
This paper is included in the Proceedings of the
16th USENIX Symposium on Operating Systems

Design and Implementation.
July 11–13, 2022 • Carlsbad, CA, USA

978-1-939133-28-1

Open access to the Proceedings of the
16th USENIX Symposium on Operating
Systems Design and Implementation

is sponsored by

KSplit: Automating Device Driver Isolation
Yongzhe Huang, Pennsylvania State University; Vikram Narayanan

and David Detweiler, University of California, Irvine; Kaiming Huang,
Gang Tan, and Trent Jaeger, Pennsylvania State University;

Anton Burtsev, University of California, Irvine, and University of Utah
https://www.usenix.org/conference/osdi22/presentation/huang-yongzhe

KSplit: Automating Device Driver Isolation
Yongzhe Huang∗1, Vikram Narayanan∗2, David Detweiler2, Kaiming Huang1, Gang Tan1, Trent Jaeger1,

and Anton Burtsev2,3

1Pennsylvania State University
2University of California, Irvine

3University of Utah

Abstract
Researchers have shown that recent CPU extensions sup-

port practical, low-overhead driver isolation to protect kernels
from defects and vulnerabilities in device drivers. With perfor-
mance no longer being the main roadblock, the complexity of
isolating device drivers has become the main challenge. De-
vice drivers and kernel extensions are developed in a shared
memory environment in which the state shared between the
kernel and the driver is mixed in a complex hierarchy of data
structures, making it difficult for programmers to ensure that
the shared state is synchronized correctly. In this paper, we
present KSplit, a new framework for isolating unmodified
device drivers in a modern, full-featured kernel. KSplit per-
forms automated analyses on the unmodified source code
of the kernel and the driver to: 1) identify the state shared
between the kernel and driver and 2) to compute the syn-
chronization requirements for this shared state for efficient
isolation. While some kernel idioms present ambiguities that
cannot be resolved automatically at present, KSplit classifies
most ambiguous pointers and identifies ones requiring manual
intervention. We evaluate our solution on nine subsystems in
the Linux kernel by applying KSplit to 354 device drivers and
validating isolation for 10 drivers. For example, for a complex
ixgbe driver, KSplit requires only 53 lines of manual changes
to 2,476 lines of automatically generated interface specifica-
tions and 19 lines of changes to the driver’s code. The KSplit
analysis of the 354 drivers shows a similar fraction of manual
work is expected, showing that KSplit is a practical tool for
automating key tasks to enable driver isolation.

1 Introduction
Device drivers have long been and continue to be a major
source of defects and vulnerabilities in modern kernels [19,32,
50, 65]. Drivers are expected to support a variety of complex
protocols and comply with numerous kernel conventions [23,
76, 77], creating challenges in ensuring that device drivers
operate correctly in the face of concurrent and asynchronous
accesses on multiple CPU cores. In addition, while the core
kernel is relatively stable, the number of kernel extensions

∗Contributed equally
†Work done partly at the University of California, Irvine

and device drivers is large and continues to grow. A modern
Linux 5.12 kernel contains around 8,960 device drivers that
account for 67.7% of the kernel source [3], a number that has
nearly doubled since 2013. With a rate of 80,000 commits
a year, defects and vulnerabilities are an inherent part of the
fast growing and evolving driver codebase.

The recent availability of hardware features for efficient
isolation [1, 5] and system support that leverages such fea-
tures [40, 43, 47, 61, 63, 82] have made low-overhead device
isolation frameworks practical [66, 68]. The upcoming hard-
ware extensions, e.g., native page-granularity support for iso-
lation of kernel code [5], and 16 byte-granularity isolation
with memory tagging extensions (MTE) [1], which are key for
enabling low-overhead software fault isolation (SFI) imple-
mentations [53], will reduce isolation overheads even more.

Despite the availability of low-overhead isolation mecha-
nisms, the task of isolating existing driver code remains chal-
lenging. For decades, device drivers and kernel extensions
have been developed in the shared memory environment of a
monolithic kernel, where they freely exchange references to
large and complex data structures (e.g., hierarchical, cyclic
data structures with many data and pointer fields) that mix the
state of the driver and the kernel. Isolating a driver requires
a careful analysis of the flow of execution between isolated
subsystems to identify how the complex state of the system is
accessed on both sides of the isolation boundary.

Recent techniques to isolate legacy driver code utilize man-
ual analysis of complex kernel-driver dependencies [18, 62,
66, 68, 80], requiring an immense decomposition effort that
limits their applicability. Moreover, proposed techniques to
automate such analyses [33, 72] only address a small fraction
of the task. For example, LXFI, an SFI framework, utilized
an iterative procedure to identify all the state required for
execution of a driver, gradually annotating the missing parts
of the shared state [62]. The scale and complexity of modern
drivers make such manual analysis impractical. In the Linux
kernel, even simple drivers like msr, that provide an interface
to model specific CPU registers (MSRs), require analysis of
459 functions and around 10,000 object fields that are transi-
tively reachable from the 21 functions of the driver interface.
A more complex network driver, ixgbe, requires analysis of

USENIX Association 16th USENIX Symposium on Operating Systems Design and Implementation 613

5,782 functions and over 900,000 object fields—a number
that is well beyond the reach of manual analysis. Decaf [72]
and Microdrivers [33] took initial steps towards automated
analysis for driver isolation prior to the advent of efficient
isolation hardware, so these works focused on techniques to
isolate only a subset of driver functionalty that could be effi-
ciently executed in isolation. As a result, many challenging
parts of the drivers, e.g., interrupt handlers and optimized
data-plane functions, remained inside the unisolated kernel.
In addition, these techniques did not aim to minimize data
synchronization overhead and required several manual tasks.

In this paper, we present KSplit, a new framework for iso-
lating device drivers in the Linux kernel. KSplit performs a
collection of static analyses on the source code of the kernel
and the driver to generate the synchronization code that is
required to execute the driver in isolation. Specifically, KSplit
identifies the shared state that is accessed by both driver and
kernel, computing how this state is used on either side of the
isolation boundary, and how it should be synchronized on
each kernel-driver invocation, or when a shared synchroniza-
tion primitive (e.g. a spinlock or an RCU) is invoked. The
result of the analysis is a collection of procedure call specifi-
cations in the KSplit interface definition language (IDL). The
KSplit IDL compiler then generates glue code that ensures
synchronization of data structures between isolated subsys-
tems. Some kernel idioms, such as concurrency and complex
data structures, present ambiguities that cannot be resolved au-
tomatically at present, so KSplit also identifies these specific
problems for developers to focus their effort. This allows one
to take an existing driver and produce the data synchronization
code necessary to run the driver in isolation, automatically,
if possible, and identify remaining tasks that require manual
intervention, if needed.

Kernel software presents several challenges for developing
accurate and scalable analyses for automating the isolation of
legacy drivers, which we address in the design of KSplit.1

First, modern kernels have evolved to share fine-grained
access to large, hierarchical data structures with their drivers,
which enables joint, optimized operation over shared state
using complex memory references. To compute shared state
accurately, KSplit employs a field-sensitive data flow analysis
using a modular alias analysis to identify shared fields while
accounting for memory references accurately. To compute
shared state scalably, KSplit provides a two-stage analysis to
identify the kernel functions that could possibly share access
to a data structure with a particular driver, enabling more
accurate analysis methods to be targeted to the relevant subset
of the kernel.

Second, modern drivers execute in a concurrent, fully-
reentrant environment of the kernel, which complicates the
challenge of ensuring that the shared state is synchronized cor-
rectly when the driver is isolated. KSplit provides algorithms

1KSplit is developed for Linux, but our techniques can be applied to
other commodity kernels.

to ensure correct synchronization of shared state for driver in-
vocations, nested calls to kernel functions by drivers, and a va-
riety of concurrency primitives, including spin and sequential
locks, read-copy-update (RCU), mutexes, and atomics. KSplit
provides an analysis to identify concurrency primitives that
operate over shared data, finding that such primitives rarely
cross the kernel-driver boundary.

Third, kernels utilize a wide range of low-level idioms that
create ambiguities for marshaling in synchronization, e.g.,
sentinel-terminated and sized arrays, tagged and anonymous
unions, self-referential data structures like linked lists, etc.
To separate complete drivers, these ambiguities need to be
resolved automatically. KSplit partitions these data structures
into classes to apply algorithms to determine whether mar-
shaling requirements can be inferred or not. KSplit is able to
automate most cases and provide warnings for the rest.

We develop KSplit for the Linux kernel and a recent de-
vice driver isolation framework, LVDs [68]. KSplit is a fully
parallel analysis that takes only a few seconds to complete
for simple drivers, and completes within minutes for complex
device drivers like ixgbe. We evaluate driver isolation using
KSplit on 10 Linux device drivers, intentionally choosing
drivers representing a wide variety of functionality and kernel
programming idioms. Simple device drivers like msr can be
isolated with no changes to their code, and only 2 lines of IDL
changes are required to resolve ambiguities in the driver’s
IDL. More complex drivers like ixgbe require less than 19
lines of driver code changes and only 53 lines of IDL changes
for the 2,476 lines of device interface definitions. We also
apply KSplit to 354 drivers, finding that the amount of manual
effort is expected to be a similar fraction of the driver size.
Drivers isolated using KSplit leverage the low-overhead hard-
ware and software isolation mechanisms, retaining 5.4–18.7%
of the non-isolated system’s performance. Our experience
with isolating device drivers confirms that KSplit is a prac-
tical tool for enabling isolation of complete, legacy device
drivers through the use of emerging low-overhead hardware
and software isolation mechanisms.

2 Background: Device Driver Isolation
Over the years, a range of techniques to isolate kernel ex-
tensions explored execution of device drivers in clean-slate
microkernels [10,12,13,27,30,35,39,44–46,49,57] and virtual
machines [14, 15, 31, 34, 55, 70, 75], re-implementing device
drivers in safe programming languages [9,11,37,48,56,67,84],
developing backward-compatible driver execution frame-
works [8,17,22,24,29,36,38,42,52,71,81,83,86], and finally,
isolating unmodified driver code with hardware [33,66,68,80]
and software [18, 25, 62] mechanisms. While it is possible
to enforce isolation of the driver code through programming
language safety [11, 48, 56] and formal verification [7, 20], to
achieve isolation of unmodified drivers, driver isolation frame-
works rely on either hardware isolation mechanisms (e.g.,
segmentation, paging, extended page table (EPT) switching),

614 16th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

core-isolation [66], or techniques of software fault isolation
(SFI) [18, 25, 62, 85] that enforce a segment-like isolation
boundary around the driver code through instrumentation of
control flow and memory instructions.

The main challenge in isolating legacy drivers is to provide
controlled access to the state that is shared by the kernel and
the isolated driver. Commodity operating systems allow ker-
nels to share an address space, and hence, its entire state with
drivers, implementing driver operations on objects jointly ac-
cessible to both the kernel and the driver. Often these objects
have a complex, hierarchical structure, e.g., sk_buff network
packet buffers, but only a fraction of these objects (i.e., a
small subset of their fields) are accessed by both the kernel
and the driver in practice, these forming the shared state. In
order for the isolated driver to work correctly, KSplit must
identify this shared state comprehensively, but to provide effi-
cient isolation, KSplit must not overapproximate the shared
state significantly.

Hardware and SFI frameworks take different approaches
to protecting access to the state shared between the kernel
and the driver. Hardware approaches control access by ex-
ecuting the driver on an isolated copy of the shared state
that is synchronized with the kernel on each driver invoca-
tion [33, 66, 68, 80]. SFI approaches, in contrast, execute the
driver and the kernel on a single copy of the shared state. This
eliminates the need for maintaining two copies of the shared
state, but requires access-control checks on each memory ac-
cess to the shared state [62]. To provide fine-grained access
control on the kernel state, SFI systems implement a concept
of “capability tables”, which allow quick byte-granularity
lookup of each kernel field accessible to the driver [62].

Irrespective of the isolation mechanism, however, both so-
lutions require analysis of which state can be accessed by the
driver and the kernel, and when each access is allowed [62].
Decaf [72] and Microdrivers [33] took a first step in automated
analysis of shared state for isolated drivers by computing the
state accessed by the driver on each invocation. However,
not all of this state is shared with the kernel, as we find that
drivers operate on a significant amount of state that is private
to the driver. In addition, these projects only decomposed the
non-performance-critical driver code into isolated domains to
retain reasonable performance.

Historically, isolation in the kernel remained prohibitive
due to the high overhead of hardware and software isola-
tion mechanisms. Recent CPUs, however, signal the grow-
ing support for low-overhead isolation primitives. Extended
page-table switching with VM functions [6] and user-space
memory protection keys (MPKs) [6] already provide support
for memory isolation with overheads comparable to system
calls for Intel machines [43, 63, 68, 82]. The next generation
of Intel machines promises to extend MPK with native sup-
port for isolation of ring 0 code [5]. Similarly, the newest
ARM CPUs provide support for 16 byte-granularity isolation
with memory tagging extensions (MTE) [1], which is key for

enabling low-overhead SFI implementations [53].
Recent work has shown that using domain-based isola-

tion can be practical. LXDs [66] and LVDs [68] develop
a Nooks-like isolation framework using extended page ta-
bles to improve boundary-crossing performance, providing
an interface definition language (IDL) for specifying which
data requires synchronization in driver interfaces. This work
demonstrates the potential for the efficient hardware-based
protection domain isolation of legacy drivers. However, such
isolation required a significant manual effort to develop IDL
definitions for complete drivers. While previous work [33,72]
proposed a method to generate the base IDL, configuring the
marshalling requirements for a variety of complex data types
and handling concurrency was performed manually. While
SFI does not require synchronization on boundary crossings,
SFI methods must compute essentially the same information
to enable correct isolation with good performance.

A variety of projects have explored techniques to au-
tomate various aspects of decomposing user-space pro-
grams [16, 21, 41, 58–61, 74, 87–89], called privilege sepa-
ration [78], but these techniques fail to address issues critical
to isolating kernel code. For example, PtrSplit [59] proposed
techniques to compute marshalling requirements for objects
based on runtime tracking, but this adds non-trivial overhead.
In addition, these techniques are not designed to handle multi-
threaded programs like a kernel.

3 KSplit Overview
KSplit transforms complete, shared-memory device drivers
into equivalent drivers that can execute in an isolated domain
and on an isolated copy of the driver state. Specifically, KSplit
identifies the subset of the kernel state that is required for an
isolated driver to run, and derives how this state must be syn-
chronized on invocations that cross the isolation boundary,
and also at the points where the driver uses concurrency prim-
itives,2 e.g., atomics, spinlocks, mutexes, ready-copy-update
(RCU), etc.

For example, the kernel submits a network packet to a
network device with the ndo_start_xmit() function:
1 ndo_start_xmit(struct sk_buff *skb,
2 struct net_device *netdev)

KSplit ensures that all the fields shared between the kernel and
driver of all the data structures that are recursively reachable
from the two input arguments (i.e., skb and netdev), and all
global kernel variables, are synchronized with the driver. After
the invocation completes, the fields updated by the driver are
synchronized back to the kernel. Nested invocations into the
kernel also trigger synchronization to ensure that the kernel
and driver use the current state. If the driver code uses a
concurrency primitive that is shared with the kernel, e.g., a
global lock, like the rtnl_lock used by network device drivers

2To distinguish between the synchronization of shared state in general
with primitives to synchronize state used in concurrent operations, we refer
the latter as concurrency primitives in this paper.

USENIX Association 16th USENIX Symposium on Operating Systems Design and Implementation 615

1 struct sk_buff {
2 struct net_device *dev;
3 unsigned int len, data_len;
4 u8 xmit_more:1;
5 ...
6 sk_buff_data_t tail;
7 sk_buff_data_t end;
8 unsigned char *head, *data;
9 unsigned int truesize;

10 };

(a) sk_buff definition
sk_buff

*head header

payload

data

*data

len

end

tail

skb_shared_infonr_frags
*frag_list
frags[]

pointer

offset

(b) sk_buff layout in memory

Figure 1: Definition of the sk_buff data structure and its layout

to register with the kernel, KSplit synchronizes the state of
the driver with the kernel on entry and exit from the atomic
region to maintain up-to-date copies in both domains.

KSplit provides software analysis algorithms that 1) com-
pute the subset of the kernel state that is accessed by the
driver (i.e., the shared state) and 2) synchronize the shared
state on cross-domain invocations and on the use of concur-
rency primitives that access shared state. While appearing
to be conceptually straightforward, isolating legacy drivers
is complicated by several factors caused by how drivers are
currently deployed in monolithic kernels, specifically:

Complex shared state Kernel data structures often consist of
a large number of fields that may be referenced in a variety of
ways. The sk_buff structure that represents a network packet
has 66 fields (5 pointers and 2 offsets) through which 3,132
fields (1,214 pointers) are recursively reachable in other data
structures (Figure 1a). The kernel and driver operate jointly on
only a small fraction (52 shared fields) of these fields. In ad-
dition, like many kernel data structures, the sk_buff structure
is accessed through complex memory references (Figure 1b).
For example, some sk_buff pointers are used for in-place ac-
cess to parts of the network packet, i.e., head and data mark
the beginning of the packet header, and the data regions from
which the packet is assembled, respectively.

To compute shared state accurately under these require-
ments, KSplit employs a field-sensitive data-flow analysis
using a modular alias analysis to capture field references
common to the kernel and the driver. To do this efficiently,
we apply the parameter tree approach [59], which computes
aliases intra-procedurally [79] and propagates those alias re-
sults inter-procedurally. This approach was employed previ-

ously in user-space privilege separation [59]. However, user-
space privilege separation aims to isolate sensitive data se-
lected manually by programmers, whereas KSplit needs to
identify the data shared between the kernel and a driver auto-
matically. Prior techniques to estimate sharing between the
kernel and a driver [33, 72] greatly overestimate shared data
because they collect all the fields that the driver will access,
instead of those that are actually shared.
Size and complexity of the kernel In order for the isolated
driver and kernel to operate correctly, we must identify all
the shared state. Using a sound alias analysis, we can over-
approximate the shared state, but the kernel is too large (e.g.,
contains 53,000 functions) to directly apply the field-sensitive
analysis needed to compute shared state accurately. KSplit
handles this challenge by first performing an analysis to iden-
tify the subset of kernel functions that can access the state
involved in interaction with the driver. Then, KSplit performs
an accurate shared state analysis on this subset of the kernel
functions, along with the driver.
Concurrency and parallelism KSplit must ensure that the
kernel and the isolated driver operate on up-to-date shared
state, regardless of how the kernel and driver interact. The
kernel, however, invokes functions of the driver in parallel on
multiple CPUs. Moreover, device drivers are concurrent and
fully reentrant. As a result, it is possible that the driver updates
the shared state that is concurrently accessed by the kernel or
vice versa, using one of various concurrency primitives. For
example, most drivers use the read-copy-update (RCU) syn-
chronization pattern to synchronize their state across multiple
invocations in a lightweight manner, e.g., the ixgbe network
driver holds an rcu_read_lock to access the ring statistics to
prevent deallocation of driver queues by a concurrent thread.
However, many drivers rely on atomic primitives and criti-
cal sections (e.g., ixgbe communicates state updates to the
New-API (NAPI) state to the softirq framework with atomic
variables). Finally, some device subsystems rely on global
locks (e.g., rtnl_lock in the network subsystem) during driver
registration.

KSplit leverages the critical observation that synchroniza-
tion mechanisms rarely cross the driver-kernel boundary, e.g.,
out of 73 uses of concurrency primitives in the ixgbe driver,
only 3 atomic primitives synchronize state across the isolation
boundary. We develop a collection of algorithms that care-
fully classify shared and private critical sections for a range of
kernel concurrency primitives (mutexes, spinlocks, sequential
locks, atomic primitives, and RCU locks). For shared concur-
rency primitives, KSplit computes the state that is accessed
within the critical section and requires synchronization.
Low-level C idioms Kernel code utilizes a range of low-level
idioms that create ambiguities for static analysis (Figure 2).
For example, device drivers rely on sentinel values (e.g., null)
to represent variable-sized arrays, e.g., the PCI subsystem
uses the pci_id_table array to store a set of devices supported
by a particular driver (Figure 2a). To optimize allocation and

616 16th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

1 struct pci_dev { // sized array
2 struct resource resource[DEVICE_COUNT_RESOURCE];
3 };
4
5 static const struct pci_device_id ixgbe_pci_tbl[]
6 = {
7 { PCI_VDEVICE(INTEL, IXGBE_DEV_ID_82598),
8 board_82598 },
9 { }, /* sentinel */

10 };

(a) Sized and sentinel arrays

1 #define skb_shinfo(SKB) \
2 ((struct skb_shared_info *)(SKB->end))
3
4 static inline void
5 *blk_mq_rq_to_pdu(struct request *rq)
6 {
7 return rq + 1;
8 }

(b) Collocated data structures

1 ssize_t msr_read(struct file *file,
2 char __user *buf, ...)
3
4 dev->bar = ioremap(pci_resource_start(pdev, 0),
5 8192);

(c) Special memory regions.

1 struct skb_shared_info {
2 struct sk_buff *frag_list;
3 };

(d) Recursive data structures

1 union acpi_object {
2 acpi_object_type type; /* tag */
3 struct {
4 acpi_object_type type;
5 u64 value;
6 } integer;
7 ...
8 };

(e) Tagged unions

1 static int ixgbe_set_mac(struct net_device *netdev,
2 void *p) {
3 struct sockaddr *addr = p;
4 memcpy(netdev->dev_addr, addr->sa_data,
5 netdev->addr_len);
6 ...
7 }

(f) Opaque pointers

Figure 2: Code idioms typical of the Linux kernel

deallocation of objects, kernel can collocate multiple data
structures into one memory area, and use pointer arithmetic
to access them (Figure 2b). Further, the lack of a fast array or
vector abstraction forces the kernel to use references in place
of arrays and keep the length as a separate field. Some mem-
ory regions, like user and device I/O memory, require special
treatment, when passed into an isolated driver, e.g., marked as
allocated in user memory with the user attribute (Figure 2c).
While recursive data structures are rarely passed across the
kernel-driver interface, some drivers use linked lists, and even
generic graphs of recursive objects (Figure 2d). Tagged and
anonymous unions are used by the driver to implement poly-
morphic functions that can take generic arguments of a union
type (Figure 2e). Device drivers frequently rely on void* point-
ers to express type polymorphism (Figure 2f). Another typical

pattern for the kernel APIs is to return an error as a specially
formed pointer—this allows a simple unified function sig-
nature, e.g., the struct rquest *blk_mq_alloc_request() func-
tion from the block driver returns a pointer to the block request
on successful invocation, but can return a specially formed
pointer that represents an error otherwise. KSplit provides
support for these cases, and the necessary IDL annotations
and library support to generate correct code.

Prior approaches assumed that programmers would provide
the annotations to resolve ambiguities in marshaling manually
for most cases [33,51,62,66,68], but that is impractical when
isolating complete device drivers. Instead, KSplit takes the
opposite approach, aiming to resolve ambiguities in most
cases and providing warnings in the remaining ones. For
example, char * references, such as the head* and tail* fields
in the sk_buff data structure, may refer to singletons, arrays,
strings, or even other data types (e.g., for type casts). KSplit
utilizes a series of classification methods to distinguish among
these caonesutomatically, enabling nearly all ambiguities to
be resolved for the drivers we have isolated.

Prior work Microdrivers [33], Decaf [72], and FGFT [51]
developed static analysis methods aimed at the isolation of
legacy driver code. Due to the sheer complexity of the whole-
driver analysis, these past approaches were limited to isolating
only select driver functions, and supported only a limited
subset of kernel idioms. KSplit leverages advances in static
analysis: specifically, a combination of an accurate program
dependence graph (PDG) representation, and modular alias
analysis with parameter trees [59]. This allows KSplit to scale
the analysis and implement isolation of the entire driver. A
clean separation of shared and private state allows us to scale
static analysis and resolve almost all ambiguous annotations
required for marshalling of data in the low-level driver code.

3.1 Threat Model and Security Goal
The goal of KSplit is the same as the majority of prior research
on driver isolation [35, 66, 68, 80]. Specifically, KSplit aims
to improve kernel reliability, i.e., prevent flaws in the driver
domain, such as memory errors, from affecting the rest of the
kernel. We trust that the kernel domain is free of software
flaws, but assume that the driver domain may contain flaws
that, for example, may result in writes to kernel memory,
possibly causing the kernel to crash.

We leave the feasibility analysis of whether KSplit driver
isolation prevents attacks originating from a driver as fu-
ture work. We note that LXFI [62] prevents certain driver-
originated attacks by generating dynamic checks based on
user-specified safety conditions at the kernel-driver bound-
ary. However, identifying and specifying safety conditions
for individual drivers is a labor-intensive task. Plus a range of
security attacks are still possible, such as resource exhaustion
(e.g., the driver can allocate objects to consume memory), pro-
tocol violations (e.g., the driver can unregister itself from the
kernel), and even use-after-free (e.g., driver can trigger deallo-

USENIX Association 16th USENIX Symposium on Operating Systems Design and Implementation 617

PDG

Construction
clangSource LLVM IR PDG

Shared Data

Computation

Data

Synchronization

Concurrency

Marshaling

Requirements
IDL

IDL Compiler Interface

Code

Figure 3: KSplit analysis workflow.

cation of objects in an unexpected way). We, however, believe
that KSplit is a critical step towards shaping the foundation of
future isolation mechanisms. We plan to study what security
guarantees may be possible to achieve automatically as future
work. Finally, speculative execution and side-channel attacks
are outside the scope of this work as well.

4 KSplit Static Analysis
Figure 3 presents KSplit analysis workflow. KSplit takes the
source code (i.e., the code of the kernel and a device driver)
as input, and converts it into LLVM IR using Clang, LLVM’s
frontend. KSplit then provides analyses to: (1) identify shared
data between the kernel and the driver; (2) compute data syn-
chronization on each boundary crossing for that shared data;
(3) compute data synchronization for concurrency primitives
that access shared data; and (4) infer marshaling requirements
for data types where such requirements are ambiguous, e.g.,
tagged unions, void pointers, arrays, linked data structures,
etc. The result of the analysis is a collection of definitions for
the KSplit interface definition language (IDL) compiler. For
some cases whose IDL configuration (e.g., size and/or format)
remains ambiguous after analysis, KSplit generates warnings
for developers to resolve the ambiguity. These warnings must
be resolved by developers to obtain a working IDL. The IDL
compiler then generates glue code that ensures synchroniza-
tion of data structures between isolated subsystems.

In this section, we present KSplit’s core static-analysis
algorithms to address the aforementioned problems. The al-
gorithms are designed to solve these problems in the general
case, but the C language is ambiguous about some key infor-
mation required by the algorithms (e.g., pointer type infor-
mation). We defer to Section 5 for a discussion of how we
leverage C programming idioms used in the Linux kernel to
resolve these ambiguities in most cases. While some of these
idioms are commonly applied in C programs, some idioms
may need to be replaced for other kernels.

4.1 Program Dependence Graph
KSplit reasons about the kernel and drivers using an interpro-
cedural program dependence graph (PDG) [59]. PDG repre-
sents individual LLVM instructions as nodes with edges that

capture control and data dependencies between instructions.
An instruction n1 is control dependent on n2 if, intuitively,
n2’s outcome decides whether n1 gets executed [26]. An in-
struction n1 is data dependent on instruction n2 if n1 uses
some data produced by n2. Data dependence is critical for de-
termining how the data structures that are exchanged between
the driver and the kernel are used in cross-domain invoca-
tions. Specifically, KSplit computes how the objects are used
by each side of the isolation boundary to then compute data
synchronization requirements, as described in Section 4.3.
In particular, we need to find all operations that may read or
write data, which should be marshaled across the boundary.

Scaling alias analysis with parameter trees A common
type of data dependence happens when an instruction writes to
a memory region from which another instruction reads. Com-
puting such memory-related data dependenciiiesss requires
alias analysis, which computes the variables or expressions
that may reference (i.e., point to) the same memory object,
and are called aliases. We must compute aliases in KSplit
because we must detect all objects that may be accessed by
both the kernel and the drivers. Further, the isolation of the
driver code requires an interprocedural alias analysis, as both
the kernel and driver code may pass pointers to data objects
through function calls, as well as through global variables.
The alias analysis problem is known to be undecidable; de-
vising a precise analysis that is scales well and is guaranteed
to capture all aliases is a challenge. Current interprocedural
alias analysis techniques (e.g., [54,79]), however, do not scale
to low-level kernel code with its complex uses of memory
references. Instead, we propose to deploy a modular form
of alias analysis that enables us to manage scalability more
effectively.

In the KSplit approach to modular alias analysis, we em-
ploy SVF [79] to compute aliases intra-procedurally and
then propagate those alias results inter-procedurally using
the parameter tree approach [59]. This allows us to efficiently
compute memory dependencies across function boundaries
in a context-insensitive way. Specifically, it first constructs
PDGs for each function in the program (which includes intra-
procedural memory dependencies) and then glues them to-
gether by connecting actual parameter trees for arguments at
function call sites with formal parameter trees for parameters;
details can be found in [59].

To illustrate the idea of parameter trees, consider the
msr_read() function of the MSR driver. For each argument of
the function we construct a parameter tree that represents stor-
age locations that the callee can access. For example, Figure 4
shows a parameter tree for two arguments of the msr_read()

function: 1) the file argument of type struct file * and
2) the int argument count. The parameter tree for the file

argument has a root node labeled “file:struct file*” for rep-
resenting the storage for the pointer, and a child node labeled
“*file:struct file” for the memory region that the pointer
points to. The references of each storage location in the pro-

618 16th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

*file: struct file

Kernel

Driver

call msr_read

file: struct file*

msr_read

*file: struct file

file: struct file*

f_inode: struct inode*

count: int

count: int

if(file->f_op->read)

file->f_inode

if(count % 8)

__vfs_read

Control dependency

Parameter tree

Data dependency

Figure 4: Partial PDG for the msr_read() function which is
invoked with the call instruction from the __vfs_read()

gram are connected with corresponding tree nodes through
data-dependency edges. We note that, for brevity, the figure
does not show the fields of struct file; the actual representa-
tion maintains information about each field in a separate node
to allow field-sensitive analysis.

4.2 Computing Shared and Private Data
Accurate separation of shared and private state is critical for
the precision and scalability of KSplit analyses. However, the
size of the kernel makes it impractical to perform an accurate
analysis to find the shared state at the level of fields (i.e., field-
sensitive analysis). On the other hand, the kernel’s use of
interrupt handlers makes it difficult to ensure that all the code
that may impact a particular driver interface invocation has
been accounted for. For example, an interrupt handler does
not have an explicit caller and is thus unreachable in a typical
control-flow graph (CFG) from neither the driver nor regular
kernel code. It only runs in response to the corresponding
interrupt.

As a result, we develop a shared-state algorithm that first
determines the scope of code in the kernel and driver to con-
sider (i.e., the functions and data types that may be shared),
as described in steps (1) and (2) of the detailed algorithm be-
low. Then, we perform an accurate, field-sensitive analysis on
the PDG. This analysis leverages the modular alias analysis
described above to capture the shared state of the kernel and
driver in terms of data-structure fields.

The detailed algorithm steps are as follows: (1) the algo-
rithm computes a set of struct types that are accessible by
both sides of the isolation boundary. This is performed by
collecting all the struct types that are accessible transitively
through interface function parameters, global variables, and
interrupt handlers. These struct types are referred as shared

struct types. (2) For each shared struct type, we identify the
functions in the kernel and driver that contain variables whose
type matches one of the shared struct types. The functions
accessible from the isolation boundary in step (1) and those
found in step (2) are used to compute the shared state in (3)
below. Steps (1) and (2) do not use the CFG and work even
for interrupt handlers (unreachable in the CFG). (3) For each
set of variables that match a shared struct type, we use the
PDG to analyze the accesses via the variables to collect the
field accesses for that type. (4) For each field, if the field has
accesses from both the kernel and the driver, we consider the
field to be shared. Otherwise, the field is private.

The output of the algorithm is a set of shared struct types
associated with their shared and private fields. For illustra-
tion, the struct net_device type contains the following fields
(among others): wanted_features, features, and hw_features.
By analyzing the ixgbe driver and the kernel code, our analysis
determines that the features field has accesses from both the
driver and the kernel, while the other two fields are only ac-
cessed in the kernel. Our algorithm determines that features
is shared, while the other two fields are private to the kernel.

This algorithm relies on two assumptions. First, in step
(2), we assume that any state shared between the kernel and
driver is accessed using one of the shared struct types from
step (1). While this is not guaranteed, the kernel generally
obeys typing for the types it shares with the drivers. If we
miss a data type, we may under-approximate shared state,
causing correctness issues, but we have not found any viola-
tions so far. Second, we rely on the observation that the type
of a composite object correlates with how it is shared across
the isolation boundary. In other words, it is uncommon for
one instance of a given type to be shared while a different
instance being private; e.g., if a device driver accesses the
inode field of the struct file * object, it is typical that inode
is shared for all instances of the struct file * type. Thus, the
analysis cannot determine whether a field of one instance is
shared while the same field of another instance is private. The
algorithm may over-approximate the shared state, which may
cause unnecessary data synchronization, but does not affect
correctness.

4.3 Cross-Domain Synchronization
When a function invocation crosses the domain boundary,
KSplit synchronizes the shared state required by the callee
domain to execute the call. Similarly, when the function re-
turns, the changes the callee made to any shared state must
be synchronized back to the caller, to reflect updates on its
copy. We develop parameter access analysis to compute all
data structures and fields that require synchronization.

Basic parameter access analysis At a high level, this algo-
rithm tracks the parameter reads that require data to be syn-
chronized on calls and parameter writes that require data to be
synchronized on responses for each cross-domain invocation
and any functions reachable from that invocation. Algorithm 1

USENIX Association 16th USENIX Symposium on Operating Systems Design and Implementation 619

presents a worklist-based algorithm: 1) for each function in
the worklist, it performs an intraprocedural parameter access
analysis; 2) it collects call instructions in the function be-
ing analyzed and performs an interprocedural analysis; and
3) it repeats steps (1) and (2) until the analysis reaches a
fixed point (when the worklist becomes empty). Algorithm 1
computes field usage that is only dependent on parameters
passed between domains. Dependence is computed using the
parameter-tree alias analysis to ensure an overapproximation.

Algorithm 1: Parameter access analysis
Input: G is a PDG, T is a parameter tree, f is the target function of

a cross-domain call
Output: Access Information Map AM

1 initialize AM to be empty
2 worklist←{ f}
3 while worklist is not empty do
4 f1← remove_any(worklist)
5 for node n in T do
6 for instruction i in f1 do
7 if G has a dependence edge from i to n then
8 AL← the edge’s access label
9 AM[n]← AM[n]∪AL

10 else if i calls f2 then
11 worklist← worklist ∪{ f2}
12 end
13 end
14 end
15 end

The analysis goal is to compute a set of access labels (AL)
for each parameter tree node of a function parameter. The
access label of a node represents how the storage represented
by the node is used by the callee of a cross-domain call
(READ/WRITE). We further define a global map AM, which
maps from parameter tree nodes to sets of access labels AL.
For example, if there is a read access to the f_inode field of
the file data structure, we associate a READ label with the
parameter tree node that represents the storage of that f_inode.
After AM is computed, the fields for shared state correspond-
ing to nodes with the READ label are copied from the caller
to the callee when the call happens, and those for shared state
with the WRITE label are copied from the callee to the caller
when the callee returns.

The previous analysis identifies the correct state to synchro-
nize, but might include unnecessary fields because of nested
boundary crossings, which cause the call-graph transitive clo-
sure to include functions from both sides of the isolation
boundary. KSplit distinguishes reads and writes of different
domains and avoids sending shared data to a callee if the data
is only used in the caller’s domain due to a nested call. Simi-
larly, KSplit avoids copying shared data back to the caller if
the writes only occur in the caller domain, To do this, KSplit
removes shared fields accessed only in the caller domain from
the closure computed in Algorithm 1. For the above example,
suppose the driver function d reads shared field fd1 and k′

reads shared field fd2. The previous analysis determines both

fd1 and fd2 need to be sent when k calls d. However, our
optimization distinguishes the two reads and sends only fd1.

4.4 Critical Sections and Atomic Primitives
Modern device drivers are often invoked in parallel on all
CPUs of the system, and are fully concurrent outside of small
critical sections. The kernel and drivers synchronize access to
the shared state through a variety of kernel-provided concur-
rency mechanisms: atomic operations, spinlocks, sequential
and reader/writer locks, read-copy-update critical sections
(RCU), etc. To support correct execution of an isolated driver,
we provide support for concurrency primitives across the iso-
lation boundary. We identify two large classes of concurrency
primitives: locking and lock-free (i.e., atomic operations). For
atomic update primitives, e.g., atomic_inc(), atomic_set(), we
perform all updates on the primary copy of the data main-
tained in the kernel; i.e., drivers call into the kernel to update
the primary copy. For synchronization primitives that acquire
and release a lock (we support spinlocks, seqlocks, RCU, read-
er/writer locks, and mutexes), we compute the state that is
accessed in each critical section and synchronize it across
the isolation boundary. To enforce atomicity across isolated
domains, we rely on a mechanism similar to combolocks [33].

The high-level steps for the analysis are as follows: 1) iden-
tify shared critical sections where cross-subsystem synchro-
nization is required; and 2) identify read/write accesses to
shared data in critical sections.
Identifying critical sections To identify critical sections, we
perform a search in the CFG of the program, looking for a set
of function invocations that implement critical section syn-
chronization primitives, e.g., spin_lock(), mutex_lock(), etc.
For each call to a function marking the beginning of a critical
section, we follow the CFG to identify a matching invocation
that marks its end, i.e., spin_unlock() for spin_lock(). Next,
we use alias analysis to check whether the beginning (lock)
and end (unlock) use the same lock. Finally, we output only
critical sections defined by lock/unlock call pairs found by
the CFG that are associated with the same lock.
Shared data accesses in critical sections Given a critical
section, we identify all shared state that is modified within the
critical section. Our goal is to: 1) classify critical sections and
atomic operations as either private or shared, i.e., whether the
data accessed is private or shared, and then 2) if the critical
section operates on shared data, compute the state required
for correct synchronization. Specifically, we identify read and
write accesses to shared data from inside the critical section
(similar to Algorithm 1). For read accesses, we ensure that the
state is synchronized right after entering the critical section—
this ensures that the code inside operates on a consistent,
fresh copy of the state. For write accesses, we synchronize
all updates by sending it to the other side of the isolation
boundary right before exiting the critical section.
Handling optimized primitives KSplit has support for a va-
riety of concurrency primitives that are optimized to reduce

620 16th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

the use of locking. In most cases, such as sequential locks,
the main issue is to determine the corresponding reader and
writer critical sections accurately without explicitly locking.
For example, we describe how KSplit handles RCU primi-
tives. An RCU lock is often used in manipulating linked list
data structures inside the kernel to enable multiple readers
and a single writer to access the same data structure concur-
rently, which reduces the time-consuming lock acquire and re-
lease operations. In KSplit, we consider the non-preemptable
reader implementation of RCU locks. In this implementa-
tion, the start and end of a reader section is defined by calls
to rcu_read_lock() and rcu_read_unlock() functions, respec-
tively. The reader critical section disables preemption. For an
RCU writer, KSplit searches for the call sites of functions that
may update the data reachable through a pointer used in one
of the RCU update primitives, such as rcu_assign_pointer()

and rcu_replace_pointer(). After identifying those reader and
writer sections, the same synchronization algorithm as before
is used. While this design negates the benefits of RCU locks,
they are rarely used across the isolation boundary. Designing
a more optimal cross-domain primitive is future work.

5 Low-Level Kernel Programming Idioms
Interface definition language KSplit IDL builds on the
ideas from existing driver isolation projects [33, 62, 66].
Specifically, we borrow the idea of “projections”, which de-
scribe the state synchronized across domains, from LXDs [66]
and extend them with rich IDL annotations that provide sup-
port for marshaling of low-level C idioms [33]. For every
function crossing the boundary of an isolated domain, an IDL
remote procedure call declaration is generated.

1 rpc netdev_tx_t ixgbe_xmit_frame(
2 projection sk_buff [alloc(callee)] *skb,
3 projection net_device *netdev)

For each argument of a composite type, e.g., struct, union,
the IDL includes a projection that lists the shared-state fields
that are read or written by the callee function, as determined
by the parameter-access analysis (see the example projection
for struct sk_buff in Section 7.1.1). For ambiguous cases,
additional annnotations are included to specify type of the
object and in-memory representation (e.g., whether a pointer
refers to a singleton or an array, and also type-specific for-
matting, such as null-termination) and size. KSplit aims to
produce these annotations automatically, or generate warnings
for programmers to address.
Pointer classification The main challenge for the static anal-
ysis is to infer IDL specifications from the low-level type
information available in C. For each field type in a projection
whose marshaling requirements are ambiguous, we leverage
our PDG representation to compute: 1) aliases and def-use
chains for references to the ambiguous argument, in order
to determine what kinds of operations may be performed on
it (e.g., to distinguish singletons and arrays), and 2) all the
call sites in which the ambiguous argument is used to infer

semantics from uses (e.g., to infer strings from the argument’s
use in string manipulation functions).

KSplit uses this information to iteratively refine knowledge
about the marshaling requirements of arguments, resolving
the ambiguities in some cases, and producing specific warn-
ings in others. For example, suppose that an argument has the
type char *, but we do not know whether this type refers to
a singleton, an array, a null-terminated array (i.e., a sentinel
array), or another data type altogether (e.g., due to a type cast).
KSplit resolves such ambiguities by first leveraging the def-
use information of the argument’s aliases and then refining the
knowledge by applying further analyses. For classification, we
employ the CCured method [69], as implemented for LLVM
in the NesCheck system [64]. CCured classifies pointers by
whether they are involved in type casts (wild), are referenced
using pointer arithmetic (sequential), or neither (safe). Point-
ers classified as safe by CCured/NesCheck are singletons, as
these pointers reference only one location. Sequential point-
ers may be either arrays or structures, although these can be
distinguished based on the way they are accessed. Finally,
wild pointers involve type cast operations, which make their
types ambiguous; although, we can still infer type information
in several cases for common patterns.

Once we have performed the classification, we then per-
form specialized analyses based on the pointer class for fur-
ther disambiguation:

Sized and null-terminated arrays KSplit can identify ar-
rays whose size is determined at allocation time. It statically
detects strings from uses of pointer aliases in any string ma-
nipulation functions.

Tagged and anonymous unions Deriving projections for
union types is challenging: types and named of the union’s
fields are lost at the level of LLVM IR, as the compiler treats
unions as raw bytes, and simply accesses the fields as offsets.
We develop an analysis algorithm that reconstructs field name
information by matching the offsets accessed by the IR in-
structions with the offsets of each field. To marshal the union,
the IDL compiler relies on a user-supplied discriminator func-
tion to determine the union’s active field at runtime.

Recursive data structures KSplit supports marshaling of
generic recursive data structures, e.g., linked lists, trees, and
graphs. For example, to support a linked list, the static analysis
generates a projection that includes a pointer to a projection of
the same type as one of the fields. The marshaling code gen-
erated by the IDL compiler traverses all the pointers creating
a map of visited objects until a fixed point is reached.

Opaque pointers and error pointers If an argument is
found to be wild, KSplit can resolve the type in some cases,
e.g., void pointers cast to a single type [33]. KSplit handles
some other common cases, such as the pattern where kernel
APIs may return a reference to either an object or an error.

Other idioms KSplit is able to detect other special cases,
such as buffers allocated in user space, co-located data struc-

USENIX Association 16th USENIX Symposium on Operating Systems Design and Implementation 621

tures, and “container-of”/“member-of” data structures, to en-
able special handling (e.g., marshaling of user memory) and
targeted warnings (e.g., for marshaling objects collocated
within a memory region or a data structure).

6 Implementation
The KSplit system consists of a set of LLVM passes to per-
form the static analyses, an IDL compiler to generate synchro-
nization code, and a runtime component to track the allocation
and deallocation of objects. The LLVM static analysis passes
consist of 8,373 SLOC in C++ for PDG construction [59],
shared data analysis (Section 4.2), parameter access analy-
sis (Section 4.3), and atomic region analysis (Section 4.4).
PDG construction additionally uses the SVF framework [79]
for performing the intra-procedural alias analysis. We also
use NesCheck [64] for pointer classification required to re-
solve ambiguities in kernel idioms. To preserve the source
semantics, we use optimization level 0 to generate the LLVM
bitcode.

We implement KSplit for the LVDs framework, which sup-
ports isolation of privileged kernel code through a combi-
nation of hardware-assisted virtualization and EPT switch-
ing [68]. Specifically, we rely on the LVDs execution envi-
ronment to run isolated drivers. We, however, implement a
new IDL compiler to support synchronization between sub-
systems; LVDs supported synchronization of only basic types
and data structures, but lacked support for arrays, unions, and
recursive data structures. The compiler is implemented from
scratch in 4,100 lines of C++.

Object lifetimes The main challenge for the runtime is to
ensure that object allocation and deallocation on one side of
the isolation boundary is reflected on the other side. Tight
integration of the kernel and drivers has historically created
irregular allocation and deallocation patterns. KSplit relies
on a hybrid static and dynamic approach in which the exe-
cution runtime tracks new objects and allocates them each
time a new object is passed across the isolation boundary. We,
however, rely on static analysis to identify deallocation sites
and instrument them to propagate deallocations across the
isolation boundary.

7 Evaluation
To evaluate KSplit, we utilize CloudLab [73] c220g2 servers
configured with two Intel E5-2660 v3 10-core Haswell CPUs
running at 2.60 GHz, 160 GB RAM, and a dual-port Intel
X520 10Gb NIC. We use an Intel i7-4790K desktop for eval-
uation of the alx network, xhci USB host-controller, and Intel
ME drivers. Both machines run 64-bit Ubuntu 18.04 Linux,
with kernel version 4.8.4.

7.1 Generality of Static Analysis
The main question is whether KSplit can be used as a general
tool for the isolation of device drivers in the Linux kernel.
To answer this question, we use the KSplit analysis to pro-

duce IDL for 354 drivers from multiple Linux subsystems
(Table 2), and then evaluate the effectiveness of the analysis
and IDL generation algorithms by isolating and validating
the correctness of 10 drivers (Table 1). We chose a range
of device and protocol drivers that represent typical kernel
programming and communication idioms: 1) msr: a high-level
interface to the model specific registers (MSRs) on the Intel
CPUs, which exercises several patterns typical for nearly ev-
ery Linux device driver—dynamic registration of interfaces
and callbacks, synchronization of null-terminated and stati-
cally sized arrays; 2) nullnet: a software-only network driver
that emulates an infinitely fast network adapter, which relies
on complex allocation of objects on both sides of the isolation
boundary, and implements a fast data plane, requiring careful
handling of data structures to achieve optimal performance;
3) coretemp: temperature monitoring for CPU cores, which
utilizes void pointers and two-dimensional arrays; 4) sb_edac:
error detection and correction (EDAC) for the Intel Skylake
server integrated memory controllers, which requires marshal-
ing of a graph of objects that describe the hierarchy of DRAM
banks and memory controllers across the isolation bound-
ary; 5) null_blk: a software-only emulation of the NVMe
interface; the driver is similar to nullnet, i.e., it allows us to
stress-test the overheads of isolation on a fast NVMe inter-
face; 6) ixgbe: an Intel 82599 10Gbps Ethernet driver, which
exhibits several critical characteristics that are interesting for
decomposition: first, it relies on atomic operations to update
packet statistics in the kernel; second, it exhibits a broad
range of asynchronous accesses from system calls, interrupt
contexts, software IRQs, and New API (NAPI) threads that
implement submission of packets and polling; third, it relies
on system timers for several control-plane operations that al-
low us to test static analysis for support of callback functions
dynamically registered with the kernel; 7) alx: a Linux Qual-
comm Atheros ethernet driver; we select alx to compare the
complexity and manual effort of decomposing device drivers
within the same device class (i.e., we compare three ethernet
drivers: ixgbe, alx, and nullnet); 8) can_raw: a raw CAN pro-
tocol driver using the sockets API, which represents a class
of protocol drivers that exhibit typical protocol-layer patterns
by interacting with the kernel network stack; 9) dm_zero a
software block driver that returns 0 on reads and drops writes;
dm_zero tests if KSplit can fully automate isolation of simple
device drivers; 10) xhci-hcd: an xHCI protocol driver for sup-
porting USB 3.0, which handles complex interactions of the
USB communication protocol.

A wide variety of drivers allows us to examine the general-
ity of the KSplit analyses for producing IDL specifications,
and assess the manual effort required for isolation. While we
did not run all 354 drivers, we compare metrics related to the
effort of isolating an average driver to those we validated. To
validate the 10 drivers, we first perform manual tasks required
to complete the IDL by resolving all warnings generated by
KSplit, and then test the isolated driver trying to evaluate cor-

622 16th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

co
re

te
m

p

nu
lln

et

ix
gb

e

al
x

ca
n-

ra
w

sb
_e

da
c

nu
ll_

bl
k

dm
_z

er
o

m
sr

xh
ci

-h
cd

SLOC 562 194 27K 3K 615 2K 690 54 218 10K
Drv.→kern. 21 14 134 61 36 15 36 3 16 45
Kern.→drv. 2 11 81 26 17 1 9 2 5 27
Functions 643 1K 5K 3K 1K 912 1K 133 459 1K

(a) Complexity of driver analysis
Deep copy 31K 46K 999K 214K 153K 24K 75K 11K 24K 134K
Access analysis [33] 127 231 4K 1K 696 91 562 29 66 375
Shared analysis 87 156 3K 831 368 70 406 21 55 265
Boundary analysis 87 155 2K 806 333 70 379 21 51 194

(b) Total number of fields marshaled across all interface functions by each algorithm
Pointers 12K/76 19K/96 404K/1,529 84K/356 60K/178 9K/58 29K/220 4K/16 9K/44 51K/189
Unions 0/0 5/3 114/33 29/17 22/30 0/0 1/12 0/0 0/0 0/7
Critical sections 5/0 5/1 70/3 25/2 19/2 2/0 31/0 0/0 8/0 10/0
RCU 0/0 1/0 8/0 6/0 9/0 0/0 6/0 0/0 0/0 0/0
Seqlock 0/0 0/0 3/0 0/0 0/0 0/0 0/0 0/0 0/0 0/0
Atomic operations 0/0 25/1 173/35 59/22 49/1 5/0 37/2 3/0 3/0 50/4
Container of 225/4 557/2 2K/20 1K/12 749/8 419/0 627/5 73/3 68/2 1K/6

(c) Impact of shared state optimizations (private/shared)
Singleton 70/0 84/0 1,261/0 307/0 147/0 39/0 183/0 15/0 41/0 172/0
Array 0/1 3/2 92/27 32/2 21/5 5/6 10/5 0/0 0/1 1/0
String 1/0 1/0 2/0 0/0 0/0 2/0 2/0 0/0 1/0 0/0
Wild pointer (void) 2/1 4/0 142/1 12/0 5/0 3/0 17/0 1/0 1/0 16/0
Wild pointer (other) 1/0 0/2 1/3 0/3 0/0 0/3 0/3 0/0 0/0 0/0

(d) Inference type semantics on shared pointers (handled/manual)
Time 17 217 546 190 135 22 490 5 7 238

(e) Analysis execution time (seconds)
Statements 70% 86% 50% 72% 79% 63% 79% 85% 77% 55%
Branches 57% 81% 48% 76% 79% 65% 91% 100% 96% 53%

(f) Test coverage
IDL (LOC) 163 221 2K 674 470 236 306 47 109 1K
IDL changes (LOC) 1 5 53 25 30 5 11 0 2 7
Drv. changes (LOC) 10 6 19 11 12 0 0 0 0 0
False positives 1 25 129 43 30 6 34 2 5 12
Ptr. misclassifications 0 0 7 3 2 2 3 0 2 0
Warnings 1 8 65 22 35 5 20 0 3 7

(g) Manual effort

Table 1: Driver complexity and impact of shared state optimizations.

rectness of isolation what allows us to judge precision and
accuracy of the static analysis.

Complexity of driver interfaces To justify the need for au-
tomated analysis techniques, we collect several metrics that il-
lustrate the complexity of the 10 drivers isolated using KSplit
(Table 1a). The two most complex drivers are ixgbe (over 27K
SLOC) and xhci (over 10K SLOC). The ixgbe driver consists
of over 2,000 functions, registers 81 callback functions with
the kernel, and relies on 134 kernel functions for its oper-
ation. Isolation of the ixgbe driver involves analysis of the

5,782 functions that may access the state shared between the
kernel and the driver. A total of 999,136 fields and scalar ar-
guments are transitively reachable from the arguments of the
driver functions that define its isolation boundary (Table 1b).
While partial isolation of the ixgbe driver was demonstrated
before [66, 68], isolation of the complete driver is beyond the
reach of manual human analysis.

Impact of shared state optimizations KSplit distinguishes
the shared state from the private state, which is critical for
the scalability of the analysis algorithms (Section 4.3). We

USENIX Association 16th USENIX Symposium on Operating Systems Design and Implementation 623

ch
ar

/tt
y

(7
7)

bl
oc

k
(1

7)

ne
t(

89
)

ed
ac

(1
3)

hw
m

on
(6

7)

sp
i/i

2c
(3

8)

us
b

(5
3)

SLOC 1047 2535 13302 896 556 471 1340
Drv.→kern. 11 60 25 18 10 14 16
Kern.→drv. 10 16 47 4 5 3 13
Functions 546 2588 2691 839 462 772 784

(a) Complexity of driver interfaces

Pointers
15K
/64

53K
/310

73K
/353

16K
/107

10K
/61

12K
/71

18K
/92

Unions 0/2 3/12 7/6 0/2 <1/<1 0/2 <1/4
Crit. sec. 5/<1 51/<1 25/<1 5/<1 6/<1 9/<1 9/<1
Atomic op. <1/0 6/0 2/0 0/0 <1/0 <1/0 <1/<1
RCU <1/0 <1/0 <1/0 0/0 <1/0 0/0 <1/<1
Seqlock 9/<1 45/2 45/11 6/0 <1/<1 4/0 10/<1
Container of 145/4 833/3 1K/9 338/2 133/2 207/2 215/3

(b) Impact of shared state optimizations (private/shared)
Singleton 53/0 26/0 303/0 84/0 56/0 66/0 81/0
Array 5/2 27/15 44/20 22/6 2/<1 4/2 4/1
String <1/0 3/0 <1/0 2/0 <1/0 <1/0 <1/0
Wild (void) 5/<1 18/0 12/1 3/0 1/<1 2/<1 6/<1
Wild (other) 0/<1 0/2 0/3 0/3 0/<1 0/<1 0/2

(c) Inferred type semantics on shared pointers (handled/manual)

Table 2: Performance and complexity metrics across several subsys-
tems (average per driver).

Reference ixgbe skx_edac
nullnet alx sb_edac

Shared rpcs 11 73 13
Shared rpcs IDL∆ +0/-51 +12/-29 +1/-1
Shared rpcs Annotat.∆ 0 +3/-3 0
New IDL 77 36 0

Table 3: Similarity within a class

collect the total number of fields in all data structures that are
recursively reachable from all the arguments passed across
the isolation boundary—previous approaches relied on naive
“deep copy” [59] and field-access approaches [33] (Table 1b).
Out of 999K fields reachable through the isolation boundary
of the ixgbe driver, only 4,509 fields are accessed, and an even
smaller fraction of them, or 3,029, are shared (Table 1a). Fur-
thermore, by reasoning about nested crossings of the isolation
boundary, we reduce this number to 2,669. Most critically, the
shared-state optimization radically simplifies the isolation of
the driver, as in many cases, complex low-level idioms, e.g.,
tagged unions, stay on only one side of the isolation boundary
(Table 1c). For example, out of 73 critical sections in ixgbe,
only 3 are shared (ixgbe relies on the global rtnl_lock to reg-
ister the driver with the kernel); all RCU and seqlocks are
private, and do not trigger cross-boundary synchronization.

Pointer classification To understand how well KSplit sup-
ports the classification of pointer references, we characterize
the number of supported and problematic pointer patterns in
our drivers (Table 1d). In many cases, KSplit is able to in-

fer the types and sizes to enable automatic IDL generation.
Table 1d shows that for ixgbe, out of 1,529 pointers (“Point-
ers” in Table 1c) that require marshalling across the isolation
boundary, only 31 require manual inspection to generate cor-
rect marshaling attributes. There is a small number of mis-
classified pointers (“Ptr. misclassifications” in Table 1g). We
found that these misclassified pointers are sequential point-
ers that are wrongly classified as singleton pointers; CCured
fails to identify pointer-arithmetic operations on them. A de-
tailed study of these misclassified pointers revealed the main
reason for misclassification is due to not analyzing library
code. For example, the ixgbe driver calls the kernel func-
tion pci_request_selected_regions() with a reference to the
driver name string, but the kernel function itself does not per-
form pointer-arithmetic operations on the reference; instead it
passes the reference to a string library. This causes CCured to
misclassify the pointer as a singleton pointer. It is possible to
resolve some misclassification cases by either extending our
analysis to kernel libraries (note, some library functions like
printk() are challenging for static analysis), and by manually
annotating how pointers are used in such functions. For ex-
ample, if a pointer is passed to a string manipulation function,
e.g., strcmp(), we can classify the pointer as sequential.

Analysis execution time To understand the practicality of
KSplit and its fit for the kernel development toolchain, we
measure the execution time of the analysis (Table 1e). The ex-
ecution time is largely influenced by the number of functions
that are involved in the analysis (this number is determined
primarily by the size of the driver and by the size of the kernel
subsystem the driver interacts with). Complex device drivers
that interact with multiple subsystems (e.g., can_raw, null_blk,
xhci, and ixgbe), require 190-546 seconds to complete. Simple
device drivers finish in under a minute.

Precision of the analysis and manual effort To understand
the precision of the analysis and the manual effort involved
in the isolation of a driver, we compare an automatically-
generated IDL with the final, manually-checked and tested
IDL used for the isolation of the driver. As we do not have
the ground truth, to gain confidence in the correctness of
the isolated driver, we execute a collection of tests on each
driver. We use Gcov to collect the code-coverage metrics for
the tests we run (Table 1f). The code coverage is less than
50% in some cases, since we can only trigger the execution
of a subset of the driver code. For example, EDAC drivers
support multiple generations of Intel CPUs from Ivy Bridge
to Xeon Phi; ixgbe supports multiple hardware interfaces,
e.g., x540, 82599, 82598; xhci, being a protocol driver, has a
lot of error handling code, e.g., in a representative function
handle_tx_event() that handles all the USB transmit events,
out of 348 source lines, 198 lines (or 56%) are error handling
code that we cannot trigger without fault injection; sb_edac
driver consists of 1162 lines of code, out of which only 492
(42%) are executable on our Haswell hardware, out of which
our tests cover 373 lines of code (thus increasing our coverage

624 16th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

from 63% to 76%).
We collect several metrics that characterize the amount of

manual effort involved in resolving IDL warnings (Table 1g).
The IDL of a complex driver like ixgbe, generated by KSplit,
consists of 2,476 lines of code. Isolation of the driver required
changing 53 lines of automatically-generated IDL (or 2% of
the IDL). We only had to introduce 19 lines of changes to
the driver’s code, which mostly involve redefinition of certain
macros as helper functions (e.g., setup_timer, INIT_WORK, etc.).
KSplit misclassified 7 out of 1,529 pointers shared across
the isolation boundary. Two pointers were strings that were
passed across the isolation boundary, but were not accessed
through pointer arithmetic or string-manipulation functions.
One pointer was referring to a DMA memory region that
was only accessed by the device but was not involved in any
pointer arithmetic in the driver. Four pointers were misclassi-
fied due to being passed as arguments to the memcpy() function.
For smaller drivers, isolation required less than 30 lines of
IDL changes. Furthermore, most small drivers required no
changes to the driver code.

The “False positives” row lists the number of fields falsely
classified by KSplit as shared. We identify them as not shared
through manual inspection and driver profiling. The ground
truth may be incomplete, so this number represents an upper
bound on the number of false positives. The fraction of false
positives is generally low (<10%). The dominant reason for
false positives are aliases in the shared-data analyses (shared
data uses a type-based approach that leads to the overapproxi-
mation of fields and in/out attributes).

Finally, the “Warnings” row shows the number of warnings
KSplit’s static analyses generate for each driver. These warn-
ings must be resolved by developers to obtain a working IDL.

Similarity within a class A key insight for scaling the iso-
lation to a large fraction of all kernel drivers is grounded on
the assumption that drivers within the same class have a sig-
nificant degree of similarity across their interfaces. Isolation
of one driver within the class, therefore, could guide the iso-
lation of other drivers in a relatively straightforward manner,
hence amortizing manual effort across the class. To under-
stand the effort involved in isolating multiple drivers in the
same class, we choose a base driver within a class and com-
pare it with other drivers in its class (Table 3). We compare
two network drivers, alx and nullnet, to the base ixgbe driver.
The alx driver shares 73 function definitions with ixgbe (the
total number of functions crossing the isolation boundary in
both directions is in Table 1a). After ixgbe was decomposed,
decomposition of alx required changes to 6 annotations and a
total 41 lines of changes in the shared part of the IDL.

Generality of IDL generation To judge if KSplit can be
used as an isolation tool for the entire population of drivers,
we apply it to 354 drivers across nine subsystems in the Linux
kernel (Table 2). To make a prediction about the manual
effort involved in isolation of the average driver, we collect

Null Integer Array String Void Union

Bytes 0 8 32 * 8 256 4096 24 + 32
Cycles 502 532 690 1310 919 710

Table 4: Overhead of marshaling various data structures

the same metrics as the ones collected for the validated drivers
(Table 1), although all the counts in Table 2 are averages per-
driver. In general, we see a huge impact due to the shared-state
optimizations (Table 2b) and a low number of problematic
pointer instances (i.e., cases that are not “singletons”) that
could result in warnings (Table 2c). We therefore believe that
the effort of isolating an average driver in these subsystems is
comparable to the drivers we validated.

IDL warnings KSplit produces IDL warnings for the follow-
ing patterns in Table 2c: 1) arrays and “strings” of undeter-
mined size; 2) wild pointers whose type cannot be inferred
deterministically from “wild (void)”; 3) anonymous unions
in “wild (other)”; and 4) potential cases of collocated data
structures in “wild (other)”. In general, the number of IDL
warnings for each driver is dependent not only on the size of
the driver, i.e., lines of code, and complexity of the driver in-
terface, i.e., lines of IDL code, but also on the types of kernel
idioms used for communication across the isolation boundary.
For example, isolation of the alx driver involves an IDL file
that consists of 674 lines of code and requires analysis of 22
warnings. The alx driver contains 17 anonymous unions, 2
undetermined size arrays and 3 non-void wild pointers. At the
same time, isolation of the can-raw driver that uses a smaller
IDL (470 lines of IDL code) yields 35 warnings. The high
number of warnings for can-raw is attributed to the 30 in-
stances of anonymous unions and 5 indeterminate-size arrays
in its interface.

7.1.1 Case Study: Ixgbe Network Driver

To illustate the process of decomposition, we consider an ex-
ample, the ixgbe driver, that combines a representative set of
complex kernel data structures, low-level idioms, and synchro-
nization patterns. As discussed above, separation of shared
and private state is critical for reducing the complexity of the
IDL required for the isolation of ixgbe. KSplit automatically
resolves all function pointers that ixgbe registers with the ker-
nel as its interface, identifies five user and ioremap memory
regions used by the interfaces of the driver. Out of 143 wild
void pointers that ixgbe exchanges across the isolation bound-
ary only one required manual intervention (“Wild pointer
(void)” in Table 1d). We then had to inspect 3 wild pointers
that are type casted between non-void types (“Wild pointer
(other)” in Table 1d). The driver requires manual inspection of
27 array pointers (out of 119 exchanged across the boundary).
The driver uses one function that returns a pointer-as-error,
which is successfully identified by KSplit.

One of the most challenging parts of the ixgbe interface is
the proper handling of the sk_buff data structure, representing
a network packet (Figure 1). Several integer fields are used

USENIX Association 16th USENIX Symposium on Operating Systems Design and Implementation 625

1 projection<struct sk_buff> skb_xmit {
2 projection net_device *dev;
3 unsigned int len;
4 unsigned int data_len;
5 ...
6 void * [alloc_sized<callee>(self->true_size)] head;
7 void * [within<self->head, self->true_size>] data;
8 unsigned int [within<_, self->true_size>] tail;
9 unsigned int [within<_, self->true_size>] end;

10 };

Listing 1: Projection of an sk_buff data structure

as offsets into the data: 1) tail marks the end of the packet’s
data, and 2) end represents the start of the struct skb_shinfo

that is collocated inside the data memory. The low-level PDG
representation of the program allows us to derive that the
skb_shinfo data structure is allocated within the data object.
As the tail and end fields participate in pointer-arithmetic
operations, KSplit generates a special within IDL attribute
that instructs the marshaling code to check that the field is
within a specific range, but the range has to be specified manu-
ally (Listing 1). KSplit’s support for recursive data structures
allows us to marshal sk_buff buffers that consist of multiple
fragments (sk_buff contains an optional list of fragments).

7.2 Performance
In general, the performance of the isolated driver is largely
determined by the performance of the underlying isolation
framework, i.e., LVDs, in our current implementation [68].
We, however, quantify the impact of the KSplit marshaling
protocol, and conduct an end-to-end performance measure-
ment of an application using the isolated ixgbe driver.
Marshaling overheads We perform microbenchmarks to
evaluate the overheads of marshaling various data structures
that are commonly used in the Linux kernel (Table 4). For
each data structure, the test involves marshaling the data struc-
ture, passing it across the isolation boundary, and unmarshal-
ing it. We perform ten million iterations and report an average.
On the LVDs system, a null call-reply invocation takes 502
cycles, which includes the overhead of executing the vmfunc

instruction, saving and restoring general registers, and select-
ing a stack inside the driver domain. KSplit adds 30 cycles for
marshaling simple scalar fields, such as integers. For marshal-
ing tagged unions, we rely on a user-supplied discriminator
function that identifies the tag and marshals the union accord-
ing to the active field’s type. In our experiment, we marshal a
union that represents a string of 32 characters, which incurs
an overhead of 208 cycles.
Memcached To understand end-to-end overheads of isola-
tion on real application workloads, we utilize an experiment
that runs memcached, a high-performance, in-memory object-
caching system [4] and compare a native, non-isolated kernel
with the performance of a system that utilizes an isolated ver-
sion of the ixgbe network driver. We run memcached version
1.5.12 with a single service thread and a cache size of 5GB.
We use the memaslap [2] load-generator to send random UDP

200

400

600

800

1000

1200

1 2 4 10

2

4

6

8

10

12

T
ra

n
s
a

c
ti
o

n
s
 p

e
r

 s
e

c
o

n
d

B
a

n
d

w
id

th
 (

G
b

p
s
)

Number of server processes

TPS (Native)
TPS (Isolated)

Bw (Native)
Bw (Isolated)

Figure 5: Memcached performance

requests of 64B keys and 1024B values to the server (90%
get and 10% set) with a concurrency of 128. To ensure a fair
comparison, we limit the number of available cores to 10, as
we are limited by the performance of a 10Gbps adapter (all 20
cores would allow isolated drivers to bridge the performance
gap, but at a cost of higher CPU utilization). We report both
the number of key-value transactions per second and total net-
work bandwidth (Figure 5). For experiments with 1-4 threads,
KSplit stays within 5.4-18.7% of the non-isolated system’s
performance. With 10 threads, both isolated and native drivers
saturate the network interface and hence demonstrate nearly
identical performance (albeit at higher CPU utilization, due
to domain crossings).

8 Conclusions
After decades of research, commodity CPUs are converging
on a set of practical hardware mechanisms capable of pro-
viding support for low-overhead isolation. With performance
no longer being the main roadblock, complexity becomes the
main challenge for enabling isolation in commodity systems.
Our work on KSplit takes a step forward by enabling iso-
lation of unmodified device drivers in the Linux kernel. A
combination of practical static analysis techniques allows us
to address the daunting complexity of the driver interfaces—
KSplit supports isolation of complex, fully-featured device
drivers with only minimal changes or human involvement.
While our current implementation works with Linux and a
specific isolation framework, we argue that our analysis and
state-synchronization techniques are general and can serve as
a foundation for a range of isolation solutions enabled by the
emerging hardware mechanisms.

Acknowledgments
We thank the ASPLOS’21, OSDI’21, SOSP’21 and OSDI’22
reviewers and our shepherd, Rüdiger Kapitza, for in-depth
feedback on earlier versions of the paper. We would like
to thank the Utah CloudLab team for continual support in
accommodating our hardware requests. Finally, we would
like to thank the artifact evaluation committee for numer-
ous comments that greatly improved the artifact. This re-
search is supported in part by the National Science Foun-
dation under Grant Numbers CNS-1527526, OAC-1840197,
CNS-1801534, CNS-1816282, and DARPA HR0011-19-C-
0106. Vikram Narayanan is partly supported by an IBM PhD
fellowship.

626 16th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

References
[1] Armv8.5-A Memory Tagging Extension.

https://developer.arm.com/-/media/Arm%

20Developer%20Community/PDF/Arm_Memory_

Tagging_Extension_Whitepaper.pdf.

[2] libmemcached. https://libmemcached.org/

libMemcached.html.

[3] LKDDb: Linux Kernel Driver DataBase. https://

cateee.net/lkddb/. Accessed on 04.23.2019.

[4] Memcached. https://memcached.org/.

[5] PKS: Add protection keys supervisor (PKS) support.
https://lwn.net/Articles/826091/.

[6] Intel 64 and IA-32 Architectures Software Developer’s
Manual, 2020. https://software.intel.com/

content/www/us/en/develop/download/intel-64-

and-ia-32-architectures-sdm-combined-volumes-

1-2a-2b-2c-2d-3a-3b-3c-3d-and-4.html.

[7] Sidney Amani, Alex Hixon, Zilin Chen, Christine
Rizkallah, Peter Chubb, Liam O’Connor, Joel Beeren,
Yutaka Nagashima, Japheth Lim, Thomas Sewell,
Joseph Tuong, Gabriele Keller, Toby Murray, Gerwin
Klein, and Gernot Heiser. Cogent: Verifying high-
assurance file system implementations. In Proceedings
of the 21st International Conference on Architectural
Support for Programming Languages and Operating
Systems (ASPLOS ’16), page 175–188, 2016.

[8] Jonathan Appavoo, Marc Auslander, Dilma DaSilva,
David Edelsohn, Orran Krieger, Michal Ostrowski,
Bryan Rosenburg, R Wisniewski, and Jimi Xenidis. Uti-
lizing linux kernel components in K42. Technical report,
IBM Watson Research, 2002.

[9] Godmar Back and Wilson C Hsieh. The KaffeOS
Java Runtime System. ACM Transactions on Program-
ming Languages and Systems (TOPLAS), 27(4):583–
630, 2005.

[10] Andrew Baumann, Paul Barham, Pierre-Evariste Da-
gand, Tim Harris, Rebecca Isaacs, Simon Peter, Tim-
othy Roscoe, Adrian Schüpbach, and Akhilesh Sing-
hania. The Multikernel: A new OS architecture for
scalable multicore systems. In Proceedings of the ACM
SIGOPS 22nd Symposium on Operating Systems Princi-
ples (SOSP ’09), pages 29–44, 2009.

[11] B. N. Bershad, S. Savage, P. Pardyak, E. G. Sirer, M. E.
Fiuczynski, D. Becker, C. Chambers, and S. Eggers. Ex-
tensibility Safety and Performance in the SPIN Operat-
ing System. In Proceedings of the 15th ACM Sympo-
sium on Operating Systems Principles (SOSP ’95), page
267–283, 1995.

[12] D. W. Boettner and M. T. Alexander. The Michigan
Terminal System. Proceedings of the IEEE, 63(6):912–
918, June 1975.

[13] Bomberger, A.C. and Frantz, A.P. and Frantz, W.S.
and Hardy, A.C. and Hardy, N. and Landau, C.R. and
Shapiro, J.S. The KeyKOS nanokernel architecture. In
Proceedings of the USENIX Workshop on Micro-Kernels
and Other Kernel Architectures, pages 95–112, 1992.

[14] Silas Boyd-Wickizer and Nickolai Zeldovich. Tolerating
malicious device drivers in Linux. In 2010 USENIX
Annual Technical Conference (USENIX ATC ’10), 2010.

[15] Bromium. Bromium micro-virtualization,
2010. http://www.bromium.com/misc/

BromiumMicrovirtualization.pdf.

[16] David Brumley and Dawn Song. Privtrans: Automati-
cally Partitioning Programs for Privilege Separation. In
13th Usenix Security Symposium, pages 57–72, 2004.

[17] Edouard Bugnion, Scott Devine, Kinshuk Govil, and
Mendel Rosenblum. Disco: Running commodity oper-
ating systems on scalable multiprocessors. ACM Trans-
actions on Computer Systems (TOCS), 15(4):412–447,
1997.

[18] Miguel Castro, Manuel Costa, Jean-Philippe Martin,
Marcus Peinado, Periklis Akritidis, Austin Donnelly,
Paul Barham, and Richard Black. Fast byte-granularity
software fault isolation. In Proceedings of the ACM
SIGOPS 22nd Symposium on Operating Systems Princi-
ples (SOSP ’09), pages 45–58, 2009.

[19] Haogang Chen, Yandong Mao, Xi Wang, Dong Zhou,
Nickolai Zeldovich, and M. Frans Kaashoek. Linux
kernel vulnerabilities: state-of-the-art defenses and open
problems. In Proceedings of the 2nd Asia-Pacific Work-
shop on Systems, pages 1–5, 2011.

[20] Haogang Chen, Daniel Ziegler, Tej Chajed, Adam Chli-
pala, M. Frans Kaashoek, and Nickolai Zeldovich. Using
Crash Hoare Logic for Certifying the FSCQ File System.
In Proceedings of the 25th Symposium on Operating Sys-
tems Principles (SOSP ’15), page 18–37, 2015.

[21] Stephen Chong, Jed Liu, Andrew Myers, Xin Qi,
K. Vikram, Lantian Zheng, and Xin Zheng. Secure Web
Applications via Automatic Partitioning. In Proceedings
of 21st ACM SIGOPS Symposium on Operating Systems
Principles (SOSP ’07), pages 31–44, 2007.

[22] DDEKit and DDE for linux. http://os.inf.tu-

dresden.de/ddekit/.

[23] Ankush Desai, Vivek Gupta, Ethan Jackson, Shaz
Qadeer, Sriram Rajamani, and Damien Zufferey. P:

USENIX Association 16th USENIX Symposium on Operating Systems Design and Implementation 627

https://developer.arm.com/-/media/Arm%20Developer%20Community/PDF/Arm_Memory_Tagging_Extension_Whitepaper.pdf
https://developer.arm.com/-/media/Arm%20Developer%20Community/PDF/Arm_Memory_Tagging_Extension_Whitepaper.pdf
https://developer.arm.com/-/media/Arm%20Developer%20Community/PDF/Arm_Memory_Tagging_Extension_Whitepaper.pdf
https://libmemcached.org/libMemcached.html
https://libmemcached.org/libMemcached.html
https://cateee.net/lkddb/
https://cateee.net/lkddb/
https://memcached.org/
https://lwn.net/Articles/826091/
 https://software.intel.com/content/www/us/en/develop/download/intel-64-and-ia-32-architectures-sdm-combined-volumes-1-2a-2b-2c-2d-3a-3b-3c-3d-and-4.html
 https://software.intel.com/content/www/us/en/develop/download/intel-64-and-ia-32-architectures-sdm-combined-volumes-1-2a-2b-2c-2d-3a-3b-3c-3d-and-4.html
 https://software.intel.com/content/www/us/en/develop/download/intel-64-and-ia-32-architectures-sdm-combined-volumes-1-2a-2b-2c-2d-3a-3b-3c-3d-and-4.html
 https://software.intel.com/content/www/us/en/develop/download/intel-64-and-ia-32-architectures-sdm-combined-volumes-1-2a-2b-2c-2d-3a-3b-3c-3d-and-4.html
http://www.bromium.com/misc/BromiumMicrovirtualization.pdf
http://www.bromium.com/misc/BromiumMicrovirtualization.pdf
http://os.inf.tu-dresden.de/ddekit/
http://os.inf.tu-dresden.de/ddekit/

Safe Asynchronous Event-driven Programming. In Pro-
ceedings of the 34th ACM SIGPLAN Conference on
Programming Language Design and Implementation
(PLDI ’13), pages 321–332, 2013.

[24] Kevin Elphinstone and Stefan Götz. Initial evaluation
of a user-level device driver framework. In Asia-Pacific
Conference on Advances in Computer Systems Architec-
ture, pages 256–269. Springer, 2004.

[25] Úlfar Erlingsson, Martín Abadi, Michael Vrable, Mihai
Budiu, and George C. Necula. XFI: Software Guards
for System Address Spaces. In Proceedings of the 7th
Symposium on Operating Systems Design and Imple-
mentation (OSDI ’06), pages 75–88, 2006.

[26] Jeanne Ferrante, Karl J. Ottenstein, and Joe D. War-
ren. The Program Dependence Graph and its Use in
Optimization. ACM Transactions on Programming Lan-
guages and Systems, 9(3):319–349, 1987.

[27] Feske, N. and Helmuth, C. Design of the Bastei OS
architecture. Technical Report TUD-FI06-07, 2006.

[28] Flux Research Group. CloudLab Web site. http://www.
cloudlab.us.

[29] Bryan Ford, Godmar Back, Greg Benson, Jay Lepreau,
Albert Lin, and Olin Shivers. The Flux OSKit: A Sub-
strate for Kernel and Language Research. In Proceed-
ings of the Sixteenth ACM Symposium on Operating
Systems Principles (SOSP ’97), pages 38–51, 1997.

[30] Alessandro Forin, David Golub, and Brian N Bershad.
An I/O system for Mach 3.0. Carnegie-Mellon Univer-
sity. Department of Computer Science, 1991.

[31] Keir Fraser, Steven Hand, Rolf Neugebauer, Ian Pratt,
Andrew Warfield, and Mark Williamson. Safe hardware
access with the Xen virtual machine monitor. In In
1st Workshop on Operating System and Architectural
Support for the on demand IT InfraStructure (OASIS),
2004.

[32] Archana Ganapathi, Viji Ganapathi, and David Patterson.
Windows XP Kernel Crash Analysis. In Proceedings
of the 20th Conference on Large Installation System
Administration (LISA ’06), 2006.

[33] Vinod Ganapathy, Matthew J Renzelmann, Arini Balakr-
ishnan, Michael M Swift, and Somesh Jha. The design
and implementation of microdrivers. In ACM SIGARCH
Computer Architecture News, volume 36, pages 168–
178, 2008.

[34] Tal Garfinkel, Ben Pfaff, Jim Chow, Mendel Rosenblum,
and Dan Boneh. Terra: a virtual machine-based platform
for trusted computing. In Proceedings of the 19th ACM

Symposium on Operating Systems Principles (SOSP
’03), pages 193–206, 2003.

[35] Alain Gefflaut, Trent Jaeger, Yoonho Park, Jochen
Liedtke, Kevin J Elphinstone, Volkmar Uhlig,
Jonathon E Tidswell, Luke Deller, and Lars Reuther.
The SawMill multiserver approach. In Proceedings of
the 9th workshop on ACM SIGOPS European workshop:
beyond the PC: new challenges for the operating system,
pages 109–114, 2000.

[36] Shantanu Goel and Dan Duchamp. Linux device driver
emulation in Mach. In Proceedings of the 1996 annual
conference on USENIX Annual Technical Conference,
pages 65–74, 1996.

[37] Michael Golm, Meik Felser, Christian Wawersich, and
Jürgen Kleinöder. The JX Operating System. In Pro-
ceedings of the General Track of the Annual Conference
on USENIX Annual Technical Conference (USENIX
ATC ’02), page 45–58, 2002.

[38] David B Golub, Guy G Sotomayor, and Freeman L Raw-
son III. An architecture for device drivers executing as
user-level tasks. In USENIX MACH III Symposium,
pages 153–172, 1993.

[39] Google. Fuchsia project. https://fuchsia.dev/

fuchsia-src/getting_started.md.

[40] Jinyu Gu, Xinyue Wu, Wentai Li, Nian Liu, Zeyu Mi,
Yubin Xia, and Haibo Chen. Harmonizing Performance
and Isolation in Microkernels with Efficient Intra-kernel
Isolation and Communication. In 2020 USENIX Annual
Technical Conference (USENIX ATC ’20), pages 401–
417, 2020.

[41] Khilan Gudka, Robert N. M. Watson, Jonathan An-
derson, David Chisnall, Brooks Davis, Ben Laurie, Il-
ias Marinos, Peter G. Neumann, and Alex Richardson.
Clean application compartmentalization with SOAAP.
In Proceedings of the 22nd ACM SIGSAC Conference
on Computer and Communications Security (CCS ’15),
pages 1016–1031, 2015.

[42] Hermann Härtig, Jork Löser, Frank Mehnert, Lars
Reuther, Martin Pohlack, and Alexander Warg. An I/O
architecture for microkernel-based operating systems.
Technical report, TU Dresden, Dresden, Germany, 2003.

[43] Mohammad Hedayati, Spyridoula Gravani, Ethan John-
son, John Criswell, Michael L. Scott, Kai Shen, and
Mike Marty. Hodor: Intra-Process Isolation for High-
Throughput Data Plane Libraries. In Proceedings of the
2019 USENIX Annual Technical Conference (USENIX
ATC ’19), pages 489–504, 2019.

628 16th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

http://www.cloudlab.us
http://www.cloudlab.us
https://fuchsia.dev/fuchsia-src/getting_started.md
https://fuchsia.dev/fuchsia-src/getting_started.md

[44] Heiser, G. and Elphinstone, K. and Kuz, I. and Klein,
G. and Petters, S.M. Towards trustworthy computing
systems: taking microkernels to the next level. ACM
SIGOPS Operating Systems Review, 41(4):3–11, 2007.

[45] Jorrit N Herder, Herbert Bos, Ben Gras, Philip Hom-
burg, and Andrew S Tanenbaum. Minix 3: A highly
reliable, self-repairing operating system. ACM SIGOPS
Operating Systems Review, 40(3):80–89, 2006.

[46] Hohmuth, M. and Peter, M. and Härtig, H. and Shapiro,
J.S. Reducing TCB size by using untrusted compo-
nents: small kernels versus virtual-machine monitors.
In Proceedings of the 11th workshop on ACM SIGOPS
European workshop, page 22. ACM, 2004.

[47] Zhichao Hua, Dong Du, Yubin Xia, Haibo Chen, and
Binyu Zang. Epti: Efficient defence against meltdown
attack for unpatched vms. In 2018 USENIX Annual
Technical Conference (USENIX ATC ’18), pages 255–
266, 2018.

[48] Galen C. Hunt and James R. Larus. Singularity: Re-
thinking the Software Stack. ACM SIGOPS Operating
Systems Review, 41(2):37–49, April 2007.

[49] INTEGRITY Real-Time Operating System. http://

www.ghs.com/products/rtos/integrity.html.

[50] Trent Jaeger. Operating System Security. Morgan &
Claypool, 2008.

[51] Asim Kadav, Matthew J. Renzelmann, and Michael M.
Swift. Fine-grained fault tolerance using device check-
points. In Proceedings of the Eighteenth International
Conference on Architectural Support for Programming
Languages and Operating Systems, ASPLOS ’13, page
473–484, 2013.

[52] Antti Kantee. Flexible Operating System Internals: The
Design and Implementation of the Anykernel and Rump
Kernels. Doctoral thesis, School of Science, 2012.

[53] Koen Koning, Xi Chen, Herbert Bos, Cristiano Giuffrida,
and Elias Athanasopoulos. No need to hide: Protecting
safe regions on commodity hardware, 2017.

[54] C. Lattner, A. Lanharth, and V. Adve. Making context-
sensitive points-to analysis with heap cloning practical
for the real world. In ACM Conference on Programming
Language Design and Implementation (PLDI), pages
278–289, 2007.

[55] Joshua LeVasseur, Volkmar Uhlig, Jan Stoess, and Ste-
fan Götz. Unmodified Device Driver Reuse and Im-
proved System Dependability via Virtual Machines. In
Proceedings of the 6th Conference on Symposium on
Operating Systems Design & Implementation - Volume
6 (OSDI ’04), pages 17–30, 2004.

[56] Amit Levy, Bradford Campbell, Branden Ghena,
Daniel B. Giffin, Pat Pannuto, Prabal Dutta, and Philip
Levis. Multiprogramming a 64kB Computer Safely and
Efficiently. In Proceedings of the 26th Symposium on
Operating Systems Principles (SOSP ’17), pages 234–
251, 2017.

[57] Jochen Liedtke, Ulrich Bartling, Uwe Beyer, Dietmar
Heinrichs, Rudolf Ruland, and Gyula Szalay. Two Years
of Experience with a µ-Kernel Based OS. ACM SIGOPS
Operating Systems Review, 25(2):51–62, April 1991.

[58] Joshua Lind, Christian Priebe, Divya Muthukumaran,
Dan O’Keeffe, Pierre-Louis Aublin, Florian Kelbert, To-
bias Reiher, David Goltzsche, David M. Eyers, Rüdi-
ger Kapitza, Christof Fetzer, and Peter R. Pietzuch.
Glamdring: Automatic Application Partitioning for Intel
SGX. In 2017 USENIX Annual Technical Conference
(USENIX ATC ’17), pages 285–298, 2017.

[59] Shen Liu, Gang Tan, and Trent Jaeger. PtrSplit: Support-
ing General Pointers in Automatic Program Partitioning.
In Proceedings of the 2017 ACM SIGSAC Conference
on Computer and Communications Security (CCS ’17),
pages 2359–2371, 2017.

[60] Shen Liu, Dongrui Zeng, Yongzhe Huang, Frank Capo-
bianco, Stephen McCamant, Trent Jaeger, and Gang Tan.
Program-mandering: Quantitative Privilege Separation.
In 26th ACM Conference on Computer and Communi-
cations Security (CCS ’19), pages 1023–1040, 2019.

[61] Yutao Liu, Tianyu Zhou, Kexin Chen, Haibo Chen, and
Yubin Xia. Thwarting Memory Disclosure with Efficient
Hypervisor-Enforced Intra-Domain Isolation. In Pro-
ceedings of the 22nd ACM SIGSAC Conference on Com-
puter and Communications Security (CCS ’15), pages
1607–1619, 2015.

[62] Yandong Mao, Haogang Chen, Dong Zhou, Xi Wang,
Nickolai Zeldovich, and M. Frans Kaashoek. Software
Fault Isolation with API Integrity and Multi-Principal
Modules. In Proceedings of the 23rd ACM Symposium
on Operating Systems Principles (SOSP ’11), pages 115–
128, 2011.

[63] Zeyu Mi, Dingji Li, Zihan Yang, Xinran Wang, and
Haibo Chen. SkyBridge: Fast and Secure Inter-Process
Communication for Microkernels. In Proceedings of
the 14th EuroSys Conference 2019 (EuroSys ’19), pages
1–15, 2019.

[64] Daniele Midi, Mathias Payer, and Elisa Bertino. Mem-
ory Safety for Embedded Devices with NesCheck. In
Proceedings of the 2017 ACM on Asia Conference on
Computer and Communications Security (ASIA CCS
’17), page 127–139, 2017.

USENIX Association 16th USENIX Symposium on Operating Systems Design and Implementation 629

http://www.ghs.com/products/rtos/integrity.html
http://www.ghs.com/products/rtos/integrity.html

[65] Brendan Murphy. Automating Software Failure Report-
ing: We Can Only Fix Those Bugs We Know About.
Queue, 2(8):42–48, November 2004.

[66] Vikram Narayanan, Abhiram Balasubramanian, Charlie
Jacobsen, Sarah Spall, Scott Bauer, Michael Quigley,
Aftab Hussain, Abdullah Younis, Junjie Shen, Moinak
Bhattacharyya, and Anton Burtsev. LXDs : Towards Iso-
lation of Kernel Subsystems. In 2019 USENIX Annual
Technical Conference (USENIX ATC ’19), 2019.

[67] Vikram Narayanan, Tianjiao Huang, David Detweiler,
Dan Appel, Zhaofeng Li, Gerd Zellweger, and Anton
Burtsev. Redleaf: Isolation and communication in a
safe operating system. In 14th USENIX Symposium on
Operating Systems Design and Implementation (OSDI
’20), pages 21–39, 2020.

[68] Vikram Narayanan, Yongzhe Huang, Gang Tan, Trent
Jaeger, and Anton Burtsev. Lightweight Kernel Isolation
with Virtualization and VM Functions. In Proceedings
of the 16th ACM SIGPLAN/SIGOPS International Con-
ference on Virtual Execution Environments (VEE ’20),
page 157–171, 2020.

[69] George Necula, Jeremy Condit, Matthew Harren, Scott
McPeak, and Westley Weimer. CCured: type-safe
retrofitting of legacy software. ACM Transactions on
Programming Languages and Systems, 27(3):477–526,
2005.

[70] Ruslan Nikolaev and Godmar Back. VirtuOS: An oper-
ating system with kernel virtualization. In Proceedings
of the 24th ACM Symposium on Operating Systems Prin-
ciples (SOSP ’13), pages 116–132, 2013.

[71] Octavian Purdila. Linux kernel library. https://lwn.

net/Articles/662953/.

[72] Matthew J Renzelmann and Michael M Swift. Decaf:
Moving Device Drivers to a Modern Language. In 2009
USENIX Annual Technical Conference (USENIX ATC
’09), 2009.

[73] Robert Ricci, Eric Eide, and The CloudLab Team. Intro-
ducing CloudLab: Scientific infrastructure for advancing
cloud architectures and applications. USENIX ;login:,
39(6), December 2014.

[74] Konstantin Rubinov, Lucia Rosculete, Tulika Mitra, and
Abhik Roychoudhury. Automated Partitioning of An-
droid Applications for Trusted Execution Environments.
In Proceedings of the 38th International Conference on
Software Engineering (ICSE ’16), pages 923–934, 2016.

[75] Rutkowska, J. and Wojtczuk, R. Qubes OS architecture.
Invisible Things Lab Tech Rep, 2010.

[76] Leonid Ryzhyk. On the Construction of Reliable Device
Drivers. PhD thesis, UNSW, January 2010.

[77] Leonid Ryzhyk, Peter Chubb, Ihor Kuz, and Gernot
Heiser. Dingo: Taming Device Drivers. In Proceed-
ings of the 4th ACM European Conference on Computer
Systems (EuroSys ’09), page 275–288, 2009.

[78] Jerome Saltzer and Michael Schroeder. The protection
of information in computer systems. Proceedings of The
IEEE, 63(9):1278–1308, September 1975.

[79] Yulei Sui and Jingling Xue. SVF: Interprocedural Static
Value-Flow Analysis in LLVM. In Proceedings of the
25th International Conference on Compiler Construc-
tion, pages 265–266, 2016.

[80] Michael M Swift, Steven Martin, Henry M Levy, and
Susan J Eggers. Nooks: An architecture for reliable
device drivers. In Proceedings of the 10th workshop
on ACM SIGOPS European workshop, pages 102–107,
2002.

[81] Hajime Tazaki. An introduction of library operating sys-
tem for linux (LibOS). https://lwn.net/Articles/

637658/.

[82] Anjo Vahldiek-Oberwagner, Eslam Elnikety, Nuno O.
Duarte, Michael Sammler, Peter Druschel, and Deepak
Garg. ERIM: Secure, Efficient In-process Isolation with
Protection Keys (MPK). In Proceedings of the 28th
USENIX Security Symposium (USENIX Security ’19),
pages 1221–1238, 2019.

[83] Kevin Thomas Van Maren. The Fluke device driver
framework. Master’s thesis, The University of Utah,
1999.

[84] Thorsten von Eicken, Chi-Chao Chang, Grzegorz Cza-
jkowski, Chris Hawblitzel, Deyu Hu, and Dan Spoon-
hower. J-Kernel: A Capability-Based Operating System
for Java. In Secure Internet Programming: Security Is-
sues for Mobile and Distributed Objects, pages 369–393.
1999.

[85] Robert Wahbe, Steven Lucco, Thomas E. Anderson, and
Susan L. Graham. Efficient Software-based Fault Iso-
lation. In Proceedings of the 14th ACM Symposium on
Operating Systems Principles (SOSP ’93), pages 203–
216, 1993.

[86] Dan Williams, Patrick Reynolds, Kevin Walsh,
Emin Gün Sirer, and Fred B. Schneider. Device Driver
Safety Through a Reference Validation Mechanism.
In Proceedings of the 8th USENIX Conference on
Operating Systems Design and Implementation (OSDI
’08), pages 241–254, 2008.

630 16th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

https://lwn.net/Articles/662953/
https://lwn.net/Articles/662953/
https://lwn.net/Articles/637658/
https://lwn.net/Articles/637658/

[87] Yang Liu Yongzheng Wu, Jun Sun and Jin Song Dong.
Automatically partition software into least privilege
components using dynamic data dependency analysis.
In International Conference on Automated Software En-
gineering (ASE), pages 323–333, 2013.

[88] Steve Zdancewic, Lantian Zheng, Nathaniel Nystrom,
and Andrew Myers. Secure program partitioning.
ACM Transactions on Compututer Systems (TOCS),
20(3):283–328, 2002.

[89] Lantian Zheng, Stephen Chong, Andrew Myers, and
Steve Zdancewic. Using replication and partitioning to
build secure distributed systems. In IEEE Symposium
on Security and Privacy (S&P), pages 236–250, 2003.

A Artifact Appendix
Abstract
We release the source code of all software used in this paper
along with detailed build instructions and automated scripts
used for running the benchmarks as a collection of publicly-
hosted Git repositories.

Scope
The artifact allows one to run static analysis on the set of
drivers we isolated for this paper and collect metrics that are
reported in Table 1, Table 2, and Table 4.

Contents
The artifact consists of the source code for the following
subsystems: 1) KSplit analysis framework used to generate
interface definition language (IDL) files https://github.

com/ksplit/pdg; 2) LLVM bitcode files for the drivers ana-
lyzed in the paper https://github.com/ksplit/bc-files
(we provide detailed instructions for how to re-generate
the bitcode files, however, to simplify the process of re-

creating results reported in the paper, we provide a collection
of pre-generated files); 3) KSplit IDL compiler that gener-
ates the glue code required to execute the driver in isola-
tion from the IDL files https://github.com/ksplit/idlc;
4) a modified Linux kernel that executes isolated drivers
in Lightweight Virtualized Domains (LVDs) [68] https:

//github.com/ksplit/lvd-linux; and 5) a modified Bare-
flank hypervisor that provides secure and efficient isolation
boundary based on VMFUNC EPT switching interface used
by LVDs https://github.com/ksplit/bflank.

Hosting
The artifact is hosted on GitHub. The README.md file
under https://github.com/ksplit/ksplit-artifacts de-
tails the steps required to build and run the benchmarks.

We conduct all experiments in the openly-available Cloud-
Lab cloud infrastructure testbed [28] and make our experi-
mentation environment available via an open CloudLab [73]
profile that automatically instantiates the software setup re-
quired to run KSplit: https://github.com/ksplit/ksplit-
cloudlab/.

Requirements
The KSplit build infrastructure was tested on an x86-64
Ubuntu 18.04 LTS system. The static analysis framework is
built and tested against LLVM v10.0.1. We rely on LVDs [68]
to execute isolated drivers. LVDs run on any modern Intel
x86-64 hardware (Haswell or later) that supports virtualiza-
tion (Intel VT-x) and EPTP switching via VMFUNC. LVDs
rely on a customized Bareflank hypervisor and a modified
Linux kernel based on v4.8.4. We have tested KSplit on the
following hardware (available in CloudLab): a Cisco UCS
C220 machine configured with an Intel Xeon E5-2660 CPU,
and a Dell PowerEdge C6420 machine configured with an
Intel Xeon Gold 6142 CPU.

USENIX Association 16th USENIX Symposium on Operating Systems Design and Implementation 631

https://github.com/ksplit/pdg
https://github.com/ksplit/pdg
https://github.com/ksplit/bc-files
https://github.com/ksplit/idlc
https://github.com/ksplit/lvd-linux
https://github.com/ksplit/lvd-linux
https://github.com/ksplit/bflank
https://github.com/ksplit/ksplit-artifacts
https://github.com/ksplit/ksplit-cloudlab/
https://github.com/ksplit/ksplit-cloudlab/

	Introduction
	Background: Device Driver Isolation
	KSplit Overview
	Threat Model and Security Goal

	KSplit Static Analysis
	Program Dependence Graph
	Computing Shared and Private Data
	Cross-Domain Synchronization
	Critical Sections and Atomic Primitives

	Low-Level Kernel Programming Idioms
	Implementation
	Evaluation
	Generality of Static Analysis
	Case Study: Ixgbe Network Driver

	Performance

	Conclusions
	Acknowledgments
	Artifact Appendix

