-to-peer privacy

Apple generates randomized MAC addresses for the peer-to-peer Wi-Fi connections

that are used for AirDrop and AirPlay. Randomized addresses are also used for Personal
Hotspot in iOS and iPadOS (with a SIM card) and Internet Sharing in macOS. New random
addresses are generated whenever these network interfaces are started, and unique
addresses are independently generated for each interface as needed.

Timing synchronization function offset randomization

To increase user privacy and mitigate device fingerprinting, Apple devices randomize the
starting Timing Synchronization Function (TSF) offset for all peer-to-peer and Access
Point modes. This 56-bit random offset helps prevent an attacker from using the TSF
value to defeat MAC address randomization. The TSF offset for an interface is randomized
whenever the interface MAC address changes. TSF offset randomization support was
added on the following devices with iOS 15, iPadOS 15, macOS 12.0.1, tvOS 15, visionOS 1,
or later:

- All iPhone models starting with the iPhone 8 or later

- All iPhone SE models starting with the iPhone SE (2rd generation) or later
- All iPad models starting with iPad Air (3rd generation) or later

- All Mac computers from late 2020 or later

- All Apple TV models starting with Apple TV 4K (1st generation) or later

- Apple Vision Pro

- All HomePod models

Bluetooth security

There are two types of Bluetooth in Apple devices, Bluetooth Classic and Bluetooth Low
Energy (BLE). The Bluetooth security model for both versions includes the following
distinct security features:

« Pairing: The process for creating one or more shared secret keys

+ Bonding: The act of storing the keys created during pairing for use in subsequent
connections to form a trusted device pair

- Authentication: Verifying that the two devices have the same keys
- Encryption: Message confidentiality
«  Message integrity: Protection against message forgeries

- Secure Simple Pairing: Protection against passive eavesdropping and protection against
man-in-the-middle attacks

Bluetooth version 4.1 added the Secure Connections feature to Bluetooth Classic (BR/EDR)
physical transport.

The security features for each type of Bluetooth are listed below.
Support Bluetooth Classic Bluetooth Low Energy

Pairing P-256 elliptic curve FIPS-approved algorithms (AES-
CMAC and P-256 elliptic curve)
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Support

Bonding

Authentication

Encryption

Message integrity

Protection against passive

eavesdropping

Protection against man-in-the-
middle (MITM) attacks

Bluetooth 4.1 or later

Bluetooth 4.2 or later

Bluetooth Classic

Pairing information stored in a
secure location in i0S, iPadOS,
macOS, tvOS, and watchOS devices

FIPS-approved algorithms (HMAC-
SHA-256 and AES-CTR)

AES-CCM cryptography, performed
in the Controller

AES-CCM, used for message
integrity

Elliptic Curve Diffie-Hellman
Exchange Ephemeral (ECDHE)

Two user-assisted numeric

methods: numerical comparison or
passkey entry

iMac Late 2015 or later
MacBook Pro Early 2015 or later

iPhone 6 or later

Bluetooth Low Energy privacy

To help secure user privacy, BLE includes the following two features: address
randomization and cross-transport key derivation.

Bluetooth Low Energy

Pairing information stored in a
secure location in i0S, iPadOS,

macOS, tvOS, and watchOS devices

FIPS-approved algorithms

AES-CCM cryptography, performed
in the Controller

AES-CCM, used for message
integrity

Elliptic Curve Diffie-Hellman
Exchange (ECDHE)

Two user-assisted numeric
methods: numerical comparison or
passkey entry

Pairings require a user response,
including all non-MITM pairing
modes

iPadOS 13.1 or later
iOS 9 or later
macOS 10.12 or later
tvOS 9 or later
watchOS 2 or later

iPadOS 13.1 or later
iOS 9 or later
macOS 10.12 or later
tvOS 9 or later
watchOS 2 or later

Address randomization is a feature that reduces the ability to track a BLE device over a
period of time by changing the Bluetooth device address on a frequent basis. For a device
using the privacy feature to reconnect to known devices, the device address, referred

to as the private address, must be resolvable by the other device. The private address

is generated using the device's identity resolving key exchanged during the pairing

procedure.

On devices with iOS 13 andiPadOS 13.1 or later have the ability to derive link keys across
transports, a feature known as cross-transport key derivation. For example, a link key

generated with BLE can be used to derive a Bluetooth Classic link key. In addition, Apple
added Bluetooth Classic to BLE support for devices that support the Secured Connections
feature that was introduced in the Bluetooth Core Specification 4.1 (see the Bluetooth Core

Specification 5.1).
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Ultra Wideband security in iOS

The new Apple-designed U1 chip uses Ultra Wideband technology for spatial awareness—
allowing iPhone 11, iPhone 11 Pro, and iPhone 11 Pro Max or later iPhone models to
precisely locate other U1-equipped Apple devices. Ultra Wideband technology uses the
same technology to randomize data found in other supported Apple devices:

- MAC address randomization

- Wi-Fi frame sequence number randomization

Single Sign-on security

i0S, iPadOS, macOS and visionOS support authentication to enterprise networks through
Single Sign-on (SSO). SSO works with an identity provider (IdP) to authenticate users to
services they are authorized to access. SSO can be used for a range of network activities,
from secure Safari sessions to third-party apps.

i0S, iPadOS, macO0S, and visionOS include a built-in Kerberos SSO extension. App
developers can also provide their own Single Sign-on implementations using SSO
extensions.

Kerberos Single Sign-on

i0S, iPadOS, macOS, and visionOS support authentication to enterprise networks using
Kerberos. SSO support is based on the open source Heimdal project and uses SPNEGO
tokens and the HTTP Negotiate protocol to work with Kerberos-based authentication
gateways and Windows Integrated Authentication systems that support Kerberos tickets.
Certificate-based authentication such as PKINIT is also supported.

The Kerberos SSO extension supports the following encryption types:

+ AES-128-CTS-HMAC-SHA1-96
+ AES-256-CTS-HMAC-SHA1-96

i0S, iPadOS, and visionOS provide flexible support for SSO to any app that uses the class
NSURLSession or URLSession to manage network connections and authentication. Apple
provides all developers with these classes to seamlessly integrate network connections
within their apps.

Any Mac app that supports Kerberos authentication works with SSO. This includes many
of the apps built into macOS, such as Calendar, Mail, and Safari, and includes services like
file sharing, screen sharing, and secure shell (SSH). Many third-party apps also support
Kerberos.

To configure SSO, a configuration allows a device management service to push the
necessary settings to the device. This includes setting the user principal name (the Active
Directory user account) and Kerberos realm settings, as well as configuring which apps
and Safari web URLs should be allowed to use SSO.
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Extensible Single Sign-on

App developers can provide their own Single Sign-on implementation using SSO extensions
for i0S, iPadOS, macQS, and visionOS. SSO extensions are invoked when a native or web
app needs to use an IdP for user authentication. Developers can provide two types of
extensions:

- Redirect extensions, which redirect to HTTPS
- Challenge/response extensions, such as Kerberos

This allows Open ID Connect (OIDC), OAuth, SAML 2.0, and Kerberos authentication
schemes to be supported by extensible Single Sign-on. SSO extensions may also support
authentication at the FileVault and Login Window on macOS by adopting Platform SSO,
which allows the Mac to retrieve SSO tokens during login.

To use a Single Sign-on extension, an app can either use the AuthenticationServices API
or can rely on the URL interception mechanism offered by the operating system. WebKit
and CFNetwork provide an interception layer that permits seamless support of Single
Sign-on for any native or WebKit app. For a Single Sign-on extension to be invoked, a
configuration must be installed through a device management service. In addition, redirect
type extensions must use Associated Domains to prove that the IdP they support is aware
of their existence.

Platform Single Sign-on

With Platform Single Sign-on (Platform SSO), developers can build SSO extensions for
macOS that extend to the macOS FileVault and Login Window. Platform SSO supports
different authentication mechanisms with an IdP:

- Password

- Password authentication supports WS-Trust. This allows a user to authenticate even
when the IdP managing their account is federated.

- Optionally, users can also synchronize their local account credentials with an IdP.
The local account password is automatically kept in sync with the password of their
IdP account.

- Secure Enclave Key

A key is created and stored in the Secure Enclave during the user registration
process and used to authenticate with the IdP without a password.

+  Smart card
A smart card is used to authenticate with the IdP.
- Access Key
A pass stored in Apple Wallet is used to authenticate with the IdP.

Registration

To use Platform SSO, the Mac and each user register with the IdP. Depending on IdP
support and the applied configuration, the Mac can perform device registration silently in
the background using:

- Aregistration token provided in the device management configuration.
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- An attestation, which provides a strong assurance about device identifiers (UDID and
serial number).

After a successful device registration, the user registers (unless the user account is using
Authenticated Guest Mode). If the IdP requires it, user registration can involve prompting
the user to confirm their registration. For local user accounts that Platform SSO creates on
demand, user registration happens automatically in the background.

During the registration process, the Mac creates two keys: a device signing key, and a
device encryption key. Depending on the SSO extension, the keys can use the following:

+ NIST P-256 ECDH-ES
«  HKPE with NIST P-256, NIST P-384, or X25519

These maintain a trusted connection with the IdP independent of the user, Platform SSO
supports shared device keys. This enables features like Platform SSO during Automated
Device Enrollment, on-demand creation of user accounts based on information from the
IdP, network authorization, and Authenticated Guest Mode and uses the same signing and
encryption key for all users on a specific device.

Note: The SSO extension needs to support the requested method to perform the
registration. Switching methods is also supported. For example, when creating a new user
account with a user name and password during login, that account can then switch to use a
Secure Enclave-backed key or smart card after the login is successful.

Token retrieval and refresh

To authenticate the user to their apps and websites as needed, the SSO extension

uses SSO tokens. To help ensure the SSO extension is always ready to perform an
authentication, Platform SSO attempts to refresh or retrieve new tokens from the IdP if the
tokens are:

- Missing
- Expired
- More than four hours old

To request or renew tokens from the IdP, a JSON Web Token (JWT) login or refresh request
is sent and—depending on the method defined by the SSO extension—signed with the
device signing key using ES256, ES384, or Ed25519. The created tokens are part of the
response payload which is AES-GCM 256 encrypted using the public key of the device
encryption key.

If password encryption is requested by the SSO extension, the password isn’t sent in the
login request and replaced by an AES-GCM 256 encrypted embedded assertion containing
the password. The associated encryption key is then created (as defined by the SSO
extension using one of the mechanisms also available for the device encryption key).

When the authentication mechanism requires a digital signature, Platform SSO uses an
embedded JWT assertion for Secure Enclave Key and smart card authentication. The
assertion is either:

- Signed with the authenticator when using a smart card.

- Encrypted using ES256, ES384, or Ed25519 when using a Secure Enclave Key as
defined by the SSO extension.

Regardless of the authentication method, SSO tokens are:
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- Stored in the keychain using the keychain data protection attribute
kSecAttrAccessibleAfterFirstUnlockThisDeviceOnly

- Shared only with the SSO extension

- Nonmigratory

AirDrop security

Apple devices that support AirDrop use Bluetooth Low Energy (BLE) and Apple-created
peer-to-peer Wi-Fi technology to send files and information to nearby devices, including
AirDrop-capable iPad and iPhone devices with iOS 7 or later and Mac computers with
OS X 10.11 or later. The Wi-Fi radio is used to communicate directly between devices
without using any internet connection or wireless access point (AP). This connection is
encrypted with TLS.

AirDrop is set to share with Contacts Only by default. Users can also choose to use AirDrop
to share with everyone, or turn off the feature entirely. Organizations can restrict the use of
AirDrop for devices or apps being managed by using a device management service.

AirDrop operation

AirDrop uses iCloud services to help users authenticate. When a user signs in to iCloud,
a 2048-bit RSA identity is stored on the device, and when the user turns on AirDrop, an
AirDrop short identity hash is created based on the email addresses and phone numbers
associated with the user’s Apple Account.

When a user chooses AirDrop as the method for sharing an item, the sending device emits
an AirDrop signal over BLE that includes the user’s AirDrop short identity hash. Other Apple
devices that are awake, in close proximity, and have AirDrop turned on, detect the signal
and respond using peer-to-peer Wi-Fi, so that the sending device can discover the identity
of any responding devices.

In Contacts Only mode, the received AirDrop short identity hash is compared with hashes
of people in the receiving device's Contacts app. If a match is found, the receiving device
responds over peer-to-peer Wi-Fi with its identity information. If there is no match, the
device doesn’t respond.

In Everyone mode, the same overall process is used. However, the receiving device
responds even if there is no match in the device's Contacts app.

The sending device then initiates an AirDrop connection using peer-to-peer Wi-Fi, using
this connection to send a long identity hash to the receiving device. If the long identity
hash matches the hash of a known person in the receiver’s Contacts, then the receiver
responds with its long identity hashes.

If the hashes are verified, the recipient’s first name and photo (if present in Contacts) are
displayed in the sender’s AirDrop share sheet. On devices with iOS and iPadOS, they are
shown in the “People” or “Devices” section. Devices that aren’t verified or authenticated
are displayed in the sender’s AirDrop share sheet with a silhouette icon and the device's
name, as defined in Settings > General > About > Name. They're placed in the "Other
People” section of the AirDrop share sheet.
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The sending user may then select whom they want to share with. Upon user selection, the
sending device initiates an encrypted (TLS) connection with the receiving device, which
exchanges their iCloud identity certificates. The identity in the certificates is verified
against each user's Contacts app.

If the certificates are verified, the receiving user is asked to accept the incoming transfer
from the identified user or device. If multiple recipients have been selected, this process is
repeated for each destination.

Wi-Fi password sharing security

Apple devices that support Wi-Fi password sharing use a mechanism similar to AirDrop to
send a Wi-Fi password from one device to another.

When a user selects a Wi-Fi network (requestor) and is prompted for the Wi-Fi password,
the Apple device starts a Bluetooth Low Energy (BLE) advertisement indicating that it
wants the Wi-Fi password. Other Apple devices that are awake, in close proximity, and have
the password for the selected Wi-Fi network connect using BLE to the requesting device.

The device that has the Wi-Fi password (grantor) requires the Contact information of the
requestor, and the requestor must prove their identity using a process that’s similar to
AirDrop. After identity is proven, the grantor sends the requestor the passcode, which can
be used to join the network.

Organizations can restrict the use of Wi-Fi password sharing for devices or apps being
managed through a device management service.

Firewall security in macOS

macOS includes a built-in firewall to protect the Mac from network access and denial-of-
service attacks. It can be configured by going to System Settings > Privacy & Security
(macOS 13 or later), the Security & Privacy pane of System Preferences (macOS 12 or
earlier), or by using a configuration profile with the Firewall payload installed manually or
provided by a device management service. The following configurations are supported:

- Block all incoming connections, regardless of app.

- Automatically allow built-in software to receive incoming connections.

- Automatically allow downloaded and signed software to receive incoming connections.
- Add or deny access based on user-specified apps.

- Prevent the Mac from responding to ICMP (Internet Control Message Protocol) probing
and portscan requests.
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Developer kit security

Developer kit security overview

Apple provides a number of "kit” frameworks to enable third-party developers to extend
Apple services. These frameworks are built with user privacy and security at their core:

« ARKit

- DriverKit
+  EnergyKit
+  HomeKit

- NFC & SE Platform

- ReplayKit
- SiriKit
+  WidgetKit

ARKit security in iOS and iPadOS

ARKit is a framework that lets developers produce augmented reality experiences in their
app or game. Developers can add 2D or 3D elements using the front or rear camera of an
iOS or iPadOS device.

Apple designed cameras with privacy in mind, and third-party apps must obtain the user’s
consent before accessing the camera. On devices with iOS and iPadOS, when a user grants
an app access to their camera, that app can access real-time images from the front and
rear cameras. Apps aren’t allowed to use the camera without transparency that the camera
is in use.

Photos and videos taken with the camera may contain other information, such as where
and when they were taken, the depth of field, and overcapture. If users don’t want photos
and videos taken with the Camera app to include location, they can control this at any time
by going to Settings > Privacy > Location Services > Camera. If users don't want photos
and video to include location when shared, they can turn location off in the Options menu
in the share sheet.

To better position the user’s AR experience, apps that use ARKit can use world- or face-
tracking information from the other camera. World tracking uses algorithms on the user’s
device to process information from these sensors to determine their position relative to a
physical space. World tracking enables features such as Optical Heading in Maps.
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DriverKit security for macOS

DriverKit allows developers to create device drivers that the user installs on their Mac.
Drivers built with DriverKit run in user space, rather than as kernel extensions, for improved
system security and stability. This makes for easier installation and increases the stability
and security of macOS.

The user downloads the app (installers aren’t necessary when using system extensions or
DriverKit) and the extension is enabled only when required.

IT administrators who use device drivers, cloud storage solutions, networking, and security
apps that require kernel extensions are encouraged to move to newer versions that are
built on system extensions. These newer versions greatly reduce the possibility of kernel
panics on the Mac as well as reduce the attack surface. These new extensions run in the
user space, won't require special privileges required for installation, and are automatically
removed when the bundling app is moved to the Trash.

The DriverKit framework provides C++ classes for I/O services, device matching, memory
descriptors, and dispatch queues. It also defines I/O-appropriate types for numbers,
collections, strings, and other common types. The user uses these with family-specific
driver frameworks like USBDriverKit and HIDDriverKit. Use the System Extensions
framework to install and upgrade a driver.

EnergyKit data security

iCloud and iCloud Keychain securely synchronize EnergyKit data between a user’s
Apple devices. End-to-end encryption through the entire process ensures the data isn't
accessible to anyone, even Apple.

Users can control the access of their energy data in the system Privacy settings. When
apps want to access energy data, the operating system prompts a user for approval, in

a way that's similar to Home data, Contacts, Photos, and other iOS, iPadOS, and macOS
data. If a user approves the prompt, apps can access the names of Homes, Electricity
Guidance, and other home information. In addition, EnergyKit can receive electricity usage
data from authorized apps.

Local data storage

EnergyKit stores data on a user’s Apple devices. The framework secures the data using the
Data Protection class Protected Until First User Authentication and a data vault. However,
local backups exclude EnergyKit data.

214



HomeKit security

HomeKit communication security

HomeKit provides a home automation infrastructure that uses iCloud and device security
features to protect and sync private data without exposing it to Apple.

HomeKit identity and security are based on Ed25519 public-private key pairs. An Ed25519
key pair is generated on the user's device, which becomes their HomeKit identity. The
key pair is used as part of the HomeKit Accessory Protocol (HAP) to authenticate direct
communication between user's Apple devices and their HomeKit accessories.

For homes where there is a home hub, members of the shared home can send commands
to accessories through the hub. These commands are sent, end-to-end encrypted and
authenticated, from the user’s device to the home hub using Apple Identity Service (IDS),
where they are forwarded on to the relevant accessory using the HomeKit Accessory
Protocol (HAP) or Matter, a smart home connectivity standard.

The keys—stored in keychain and are included only in encrypted keychain backups—are
kept up to date between devices using iCloud Keychain.

Communication between HomeKit accessories

HomeKit accessories generate their own Ed25519 key pair for use in communicating with
Apple devices. If the accessory is restored to factory settings, a new key pair is generated.

To establish a relationship between an Apple device and a HomeKit accessory, keys

are exchanged using the Secure Remote Password (3072-bit) protocol with an eight-

digit code provided by the accessory’'s manufacturer, entered on the user's device, and
then encrypted using ChaCha20-Poly1305 AEAD with HKDF-SHA-512 derived keys. The
accessory’'s MFi certification is also verified during setup. Accessories without an MFi chip
can build in support for software authentication in iOS 11.3 or later.

When the device and HomeKit accessory communicate during use, each authenticates the
other using the keys exchanged in the above process. Each session is established using
the Station-to-Station protocol and is encrypted with HKDF-SHA-512 derived keys based
on per-session Curve25519 keys. This applies to both IP-based and Bluetooth Low Energy
(BLE) accessories.

For BLE devices that support broadcast notifications, the accessory is provisioned with
a broadcast encryption key by a paired device over a secure session. This key is used

to encrypt the data about state changes on the accessory, which are notified using the
BLE advertisements. The broadcast encryption key is an HKDF-SHA-512 derived key,
and the data is encrypted using the ChaCha20-Poly1305 AEAD algorithm. The broadcast
encryption key is periodically changed and updated on other devices using iCloud, as
described in Data security.
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Communication with Matter accessories

Identity and security with Matter accessories are certificate based. For Apple homes,
the root of trust Certificate Authority (CA) is generated on the initial user’s device (the
“owner"), and the private key for the CA is stored in their iCloud Keychain. Each Apple
device in the home generates a Certificate Signing Request (CSR) using NIST P256. This
CSR is ingested by the owner's device, which creates a Matter identity certificate for the
device using their CA private key. This certificate is subsequently used to authenticate
communication between users’ devices and their accessories.

Matter accessories generate their own NIST P256 key pair and CSR and receive a
certificate from the CA during accessory pairing. Before the key pairs are generated, the
Matter accessory and the home owner’s devices exchange keys—using the SPAKE2+
protocol with a PIN provided by the accessory’s manufacturer—and a Device Attestation
process is performed. The CSR and certificate are then exchanged over this channel
encrypted using AES-CCM with HKDF-SHA-256 derived keys. If the accessory is restored
to factory settings, a new key pair and CSR are generated and a new certificate is issued
for the accessory during pairing.

When an Apple device and Matter accessory communicate during use, each authenticates
the other using their own certificates. Each session is established using a three-phase
(sigma) protocol and is encrypted with HKDF-SHA-256 derived keys based on per-session
P256 keys.

For more information about how Apple devices interact securely with Matter accessories,
see Matter support in iOS 16 on the Apple Developer website.

HomeKit and Siri

Siri can be used to query and control accessories, and to activate scenes. Minimal
information about the configuration of the home is provided anonymously to Siri, to provide
names of rooms, accessories, and scenes that are necessary for command recognition.
Audio sent to Siri may denote specific accessories or commands, but such Siri data isn't
associated with other Apple features such as HomeKit.

Siri-enabled HomeKit accessories

Users can enable new features like Siri, and other HomePod features like timers, alarms,
intercom, and doorbell, on Siri-enabled accessories using the Home app. When these
features are enabled, the accessory coordinates with a paired HomePod on the local
network that hosts these Apple features. Audio is exchanged between the devices over
encrypted channels using both HomeKit and AirPlay protocols.

When Listen for Hey Siri is turned on, the accessory listens for the “Hey Siri" phrase using
a locally running trigger-phrase detection engine. If this engine detects the phrase, it
sends the audio frames directly to a paired HomePod using HomeKit. The HomePod does a
second check on the audio and may cancel the audio session if the phrase doesn't appear
to contain the trigger phrase.

When Touch for Siri is turned on, the user can press a dedicated button on the accessory
to start a conversation with Siri. The audio frames are sent directly to the paired HomePod.
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After a successful invocation of Siri is detected, the HomePod sends the audio to Siri
servers and fulfills the user’s intent using the same security, privacy, and encryption
safeguards that the HomePod applies to user invocations made to the HomePod itself. If
Siri has an audio reply, then Siri's response is sent over an AirPlay audio channel to the
accessory. Some Siri requests require additional information from the user (for example,
asking if the user wants to hear more options). In that case, the accessory receives an
indication that the user should be prompted, and the additional audio is streamed to the
HomePod.

The accessory is required to have a visual indicator to signal to a user when it's actively
listening (for example, an LED indicator). The accessory has no knowledge of the intent of
the Siri request, except for access to the audio streams, and no user data is stored on the
accessory.

HomeKit data security

For homes that have been upgraded to the new HomeKit architecture (available iniOS 16.2
and iPadOS 16.2), HomeKit data is securely synchronized between a user’'s Apple devices
using iCloud and iCloud Keychain. During this process, the HomeKit data is encrypted
using iCloud end-to-end encryption and isn't accessible by Apple.

The user who initially created the home in the Home app (the "owner”) or another user with
editing permissions can add new users. The owner's device configures the accessories
with the public key of the new user so that the accessory can authenticate and accept
commands from the new user. When a user with editing permissions adds a new user, the
process is delegated to a home hub to complete the operation.

Home data and apps

Access to home data by third-party apps is controlled by users in Privacy settings and
users are asked to grant access when these apps request home data (similar to access
Contacts, Photos, and other iOS, iPadOS, and macOS data sources). If the user approves,
apps have access to the names of rooms, names of accessories, the room each accessory
is in, and other information as detailed in the HomeKit developer documentation at https://
developer.apple.com/homekit/.

Local data storage

HomeKit stores data about the homes, accessories, scenes, and users on a user’s Apple
devices. This data is stored using the Data Protection class Protected Until First User
Authentication and within a data vault. HomeKit data isn’t backed up in local backups.

Securing routers with HomekKit

Users can improve the security of their home network by using routers that support
HomeKit. With these routers, users can manage the Wi-Fi access that HomeKit accessories
have to their local network and to the internet. The routers also support Private PSK

(PPSK) authentication, so accessories can be added to the Wi-Fi network using a key that's
specific to the accessory and that can be revoked when needed. PPSK authentication
improves security by not exposing the main Wi-Fi password to accessories, as well as by
allowing the router to securely identify an accessory even if it changes its MAC address.
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Using the Home app, a user can configure access restrictions for groups of accessories as
follows:

- No restriction: Allow unrestricted access to the internet and the local network.

- Automatic: This is the default setting. Allow access to the internet and the local network
based on a list of internet sites and local ports provided to Apple by the accessory
manufacturer. This list includes all sites and ports needed by the accessory to function
properly. (No Restriction is in place until such a list is available.)

- Restrict to Home: No access to the internet or the local network except for the
connections required by HomeKit to discover and control the accessory from the local
network (including from the home hub to support remote control).

A PPSK is a strong, accessory-specific WPA2 Personal pass-phrase that's automatically
generated by HomeKit and revoked if and when the accessory is later removed from the
Home. A PPSK is used when an accessory is added to the Wi-Fi network by HomeKit

in a Home that has been configured with a HomeKit router; this addition is reflected

as Wi-Fi Credential: HomeKit-managed on the settings screen for the accessory in the
Home app. Accessories that were added to the Wi-Fi network before adding the router
are reconfigured to use a PPSK if the accessory supports this; otherwise, they retain their
existing credentials.

As an additional security measure, users must configure the HomeKit router using the
router manufacturer’s app, so that the app can validate that users have access to the
router and can add it to the Home app.

HomeKit camera security

Cameras that have an IP address (IP camera) in HomeKit send video and audio streams
directly to the iOS, iPadOS, macOS, and tvOS device on the local network accessing the
stream. The streams are encrypted using randomly generated keys on the device and the
IP camera, and they're exchanged over the secure HomeKit session to the camera.

When a device isn't on the local network, the encrypted streams are relayed through the
home hub to the device. The home hub doesn’t decrypt the streams; it functions only as
a relay between the device and the IP camera. When an app displays the IP camera video
view to the user, HomeKit renders the video frames securely from a separate system
process. As a result, the app is unable to access or store the video stream. In addition,
apps aren’t permitted to capture screenshots from this stream.
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HomeKit secure video

HomeKit provides an end-to-end secure and private mechanism to record, analyze, and
view clips from HomeKit IP cameras without exposing that video content to Apple or any
third party. When motion is detected by the IP camera, video clips are sent directly to an
Apple device acting as a home hub, using a dedicated local network connection between
that home hub and the IP camera. The local network connection is encrypted with a
per-session HKDF-SHA-512 derived key-pair that's negotiated over the HomeKit session
between home hub and IP camera. HomeKit decrypts the audio and video streams on the
home hub and analyzes the video frames locally for any significant event. If a significant
event is detected, HomeKit encrypts the video clip using AES-256-GCM with a randomly
generated AES-256 key. HomeKit also generates poster frames for each clip and these
poster frames are encrypted using the same AES-256 key. The encrypted poster frame and
audio and video data are uploaded to iCloud servers. The related metadata for each clip
including the encryption key are uploaded to CloudKit using iCloud end-to-end encryption.

For face classification, HomeKit stores all data used to classify a particular person’s face in
CloudKit using iCloud end-to-end encryption. The data stored includes information about
each person, such as name, as well as images representing that person’s face. These face
images can be sourced from a user’s Photos if they opt in, or they can be collected from
previously analyzed IP camera video. A HomeKit Secure Video analysis session uses this
classification data to identify faces in the secure video stream it receives directly from

the IP camera and includes that identification information in the clip metadata mentioned
previously.

When the Home app is used to view the clips for a camera, the data is downloaded from
iCloud and the keys to decrypt the streams are unwrapped locally using iCloud end-to-
end decryption. The encrypted video content is streamed from the servers and decrypted
locally on the iOS device before displaying it in the viewer. Each video clip session maybe
broken down into sub-sections with each sub-section encrypting the content stream with
its own unique key.

HomeKit security with Apple TV

HomeKit securely connects some third-party remote accessories to Apple TV and supports
adding user profiles to the owner of the home's Apple TV.

Using third-party remote accessories with Apple TV

Some third-party remote accessories provide Human Interface Design (HID) events and
Siri audio to an associated Apple TV added using the Home app. The remote sends the
HID events over the secure session to the Apple TV. A Siri-capable TV remote sends audio
data to Apple TV when the user explicitly activates the microphone on the remote using a
dedicated Siri button. The remote sends the audio frames directly to the Apple TV using a
dedicated local network connection. A per-session HKDF-SHA-512 derived key-pair that's
negotiated over the HomeKit session between Apple TV and the TV remote is used to
encrypt the local network connection. HomeKit decrypts the audio frames on Apple TV and
forwards them to the Siri app, where they are treated with the same privacy protections as
all Siri audio input.
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Apple TV profiles for HomeKit homes

When a user of a HomeKit home adds their profile to the owner of the home's Apple TV,

it gives that user access to their TV shows, music, and podcasts. Settings for each user
regarding their profile use on the Apple TV are shared to the owner’s iCloud account using
iCloud end-to-end encryption. The data is owned by each user and is shared as read-only
to the owner. Each user of the home can change these values in the Home app and the
Apple TV of the owner uses these settings.

When a setting is turned on, the iTunes account of the user is made available on the
Apple TV. When a setting is turned off, all account and data pertaining to that user is
deleted on the Apple TV. The initial CloudKit share is initiated by the user’s device and the
token to establish the secure CloudKit share is sent over the same secure channel that's
used to sync data between users of the home.

NFC & SE Platform security

The NFC & SE Platform is a secure solution developed by Apple that enables authorized
developers to provide capabilities to support transactions from within their iOS app. On an
iPhone with iOS 18.1 or later, developers can store credentials in the Secure Element. These
credentials support NFC transactions for payments, access, transit, loyalty programs, and
tickets. Developers must protect user privacy and data, including card details. The NFC &
SE Platform provides security features from iPhone hardware, software, and Apple servers.
Developers can use the Secure Element, biometric sensors, Secure Enclave, and Apple
servers to protect credentials during the following phases of use:

«  Credential provisioning

+ Secure storage and access
- Transaction authorization

+  Management

Note: Developers need to be granted an entitlement to use the NFC & SE Platform. This
helps ensure that only authorized developers that are committed to upholding privacy and
security standards can use the NFC & SE Platform.

NFC & SE Platform component security

The NFC & SE Platform provides access to hardware and software features that enable
developers to provide secure transactions for iPhone users.

Secure Element

The Secure Element is an industry-standard integrated circuit that runs the Java Card
platform. Certified by both EMVCo and Common Criteria, it supports standard Java Card
applets, including those approved for the NFC & SE Platform. It also has a special applet
for managing NFC & SE Platform applets’ authorization and activation. Credential data
can be encrypted and sent to these applets using unique keys. This data is stored in

the applets and secured by the Secure Element’s security features. During transactions,
the terminal communicates directly with the Secure Element through the near-field-
communication (NFC) controller.
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NFC controller

The NFC controller handles NFC protocols and routes communication between the
Application Processor and the Secure Element, and between the Secure Element and the
point-of-sale terminal. The NFC controller helps ensure that contactless transactions are
conducted using a terminal that's in close proximity to the device. Only requests arriving
from an in-field terminal are marked by the NFC controller as contactless transactions.

After a transaction is authorized to proceed by the user using Face ID, Touch ID, or the
phone's passcode, contactless responses prepared by the NFC & SE Platform applet
within the Secure Element are exclusively routed by the NFC controller to the NFC field.
Consequently, contactless transaction details are contained to the local NFC field and
aren’'t exposed to the Application Processor.

Secure Enclave

The Secure Enclave manages the user authentication and secure intent processes on

the device, allowing authorized transactions to proceed. Communication between the
Secure Enclave and the Secure Element takes place over a serial interface, with the Secure
Element connected to the NFC controller, which in turn is connected to the Application
Processor. Though not directly connected, the Secure Enclave and Secure Element can
communicate securely using a shared secret generated at runtime, which can be used to
provide confidentiality and integrity over the communication link as needed.

Apple servers

Apple servers host NFC & SE Platform partners’ approved applet packages. They also
manage the setup and creation of security domains and applets in the Secure Element,
including those used by the NFC & SE Platform.

Applets and configurations

To use the NFC & SE Platform, developers must have an approved applet bundle and
product configuration to support their credentials. Before being delivered to Apple for
secure installation on the Secure Element, all applets must go through a security review by
an accredited third-party security evaluation laboratory. After delivery to Apple, the applet
bundle and associated product configuration are reviewed and must be approved before
they can be used with the NFC & SE Platform. After approval, the applet package is signed
and hosted on Apple servers.

Developers are also independently responsible for obtaining any other necessary
certifications or qualifications for their applets based on their use case and operating
plans, such as those required by law, regulation, or payment network operators.

Credential provisioning

The NFC & SE Platform developer is responsible for protecting the security of the process
for a user to provision new credentials. This may include steps like authentication of

the user in their iOS app, protection and validation of sensitive data entered by the

user, communication with servers, granting approval for adding a credential, initiation

of credential provisioning, and handling of personalization data. The developer is also
responsible for ensuring their solution meets any applicable regulations and industry
standards related to the security of provisioning and use of credentials.
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Upon request from the iOS app to create a new credential, the NFC & SE Platform

sends the request to Apple servers. If the applet associated with the requested product
configuration hasn't yet been downloaded to the Secure Element, an Apple server initiates
the download of the signed package into the Secure Element. Next, a new applet instance
is installed within an isolated Security Domain in the Secure Element to be used for storage
of the new credential. After installation, the developer’'s chosen Trusted Service Manager
(TSM) can confidentially personalize the applet instance with any necessary credential
data, such as keys and account numbers.

Secure storage and access

The Secure Element’s hardware and software security functionality are available to

protect NFC & SE Platform credentials both at rest and during use. Developers ensure

that their Secure Element applets are implemented in a secure manner, follow the security
guidelines, and fully utilize the available security features provided by the platform in order
to adequately protect credential data.

The NFC & SE Platform restricts access to product configurations and applet instances
to their associated iOS apps. As a result, no unauthorized apps can interact with them to
modify or use them. Only associated iOS apps are allowed to:

- Request applet instance creation
- Personalize, update and send commands to applet instances
- Initiate transactions

- Request applet instance deletion

Transaction authorization

Apps must get user authorization for all transactions; the NFC & SE Platform provides

a way for app developers to ensure this happens. Users authorize transactions with
biometrics or a passcode, combined with a physical gesture to the Secure Enclave. After
approval, the Secure Enclave sends authentication data to the Secure Element. The Secure
Element then verifies this and notifies the applet to activate the NFC interface. The NFC &
SE Platform developer must implement their iOS app and Secure Element applet according
to the specifications provided by Apple in order to securely utilize the transaction
authorization mechanism and conduct transactions.

To initiate a transaction, the iOS app must be in the foreground and the iPhone must be
unlocked. When an iOS app is set as the default contactless app in Settings, the app is
automatically launched when the user double-clicks the side button (for Face ID devices)
or the Home button (for Touch ID) and after user authentication (if the iPhone is locked).

Additionally, the developer’s NFC & SE Platform iOS app is responsible for clearly informing
the user of the credential to be used for the transaction and displaying any relevant
transaction details.

Management

Using the NFC & SE Platform APIs, developers can update credential data or delete
credentials and then send the appropriate commands to their applet from their iOS app.
They can also add features to suspend or unlink their credentials, but this functionality is
independent of the NFC & SE Platform.
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All Secure Element credentials are securely erased when:

- The user signs out of iCloud

- Removes their device passcode

- Erases their device using Erase All Content and Settings or remotely with Find My
- Requests deletion of their Apple Account from the Apple Data and Privacy page

Users also have the ability to remove specific credentials from their iPhone by deleting the
associated iOS app.

ReplayKit security in iOS and iPadOS

ReplayKit allows developers to add recording and live broadcasting capabilities to their
apps. In addition, it allows users to annotate their recordings and broadcasts using the
device's front camera and microphone.

Movie recording

There are several layers of security built into recording a movie:

- Permissions dialog: Before recording starts, ReplayKit presents a user consent alert
requesting that the user acknowledge their intent to record the screen, the microphone,
and the front camera. This alert is presented once per app process, and it's presented
again if the app is left in the background for longer than eight minutes.

- Screen and audio capture: Screen and audio capture occurs out of the app’s process
in the ReplayKit daemon replayd. This is designed to ensure the recorded content is
never accessible to the app process.

« In-app screen and audio capture: This allows an app to get video and sample buffers,
which is guarded by the permissions dialogue.

- Movie creation and storage: The movie file is written to a directory that's only
accessible to the ReplayKit subsystems and is never accessible to any apps. This helps
prevent recordings being used by third parties without the user’s consent.

- End-user preview and sharing: The user has the ability to preview and share the movie
with a user interface vended by ReplayKit. The user interface is presented out-of-
process through the iOS Extension infrastructure and has access to the generated
movie file.

ReplayKit broadcasting

There are several layers of security built into broadcasting a movie:

- Screen and audio capture: The screen and audio capture mechanism during
broadcasting is identical to movie recording and occurs in replayd.

«  Broadcast extensions: For third-party services to participate in ReplayKit broadcasting,
they're required to create two new extensions that are configured with the com.apple.
broadcast-services endpoint:

- A user interface extension that allows the user to set up their broadcast
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- An upload extension that handles uploading video and audio data to the service's
back-end servers

The architecture helps ensure that hosting apps have no privileges to the broadcasted
video and audio contents. Only ReplayKit and the third-party broadcast extensions have
access.

« Broadcast picker: With the broadcast picker, users initiate system broadcasts directly
from their app using the same system-defined user interface that's accessible using
Control Center. The user interface is implemented using a private APl and is an
extension that lives within the ReplayKit framework. It is out-of-process from the
hosting app.

- Upload extension: The extension that third-party broadcast services implement to
handle video and audio content during broadcasting uses raw unencoded sample
buffers. During this mode of handling, video and audio data is serialized and passed to
the third-party upload extension in real time through a direct XPC connection. Video
data is encoded by extracting the I0Surface object from the video sample buffer,
encoding it securely as an XPC object, sending it over through XPC to the third-party
extension, and decoding it securely back into an I0Surface object.

SiriKit security for iOS, iPadOS, and watchOS

Siri uses the app extension system to communicate with third-party apps. On a device,
Siri can access the user’s contact information and the device's current location. But
before it provides protected data to an app, Siri checks the app’s user-controlled access
permissions. According to those permissions, Siri passes only the relevant fragment of the
original user utterance to the app extension. For example, if an app doesn't have access
to contact information, Siri won't resolve a relationship in a user request such as “Pay my
mother 10 dollars using Payment App.” In this case, the app would see only the literal term
“my mother."

However, if the user has granted the app access to contact information, the app would
receive resolved information about the user’s mother. If a relationship is referenced in the
body portion of a message—for example, “Tell my mother on MessageApp that my brother
is awesome”—Siri doesn't resolve "my brother” regardless of the app's permissions.

SiriKit-enabled apps can send app-specific or user-specific vocabulary to Siri, such as

the names of the user’s contacts. This information allows Siri's speech recognition and
natural language understanding to recognize vocabulary for that app and is associated with
a random identifier. The custom information remains available as long as the identifier is

in use, or until the user turns off the app’s Siri integration in Settings, or until the SiriKit-
enabled app is uninstalled.

For an utterance like "Get me a ride to my mom’s home using RideShareApp,” the request
requires location data from the user’s contacts. For that request only, Siri provides the
required information to the app’s extension, regardless of the user permission settings for
location or contact information for the app.
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WidgetKit security

WidgetKit is the framework developers use to offer widgets and watch complications. Both
may show sensitive information and can be highly visible, especially on devices with an
Always On display.

On an iPhone, users can configure whether to show sensitive data on the Lock Screen and
while in Always On. In Settings, they can deactivate data access for Lock Screen widgets in
the "Allow Access When Locked” section of Settings > Face ID & Passcode.

On Apple Watch, users can configure whether to show sensitive data during Always On
by choosing Settings > Display & Brightness > Always On > Hide Sensitive Complications.
They can also choose to show redacted content for all or individual complications.

If a user chooses to hide content they consider private, WidgetKit renders a placeholder or
redactions. To configure redactions, a developer must:

1. Implement the redacted(reason:) callback.

2. Read out the privacy property.

3. Provide custom placeholder views.

Developers can also render a view as unredacted with the unredacted() view modifier.

As an alternative to marking individual views as privacy sensitive, for example, if an entire
widget content is privacy sensitive, the developer can add the Data Protection capability
to a widget extension. Until a user unlocks their device to match the privacy level selected,
WidgetKit displays placeholders instead of the widget content. The developer must enable
the Data Protection capability for the widget extension in Xcode and then set the Data
Protection entitlement to the value that fits the level of privacy they want to offer:

. NSFileProtectionComplete
. NSFileProtectionCompleteUnlessOpen

WidgetKit hides these widgets’ content when the device is passcode locked and displays a
placeholder until a user authenticates after they restart their device. Additionally, these iOS
widgets aren’t available as iPhone widgets on Mac.
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Secure device management

Secure device management overview

i0S, iPad0S, macOS, tvOS, vision0S, and watchOS support flexible security policies
and configurations that are easy to enforce and manage. Through them, organizations
can protect corporate information and help ensure that employees meet enterprise

requirements, even if they are using devices they've provided themselves—for example, as

part of a “bring your own device” (BYOD) program.

Organizations can use the device management framework implemented by a device
management service developer to enforce passcode requirements, configure settings,
restrict functionality, and even remotely wipe corporate data on managed devices. This
helps keep corporate data secure, even when employees use their personal devices to
access this data.

Device management

Device management security overview

Apple operating systems support device management, which allows organizations to
securely configure and manage scaled Apple device deployments.

How device management works securely

Device management capabilities are built on operating system technologies, such as
configurations, over-the-air enrollment, and the Apple Push Notification service (APNs).
For example, APNs is used to wake the device and trigger it to communicate directly with
its device management service over a secured connection. No confidential or proprietary
information is transmitted over APNs.

Using a device management service, IT departments can enroll Apple devices in an
enterprise or educational environment, wirelessly configure and update settings, monitor

compliance, manage software updates, and even remotely wipe or lock managed devices.
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On devices with iOS 13, iPadOS 13.1, macOS 10.15, visionOS 1.1, or later, Apple added
support an additional enrollment option specifically designed for “bring your own device”
BYOD programs. User Enrollment provides more autonomy for users on their own devices,
while increasing the security of enterprise data by cryptographically separating managed
data. This provides a better balance of security, privacy, and user experience for BYOD
programs. A similar data separation mechanism has been added for account-driven Device
Enrollments in iOS 17, iPadOS 17, macOS 14, visionOS 1.1, or later.

Enroliment types

- User Enrollment: User Enrollment is designed for devices owned by the user and is
integrated with Managed Apple Accounts to establish a user identity on the device.
Managed Apple Accounts are required to initiate the enroliment, and the user needs to
successfully authenticate for the enrollment to succeed. Managed Apple Accounts can
be used alongside a personal Apple Account that the user has already signed in with.
Managed apps and accounts use the Managed Apple Account, and personal apps and
accounts use the personal Apple Account.

- Device Enrollment: Device Enrollment allows organizations to have users manually
enroll devices and then manage many different aspects of device use, including the
ability to erase the device. Device Enroliment also has a larger set of configurations
and restrictions that can be applied to the device. When a user removes an enrollment
profile, all configurations, settings, and managed apps based on that enrollment profile
are removed. Similar to User Enroliment, Device Enrollment can also be integrated
with a Managed Apple Account. This account-driven Device Enrollment also provides
the ability to use a Managed Apple Account alongside a personal Apple Account and
cryptographically separates corporate data.

- Automated Device Enrollment: Automated Device Enrollment lets organizations
configure and manage devices from the moment the devices are removed from the
box. These devices are known as supervised, and users have the option to prevent the
device management service profile from being removed by the user. Automated Device
Enrollment is designed for devices owned by the organization.

Device restrictions

Restrictions can be added—or in some cases, removed—by administrators to help prevent
users from accessing a specific app, service, or function of an Apple device that's enrolled
in a device management service. Restrictions are sent to devices in a restrictions payload,
which is part of a configuration. Certain restrictions on an iPhone may be mirrored on a
paired Apple Watch.

Passcode and password settings management

By default, the user’s passcode can be defined as a numeric PIN on iOS, iPadOS, visionOS,
and watchQOS. On iPad, iPhone, and Apple Vision Pro devices with biometric authentication,
the default passcode length is six digits, with a minimum of four digits. Because longer and
more complex passcodes are harder to guess or attack, they are recommended.

Administrators can enforce complex passcode requirements and other policies using a
device management service on iOS, iPadOS, and visionOS, or Microsoft Exchange. An
administrator password is needed when the macOS passcode policy payload is installed
manually. Passcode policies can require a certain passcode length, composition, or other
attributes.
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Apple Watch uses numeric passcodes by default. If a passcode policy applied to a
managed Apple Watch requires the use of non-numeric characters, the paired iPhone
needs to be used to unlock the device.

Managed Device Attestation for Apple devices

Managed Device Attestation is available in iOS 16, iPadOS 16, macOS 14, tvOS 16,
visionOS 1.1, watchOS 9, or later. It uses the Secure Enclave to provide cryptographic
assurances about the identity of a device and its security posture. iPad, iPhone, Apple TV
devices require the A11 Bionic chip or later, and only Mac computers with Apple silicon are
supported. Managed Device Attestation helps to protect against the following threats:

- A compromised device lying about its properties

- A compromised device providing an outdated attestation

- A compromised device sending a different device's identifiers
- Private key extraction for use on a rogue device

- An attacker hijacking a certificate request to trick the certificate authority (CA) into
issuing the attacker a certificate

With managed device attestation, a device can request an attestation from the Apple
attestation servers, which return an array of data consisting of a leaf and intermediate
certificate which is rooted in the Apple Enterprise Attestation Root CA. Depending on the
device type, the leaf certificate can contain specific properties as shown in the following

table.
OID and value Minimum Description
supported
operating system
versions
1.2.840.113635.100.8.9.1 i0S 16 Represents the serial number of the device and can be
Serial number iPadoS 16 used to identify a device. To help protect the user’s
privacy, this value isn't included when using Managed
macOs 14 Device Attestation with User Enroliment.
tvOS 16
visionOS 1.1
watchOS 9
1.2.840.113635.100.8.9.2 i0S 16 Represents the unique hardware ID and can be used
uDID iPadOS 16 to identify a device. On a Mac, the UDID matches the
provisioning UDID of the device. To help protect the
macOS 14 . . . s .
user’s privacy, this value isn't included when using
tvOS 16 Managed Device Attestation with User Enroliment.
visionOS 1.1
watchOS 9
1.2.840.113635.100.8.10.2 i0S 16 Represents the version of the Secure Enclave firmware.
sepOS version iPadOS 16
macOS 14
tvOS 16
visionOS 1.1
watchOS 9
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OID and value

1.2.840.113635.100.8.11.1

Freshness code

1.2.840.113635.100.8.13.1
SIP status

1.2.840.113635.100.8.13.2

Secure boot status

1.2.840.113635.100.8.13.3

Third-party kernel extensions
allowed

1.2.840.113635.100.8.10.3

LLB version

1.2.840.113635.100.8.10.1

Operating system version

1.2.840.113635.100.8.9.4

Software update device ID

Minimum
supported
operating system
versions

i0S 16
iPadOS 16
macOS 14
tvOS 16
visionOS 1.1
watchOS 9

macOS 14

macOS 14

macOS 14

i0S 16
iPadOS 16
macOS 14
tvOS 16
visionOS 1.1
watchOS 9

i0S 16
iPadOS 16
macOS 14
tvOS 16
visionOS 1.1
watchOS 9

i0S 16
iPadOS 16
macOS 14
tvOS 16
visionOS 1.1
watchOS 9

Description

A unique and non-predictable code identifying
a particular attestation. This indicates that the
attestation was generated after the code was created.

Represents the SIP enablement status on a Mac with
Apple silicon.

Represents the selected secure boot configuration of a
Mac with Apple silicon.

Represents whether or not third-party kernel
extensions are allowed on a Mac with Apple silicon.

Represents the version of the Low-Level Bootloader.

Represents the operating system and iBoot version.

Attests the SoftwareUpdateDeviceID returned in the
DeviceInformation query which can be used by a
device management service to determine whether a
particular update is applicable to the device.

A request for an attestation is initiated either by a DeviceInformation request sent by
the device management service or by installing an ACME configuration. In both cases, the
device receives a freshness code from either the device management service or ACME
solution. When using DeviceInformation attestation, the freshness code is the value of
the DeviceAttestationNonce specified in the request. When using ACME attestation,
the freshness code is the SHA-256 hash of the token from the device-attest-01 challenge.
The resulting value is included as a property in the leaf certificate and allows the device
management service or ACME solution to verify that the attestation matches the request.
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Upon receiving the attestation, a backend service needs to carefully perform validation
checks. These checks include ensuring the leaf cert was issued by the Apple Enterprise
Attestation Root CA, comparing the hash of the freshness code to the expected value, and
examining other properties in the attestation.

Depending on an organization’s deployment model, Managed Device Attestation can be an
important foundation of a modern and secure deployment and used in different ways:

- Use an ACME-issued certificate to authenticate the connection from the client to the
device management service and leverage DeviceInformation attestation to verify
properties of a device on an ongoing basis.

- Verify the identity of a device and its security posture and have the ACME solution
perform a trust evaluation before issuing a certificate. In this way it ensures that only
devices meeting the required standards receive a certificate.

- Embed the device's properties from the attestation in an ACME certificate, and perform
the trust evaluation on the relying parties.

Hardware-bound keys

As part of issuing a certificate using the ACME protocol, a device can be requested to
provide an attestation which also causes the associated key pair to be protected by the
Secure Enclave so that it benefits from its strong hardware security and helps to prevent
exporting the private key.

To create a hardware-bound key, the ACME configuration needs to use the
ECSECPrimeRandom algorithm with a key size of 256 or 384 bit. This specifies a key pair
on the P-256 or P-384 curves as defined in NIST SP 800-186.

To generate the private key, the Secure Enclave first uses the following to create a wrapped
cryptographic secret:

- A combination of its hardware True Random Number Generator (TRNG)
- Entropy stored within the secure non-volatile storage of the Secure Enclave
- A Data Protection key

The operating system stores the wrapped secret however, the wrapped secret is useless
by itself. To derive the private key the Secure Enclave needs to use the same secret, the
same stored entropy, and the same Data Protection key. Because the stored entropy and
Data Protection key are unique to that specific Secure Enclave, only that Secure Enclave is
capable of generating the private key which effectively binds the hardware-bound key to
that Secure Enclave.

When the device is erased, the Secure Enclave effaces the stored entropy. Because of
this, a hardware-bound key can't be regenerated after a backup and restore, even when
restoring to the same device.

Any configurations containing an ACME payload with a hardware-bound key are removed
upon restore. If a hardware-bound key is used as the device management service client
identity, the device unenrolls. In this scenario if the device was enrolled through Automated
Device Enrollment, the device fetches its enroliment profile again and reenrolls.
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Attestation process security

Attestation process security

When the ACME configuration specifies a hardware-bound key, or when the device
management service requests a Devicelnformation attestation, the device uses the
following steps:

1.

The operating system requests a hardware-bound key from the Secure Enclave, called
the attested key. For ACME attestation, this key is part of the issued certificate identity.
For DeviceInformation attestation the key is generated by the operating system

and reused for all subsequent DeviceInformation attestations for the lifetime of the
enrollment.

. The operating system requests a hardware attestation from the Secure Enclave. It

specifies the attested key, the freshness code, and which properties it wants attested.
The Secure Enclave generates and returns a new hardware attestation.
The operating system sends the hardware attestation to the Apple attestation servers.

The attestation servers validate the request and either refuse to issue an attestation
certificate or generate an attestation containing only the properties and values that it
was able to confirm. The public key of the attestation certificate matches the attested
key.

The operating system provides the resulting attestation certificate to the device
management service or ACME solution.

For more information about validating the provided attestation certificate, see Validating
a Managed Device Attestation on the Apple Developer website.

About hardware attestation

When the Secure Enclave generates a hardware attestation, it includes the following
elements, among others:

Identifiers of the main logic board.
The public key of the attested key.

Hashes of the following software components which are calculated during the boot
process and stored in hardware registers (similar to Sealed Key Protection):

The Secure Enclave firmware (sepQS).

The Image4 manifest attached to LLB which also contains a measurement of all other
system-paired firmware.

«  The operating system Image4 manifest which contains measurements of all of the
0OS-paired firmware.

Other device-specific values like ECID and ChipID.
On Mac computers, details of the LocalPolicy.

The freshness code.

If the Secure Enclave is unable to unwrap the attested key, the Secure Enclave refuses
to generate a hardware attestation. This ensures that the attested key is bound to that
specific Secure Enclave and all other attested properties are associated with that key.
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All of these elements are compiled into a custom binary structure and signed with the
UIK. This ties the hardware attestation with a specific identity that Apple's attestations
can verify, allowing them to associate the request with a specific activation record, and
therefore with a specific manufacturing record.

Generating the attestation certificate

When Apple's attestation servers receive an attestation request they:

- Validate the User Identity Key (UIK) signature of the hardware attestation. If the
signature is invalid, no attestation is generated.

- Look up ucrt in Apple's activation records which corresponds to the public key of UIK.
If no ucrt is found, no attestation is generated.

- Look up the scrt which corresponds to the ucrt of the device. The scrtis a
certificate issued by Apple servers during manufacturing based on the Silicon Identity
Key (SIK). The SIK is generated by the Secure Enclave and its public key is collected
during manufacturing from the device. The SIK is used during activation to verify that
the Secure Enclave of the activating device is in possession of the private key. The
SIK persists throughout the lifetime of a device and acts as a unique identifier. Using
the scrt, the manufacturing record of the device is retrieved. If no record is found, no
attestation is generated.

- Verify the identifiers of hardware components match manufacturing records. If the
component identifiers don't match manufacturing records, no attestation is generated.

- Copies the freshness code into the attestation, if present.
- If requested by the attestation:

- Compare calculated hashes of the software components to known hashes from
build records. If there's a match, the official version number is inserted into the
attestation; if not, the OID is omitted or its value is blank.

When images for LLB, Secure Enclave, or the main operating system are built,
hashes are calculated and recorded in a build records database, along with the
official version numbers for those images.

Calculate the UDID from the ECID and ChiplID.

Copy values for the requested OIDs from the LocalPolicy into the attestation if the
device is a Mac.

The practical result of these validations is that no attestation is generated if the attestation
servers can't recognize the device as genuine Apple hardware. Each property in the
attestation certificate is included only if the attestation servers are able to verify the
property’'s value, with the exception of the freshness code which is included without any
validation.

Configuration enforcement

Configurations are the primary way that a device management service delivers and
manages policies and restrictions on managed devices. If organizations need to configure
a large number of devices—or to provide lots of custom email settings, network settings,
or certificates to a large number of devices—configurations are a safe and secure way to
do it.
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Configurations

A configuration is an XML profile or json-formatted file following a certain structure

and consists of payloads that load settings and authorization information onto Apple
devices. Configurations automate the configuration of settings, accounts, restrictions,
and credentials. These files can be created by a device management service or

Apple Configurator for Mac, or they can be created manually. Before organizations send a
configuration to an Apple device, they need to enroll the device in the device management
service using an enrollment profile.

Enrollment profiles

An enrollment profile is a configuration with a device management service payload that
enrolls the device in the device management service specified for that device. This allows
the service to send commands and configurations to the device and to query certain
aspects of the device. When a user removes an enroliment profile, all configurations, their
settings, and depending on the enrollment type and used configuration also managed apps
based on that enrollment profile are removed with it. There can be only one enroliment
profile on a device at a time.

Example configurations

A configuration contains a number of settings in specific payloads that can be specified,
including (but not limited to):

- Passcode and password policies
- Restrictions on device features

- Network and VPN settings

- Microsoft Exchange settings

- Mail settings

- Account settings

- LDAP directory service settings

- CalDAV calendar service settings
- Credentials and identities

- Certificates

- Software updates

Profile signing and encryption

Configuration profiles can be signed, to validate their origin, and encrypted, to help
ensure their integrity and protect their contents. Configuration profiles for Apple devices
are encrypted using the Cryptographic Message Syntax (CMS) specified in RFC 5652,
supporting 3DES and AES-128.
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Profile installation

Configurations can be installed on devices using a device management service or
manually by the users. Alternatively, Apple Configurator for Mac can be used to deploy
configurations to iPad, iPhone, and Apple TV devices. Some configurations require the
installation using a device management service. For information on how to remove profiles,
see Intro to device management profiles in Apple Platform Deployment.

Note: On supervised devices, configuration profiles can also be locked to a device. This is
designed to prevent their removal or to allow removal only with a passcode.

Automated Device Enroliment

Organizations can automatically enroll iPad, iPhone, Mac, Apple TV, and Apple Vision Pro
devices in a device management service without having to physically touch or prepare the
devices before users get them. After an organization signs up for Apple School Manager or
Apple Business Manager, administrators sign in to the web portal and link to their device
management service. The devices they purchased can then be assigned to users through
that service. During the device configuration process, the device queries Apple servers

for an assigned device management service and if so, reaches out to it to perform the
enrollment. Using Automated Device Enrollment and a compatible device management
service allows organizations to implement the following security measures:

- Have users authenticate as part of the initial setup flow in the Apple device's Setup
Assistant during activation.

- Provide a preliminary configuration with limited access and require additional device
configuration to access sensitive data.

- Require devices to run a minimum operating system version before enrolling.
- Enforce FileVault enablement on a Mac.

After a device has enrolled with a device management service, any configurations,
restrictions, or controls are automatically installed.

The setup process for users can be further simplified by removing specific steps in the
Setup Assistant for devices so that users are up and running quickly. If steps are skipped,
the more privacy-preserving setting is used. For example, if the pane to configure location
services is skipped, the service is not enabled during Setup Assistant.

Administrators can also control whether users can remove the device management service
profile from the device and help ensure that configurations and restrictions are in place
throughout the life cycle of the device.

Apple School Manager and Apple Business Manager

Apple School Manager and Apple Business Manager are services for IT administrators to
deploy Apple devices that an organization has purchased directly from Apple or through
participating Apple Authorized Resellers and carriers.
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When used with a device management service, administrators can simplify the setup
process for users, configure device settings, and distribute apps and books purchased

in these three services. Apple School Manager also integrates with Student Information
Systems (SISs) directly or using SFTP, and all three services support directory
synchronization and federated authentication, so accounts can be automatically
provisioned, updated, and deprovisioned based on an organization’s identity provider (IdP).

Apple maintains certifications in compliance with the ISO/IEC 27001 and 27018 standards
to enable Apple customers to address their regulatory and contractual obligations.

These certifications provide our customers with an independent attestation over Apple’s
Information Privacy and Security practices for in-scope systems. For more information, see
Apple internet services security certifications in Apple Platform Certifications.

Note: To learn whether an Apple program is available in a specific country or region,
see the Apple Support article Availability of Apple programs and payment methods for
education and business.

Device supervision

Supervision generally denotes that the device is owned by the organization, giving them
additional control over the device's configuration and restrictions. For more information,
see About Apple device supervision in Apple Platform Deployment.

Supervision gets automatically enabled on a device when using Automated Device
Enrollment.

Activation Lock security

Activation Lock helps to prevent unauthorized users from reactivating an iPad, iPhone,
Mac, Apple Vision Pro, and Apple Watch if it's lost or stolen. It remains enabled even if the
device is erased. This makes it more difficult for someone to use or sell a missing device.
How Apple enforces Activation Lock varies depending on the device.

Activation Lock on iPhone parts

Apple is extending Activation Lock for iPhone to cover individual parts to help deter stolen
parts from entering the market. During a repair, if an iPhone detects that a supported part
came from another iPhone with Activation Lock or Lost Mode turned on, calibration is
restricted for that part. This enhancement to the Activation Lock feature further extends
Apple's commitment to protecting users while increasing consumer choice when it comes
to repairs.

Behavior on iPad, iPhone, and Apple Vision Pro

On an unsupervised iPad, iPhone, and Apple Vision Pro, Activation Lock is enabled
automatically when the user signs in to their Apple Account and turns on Find My.

On a supervised device, Activation Lock is disallowed by default, but a device management
service can allow the user to enable it. This allows the service to escrow a bypass code
from the device. That bypass code can then be used to turn off Activation Lock at a later
time. A device generates a new bypass code when:

« Setting up the device the first time
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- Setting up the device after an erase and not restoring the device from a backup of that
same device

- Setting up the device after an erase and restoring the device from a backup of a
different device

Alternatively, for managed and supervised devices, a device management service can
contact Apple servers directly to enable Activation Lock. This is done entirely server-

side and has no dependencies on user actions or the state of the device. The device
management service needs to create a 31-byte bypass code, then send it to Apple servers
when it wants to enable Activation Lock for the device. The service's bypass code should
be randomly created and unique for each device.

Activation Lock is enforced through the activation process after the Wi-Fi selection screen
in Setup Assistant. When a device indicates that it's activating, it sends a request to the
activation server to get an activation certificate.

Unsupervised iPad, iPhone, and Apple Vision Pro devices that are locked with Activation
Lock can be unlocked by:

- The credentials of the personal Apple Account used to enable Activation Lock
- The previously used device passcode

Supervised iPad, iPhone, and Apple Vision Pro devices that are locked with Activation Lock
can be unlocked by:

- The credentials of the personal Apple Account used to enable Activation Lock

- The credentials of the Managed Apple Account used to link the device management
service with Apple School Manager or Apple Business Manager

- The bypass code escrowed by the device management service

- The device management service making a server-side call to Apple servers with the
same bypass code it used to enable Activation Lock

Note: The Setup Assistant in iOS, iPadOS, and visionOS won't progress unless a valid
certificate can be obtained.

Behavior on Apple Watch

Activation Lock on an unsupervised Apple Watch is related to the Activation Lock status of
the paired iPhone. If the iPhone has Activation Lock enabled, the Apple Watch is instructed
to contact Apple servers at the end of the pairing process to turn on Activation Lock. If
Activation Lock isn't enabled on the iPhone at the time of pairing, but enabled at a later
time, the iPhone:

- Prompts all paired Apple Watch devices to contact Apple servers
- Can enable Activation Lock on the Apple Watch

As part of the initial pairing process, the iPhone sends a request to the activation server to
get an activation certificate for the Apple Watch

If the Apple Watch is locked with Activation Lock, the user is prompted for the credentials
of the Apple Account which was used to enable Activation Lock at that time to unpair,
erase, or reactivate an Apple Watch.

Note: Pairing can't be completed unless a valid certificate can be obtained.
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Behavior on Mac

On an unsupervised Mac, Activation Lock is enabled automatically when the user signs

in with their Apple Account and turns on Find My. For a Mac that's supervised, Activation
Lock is disallowed by default, but a device management service can allow the user to
enable it. This allows the service to escrow a bypass code from the device. That bypass
code can then be used to turn off Activation Lock at a later time. A device generates a new
bypass code when:

- Setting up the device the first time

- Setting up the device after an erase

Additional behavior on a Mac with Apple silicon

On a Mac with Apple silicon, the Low-Level Bootloader (LLB) verifies that a valid
LocalPolicy for the device exists and that the LocalPolicy policy anti-replay values match
the values stored in the Secure Storage Component. The LLB boots to recoveryQOS if:

- There is no LocalPolicy for the current macOS
- The LocalPolicy is invalid for that version of macOS

- The LocalPolicy anti-replay value hash values don’t match the hashes of values stored
in the Secure Storage Component

recoveryOS detects that the Mac isn't activated and contacts the activation server to get
an activation certificate.

If the device is locked using Activation Lock while in recoveryOS, Activation Lock can be
unlocked by:

- The credentials of the personal Apple Account used to enable Activation Lock
- The previously used device password of the local user who enabled Activation Lock
- The bypass code escrowed by the device management service

After a valid activation certificate is obtained, that activation certificate key is used to
obtain a RemotePolicy certificate. The Mac uses the LocalPolicy key and RemotePolicy
certificate to produce a valid LocalPolicy.

Note: The LLB won't allow booting of macOS unless a valid LocalPolicy is present.

Additional behavior on a Mac with the T2 chip

On a Mac with the T2 chip, the T2 chip firmware verifies that a valid activation certificate
is present before allowing the computer to boot to macOS. UEFI firmware loaded by the T2
chip is responsible for querying the activation status of the device from the T2 chip. The
Mac boots to recoveryOS if:

- A valid activation certificate isn't present.

- recoveryOS detects that the Mac isn't activated and contacts the activation server to
get an activation certificate.

If the Mac is locked using Activation Lock while in recoveryOS, Activation Lock can be
unlocked by:

- The credentials of the personal Apple Account used to enable Activation Lock

- The previously used device password of the local user who enabled Activation Lock

237



Apple Platform Security

+  The bypass code escrowed by the device management service

Note: UEFI firmware won't allow macOS to boot unless a valid activation certificate is
present.

Managing Activation Lock in Apple School Manager or Apple Business
Manager

If an Apple device is registered with an Apple School Manager or Apple Business Manager
organization, users with a role that has Manage Device privileges can turn off Activation
Lock for organization-owned devices. This option is available only for devices registered
with the organization before Activation Lock was enabled and that haven't been released.
Because Activation Lock is turned off using server-side calls, a device doesn’t need to be
managed by a device management service.

Note: Devices that are currently locked with Activation Lock can't be added to an Apple
School Manager or Apple Business Manager organization.

Managed Lost Mode and remote wipe

Managed Lost Mode is used to locate supervised devices when they are stolen. After they
are located, they can be remotely locked or erased.

Managed Lost Mode

If a supervised iPad or iPhone is lost or stolen, a device management service administrator
can remotely enable Lost Mode (called Managed Lost Mode) on that device. When
Managed Lost Mode is enabled, the current user is logged out and the device can't be
unlocked. The screen displays a message that can be customized by the administrator,
such as displaying a phone number to call if the device is found. The administrator can
also request the device to send its current location (even if Location Services are off) and,
optionally, play a sound. When an administrator turns off Managed Lost Mode, which is the
only way the mode can be exited, the user is informed of this action through a message on
the Lock Screen or an alert on the Home Screen.

Remote wipe

iPad, iPhone, Mac, Apple TV, Apple Vision Pro, and Apple Watch devices can be erased
remotely by an administrator or user, rendering all data unreadable.

When a remote wipe command is initiated by a device management service or iCloud, the
device sends an acknowledgment back to the service and performs the wipe. For remote
wipe through Microsoft Exchange ActiveSync, the device checks in with the Microsoft
Exchange Server before performing the wipe.

Remote wipe isn’t possible in the following situations:

- With User Enrollment

+  Using Microsoft Exchange ActiveSync when the account that was installed with User
Enrollment

- Using Microsoft Exchange ActiveSync if the device is supervised

238



Users can also wipe supported devices in their possession using Settings (iPad, iPhone,
and Apple Vision Pro) or System Settings (Mac). And as mentioned, iPad, iPhone,

Apple Vision Pro, and Apple Watch, devices can be set to automatically wipe after a series
of failed passcode attempts.

Instant remote wipe is available on a Mac with Apple silicon and a Mac with an Apple T2
Security Chip or if FileVault is turned on. Instant remote wipe is achieved by securely
discarding the media key.

Shared iPad security in iPadOS

Shared iPad is a multiuser mode for use in iPad deployments. It allows users to share an
iPad while maintaining separation of documents and data for each user. Each user gets
their own private, reserved storage location, which is implemented as an Apple File System
(APFS) volume protected by the user’s credential. Shared iPad requires the use of a
Managed Apple Account that's issued and owned by the organization.

With Shared iPad, a user can sign in to any organizationally owned device that's configured
for use by multiple users. User data is partitioned into separate directories, each in their
own data protection domains and protected by both UNIX permissions and sandboxing. In
iPadOS 13.4 or later, users can also sign in to a temporary session. When the user signs out
of a temporary session, their APFS volume is deleted and its reserved space is returned to
the system.

Signing in to Shared iPad

Both native and federated Managed Apple Accounts are supported when signing in to
Shared iPad. When using a federated account for the first time, the user is redirected

to the Identity Provider’s (IdP) sign-in portal. After authenticated, a short-lived access
token is issued for the backing Managed Apple Accounts and the login process proceeds
similarly to the native Managed Apple Accounts sign-in process. After the user signs in,
Setup Assistant on Shared iPad prompts the user to establish a passcode (credential)
used to secure the local data on the device and to authenticate to the login screen

in the future. Like a single-user device, in which the user would sign in once to their
Managed Apple Account using their federated account and then unlock their device with
their passcode, on Shared iPad the user signs in once using their federated account and
from then on uses their established passcode.

When a user signs in without federated authentication, the Managed Apple Account is
authenticated with Apple Identity Service (IDS) using the SRP protocol. If authentication

is successful, a short-lived access token specific to the device is granted. If the user has
used the device before, they already have a local user account, which is unlocked using the
same credential.
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If the user hasn't used the device before or is using the temporary session feature,

Shared iPad provisions a new UNIX user ID, an APFS volume to store the user’s personal
data, and a local keychain. Because storage is allocated (reserved) for the user at the

time the APFS volume is created, there may be insufficient space to create a new volume.
In such an event, the system identifies an existing user whose data has finished syncing

to the cloud and evicts that user from the device so that the new user to sign in. In the
unlikely event that all existing users haven't completed uploading their cloud data, the
new user sign in fails. To sign in, the new user needs to wait for the previous user's data to
finish syncing, or have an administrator forcibly delete an existing user account, thereby
risking data loss.

If the device isn't connected to the internet (for example, if the user has no Wi-Fi access
point), authentication can occur against the local account for a limited number of days. In
that situation, only users with previously existing local accounts or a temporary session can
sign in. After the time limit has expired, users are required to authenticate online, even if a
local account already exists.

After a user’s local account has been unlocked or created, if it's remotely authenticated,
the short-lived token issued by Apple's servers is converted to an iCloud token that permits
signing in to iCloud. The users' settings are then restored and their documents and data
are synced from iCloud.

While a user session is active and the device remains online, documents and data are
stored on iCloud as they are created or modified. In addition, a background syncing
mechanism helps ensure that changes are pushed to iCloud, or to other web services using
NSURLSession background sessions, after the user signs out. After background syncing
for that user is complete, the user’s APFS volume is unmounted and can’t be mounted
again without the user signing back in.

Temporary sessions don't sync data with iCloud, and although a temporary session can
sign into a third-party syncing service such as Box or Google Drive, there's no facility to
continue syncing data when the temporary session ends.

Signing out of Shared iPad

When a user signs out of Shared iPad, that user's keybag is immediately locked and all
apps are shut down. To accelerate the case of a new user signing in, iPadOS defers some
ordinary sign-out actions temporarily and presents a sign-in window to the new user. If

a user signs in during this time (approximately 30 seconds), Shared iPad performs the
deferred cleanup as part of signing in to the new user account. However, if Shared iPad
remains idle, it initiates the deferred cleanup. During the cleanup phase, the Sign-in
Window is restarted as if another sign-out had occurred.

When a temporary session is ended, Shared iPad performs the full logout sequence and
deletes the temporary session’s APFS volume immediately.
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Apple Configurator security

Apple Configurator for Mac features a flexible, secure, device-centric design that lets an
administrator quickly and easily configure one or dozens of iPad, iPhone, and Apple TV
(Wi-Fi and Ethernet only) devices connected to a Mac through USB (or for Apple TV,
through Ethernet) before giving them to users. With Apple Configurator for Mac, an
administrator can update software, install apps and configuration profiles, rename and

change wallpaper on devices, export device information and documents, and much more.

Apple Configurator for Mac can also revive or restore Mac computers with Apple
silicon, those with the Apple T2 Security Chip, and Apple Vision Pro (with a Developer
Strap). When a Mac or Apple Vision Pro is revived or restored in this manner, the file
containing the latest minor updates to the operating systems (macOS, recoveryOS for
Apple silicon, or sepOS for T2) is securely downloaded from Apple servers and installed
directly on the Mac. After a successful revive or restore, the file is deleted from the
Mac with Apple Configurator. At no time can the user inspect or use this file outside of
Apple Configurator.

Administrators can also choose to add devices to Apple School Manager or Apple
Business Manager using Apple Configurator for Mac or Apple Configurator for iPhone,
even if the devices weren't purchased directly from Apple, an Apple Authorized Reseller,
or an authorized cellular carrier. When the administrator sets up a device that has been

manually enrolled, it behaves like any other device in one of those services, with mandatory

supervision and device management service enrollment. For devices that weren't

purchased directly, the user has a 30-day provisional period to release the device from one

of those services, supervision, and a device management service.

Organizations can also use Apple Configurator for Mac to activate iPad, iPhone, and
Apple TV devices that have absolutely no internet connection by connecting them to a
host Mac with an internet connection while the devices are being set up. Administrators
can restore, activate, and prepare devices with their necessary configuration including
apps, profiles, and documents without ever needing to connect to either Wi-Fi or cellular
networks. This feature doesn’t allow an administrator to bypass any existing Activation
Lock requirements normally required during nontethered activation.
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Screen Time security

Screen Time is a built-in feature for seeing and managing how much time adults and their
children spend on apps, websites and more. There are two types of users: adults and

(managed) children.

Although Screen Time isn't a new system security feature, it's important to understand
how it protects the privacy and security of the data gathered and shared between devices.
Screen Time is available in iOS 12, iPadOS 13.1, and macOS 10.15, or later, and some

features of watchOS 6 or later.

The table below describes the main features of Screen Time.

Feature

Configure Downtime

Enforce additional restrictions

Set app limits

Set web usage limits

View usage data

Supported operating system

iPadOS
i0S
macOS
watchOS

iPadOS
ioS
macOS
watchOS

iPadOS
i0s
macOS
watchOS

iPadOS
ioSs

macOS
iPadOS
i0S

macOS

For users managing their own device usage, Screen Time controls and usage data can be
synced across devices associated to the same iCloud account using CloudKit end-to-end
encryption. This requires that the user’s account have two-factor authentication enabled
(syncing is on by default). Screen Time replaces the Restrictions feature found in previous
versions of iOS and iPadOS, and the Parental Controls feature found in previous versions of

macOS.

On devices with iOS 13, iPadOS 13.1, and macOS 10.15, or later, Screen Time users and

managed children automatically share their usage across devices if their iCloud account
has two-factor authentication enabled. When a user clears Safari history or deletes an app,
the corresponding usage data is removed from the device and all synced devices.
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Parents and Screen Time

Parents can also use Screen Time in iOS, iPadOS, and macOS devices to understand and
control their children’s use. If the parent is a family organizer (in iCloud Family Sharing),
they can view usage data and manage Screen Time settings for their children. Children are
informed when their parents turn on Screen Time, and they can monitor their own usage
as well. When parents turn on Screen Time for their children, the parents set a passcode
so their children can’t make changes. When they reach age of majority (age will vary
depending on country or region), the children can turn this monitoring off.

Usage data and configuration settings are transferred between the parent’s and child’s
devices using the end-to-end encrypted Apple Identity Service (IDS) protocol. Encrypted
data may be briefly stored on IDS servers until it's read by the receiving device (for
example, as soon as the iPad or iPhone is turned on, if it was off). This data isn't readable
by Apple.

Screen Time analytics

If the user turns on Share iPhone & Watch Analytics, only the following anonymized data is
collected so that Apple can better understand how Screen Time is being used:

- Was Screen Time turned on during Setup Assistant or later in Settings
- Change in Category usage after creating a limit for it (within 90 days)
+ Is Screen Time turned on

- Is Downtime turned on

« Number of times the "Ask for more" query was used

- Number of app limits

- Number of times users viewed usage in the Screen Time settings, per user type and per
view type (local, remote, widget)

- Number of times users ignore a limit, per user type
- Number of times users delete a limit, per user type

No specific app or web usage data is gathered by Apple. When a user sees a list of apps in
Screen Time usage information, the app icons are pulled directly from the App Store, which
doesn't retain any data from these requests.
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Glossary

Address Space Layout Randomization (ASLR) A technique employed by operating
systems to make the successful exploitation by a software bug much more difficult. By
ensuring memory addresses and offsets are unpredictable, exploit code can’t hard code
these values.

AES (Advanced Encryption Standard) A popular global encryption standard used to
encrypt data to keep it private.

AES cryptographic engine A dedicated hardware component that implements AES.

AES-XTS A mode of AES defined in IEEE 1619-2007 meant to work for encrypting storage
media.

Apple File System (APFS) The default file system for iOS, iPadOS, tvOS, Mac computers
using macOS 10.13 or later, visionOS, and watchOS. APFS features strong encryption,
space sharing, snapshots, fast directory sizing, and improved file system fundamentals.

Apple Business Manager A simple, web-based portal for IT administrators that provides a
fast, streamlined way for organizations to deploy Apple devices that they have purchased
directly from Apple or from a participating Apple Authorized Reseller or carrier. They

can automatically enroll devices in their device management service without having to
physically touch or prepare the devices before users get them.

Apple Identity Service (IDS) Apple's directory of iMessage public keys, APNs addresses,
and phone numbers and email addresses that are used to look up the keys and device
addresses.

Apple Push Notification service (APNs) A worldwide service provided by Apple that
delivers push notifications to Apple devices.

Apple School Manager A simple, web-based portal for IT administrators that provides a
fast, streamlined way for organizations to deploy Apple devices that they have purchased
directly from Apple or from a participating Apple Authorized Reseller or carrier. They

can automatically enroll devices in their device management service without having to
physically touch or prepare the devices before users get them.

Apple Security Bounty A reward given by Apple to researchers who report a vulnerability
that affects the latest shipping operating systems and, where relevant, the latest hardware.

Boot Camp A Mac utility that supports the installation of Microsoft Windows on supported
Mac computers.
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Boot Progress Register (BPR) A set of system-on-chip (SoC) hardware flags that software
can use to track the boot modes the device has entered, such as Device Firmware Update
(DFU) mode and Recovery mode. After a Boot Progress Register flag is set, it can't be
cleared. This allows later software to get a trusted indicator of the state of the system.

Boot ROM The very first code executed by a device's processor when it first boots. As an
integral part of the processor, it can't be altered by either Apple or an attacker.

CKRecord A dictionary of key-value pairs that contain data saved to or fetched from
CloudKit.

Data Protection A file and keychain protection mechanism for supported Apple devices. It
can also refer to the APIs that apps use to protect files and keychain items.

Data Vault A mechanism—enforced by the kernel—to protect against unauthorized access
to data regardless of whether the requesting app is itself sandboxed.

Device Firmware Upgrade (DFU) mode A mode in which a device's Boot ROM code waits
to be recovered over USB. The screen is black when in DFU mode, but upon connecting
to a computer with the Finder or iTunes, the following prompt is presented: “Finder (or the
iTunes) has detected an [iPad][iPhone] in Recovery mode. The user needs to restore this
[iPad][iPhone] before it can be used with Finder (or the iTunes)."

device management service A service that lets an administrator remotely manage
enrolled devices. After a device is enrolled, the administrator can use the device
management service over the network to configure settings and perform other tasks on the
device without user interaction.

direct memory access (DMA) A feature that allows hardware subsystems to access main
memory directly, bypassing the CPU.

Effaceable Storage A dedicated area of NAND storage, used to store cryptographic keys,

that can be addressed directly and wiped securely. While it doesn’t provide protection if an
attacker has physical possession of a device, keys held in Effaceable Storage can be used

as part of a key hierarchy to facilitate fast wipe and forward security.

Elliptic Curve Diffie-Hellman Exchange Ephemeral (ECDHE) A key exchange mechanism
based on elliptic curves. ECDHE allows two parties to agree on a secret key in a way

that prevents the key from being discovered by an eavesdropper watching the messages
between the two parties.

Elliptic Curve Digital Signature Algorithm (ECDSA) A digital signature algorithm based on
elliptic curve cryptography.

Enhanced Serial Peripheral Interface (eSPI) An all-in-one bus designed for synchronous
serial communication.

Exclusive Chip Identification (ECID) A 64-bit identifier that's unique to the processor
in each iPad or iPhone that's as part of the personalization process, it's not considered a
secret.

file system key The key that encrypts each file's metadata, including its class key. This is
kept in Effaceable Storage to facilitate fast wipe, rather than confidentiality.

Gatekeeper On devices with macOS, a technology designed to help ensure that only
trusted software runs on a user’s Mac.

group ID (GID) Like the UID, but common to every processor in a class.
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hardware security module (HSM) A specialized tamper-resistant computer that
safeguards and manages digital keys.

HMAC A hash-based message authentication code based on a cryptographic hash
function.

iBoot The stage 2 boot loader for all Apple devices. Code that loads XNU, as part of the
secure boot chain. Depending on the system-on-chip (SoC) generation, iBoot may be
loaded by the Low-Level Bootloader or directly by the Boot ROM.

Input/Output Memory Management Unit (IOMMU) An input/output memory management
unit. A subsystem in an integrated chip that controls access to address space from other
input/output devices and peripherals.

integrated circuit (IC) Also known as a microchip.

Joint Test Action Group (JTAG) A standard hardware debugging tool used by
programmers and circuit developers.

keybag A data structure used to store a collection of class keys. Each type (user, device,
system, backup, escrow, or iCloud Backup) has the same format.

A header containing: Version (set to four in iOS 12 or later), Type (system, backup, escrow,
or iCloud Backup), Keybag UUID, an HMAC if the keybag is signed, and the method used
for wrapping the class keys—tangling with the UID or PBKDF2, along with the salt and
iteration count.

A list of class keys: Key UUID, Class (which file or Keychain Data Protection class),
wrapping type (UID-derived key only; UID-derived key and passcode-derived key),
wrapped class key, and a public key for asymmetric classes.

keychain The infrastructure and a set of APIs used by Apple operating systems and third-
party apps to store and retrieve passwords, keys, and other sensitive credentials.

key wrapping Encrypting one key with another. iOS and iPadOS use NIST AES key
wrapping, in accordance with RFC 3394.

Low-Level Bootloader (LLB) On a Mac with a two-stage boot architecture, the LLB
contains the code that's invoked by the Boot ROM and that in turn loads iBoot, as part of
the secure boot chain.

media key Part of the encryption key hierarchy. The media key helps ensure quick, secure
data wiping of Apple devices. On iPad, iPhone, Apple TV, and Apple Watch, it does this by
wrapping the metadata on the data volume. Without the media key, file keys are locked
away, making files protected with Data Protection inaccessible. On Mac, the media key
wraps key material, all metadata, and FileVault data. In both cases, wiping the media key
blocks access to encrypted data.

memory controller The subsystem in a system on a chip that controls the interface
between the system on a chip and its main memory.

NAND Nonvolatile flash memory.

Passcode-derived key (PDK) The encryption key derived from the entangling of the user
password with the long-term SKP key and the UID of the Secure Enclave.

per-file key The key used by Data Protection to encrypt a file on the file system. The per-
file key is wrapped by a class key and is stored in the file’s metadata.
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provisioning profile A property list (.plist file) signed by Apple that contains a set of
entities and entitlements allowing apps to be installed and tested on an iOS or iPadOS
device. A development provisioning profile lists the devices that a developer has chosen
for ad hoc distribution, and a distribution provisioning profile contains the app ID of an
enterprise-developed app.

Recovery mode A mode used to restore many Apple devices if it doesn’t recognize the
user's device so the user can reinstall the operating system.

ridge flow angle mapping A mathematical representation of the direction and width of the
ridges extracted from a portion of a fingerprint.

Sealed Key Protection (SKP) A technology in Data Protection that protects, or seals,
encryption keys with measurements of system software and keys available only in hardware
(such as the UID of the Secure Enclave).

Secure Storage Component A chip designed with immutable RO code, a hardware random
number generator, cryptography engines, and physical tamper detection. On supported
devices, the Secure Enclave is paired with a Secure Storage Component for anti-replay
value storage. To read and update anti-replay values, the Secure Enclave and storage chip
employ a secure protocol that helps ensure exclusive access to the anti-replay values.
There are multiple generations of this technology with differing security guarantees.

sepOS The Secure Enclave firmware, based on an Apple-customized version of the L4
microkernel.

software seed bits Dedicated bits in the Secure Enclave AES Engine that get appended to
the UID when generating keys from the UID. Each software seed bit has a corresponding
lock bit. The Secure Enclave Boot ROM and operating system can independently change
the value of each software seed bit as long as the corresponding lock bit hasn't been set.
After the lock bit is set, neither the software seed bit nor the lock bit can be modified. The
software seed bits and their locks are reset when the Secure Enclave reboots.

SSD controller A hardware subsystem that manages the storage media (solid-state drive).

System Coprocessor Integrity Protection (SCIP) A mechanism Apple uses designed to
prevent modification of coprocessor firmware.

system on a chip (SoC) An integrated circuit (IC) that incorporates multiple components
into a single chip. The Application Processor, the Secure Enclave, and other coprocessors
are components of the SoC.

system software authorization A process that combines cryptographic keys built
into hardware with an online service to check that only legitimate software from Apple,
appropriate to supported devices, is supplied and installed at upgrade time.

tangling The process by which a user’s passcode is turned into a cryptographic key and
strengthened with the device's UID. This process helps ensure that a brute-force attack
needs to be performed on a given device, and thus is rate limited and can't be performed
in parallel. The tangling algorithm is PBKDF2, which uses AES keyed with the device UID as
the pseudorandom function (PRF) for each iteration.

Unified Extensible Firmware Interface (UEFI) firmware A replacement technology for
BIOS to connect firmware to a computer’s operating system.

Uniform Resource Identifier (URI) A string of characters that identifies a web-based
resource.
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unique ID (UID) A 256-bit AES key that's burned into each processor at manufacture. It
can't be read by firmware or software, and it's used only by the processor’s hardware AES
Engine. To obtain the actual key, an attacker would have to mount a highly sophisticated
and expensive physical attack against the processor’s silicon. The UID isn’t related to any
other identifier on the device including, but not limited to, the UDID.

XART An abbreviation for eXtended Anti-Replay Technology. A set of services that provide
encrypted, authenticated persistent storage for the Secure Enclave with anti-replay
capabilities based on the physical storage architecture. See Secure Storage Component.

XProtect On devices with macQOS, an antivirus technology for the signature-based
detection and removal of malware.

XNU The kernel at the heart of the Apple operating systems. It's assumed to be trusted,
and it enforces security measures such as code signing, sandboxing, entitlement checking,
and Address Space Layout Randomization (ASLR).
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