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Abstract—The presence of large numbers of security vulner-
abilities in popular feature-rich commodity operating systems
has inspired a long line of work on excluding these operating
systems from the trusted computing base of applications, while
retaining many of their benefits. Legacy applications continue to
run on the untrusted operating system, while a small hypervisor
or trusted hardware prevents the operating system from accessing
the applications’ memory.

In this paper, we introduce controlled-channel attacks, a new
type of side-channel attack that allows an untrusted operating
system to extract large amounts of sensitive information from
protected applications on systems like Overshadow, InkTag or
Haven. We implement the attacks on Haven and InkTag and
demonstrate their power by extracting complete text documents
and outlines of JPEG images from widely deployed application
libraries.

Given these attacks, it is unclear if Overshadow’s vision of
protecting unmodified legacy applications from legacy operating
systems running on off-the-shelf hardware is still tenable.

I. INTRODUCTION

The past years have seen a significant effort in the design

of systems that shield applications from the operating sys-

tem [19], [18], [49], [42], [27], [20], [22], [35], [10]. Such

shielding systems typically use trusted hardware or a hyper-

visor to prevent the operating system from reading or writing

to an application’s memory and from directly tampering with

its execution. The goal is to protect applications even if the

operating system is adversarial.

This proposition is compelling. The never-ending stream

of vulnerabilities found in large, feature-rich legacy operating

systems draws into question their ability to truly protect them-

selves or their applications. Shielding systems promise to fill

this gap by using a small, defensible trusted computing base to

protect applications. In cloud hosting, shielding systems have

the potential of protecting customer applications and their data

from the cloud provider [39], [10].

The untrusted operating system continues to provide critical

functionality, such as resource management and exposing

standard interfaces. This supports important features, including

multi-tasking, paging and the ability to run legacy applications

with few or no modifications. Such functionality is critical for

platform adoption.

However, running legacy code on an untrusted operating

system is dangerous, as such code was written under the

assumption that the operating system is trusted. In order to

avoid breaking implicit security assumptions in the legacy

code, the shielding systems has to completely insulate the

application from all types of adversarial action by the untrusted

operating system. This is hard, given the operating system’s

role in resource management and providing services to the

application.

Checkoway and Shacham [17] observe that an adversarial

operating system can carefully craft the return values of

system calls to exploit applications. However, recent work

on shielding systems [10] shows that even very complex

legacy applications can be protected from such Iago attacks by

drastically reducing the system call interface and by carefully

checking the results of system calls before returning them to

application code.

In this paper, we introduce controlled-channel attacks – a

new type of side-channel attack on shielding systems. The

untrusted operating system uses its control over the platform

to construct powerful side channels. Shielding systems cannot

rely on applications, off-the-shelf hypervisors or isolation

hardware to eliminate these channels, as those components

were designed for different environments. This makes it the

task of the shielding system to keep side channels under

control. However, existing shielding system designs ignore

side channels.

In a traditional side-channel setting [47], [12], [40], [7],

[8], [14], [46], [44], [52], the attacker has no control over

system events such as context switches, memory accesses by

other code, TLB flushes, exceptions, interrupts, page faults,

and changes in mappings. Such events typically introduce high

levels of noise into the channel. The attacker can eliminate the

noise by averaging over many runs of the victim’s code. But

this has confined such attacks to a narrow set of domains, such

as extracting cryptographic keys, in which the victim can be

made to execute the same code over the same secret data a

large number of times.

More recently, work on the Flush-Reload technique [24],

[50] has shown that the amount of noise in the cache side

channel can be significantly reduced if the victim and the

attacker share memory. Flush-Reload has enabled several new

and improved attacks [50], [30], [11], [51], [48].

The operating system’s high degree of control over system

events allows us to go significantly beyond existing side-

channel attacks. We present a no-noise channel that permits

simultaneous monitoring of large numbers of virtual addresses
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and observation of high-frequency events at high time resolu-

tion. We use this channel to construct attacks that extract large

amounts of data (hundreds of kilobytes) from a single run of

applications which have, until now, been beyond the reach of

side-channel attacks.

Our no-noise channel uses page faults due to memory

accesses by the application. We use it to extract text documents

from widely used word processing tools (the FreeType font

rendering engine [1] and the Hunspell spell checker [2]), to

obtain outlines of JPEG images decompressed by libjpeg [3]

and to undo Windows-style ASLR. In each case, a single run

of the victim’s code is sufficient to leak the data from the

protected application. We have implemented and successfully

executed these attacks on two of the most recent and sophis-

ticated shielding systems: Haven [10] and InkTag [27].

Even though existing shielding systems typically do not in-

clude secure physical input and output, our target applications

are realistic, as users can communicate securely with their

applications through a cryptographically secured network con-

nection (ssh, remote desktop). This is particularly compelling

in the cloud scenario [10].

As we target legacy code, our attack model assumes that

the application binaries are public. Our attacks are based on

a detailed off-line analysis of the memory access patterns of

these binaries. The first step of each attack is to infer the base

address at which each binary is loaded. The attacker can then

restrict access to particular code or data pages either by editing

the page tables directly or through an interface of the shielding

system. When the application tries to access one of these

pages, a page fault will occur and the operating system will be

invoked to resolve it. At this point, the operating system can

record that the page was accessed, update the page restrictions

based on the application’s page-access history and resume the

application. Thus, as the application executes, the operating

system collects a trace of page accesses by the application.

The last step of the attacks is an off-line analysis of this trace

to recover the application’s secret data.

One significant obstacle to our attacks lies in the fact that

we can observe memory accesses only at the granularity

of 4 KB pages. While x86 processors (and some shielding

systems [27]) provide page-fault handlers with the full address

at which the page fault occurred, we follow Haven [10], [29]

and provide the operating system only with the page number

(which it needs to handle the fault), but not with the 12-bit

offset within the page. We design several techniques that allow

the attacks to succeed in spite of being restricted by page

granularity.

A second challenge lies in limiting the overhead introduced

by the attacks. Page faults are expensive operations, and naı̈ve

versions of the attacks may easily increase the running time of

the applications by several orders of magnitude. We describe

optimization techniques that allow us to execute the attacks at

modest overheads.

Many of the mitigations that have been designed for cache

side-channel attacks [21], [32], [53] could, in principle, be

adapted for our attacks. Application code could be rewritten to

avoid memory access patterns that depend on the application’s

secret information. But this may impact performance and

negate the goal of allowing legacy applications to run on

untrusted operating systems.

Alternatively, the shielding system could try to prevent the

attacks by restricting the operating system’s control over page-

access permissions. It could also try to detect attacks by

monitoring execution time, page faults, and activity by the

operating system. The challenges are to retain the operating

system’s ability to effectively manage resources and to avoid

false positives. We discuss these options in more detail at the

end of the paper.

In summary, this paper makes the following contributions:

• We introduce controlled-channel attacks as a serious

threat to shielding systems, which system designers

should take into account.

• We design several concrete controlled-channel attacks

against widely used libraries.

• We implement these attacks efficiently on Haven and

InkTag.

II. BACKGROUND AND ATTACK MODEL

Rather than limiting our analysis to one concrete system, we

describe our attacks for a broader class of shielding systems.

The goal of a shielding system is to allow legacy applications

to run on legacy operating systems, but without having to trust

the latter. A highly privileged monitor component constrains

the operating system and prevents it from interfering with the

application. The monitor is typically a hypervisor [19], [27],

[20], but it can also be secure hardware [10].

The monitor protects applications even if the operating

system is adversarial and actively trying to attack them. For

this purpose, the monitor needs to provide a secure mechanism

to initialize applications. It also needs to provide isolated

execution environments for protected application execution.

The former often involves cryptographically protected disk

storage for application files. For the latter, the monitor has to

provide memory to the application that the operating system

cannot access. Hypervisor-based systems implement this by

interposing on page table updates for the application by the

operating system, and preventing the operating system from

accessing memory allocated for the application. This technique

is also used to safeguard the integrity of the layout of the

application’s virtual address space. The monitor also has to

interpose on all context switches (e.g., interrupts) between the

application and the operating system to prevent application

state from leaking to the operating system.

Refinements of these techniques allow the operating system

to continue performing tasks such as demand paging and

scheduling in spite of the restrictions. Furthermore, the op-

erating system provides (untrusted) services such as memory

allocation or access to storage and the network to the appli-

cation. As shown in [17] such interactions with the operating

system may give rise to Iago attacks unless they are carefully

validated.
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A. Attack Model

We assume that an attacker controls the operating system.

However, we leave the monitor components and any code

running in the application’s protected environment untouched.

The class of shielding systems targeted by our attacks has the

following properties:

a) Memory resource management by the operating sys-
tem: The system uses virtual memory. The operating system

can use demand paging to assign physical memory to a variety

of applications. Thus, the operating system controls virtual to

physical memory mappings in accordance with its resource

management task. The shielding system may constrain the

operating system in order to prevent it from reading and

writing application memory and to ensure the integrity of

the application’s address space. For example, the operating

system must not be allowed to map a particular page at an

address where the application does not expect it. However,

the operating system has the ability to reclaim physical pages

and, thus, to remove virtual-to-physical page mappings. It must

also be able to restore page mappings to handle page faults. To

do so, the operating system must be able to obtain the virtual

base address of the page at which the page fault occurred. We

do not assume knowledge of the offset within the page.

b) Applications: The system supports largely unmodified

legacy applications. Such applications typically do not take

special measures to obscure their memory access patterns

(with the exception of crypto code that has been hardened

against cache side-channel attacks). We assume the legacy

applications are public, and the attacker knows the exact

versions of application binaries being targeted. In our attacks,

we performed manual analysis on the source code of the

applications. This is not a problem for open source software.

Manual analysis on binary code is also possible, albeit more

tedious.

Most of the shielding systems cited in the introduction

meet these two conditions. This includes Haven and InkTag

for which we have implemented our attacks. In contrast,

systems like Flicker [38] or TrustVisor [37] are not included

in this class, as they require significant modifications to legacy

applications and, in the case of Flicker, support only a single

protected region with static resources.

III. DESIGN

In this section, we present the design of our attacks. The

key intuition is to exploit the fact that a regular application

usually shows different patterns in control transfers or data

accesses when the sensitive data it is processing are different.

We refer to them as input-dependent control transfers or input-
dependent data accesses. A malicious operating system can

observe input-dependent control transfers or data accesses to

infer the sensitive data.

To observe input-dependent control transfers or data ac-

cesses, the operating system can induce page-fault traps by

restricting access to particular code or data pages. When a

function on a code page is called or when a data object on a

data page is accessed, a page fault will result, and the operating

system can recognize the control transfer or data access based

on the page-fault address. The operating system can steal an

application’s secrets by repeatedly observing input-dependent

control transfers and data accesses.

The main challenge in designing our attacks is that the op-

erating system cannot observe the exact byte-granular address

of a page fault but only the page’s 4 KB-granular base address

because a secure hypervisor or hardware can always zero

out the lowest 12 bits in a page-fault address before passing

it to the operating system. In fact, Intel SGX [29] already

does this. When not knowing actual page-fault addresses, the

operating system cannot directly detect a control transfer or a

data access.

In the rest of this section, we first describe how our attacks

can be launched in an ideal environment where full page-

fault addresses are given. Then we describe our solutions for

identifying control transfers and data accesses when page-fault

addresses are only given at page-level granularity. Finally, we

describe how we handle page faults in detail. We assume the

base addresses of loaded modules are known and present our

attack against ASLR in Section IV-D.

A. Basic Attack

char* WelcomeMessage( GENDER s ) {
char *mesg;

// GENDER is an enum of MALE and FEMALE
if ( s == MALE ) {

mesg = WelcomeMessageForMale();
} else { // FEMALE

mesg = WelcomeMessageForFemale();
}
return mesg;

}

Fig. 1: Example function with input-dependent control transfer.

void CountLogin( GENDER s ) {
if ( s == MALE ) {

gMaleCount ++;
} else {

gFemaleCount ++;
}

}

Fig. 2: Example function with input-dependent data access.

Our attacks exploit input-dependent control transfers or data

accesses to steal secrets from an application. Here we use two

simple examples to explain the basic idea. This subsection

explains how an attacker with access to the complete (byte-

granular) page-fault address could proceed.

In Figure 1, we show an example function with an

input-dependent control transfer. The WelcomeMessage func-

tion calls the WelcomeMessageForMale function if a

user is male. It calls the WelcomeMessageForFemale

function if a user is female. We assume the function
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WelcomeMessage and the other two functions are on dif-

ferent code pages. To launch an attack, we restrict ac-

cess to the code pages of WelcomeMessageForMale and

WelcomeMessageForFemale. When one of them is called,

a page fault will be triggered. We can tell the user’s gender

based on which function was called.

In Figure 2, we show an example function with input-

dependent data access. The CountLogin function counts

the number of male and female user logins by using two

global variables gMaleCount and gFemaleCount. The func-

tion CountLogin and the two global variables are usually

on different memory pages since the former is executable

and the latter is writable. To launch an attack, we restrict

access to the data page or pages containing gMaleCount and

gFemaleCount. When one of the variables is accessed, a page

fault will occur and the page-fault address will reveal the user’s

gender. Furthermore, we can infer the total number of male

and female users by counting the number of page faults at

gMaleCount and gFemaleCount.

The key to a successful attack is to recognize the input-

dependent control transfers (e.g., WelcomeMessageForMale

or WelcomeMessageForFemale) or the input-dependent data

accesses (e.g., gMaleCount or gFemaleCount). When actual

page-fault addresses are given, this can be done straightfor-

wardly. However, when page faults are reported at page-level

granularity, this becomes a challenge. Next, we present our

approach to solving this problem.

B. Inferring Input-Dependent Memory Accesses

The first stage in our attacks is an offline analysis of an

application’s code to identify what control transfers and data

accesses are input dependent and how we can use them to

reveal the application’s secrets. Currently, we do this manually

and on a per-application basis. Here, we assume this offline

analysis has identified input-dependent control transfers or

data accesses and focus on how we can infer them when

page faults are reported at page-level granularity. In other

words, this section explains how we deduce that a function at

a particular address has been called or a variable at a particular

address has been accessed, given only a trace of page numbers,

but not complete addresses.

It is quite common for a function (or data object) to share a

memory page with other functions (or data objects). When a

page fault happens on such a memory page, we cannot directly

tell if the function (or data) of interest is being accessed. The

key idea for inferring a particular function invocation or data

access is to identify page-fault sequences that are unique to

the function (or data) access.

To identify unique page-fault sequences for a specific

memory access, we run the application outside the protected

environment (without the shielding system) and record page-

fault traces by restricting access to all pages. Upon a page

fault, we record the faulting address and remove the restriction

for the faulting page in order to allow application execution

to proceed. Subsequently, we add the restriction again, as
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Fig. 3: The attacker can only observe page-level control transfers.
However, functions sharing the same page can often be distinguished
by different page-fault sequences.

described in Section III-C. This gives us a trace of byte-

granular page-fault addresses.

We associate two addresses with each page fault: We call

the address whose access triggered the page fault the page-
fault address. We call the address of the instruction that was

being executed when the page fault occurred the instruction
address of the page fault. For a code page fault, these two

addresses are identical (except for instructions that cover two

memory pages and the page-fault address lies on the second

page).

Control transfers: To infer a specific control transfer, we

only record page faults of code pages. Let us assume we

collect a set of page-fault traces {Pi = {pji}}, where Pi

represents the i-th trace, and pji represents the page-fault

address of the j-th page fault in the i-th trace. We collect

multiple page-fault traces to have a better coverage of an

application’s execution paths. Since executables may be loaded

at different addresses in different runs, we convert page-fault

addresses to be module offsets.

For each trace Pi we generate a new trace Qi = {qji }
where qji is the page base address of the j-th page fault in

the i-th trace. The Qi are of the types of traces our attacks

would obtain. Let f be the target address of the control

transfer we want to identify. Then for each s, t such that

pts = f , we search for the minimum k ≥ 1 such that, for

any sequence (qj−k+1
i , qj−k+2

i , ..., qji ) that matches with the

sequence (qt−k+1
s , qt−k+2

s , ..., qts), p
j
i equals to f . That is, for

each occurrence of f in any of the Pi traces, we search

for the shortest sequence of its preceding pages for which

the corresponding sequence in Qi leads only to f for all its

occurrences. In general, we may find more than one such

sequence for f , since different appearances of f in the traces

may be preceded by different page sequences. For example, a

function f may be called from several places.

Finally, we use the set of unique sequences

{(qt−k+1
s , ..., qts)} to identify the control transfer. In the

attacks we will present in Section IV, there is usually a

single page-fault sequence and the length is usually 2 or 3

for inferring a specific control transfer.

Figure 3 shows how two functions sharing the same page

can be distinguished by different page-fault sequences.

Data accesses: To infer a data access at a specific memory
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address, we record full byte-granular page-fault traces of both

code and data pages without the shielding system. We first

identify all the data page faults due to accesses to the specific

memory address. Then, for each of these data page faults,

we search for a minimum sequence of code page faults (right

before the data page fault) that can be used to uniquely infer

the data access. We combine all the identified sequences to

derive a set of page-fault sequences for inferring the given

data access. As before, there is usually a single page fault

sequence and the length is usually 2 or 3 for inferring a data

access of interest.

We might not necessarily know the addresses of some data

before the application runs; they can be dynamically allocated.

But we do know the instructions that access them (from our

manual offline analysis), and thus can still identify accesses

to them using the same technique as above. This often leaks

enough information for us to extract fine-grained application

data.

Discussion: The algorithm described so far assumes there

is a single thread. For multi-threaded applications, we simply

record a thread identifier with each page fault and regroup

the traces based on thread ids. This allows us to treat the page

faults for each thread as a separate trace and to apply the same

algorithm.

In practice, to find a short page-fault sequence, we may need

to do multiple iterations between the manual offline analysis

for identifying useful memory accesses and the programmatic

analysis for identifying page-fault sequences.

The quality of the identified page-fault sequences depends

on the execution coverage of an application. We can improve

their quality and the analysis accuracy by using different inputs

to drive the application’s execution for better code coverage.

How exactly this can be done and how much improvement

can be achieved is beyond the scope of this paper. Our focus

is to demonstrate the feasibility of controlled-channel attacks.

C. Handling Page Faults

We just described how we can identify a set of page-fault

sequences for inferring a control transfer or data access. In

this section, we describe how we handle page faults in detail.

Code pages: While tracking all code pages of the target

process would give us the most information, it would also

make the attack slow. Instead, we only track a small set of

relevant pages, which we refer to as tracking pages. The basic

approach works as follows. First, we include all pages in

the page-fault sequences identified in the offline analysis as

the set of tracking pages, and restrict access to them when

an application starts. Second, when a page fault happens,

we log the page-fault event, enable access to the page, and

remove access to the previous page. This basic approach is

straightforward and works in general. But we need to improve

it to handle the following issues.

When we only track a subset of the pages, we may see

false positives for the unique page-fault sequences described

in Section III-B. Recall that we computed these sequences

from traces in which we tracked all pages. For example, let

(pa, pc) be such a sequence. The sequence of page accesses

(pa, pb, pc) does not match this sequence. However, if we do

not track page pb, we will observe (incorrectly) an access

sequence (pa, pc). To avoid such false positives, we reduce

a full page fault trace to a trace that we would have observed

when tracking the set of selected pages. This reduction is

done by first removing unmonitored pages and then merging

consecutive identical pages in the trace. Then we search for

false positive sequences in the reduced trace. For every false

positive sequence like (pa, pb, ..., pc), we add the page pb into

the set of tracking pages.

An instruction may cross two consecutive code pages. If

both pages are in the set of tracking pages, the application

will hang when we use the basic approach to handle this

instruction since we will see alternating page faults on these

pages. To deal with this problem, we first identify if we have

an instruction cross two contiguous tracking pages. If so, when

we see consecutive page faults on these two pages, we make

both accessible. When the next page fault occurs, we remove

access to both pages.

Data pages: For some attacks, we need to track data page

faults. We often do not need to track them throughout the

entire attack but during a particular function’s execution. In

such a case, we start the tracking of data pages when detecting

a function’s invocation (based on a particular code page-fault

sequence) and stop it when the function finishes (based on

another code page-fault sequence).

When a data page fault happens, we do not always remove

access to previous data pages. For instance, we do not need

to do it if we only care about whether a specific data access

occurs in a function. If we also care about the number of data

accesses in a function, we need to remove access to previous

data pages in order to incur repeated data page faults. In the

latter case, we need to handle data page faults in a way similar

to code page faults to allow the application to make progress.

An x86-64 instruction may access up to two memory lo-

cations. For example, the instruction call [funcptr] reads

the function target from the funcptr and writes the return

address to the stack. Another example is the instruction movs

which copies data from one memory location to another. In the

worst cases, if both memory accesses are cross two memory

pages, we may need to handle four data page faults and enable

access to all of them to let the instruction execute. Our solution

for this problem has two parts. First, for consecutive data page

faults on contiguous pages, we make both accessible. Second,

if we observe alternating page faults of two data pages, we

make both accessible. When identifying alternating patterns,

we conceptually consider two contiguous pages as a single

page.

IV. ATTACKS

In this section, we first demonstrate how we can launch

our attacks to extract fine-grained data from three widely

used applications, FreeType [1], Hunspell [2], and libjpeg [3].

Then we describe how we attack Address Space Layout
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Randomization (ASLR) [13] to reveal the base addresses of

loaded modules.

A. FreeType

FreeType is a user-level font library that renders text onto

bitmaps. It is widely used in a variety of software products,

including Linux distributions, the Android and iOS platforms,

Ghostscript, and OpenJDK. It supports different font formats,

including TrueType, the most common format for fonts on

Microsoft Windows and Mac OS. We describe an attack is on

TrueType. Other font formats are subject to similar attacks.

In TrueType fonts, a glyph for a character is represented as a

collection of line and curve commands as well as a collection

of hints. FreeType executes the commands and processes the

hints to draw a glyph onto a bitmap. Since different glyphs

have different commands and hints, the control flows for

rendering them are different. Therefore, these control flows are

dependent on the character that is being rendered. We exploit

this to infer the rendered text. We do not need to induce data

page faults in this attack.

The render function for TrueType is TT_Load_Glyph. This

function is invoked for rendering every character with its

glyph. We first identify two sets of page-fault sequences for

inferring the start and end of this function. After that, a naive

approach would be to track all accesses to all code pages

during each invocation of this function and to use them to

infer each character. This would work but impose a significant

performance overhead. Instead, we identify a small subset

of code pages subject to the constraint that the number of

page faults over an invocation of TT_Load_Glyph uniquely

identifies the character being rendered.

Our attack starts with an offline analysis in which we render

all distinct characters (i.e., letters and punctuation marks) and

find the page-fault counts for the selected set of code pages

that can uniquely identify each character. During the online

attack, we use the two sets of page-fault sequences to identify

the start and the end of TT_Load_Glyph and log the page-

fault counts of the selected code pages for each invocation of

TT_Load_Glyph. Finally, we deterministically identify each

rendered character by comparing these counts with the counts

we obtained from the offline analysis. The last stage can be

done either online or offline.

B. Hunspell

Hunspell is a popular spell checking tool widely used in

many software packages, including Mac OS X and Google

Chrome. Hunspell loads words in a dictionary into a hash table

in memory and checks if a word is in the hash table to decide

the correctness of its spelling. The hash table uses separate

chaining with linked lists to handle hash collisions. In other

words, the hash table starts with an array of pointers to linked

lists. The indices to the array are hash values. Each linked list

contains all words with the same hash value. Figure 4 shows

an example of the hash table.

When inserting a word into the hash table, Hunspell ac-

cesses multiple data pages, including the page of the pointer
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Fig. 4: The hash table in Hunspell.

to the linked list and the pages of the nodes on the linked

list. Similarly, when looking up a word from the hash table,

Hunspell accesses the same data pages in the same order as

accessed during insertion. If we know which sequence of data

pages is being accessed when a word is being inserted, we can

tell when it is being checked by observing the same sequence

of data pages accessed during lookup. We assume knowledge

of the dictionary used by Hunspell. Since Hunspell inserts

dictionary words sequentially, we know the order of insertion

as well.

In Hunspell, the function HashMgr::add_word does in-

sertion and the function HashMgr::lookup does lookup.

We identify four sets of page fault sequences for infer-

ring the start and the end of HashMgr::add_word and

HashMgr::lookup.

During the online attack, we use the four sets of page-fault

sequences to infer the invocations of HashMgr::add_word

and HashMgr::lookup. During each invocation, we trap all

data-page accesses. Given the recorded page-fault sequence,

we first identify the sequence of data pages accessed for each

word in the dictionary. Then we use these sequences to infer

the words looked up by Hunspell. This can be done either

online or offline. Note that at any data page fault, we do not

make other pages inaccessible; removing access to pages is

only done at code page faults.

It is possible that Hunspell accesses the same sequence of

data pages when inserting two different words into the hash

table. When this happens, there is more than one choice for the

word being checked, resulting in an ambiguity. Fortunately,

our experiments show that the degree of ambiguity is low,

even though we only have page-level access traces. This is

due to the low correlation between a word’s hash value and

its location in the input dictionary. Since words are inserted

sequentially according to their order in the dictionary, the list

nodes of words adjacent in the dictionary are likely to reside

on the same page or contiguous pages; on the other hand,

adjacent words in the dictionary typically have very different

hash values such that the pointers to their linked lists are on

different pages. As a result, the possibility that multiple words

share exactly the same sequence of data pages is relatively low.

To mitigate the ambiguity, we leverage a language model to

identify which word is more likely to appear than others. This
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helps us eliminate most ambiguities.

In most cases, we can detect if a word does not appear in

the dictionary by observing a data-page access in the hash

table that is not followed by accesses to data pages storing

list nodes. However, if the word has the same hash as one or

more words that are in the dictionary, we will see the same

page-fault sequence as for the word corresponding to the last

node in the linked list for that hash value. In these rare cases,

our attack will return that word.

Hunspell supports affixes. It tries to remove an affix from

a word and look it up again if the original word is not found.

This means that we may see multiple lookups for a single

word in an input document. To avoid showing multiple words

with different affixes for a single input word, we also track the

invocations of the function Hunspell::spell in our attack,

which is invoked exactly once for each word in the document.

Multiple invocations to HashMgr::lookup during a single

Hunspell::spell invocation indicate different trials for the

same input word, and we only show the word in the last lookup

because previous ones might have failed.

C. JPEG

JPEG is a commonly used lossy image compression stan-

dard. Libjpeg is a JPEG codec implemented by the Indepen-

dent JPEG Group. The library itself or a direct derivative of

it is used in countless applications for JPEG encoding and

decoding.

Given an original bitmap image, the JPEG encoder first

divides it into blocks of 8×8 pixels. It then performs a

discrete cosine transform for each block. The output of the

transform is a coefficient matrix sized 8×8, which is passed to

quantization and finally compression. Quantization is the only

lossy operation in the whole process. To decode a JPEG image,

the decoder decompresses and dequantizes the encoded blocks

to get the recovered coefficient matrices for them. Then, for

each coefficient matrix, it performs an inverse cosine transform
(IDCT), which outputs the 8×8 bitmap block. By combining

all decoded blocks, the decoder can generate the entire bitmap

image.

Libjpeg has several IDCT implementations. All of them

have the same basic structure. They have two for loops, iterat-

ing over the 8 columns and the 8 rows in the coefficient matrix

respectively, as IDCT is a two-dimensional operation. The de-

fault IDCT function used in libjpeg is jpeg_idct_islow. A

code snippet of it is shown in Figure 5. Our attack focuses on

jpeg_idct_islow and is applicable to other IDCT functions.

The IDCT function is small enough to fit on a single code

page, and it does not invoke other functions. Thus, there are no

input-dependent control transfers we can leverage. Instead, we

exploit input-dependent data accesses caused by a performance

optimization in the IDCT functions. The normal processing for

a row/column in IDCT requires heavy computation. However,

if all but the first element in a row/column are zeroes, the

row/column is constant and the computation is fairly simple.

The IDCT functions in libjpeg first check if this condition

is true and, if so, do the simplified computation. For a row

GLOBAL(void) jpeg_idct_islow (j_decompress_ptr cinfo,
jpeg_component_info * compptr, JCOEFPTR coef_block,
JSAMPARRAY output_buf, JDIMENSION output_col)

{
...
/* Pass 1: process columns from input... */
inptr = coef_block;
quantptr = (ISLOW_MULT_TYPE *) compptr->dct_table;
wsptr = workspace;
for (ctr = DCTSIZE; ctr > 0; ctr--) {

/* Due to quantization, we will usually find that

* many of the input coefficients are zero,

* especially the AC terms. We can exploit this

* by short-circuiting the IDCT calculation for any

* column in which all the AC terms are zero. In

* that case each output is equal to the DC

* coefficient (with scale factor as needed). With

* typical images and quantization tables, half or

* more of the column DCT calculations can be

* simplified this way.

*/
if (inptr[DCTSIZE*1]==0 && inptr[DCTSIZE*2]==0 &&

inptr[DCTSIZE*3]==0 && inptr[DCTSIZE*4]==0 &&
inptr[DCTSIZE*5]==0 && inptr[DCTSIZE*6]==0 &&
inptr[DCTSIZE*7]==0) {

/* AC terms all zero */
... SIMPLE COMPUTATION ...
inptr++; quantptr++; wsptr++;
continue;

}
... COMPLEX COMPUTATION ...
inptr++; quantptr++; wsptr++;

}
/* Pass 2: process rows from work array... */
wsptr = workspace;
for (ctr = 0; ctr < DCTSIZE; ctr++) {

if (wsptr[1]==0 && wsptr[2]==0 && wsptr[3]==0
&& wsptr[4]==0 && wsptr[5]==0 && wsptr[6]==0
&& wsptr[7]==0) {

/* AC terms all zero */
... SIMPLE COMPUTATION ...
wsptr += DCTSIZE;
continue;

}
... COMPLEX COMPUTATION ...
wsptr += DCTSIZE;

}
}

Fig. 5: IDCT function in libjpeg.

or column, the number of data-page accesses in the standard

(complex) version of the computation is much larger than for

the simplified version. If we actively restrict access to data

pages during execution of the IDCT function, we observe a

significant difference in the data page fault counts for the two

code paths. We try to keep only a single data page accessible at

a time, by removing access to other data pages when handling

a data page fault, unless an alternating pattern is detected

indicating that an instruction needs to access two data pages.

The number of page faults during an IDCT invocation

reveals the number of constant rows and columns in the block,

which corresponds to the relative complexity of the block. Our

attack exploits this fact to recover an image in which each

pixel corresponds to a block in the original image. For a gray

scale image, each pixel has one color component. We compute

the value for a pixel in the recovered image by normalizing

the number of data page faults in jpeg_idct_islow for its

corresponding block in the original image. Our normalization

is done based on the maximum/minimum number of data page

faults in jpeg_idct_islow for all blocks. The recovered
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image is often similar to the result of edge detection, because

edge blocks tend to be more complex than others.

In color images, a pixel has multiple color components. The

meaning of each color component is defined by the format of

the image, which is also called a color space. These color

components are encoded separately; the IDCT function is

invoked multiple times for each block to decode all color

components in a fixed order. Assuming the color space is

known, we can compute the value of each component sepa-

rately for a pixel in the recovered image, based on the number

of page faults during the corresponding jpeg_idct_islow.

Our normalization is done separately for each color component

over all blocks.

However, we do not know what color space is used in the

JPEG image. But fortunately, there are only a few commonly

used ones. For example, the most common color space used in

JPEG is YCbCr, which has three color components: luminance

(Y), chromatic blue (Cb) and chromatic red (Cr); another

common color space is RGB, used in high-quality JPEG

images, which also has three components (red, green, blue).

We simply try to recover the image multiple times assuming

different color spaces, and manually select the one with the

best visual effects.

To count the number of data page faults in

jpeg_idct_islow, we identify two sets of page-fault

sequences for inferring the start and the end of this

function. By counting the number of invocations of

jpeg_idct_islow, we know the total number of blocks.

To recognize the dimension of an image, we need to know

the number of rows or columns. To do so, we identify one

set of page-fault sequences for inferring the start of the

function decompress_onepass since it is invoked for each

row of blocks in the image. The number of invocations of

decompress_onepass tells us the number of rows of blocks

in the image.

D. ASLR

So far we have assumed we know the base addresses

of loaded executables (e.g., .exe and .dll files) in the

description of our attacks. However, this will not be the

case if a shielding system implements Address Space Layout

Randomization (ASLR) to randomize the bases of executables

in memory. Existing shielding systems like Haven and InkTag

have not implemented ASLR for protecting applications. But

we anticipate the support of ASLR in future shielding systems

due to the concern of return-oriented programming (ROP)

attacks. Next we describe our attack against ASLR.

The key idea for our ASLR attack is that we can leverage

the very first few page faults on each executable to distinguish

them. In modern OSes like Windows and Linux, the execution

of an executable always starts from a predefined entry point.

The exception is the loader itself (e.g., ntdll.dll on Win-

dows). The loader does not have an entry point like regular

executables. But the execution of a loader always starts from

a deterministic location as well (e.g., LdrInitializeThunk

in ntdll.dll), which is also the very first code executed in

user mode for a process.

To launch our ASLR attack, we first perform an offline

analysis to identify the very first few page faults for each

executable that can be used to distinguish it from other exe-

cutables loaded in an application. During the online attack, we

assume all the executables are scattered in a large contiguous

memory range. This is a weaker assumption than assuming

the knowledge of individual memory ranges for loaded exe-

cutables since we could leverage the sizes of memory ranges

in the latter case. When a process starts, we restrict access to

all mapped memory ranges. Then the first code page fault in

the process is on the loader. We use it to identify the base

address of the loader and enable access to all its pages. Then

the next code page fault will be on a different executable. We

use the next few consecutive code page faults to identify the

executable and enable access to all its pages. We repeat this

process until we identify all loaded executables. We do not

necessarily need to identify all but the relevant executables in

our ASLR attack.

An executable of interest may be loaded by delayed loading.

To identify the location of a dynamically loaded executable,

we restrict access to newly mapped memory regions and track

initial code page faults on them. Then we use the first few

consecutive code page faults on the new memory regions to

identify the dynamically loaded executable.

V. IMPLEMENTATION

In this section, we first present our implementation

of controlled-channel attacks on two shielding systems,

Haven [10] and InkTag [27]. We have implemented our attacks

on prototypes of InkTag and Haven which the authors of

these systems have kindly made available to us. After that, we

describe how we realize attacks against FreeType, Hunspell,

and libjpeg on both Haven and InkTag. Finally, we present the

implementation of our ASLR attack on Windows since Haven

and InkTag do not support ASLR.

A. Implementation of controlled-channel attacks on Haven

Haven relies on trusted hardware (SGX [29]) rather than

a hypervisor to constrain the operating system and provide

isolated execution environments (enclaves) for applications.

The only Haven software running outside an enclave is an

untrusted driver – concerned primarily with memory manage-

ment and with interacting with SGX – and an untrusted user-

mode runtime that provides an interface between the trusted

code and the operating system.

The code inside a Haven enclave consists of a Windows

application, the Drawbridge library operating system [41] and

a Shield module. Drawbridge, which consists of Windows

user-mode libraries and a user-mode kernel, provides the

application with a full Windows interface, but has only a very

narrow set of dependencies on the underlying system. This set

of dependencies is significantly smaller and simpler than the

system call interface of Windows or Linux. The Shield module

protects the remaining dependencies from adversarial actions

647647



by the host operating system. For example, the Shield module

implements an encrypted and integrity-protected file system,

limiting storage interactions with the untrusted host operating

system to reading and writing of crypto-protected disk blocks.

SGX includes side-channel protections that keep the CPU

performance counters from being used to construct side chan-

nels against enclaves [29]. These protections appear adequate

for the small-TCB security applications for which SGX was

designed [26], as the developers of security applications can

be expected to mitigate higher-level side channels in software.

Our attack succeeds in the context of Haven because most

legacy software is not hardened against side channels.

Our attack relies on the following aspects of the Haven pro-

totype: First, SGX leaves all page tables under the control of

the host operating system and implements a new, independent

memory protection mechanism. A memory access will fail if

it is disallowed under either of the two mechanisms. Thus, our

attack code has unrestricted access to the page tables, and, by

editing them appropriately, it can force code running inside

enclaves to cause page faults.

Second, a page fault during enclave execution results in

SGX transferring control to the regular operating-system page-

fault handler specified in the interrupt descriptor table (IDT)

(after saving and scrubbing the CPU register context). SGX

also zeros out the bottom twelve bits of the faulting address,

revealing only the page number of the faulting address to the

operating system, but not the offset within the page.

Third, the Shield module has to call the operating system to

map and unmap memory regions in the enclave and to change

their page-access permissions. This provides the attacker with

a precise and up-to-date map of the enclave’s memory lay-

out. Individual Windows binaries (e.g., FreeType) are easily

recognized as a sequence of consecutive regions of specific

length with specific read, write and execute permissions—

corresponding to the different sections of the binary. Other

mapped regions such as the heap can be identified by sim-

ilar heuristics. When adding knowledge about the (highly

deterministic) order in which Drawbridge loads binaries and

allocates memory, these heuristics become quite reliable.

The calls to map memory regions inform us not only about

the loading addresses of binaries, but also about the moment at

which they are loaded. We can use this as a trigger for starting

the attack. That is, we can let Drawbridge boot unencumbered,

monitoring only requests to map and unmap enclave memory

at next to no overhead. When we observe that a binary of

interest (e.g., FreeType) has been loaded, we activate the

tracing of page accesses.

The Shield module’s memory mapping calls are not easily

avoided. SGX limits enclave code to run in user mode, while

the instructions to modify enclave memory permissions can

only be executed in kernel mode.

We have implemented the attack by modifying the Haven

driver, leaving the trusted components of Haven (Shield mod-

ule and Drawbridge) unchanged. We inserted our code in the

driver’s handler functions for memory mapping calls by the

Shield module. The code implements the heuristics described

above to detect the loading of any of the modules targeted by

our attacks on FreeType, Hunspell and libjpeg. When one of

the modules is detected, we execute the corresponding attack

as described in Section IV.

For efficiency reasons, we implement access restrictions by

directly editing the page tables, rather than calling Windows

functions. Setting a reserved bit (e.g., bit 51) in the x86-64

page table entries causes all accesses to the corresponding

pages to result in a page fault that can be easily recognized

by our page-fault handler. This method is preferable to using

the present bit, as it minimizes interference with the Windows

memory manager.

We avoid page table shootdowns by affinitizing the pro-

cesses of the target applications to a single core. This has no

noticeable effect on performance for our three single threaded

target applications. For multithreaded applications, one can

envision adversarial operating systems whose schedulers can

choose different tradeoffs between parallelism, the cost of

frequent page faults and the completeness of the page-fault

trace.

We install our page-fault handler by overwriting the corre-

sponding address in the IDT. This ensures that we can resolve

the page faults triggered by our attacks without unnecessarily

executing a large amount of operating system code. This

implementation is critical to minimizing our overhead, as our

attacks trigger a large number of page faults. After determining

that the fault was due to our attacks, the page-fault handler

invokes an attack-specific procedure that resolves and logs the

page fault and adjusts the access restrictions as described in

Section IV. All three attacks against FreeType, Hunspell and

libjpeg added 1972 lines of C code and 156 lines of assembly

code to the Haven driver.

We also implemented the attacks for the variant of Haven

used in the performance evaluation of [10]. This version of the

prototype does not use the Haven driver and relies on Windows

system calls for memory management. For this version, we

compiled the attack code we had added to the Haven driver

into a separate stand-alone driver. We also added 144 lines of C

code to the untrusted Haven runtime to notify our driver every

time trusted code requests a memory management operation

(allocation, freeing, change of page permissions) from the

operating system. Our evaluation in the next section is based

on this version of the implementation. Lacking information

about the performance characteristics of a potential future

implementation of SGX, we did not attempt to model the

impact of SGX on the performance of our attacks.

B. Implementation of controlled-channel attacks on InkTag

InkTag uses a trusted hypervisor to protect applications

running on an untrusted operating system. A protected ap-

plication runs inside a high-assurance process (HAP). The

hypervisor protects the secrecy and integrity of a HAP’s

memory page contents by encryption and hashing. Memory

management is still performed by the untrusted operating

system. To ensure that every memory page is mapped at the

virtual address requested by the application, InkTag does not
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allow the untrusted operating system to directly modify the

page tables of a HAP. Instead, to update the page tables,

the untrusted operating system must make a hypercall into

the hypervisor via the paravirtualized function set_pte. The

hypervisor then verifies the request and updates the page tables

for the untrusted operating system.

The implementation of our attacks on InkTag relies on

the following. First, InkTag allows the untrusted operating

system to map and unmap memory pages to perform paging.

We exploit this fact to restrict access to a memory page by

pretending to page it out (i.e., clearing the present bit in its

page table entry while keeping it in memory).

Second, InkTag lets the untrusted operating system handle

page faults for a HAP. Currently the hypervisor clears all

general-purpose CPU registers before passing control to the

operating system during a page-fault interrupt. Unlike SGX,

the hypervisor provides the operating system with the full

faulting address. To make our attacks more robust, we only

consume the page base address of a page fault.

Third, InkTag requires all the code used by a HAP to be

compiled into a static binary. It also loads the static binary at

a fixed virtual address. This makes our attack easier since we

do not need to deal with ASLR.

We implemented our controlled-channel attacks on InkTag

by modifying the x86-64 page-fault handler in Linux. To

restrict access to a memory page, we simply clear the present

bit in its page table entry without actually swapping the page

out of memory. We track the set of pages manipulated by our

attack. When a page fault happens, we first check if it is a

manipulated page. If so, we handle it based on the algorithm

presented in Section III-C. If not, we pass it to the existing

page-fault handler.

All three attacks against FreeType, Hunspell, and libjpeg

added 799 lines of C code to the Linux kernel running on

InkTag.

C. Implementation of Attacks against Applications

We realized controlled-channel attacks against FreeType,

Hunspell, and libjpeg on Haven and InkTag. For several

reasons, we could not use the off-the-shelf binaries. In the

case of Haven, we did not find official Windows binaries for

the latest versions of the three open source libraries and had

to compile the source code ourselves. InkTag only supports

Linux console applications and requires an application to be

compiled into a single static binary. That made it impossible

to run official Linux binaries of the three libraries on InkTag.

Instead, we again had to build our own binaries from source

code.

Application Version

FreeType 2.5.3

Hunspell 1.3.3

libjpeg 9a

Fig. 6: Application versions used in the controlled-channel attacks
on both InkTag and Haven.

Figure 6 shows the versions of the three open source

applications we targeted in our attacks. We used the same

versions for our attacks on Haven and InkTag. For Haven,

we compiled the open source code by using Microsoft Visual

Studio’s C/C++ compiler (version 18.00.30501) [4] and used

the system binaries shipped with Windows (e.g., ntdll.dll

and kernel32.dll). For InkTag, we used the GCC compiler

(version 4.4.5) in the uClibc tool chain [6].

Our attacks are sensitive to code optimization because it

may eliminate some control transfers that we could otherwise

leverage for inference. For instance, a function call disappears

if the callee is inlined into the caller. We may not be able

to track a function call if the caller and the callee are on

the same memory page, which a compiler frequently does for

performance optimization. To make our attacks as realistic as

possible, we used the same compiler options as other binaries

on Windows and Linux. For Windows binaries running on

Haven, we used the full optimization (i.e., /Ox) and inlining

(i.e., /Ob2) options of the Microsoft Visual Studio C/C++

compiler. For Linux binaries running on InkTag, we used

the level-2 optimization (i.e., -O2) in the GCC compiler,

where possible targets for inlining include specified inline

functions, static functions that are only called once (i.e.,

-finline-functions-called-once), and small functions

(i.e., -finline-small-functions).

We built simple console applications to drive the libraries.

The FreeType source package does not have a command-line

application. We wrote a simple command-line application that

calls into the FreeType library for each letter in an input file

to render it onto a bitmap buffer with the Times New Roman

font, a popular one in the TrueType font format. The Hunspell

source package includes a command-line application that does

spell checking on an input file. We used it together with the

en US dictionary in the source package. For libjpeg, we wrote

a simple command-line application that calls into the libjpeg

library to decode a JPEG image and saves the result into a

BMP file.

D. Implementation of the ASLR attack on Windows

For evaluation purposes, we implemented our ASLR

attack on Windows since Haven and InkTag do not

support ASLR. We use Windows kernel APIs (e.g.,

PsSetCreateProcessNotifyRoutineEx) to track pro-

cess creation and identify the target process when it

is created. Then we use Windows kernel APIs (e.g.,

PsSetLoadImageNotifyRoutine) to track memory regions

allocated for executables in the target process. We use the same

approach as described in Section V-A to directly manipulate

page tables. We restrict access to memory pages by setting

the Non-Executable bit (bit 63). This allows us to avoid

unnecessary page faults on data pages. The prototype of our

ASLR attack was implemented as a kernel driver. It has 1644

lines of C code and 156 lines of assembly code. Part of the

code is shared with our implementation on Haven.
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group Haven InkTag
size words % words %

1 46864 75.16 48864 78.37
2 9964 15.98 9372 15.03
3 3546 5.69 2880 4.62
4 1100 1.76 852 1.37
5 485 0.78 275 0.44
6 222 0.36 60 0.10
7 49 0.08 14 0.02
8 48 0.08 16 0.03
9 45 0.07 0 0.00
10 30 0.05 20 0.03

Fig. 7: Distribution of words in the en US Hunspell dictionary: More
than 75% of the words can be uniquely identified by the attack. For
more than 95% there are at most three choices.

VI. EVALUATION

In this section, we demonstrate that our attacks are effective

by showing that they can extract text and image data from

protected Inktag high-assurance processes and Haven enclaves,

as well as inferring the base addresses of relevant binaries in

an ASLR-protected Windows process. We also show that the

impact of our attacks on the applications’ execution times is

generally moderate.

We ran the Haven experiments on a Lenovo IdeaCentre

H530s with a quadcore Intel i5-4440 Haswell processor run-

ning at 3.1 GHz, 6 GB of RAM and a 256 GB Samsung

840 PRO SSD. The machine was running Windows 8.1 Pro.

Before starting the experiments we copied the application

binaries and their support files as well as the test inputs for

the evaluation to Haven’s encrypted virtual hard disk.

The Inktag experiments were run on a Dell OptiPlex 980

with a quadcore Intel i7-860 processor running at 2.8 GHz,

8 GB of RAM and a 160 GB Western Digital WD1600HLFS

SSD. The machine runs Linux 2.6.36, on which InkTag is

built.

A. Effectiveness of the attacks

1) FreeType: We used an ASCII version of the book The
Wonderful Wizard of Oz [9] (downloaded from [5]) as the

test input to our FreeType application described in Section V.

The size of this input file is 213,087 bytes. It contains 39,719

words.

During the run of the FreeType application, our attack code

in the operating system produced a page-fault trace. Our post-

processing tool recovered an ASCII file from the trace. We

repeated the experiment ten times on both Haven and InkTag

and compared the ten output files of the attack with the input

file. All ten recovered files were identical to the input file.

2) Hunspell: We ran our Hunspell application from Sec-

tion V over the same input file we used in the FreeType

evaluation. Again, we collected a page-fault trace of the run

and used our attack specific post-processing tool to recover an

ASCII file from it. We repeated the experiment ten times.

Unlike the FreeType attack, the Hunspell attack does not

recover the input file exactly. Multiple dictionary words map-

ping to the same set of pages, removed affixes and missing

accuracy of recovery
Haven InkTag

words % words %

recovered
original
word

no ambiguity 25320 63.75 27179 68.43
rec. 2-group 6042 15.21 5751 14.48
rec. 3-group 1985 5.00 2554 6.43
rec. ≥4-group 2869 7.22 890 2.24

recovered
without
affix

no ambiguity 1974 4.97 2291 5.77
rec. 2-group 602 1.52 460 1.16
rec. 3-group 213 0.54 145 0.37
rec. ≥4-group 291 0.73 186 0.47

not recovered 423 1.06 263 0.66

Fig. 8: Accuracy of the Hunspell attack on The Wizard of Oz before
applying the language model: over 63% of the words were recovered
exactly.

Haven InkTag
words % words %

recovered exactly 35273 88.81 35760 90.03
recovered without affix 2880 7.25 2896 7.29
not recovered or incorrectly re-
solved ambiguity

1566 3.94 1063 2.68

Fig. 9: Accuracy of the Hunspell attack on The Wizard of Oz after
applying the language model: over 88% of the words were recovered
exactly.

words in the Hunspell dictionary can cause the attack output

to differ from the original input. Furthermore, the attack does

not recover punctuation marks and white spaces.

Figure 7 shows statistics on the effectiveness of the attack. It

shows how many words from the en US Hunspell dictionary

have a unique page-fault pattern (group size 1). These words

are uniquely identified by the attack. The figure also shows

how many words share their page-fault pattern with n other

words. For such words, the attack can only recover a group

of n+ 1 words which includes the word that is being looked

up.

More than three quarters of the words from the dictionary

are uniquely identified by their page-fault pattern during the

hash table lookup. More than 95% of the words are in groups

of at most three words (group size ≤ 3). No word is in a

group of more than 10 words. The small differences between

the statistics for InkTag and Haven are due to differences in

the memory allocation code of each system.

To resolve ambiguities caused by multiple dictionary words

being mapped to the same set of pages, we used a commer-

cial English language model. This model contains 130,840

unigrams, 1,573,498 bigrams and 1,239,511 trigrams. Given

multiple candidates, we first check if there is a matching

trigram and, if so, pick the one with the highest probability.

If there is no matching trigram, we check the bigrams. If

there is a matching bigram, we pick the one with the highest

probability. Otherwise, we check the unigrams. If there is a

matching unigram, we pick the one with the highest probabil-

ity. Otherwise, we keep all the candidate words.

Figure 8 and Figure 9 show the accuracy of our Hunspell

attack for The Wonderful Wizard of Oz before and after

applying the English language model. More than 63% of the
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Folklore, legends, myths and fairy tales
have followed childhood through the ages,
for every healthy youngster has a wholesome
and instinctive love for stories fantastic,
marvelous and manifestly unreal. The winged
fairies of Grimm and Andersen have brought
more happiness to childish hearts than all
other human creations.

folklore *legend* myths and fairy *tale*
have *follow* childhood through the *age*
for every healthy youngster has a wholesome
and instinctive love for [store] fantastic
marvelous and *manifest* unreal the [wine]
*fairy* of [grill] and Andersen have brought
more happiness to childish *heart* than all
other human *create*

Fig. 10: A sample output of the Hunspell attack on Haven (right) and the original input (left). Brackets ([ ]) denote words that the attack
could not uniquely identify and for which the language model failed to resolve the ambiguity correctly. Asterisks (*) denote words with
missing prefixes or suffixes. The sample text is the first paragraph of the Introduction in The Wonderful Wizard of Oz.
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Fig. 11: A small sample of the images we used to test the libjpeg
attack.

words were recovered exactly without the language model. The

accuracy was improved to 88% after using the language model

to resolve ambiguities. If we include words recovered without

affix, the accuracy reaches 96%. Less than 1.1 percent of the

words were not recovered at all because they were either not

in the dictionary (e.g., names) or skipped by Hunspell (e.g.,

numbers).

Overall, our Hunspell attack demonstrates significant infor-

mation leakage that permits recovery of almost the entire input

text. Even without punctuations, the output of our attack tends

to be easily comprehensible. Figure 10 shows a sample.

3) Libjpeg: We downloaded a test set of 18 JPEG images

from various sites on the internet. We tried to collect a diverse

set of images, including complex high-resolution photos as

well as simpler logo-style images.

We ran the libjpeg application from Section V on these input

files. For each run, our attack code collected a page-fault trace.

Our post-processing tool extracted a BMP file from each of

the traces.

Figure 11 displays two examples of pairs of inputs and

images recovered by the attack. Figure 15 in the appendix

displays all other image pairs in our test sample. The quality

and accuracy of the extracted outputs varies depending on the

input image. However, in most cases, enough information was

leaked to easily identify important features of the image.

4) ASLR: We ran our ASLR attack against FreeType, Hun-

spell, and libjpeg on Windows. For every loaded executable,

we need to capture only the first two code page faults on

the executable to recognize it. For each application, we ran

the experiments 10 times. In all experiments, we correctly

identified all loaded executables.

B. Performance

This section analyzes the overhead introduced by the at-

tacks. The goal is to analyze whether the attacks cause delays

in the execution of the applications that are so large as to

draw attention to them. On normal commodity systems, events

such as interrupts, network and disk activity, virus scans

and periodic activity by different system services introduce

jitter into the execution time of applications. Multi-user cloud

hosting environments, which are the target of recent shielding

systems [10], [39], display an even higher level of background

noise due to network delays, activity by other users on the

same physical machine or virtual machine migration. The

question we try to answer in this section is whether the

delays caused by the attacks could plausibly be hidden in this

background noise.

1) FreeType: Figure 12 compares the baseline running time

of the FreeType application with the running time when under

attack (attack time). The numbers under the whole file column

are averaged over ten runs over the entire 208 KB Wizard

of Oz input file. The overhead is 3.74x on Haven and 32.1x

on InkTag, with total attack running times of 19.3 seconds

on Haven and 280.21 seconds on InkTag. These times are

not insignificant. However, the FreeType application is effec-

tively a microbenchmark. It renders hundreds of thousands

of characters into a memory buffer in a tight loop. Real

applications typically would intersperse font rendering with

other operations such as waiting for keyboard input or, if

running in the cloud, communicating screen contents over the

network to a remote terminal.

We consider rendering an entire screen full of characters

to the user as an example of an expensive font rendering

operation a typical application might perform. To approximate

this operation, we have run the attack on chunks of 5 KB from

the original input file. The 5 KB columns in Figure 12 display

the averages over ten runs over the first ten non-overlapping

5 KB chunks from the input file. The running times are 0.52

seconds on Haven and 6.62 seconds on InkTag. The running

time on Haven appears small enough to plausibly disappear in

the timing noise of cloud and even local systems.

The page-fault count (pf count) on Haven is around half

the page-fault count on InkTag. This difference is the result
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whole file 5 KB
Haven InkTag Haven InkTag

baseline time (s) 5.16 8.72 0.18 0.21
attack time (s) 19.3 280.21 0.52 6.62
overhead 3.74x 32.1x 2.89x 31.7x
pf count (million) 28.90 52.97 0.69 1.27
time per pf (ns) 489.5 5125.2 491.0 5054.7
post-proc. time (s) < 100 < 100 < 10 < 10

Fig. 12: Performance of the FreeType attack.

of radically different binaries (due to different compiler opti-

mization strategies) and a less optimized implementation of the

attack on InkTag. The page-fault handling time is significantly

lower on Haven as a result of the highly optimized low-level

page-fault handling code we were able to use with Haven. On

InkTag, the restrictions of the hypervisor interface result in

longer page-fault handling times. In particular, every edit of a

page table entry requires a separate hypercall at the cost of a

virtual machine exit. This causes the attack to have a higher

overhead on InkTag.

The post-processing times appear unproblematic, as the

attacker can do all post-processing off-line on separate ma-

chines.

2) Hunspell: We have done a similar analysis for the

Hunspell attack (Figure 13). Here, the running time of the

attack when spell checking the entire 208 KB input file is 2.94

seconds on Haven and 11.95 seconds on InkTag, resulting in

overheads of 25.2x on Haven and 99.6x on InkTag.

Again, the running time on InkTag is noticeable, but some-

what less so on Haven. Also, the input file (an entire book)

appears to be significantly larger than an average document.

In general, reducing the document size beyond a certain point

will have a limited effect, as a constant part of the overhead

is incurred while Hunspell reads in the dictionary.

On InkTag, we have used the following optimization to

avoid this overhead. We have observed the malloc behavior

in InkTag’s C library (uClibc) to be deterministic during

dictionary loading. As Hunspell itself is also deterministic,

the layouts of the dictionary data structures in memory are

identical in every run. This allows us to record them offline

and to omit tracing the insertion of the dictionary words. For

small documents, this reduces the overhead significantly. For

example, checking the last chapter of the book (77 words)

only requires 0.089s.

While the attacker does not know a priori how long the

document is, the attack code can track the overhead incurred

and interrupt the attack if the overhead exceeds a certain

threshold.

Again, due to different binaries and different variants of the

attack implementation, the numbers of page faults on InkTag

and on Haven differ. As in the case of FreeType, the page-fault

handling time for the InkTag attack is significantly larger. The

post-processing time does not appear to be an obstacle.

3) Libjpeg: In Figure 14, we report the performance of

decoding the two images shown in Figure 11 using libjpeg.

Figure 11-a is a 562 KB YCbCr color image with 1920×1282

whole file last chapter
Haven InkTag InkTag

baseline time (s) 0.12 0.12 0.051
attack time (s) 2.94 11.95 0.089
overhead 25.2x 99.6x 1.75x
pf count (million) 5.84 2.41 0.0085
time per pf (ns) 484.2 4955.6 4517.2
post-proc. time (s) < 20 < 10 < 5

Fig. 13: Performance of the Hunspell attack.

562 KB image 36 KB image
Haven InkTag Haven InkTag

baseline time (s) 0.08 0.12 0.04 0.014
attack time (s) 16.77 42.59 0.50 2.84
overhead 209.6x 354.9x 12.5x 202.8x
pf count (million) 35.8 8.97 0.95 0.56
time per pf (ns) 482.7 4735.5 466.0 5035.2
post-proc. time (s) < 5 < 5 < 5 < 5

Fig. 14: Performance of the attack on libjpeg on two test JPEG
images. The first is a 1920×1282, 562 KB, YCbCr color space image
(Figure 11-a); the second is a 800×600, 36 KB gray scale image
(Figure 11-b).

pixels; Figure 11-b is a 36 KB gray scale image with 800×600

pixels.

For Figure 14-a, the running time is 16.77 seconds (209.6x)

on Haven and 42.59 seconds (354.9x) on InkTag; for Fig-

ure 14-b, the running time is 0.5 seconds on Haven (12.5x)

and 2.84 seconds (202.8x) on InkTag. The overhead is due

to the fact that we are adding 50 to 300 data page faults

to each invocation of one of the most performance-sensitive

functions in libjpeg. The high cost of handling page faults and

editing page tables on InkTag also contributes significantly to

the overhead, though it incurs fewer page faults compared to

Haven. The post-processing time is only a few seconds.

4) ASLR: Since we incur only two code page faults for each

loaded executable, the performance overhead of our ASLR

attack is negligible.

VII. DISCUSSION AND MITIGATIONS

This paper shows that controlled-channel attacks are a real

threat to shielding systems that has, so far, not been taken

into consideration. In addition to the page-access-based attacks

demonstrated in this paper, there are several other potential

information channels controlled-channel attacks could exploit:

thread scheduling, patterns in the application’s system calls

to the operating system or low-noise cache side channels

constructed by the operating system. The threats posed by

these channels remain to be explored.

Like traditional cache side-channel attacks, the attacks in

this paper exploit memory access patterns that depend on

application secrets. Existing mitigation strategies for cache

side-channel attacks could, in principle, be adapted for the

attacks in this paper. Such mitigations can be applied at the

application level [21] or at the system level [32], [53].

At the application level, the main strategy is to rewrite

the application such that its memory access pattern does not

depend on sensitive data. This can be done manually [15]
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or with the help of a special compiler [21]. This approach

is bound to impact application performance and may require

a significant development effort. The task is furthermore

complicated by the fact that, in general, sensitive application

information (e.g., JPEG images) may be larger and more

distributed than the crypto key targets of typical cache side-

channel attacks. Even identifying the sensitive data completely

may require an exhaustive security analysis of the application.

System-level mitigations appear to pose fewer obstacles. At

one extreme, the shielding system could prohibit paging by

the operating system. But this would also disable an important

feature of shielding systems. A less invasive solution would be

to prohibit paging only for a smaller subset of the application’s

pages. For example, keeping the operating system from paging

executable pages in application binaries would prevent all

attacks described in this paper. More generally, given an

analysis of its data dependent memory access patterns, the

application might choose the set of pages that has to be

protected and use an InkTag-style mechanism to communicate

this set to the shielding system.

Self-paging [25] as suggested in [10] moves paging from the

operating system into the application. The operating system

continues to manage how much memory each application

controls. Enabling self-paging for shielding systems would

require new hardware (in the case of Haven) or new paging

interfaces in hypervisor-based shielding systems. It would also

require significant changes to legacy operating systems and

additional self-paging code in the protected processes.

Hiding the application’s memory access pattern through

noise injection or ORAM techniques [36] is another direction.

Similarly, one could attempt to obscure the layout of the

binaries in memory through variants of fine-grained ASLR

(e.g., [23]). However, the tradeoffs between the resulting

protection and the associated overhead are unclear and would

require further research.

Finally, the application or the shielding system could at-

tempt to detect artifacts of the attack. Page fault counts and

execution time could be used as signals. As analyzed in

Section VI, the execution time may not be a reliable indicator

for an attack. The attacker could also respond by interrupting

or aborting the attack once it incurs a certain overhead or page

fault count. The trade offs between effectiveness and potential

for false positives of this approach remain to be explored.

VIII. RELATED WORK

A. Removing the operating system from the TCB

Feature rich commodity operating systems are complex and

have been plagued by a long list of security vulnerabilities.

This has inspired work on removing the operating system from

the trusted computing base (TCB). More recently, enabling

users to run applications on cloud hosting services without

having to trust the service provider has emerged as a second

powerful motivation.

One line of work tries to minimize the software TCB and

targets small, secure applications or application fragments that

are especially written for a small-TCB environment [38], [37],

[35], [45]. The absence of legacy allows for the design of

simple new interfaces between the secure applications and

the rest of the system. At the same time, lack of support for

legacy applications and a low level of system support for new

applications are serious obstacles to platform adoption.

Thus, a second line of work seeks to leave existing applica-

tions and platforms as intact as possible, while excluding the

operating system from the TCB. These shielding systems sup-

port legacy applications and most features of legacy operating

systems. Overshadow [19], [42], CHAOS [18], InkTag [27],

SP3 [49] and AppShield [20], use a hypervisor to isolate

application memory and CPU state from the operating system.

Virtual Ghost [22] combines compiler instrumentation and

runtime checks on operating system code to achieve similar

isolation goals. Haven [10] relies on Intel SGX [29] CPU ex-

tensions to protect applications. In these systems, the operating

system manages resources (e.g., memory, files) for protected

applications.

B. Attacks against protected applications and defenses

Iago attacks [17] demonstrate that isolating memory and

CPU state is not sufficient to protect legacy applications on

shielding systems. Applications interact with the operating

system via the system call interface. Legacy applications

generally do not check return values for possible attacks by

the operating system. The operating system can exploit this

lack of verification and return carefully crafted values, such as

new memory mappings that overlap with the stack, to corrupt

application behavior.

InkTag [27] and Virtual Ghost [22] interpose a layer of

trusted code between the application and the complex system

call interface. The code performs additional checks for a num-

ber of system calls in order to defeat the known Iago attacks.

Haven [10] uses a library operating system to substantially

reduce the size and complexity of the system call interface,

making protection from Iago attacks a more tractable task.

In contrast to Iago attacks, controlled-channel attacks ex-

tract application data through side channels without changing

application behavior or returning adversarial values to system

calls.

C. Side-channel attacks

There is a large body of work on various types of side chan-

nels, including power [34], timing [33], [16], process memory

footprints [31], network packet sequence numbers [43] and

resource usage statistics [54]. Cache side-channel attacks [47],

[12], [40], [7], [8], [14], [46], [44], [52] are most closely

related to the attacks described in this paper, as both exploit

secret-dependent memory accesses by the victim.

Realistic attack models involve unprivileged attackers who

have to cope with high levels of platform noise. Typically,

the attacker gathers data over many runs and eliminates the

noise by statistical techniques [16], [12]. The need to observe

the victim over many runs turns crypto code with a fixed key

into the target of most attacks. Hund et al. attack kernel-level
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ASLR [28], again using repeated observation and statistics to

overcome the noise.

If physical memory is shared between the victim and the

attacker, even an unprivileged attacker has direct control over

cache lines used by the victim. Such settings enable the much

more efficient Flush-Reload-based cache side channels [24],

[50]. Several authors demonstrate efficient crypto attacks [50],

[30], [11], [48]. Zhang et al. [51] describe three interesting

non-crypto attacks.

A number of differences separate this line of work from

the channel and the attacks explored in this paper. Our attack

targets a different class of system (shielding systems). This

results in different adversary models (untrusted OS vs. unpriv-

ileged VM or user mode code), different channels (page faults

vs. cache misses), different challenges (page-fault granularity

vs. false cache hits/misses) and different techniques (page-

fault sequences vs. precise polling). Our adversary is more

powerful, but our attack is also able to extract much richer

information (full text and images).

The page-fault channel, which is not available to un-

privileged attackers, allows us to receive event notifications

deterministically (through a page fault). This enables robust

tracking of high-frequency events even under system loads

that would add significant noise into the cache channel.

Going beyond the control flow technique of [51], two of

our three attacks rely critically on tracking data flow (e.g.,

tracking the hash table in Hunspell). It is unclear how the large

number of virtual addresses that is required could be tracked

with Flush-Reload in practice. Furthermore, the required data

pages are unlikely to be available to the attacker of Flush-

Reload, as they would not be shared under standard Flush-

Reload models (PaaS, memory deduplication).

IX. CONCLUSIONS

This paper introduces controlled-channel attacks as a new

type of attack against shielding systems and demonstrates

that controlled-channel attacks are a real threat that must be

addressed in the design of those systems.

We design specific controlled-channel attacks against three

widely used application libraries and implement and execute

them on two of the most modern and sophisticated shielding

systems. Our attacks are able to extract entire documents

and approximate versions of JPEG images from protected

processes on these systems. We also discuss a number of

potential mitigations.
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Asanović, John Kubiatowicz, and Dawn Song. Phantom: Practical
oblivious computation in a secure processor. In ACM Conference on
Computer and Communications Security (CCS), 2013.

[37] Jonathan M. McCune, Yanlin Li, Ning Qu, Zongwei Zhou, Anupam
Datta, Virgil Gligor, and Adrian Perrig. TrustVisor: Efficient TCB
reduction and attestation. In IEEE Symposium on Security and Privacy,
2010.

[38] Jonathan M. McCune, Bryan J. Parno, Adrian Perrig, Michael K. Reiter,
and Hiroshi Isozaki. Flicker: An Execution Infrastructure for Tcb
Minimization. In ACM European Conference in Computer Systems
(EuroSys), 2008.

[39] Emmanuel Owusu, Jorge Guajardo, Jonathan McCune, Jim Newsome,
Adrian Perrig, and Amit Vasudevan. OASIS: On achieving a sanctuary
for integrity and secrecy on untrusted platforms. In ACM Conference
on Computer and Communications Security (CCS), 2013.

[40] Colin Percival. Cache missing for fun and profit. In BSDCan 2005,
Ottawa, 2005.

[41] Donald E. Porter, Silas Boyd-Wickizer, Jon Howell, Reuben Olinsky,
and Galen C. Hunt. Rethinking the library OS from the top down.
In International Conference on Architectural Support for Programming
Languages and Operating Systems (ASPLOS), 2011.

[42] Dan RK Ports and Tal Garfinkel. Towards application security on
untrusted operating systems. In USENIX Workshop on Hot Topics in
Security (HotSec), 2008.

[43] Zhiyun Qian, Z Morley Mao, and Yinglian Xie. Collaborative TCP
sequence number inference attack: how to crack sequence number under
a second. In ACM Conference on Computer and Communications
Security (CCS), 2012.

[44] Thomas Ristenpart, Eran Tromer, Hovav Shacham, and Stefan Savage.
Hey, you, get off of my cloud: exploring information leakage in
third-party compute clouds. In ACM Conference on Computer and
Communications Security (CCS), 2009.

[45] Nuno Santos, Himanshu Raj, Stefan Saroiu, and Alec Wolman. Us-
ing ARM TrustZone to build a trusted language runtime for mobile
applications. In International Conference on Architectural Support for
Programming Languages and Operating Systems (ASPLOS), 2014.

[46] Eran Tromer, Dag Arne Osvik, and Adi Shamir. Efficient cache attacks
on AES, and countermeasures. Journal of Cryptology, 23(2):37–71,
2010.

[47] Yukiyasu Tsunoo, Teruo Saito, Tomoyasu Suzaki, and Maki Shigeri.
Cryptanalysis of DES implemented on computers with cache. In Pro-
ceedings of the 2003 Cryptographic Hardware and Embedded Systems,
pages 62–76, 2003.

[48] Joop van de Pol, Nigel Smart, and Yuval Yarom. Just a little bit more.
In CT-RSA, 2015.

[49] Jisoo Yang and Kang G. Shin. Using hypervisor to provide data secrecy
for user applications on a per-page basis. In VEE, 2008.

[50] Yuval Yarom and Katrina Falkner. FLUSH+RELOAD: A high reso-
lution, low noise, L3 cache side-channel attack. In USENIX Security
Symposium, 2014.

[51] Yinqian Zhang, Ari Juels, Michael Reiter, and Thomas Ristenpart.
Cross-tenant side-channel attacks in PaaS clouds. In ACM Conference
on Computer and Communications Security (CCS), 2014.

[52] Yinqian Zhang, Ari Juels, Michael K Reiter, and Thomas Ristenpart.
Cross-VM side channels and their use to extract private keys. In ACM
Conference on Computer and Communications Security (CCS), 2012.

[53] Yinqian Zhang and Michael K Reiter. Düppel: Retrofitting commodity
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APPENDIX

We ran our libjpeg attack on a set of JPEG images, including

logos, animals, nature-related images and cities, downloaded

from Bing Images and Wikipedia. The results are shown in

Figure 15.
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(a) From Bing Images
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(b) From Wikipedia Animal page
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(c) From Wikipedia Nature page
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(d) From Wikipedia City page

Fig. 15: Test set of images for the libjpeg attack.
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