685% QuiaT Review 01% Ca‘H'v\\gbo\ Nuwsdskqpian
o _B\O\Sﬁ\’) Bouno\l Mar 19 92012

~Bound Cheddny do avoid buler overflow LI
600‘ 5 < AN
oalsi Space , Time E-PQC\UT\') Ba;::\t\"o;‘r\?\ormne'f ; OMP?“U‘*S) and whole arry
Com of the hole oby &5 SEE Tl Tiee this much prce
®_8uddy Al oceior f\ (7 foc nis ok,
_ Make/ sufe o\\lOCOd’Od Size &

— MimmMmum St = Q‘O""_Q\‘%

: " bag3y
< no fwo d‘%)s Share the some S0 S \mondery
Q_Bound Table \ L
N . W a4 ® NOT 02) S\Ze
_ Keep mlo{ M Q“OM\VCA Size b)\ﬁeao 76‘|2€ﬁ?l

Sct_sizes 16 3 1 rove ety "
70 Mt ay , Intialize ‘able slot with(3
¢

W‘
W% . AQD =) ‘
)= = e qukwoxro\ Compatorbilhg
[168 3 Y - \ pointer Yo ob - allocotted 1)5 exenal

)
uninsrumented Qibrocly will NOT rove
" odera 034 Consuppo Yoound de o
Vit mem 27775 poond Taldel BsUL winen badgy (odle. 17y
addresy —m oL CER %S

toble [p>>4) Pealloceie ab\?zl sér the glok 4o 3
Bx bulgy 4 bleTA — mark cwailble ‘
= bufE ¢ @x 1¢ — J“Se [1] - Cﬂg(slﬁ,stg@
= Bx1®_ ard size = fable (p>>4]
Base = P &~ (size-1)

Q@ d’\eckif_\g

' clear Qow biks o p
Bound dnecking on ¢’ pointer

derived rom ponter p

lpn ¢ >> Table [‘,>>‘4:E Ex. p'=p+30 ROR\DC' +rying '\o\ access
. M:fi: oK : C @%;E: boun;(n“‘%r‘\‘o"f&?\;bgﬁ? S
o oo ¢ S — oot 008 b =k it
benisenn QQMLZ::“}\@ > (ake an ERROA = ‘Terminalie. pogrom

bute [66] = ‘A 3 ERROR 9999 bovnd, enly keep Track ot all ocored,
* (butt 430) - A =5 Don't know USES YeyU®td size nee
buftCag)=A" werk Eine

[Bukber Overflow + Laba Cattalyya .

(doesnt howe much timg fo cover)
Please make sure You vndesgrand What Yoo ave O‘W‘ﬂ inLab 1

woid Lone (it angy | char? Tnput) §

f‘ Qx‘
wnpur_odd e 2
£ wt pom

ara A
e char boffrad);

obp —|__old-fop | sirepy (butt) input);

num
i

\a.‘gh

oV er(:\ow

botd ||

Row

Miorek Yo change conro) fow

—overweife return o\&&te'§3+
- n Lonchion pointer
could force $o run come path
- dnange datavailve e P
== i Chum =)
Some solutions 3 peint£ (secret)

m Stack Canaries
- compiler machanism insa‘hhg conory bedore, ddum ot;Uw;s on the stad<

Ca\hoxﬂar mndom ~H
Pro conttin N UL termination) j
to awvold aftock WdHﬂg Corthes ¥ he con, guess canaryy

be- mest Lunchion Mﬂ&\tnﬂ s\'r\‘r:j will Yermiheite
Lo 3&%()
A ASLR ’ ‘
~rendom e addres spoce o et oftacier com‘t easchg_
hardicode the address.

3 WX
= Non execvtable — can‘t execute cede on the skack .

2017

7. [6 points]:

CO\‘H'U\\S\OO\ N.

LReyicm old q,u‘\zeﬂ

The program prints O 0100 5a. What was N? Hint 1: there is only one correct answer. Hint 2: recall
that Baggy manipulatgs certain bits in pointers for bookkeeping.

16X =

2011

oot oddre
Ox-.---0

botf =

0s (_’\g M int b;
@X 10 Oi 0 a @ %4. 0& Zﬁﬁrcéu?], 47128

Q=100100 (O
so

Ob 1001 .

@)% 10010050

T 008 bt is set.

WwaoJ...

= 55 within alf slot size a
bot ast Ox... 59

/B3 10010050&

struct foo {
int a; 4

248

Way from this bound any

Dx100 1005 A = §x1001006C+ N
N = #

This guestion wosnt covered dwring <M review but many soudens
want devailed solution.

IV Baggy bounds checking

doesn’t boke care of bound

i i o ?;d% S‘EUC*
Consider a system that runs the following code under the Baggy bounds checking system, as described in he
Baggy boungs

paper by Akritidis et al, with slot_size=16:

struct sa {
char buf[32];
void (+f)T (voi
yi

void (xf)
char buf[32];

.

s struct sb {
s

9 }i

u void handle (void) (

244 =3

(void);

P

wigh

Low

364
|

2 printf("Hello.\n");

1B}

15 void buggy(char sbuf, void Ay{f) (void)) {

6 *f = handle;
v gets(buf);
i (x£) (;
W}

2 void testl(void) {
2z struct sa x;

» buggy (x.buf, &x.f);

£

% void test2(void) {
» struct sb x;

5 buggy (x.buf, &x.£) ;X

E

a1 void test3(void) {
» struct sb y;
» struct sa x;

w void testd (void)
s struct sb x[2]

» buggy (x[0]. buf, ax(1].

w)

% buggy (x.buf, &y.f);
}

fxaed2 = 10T 8.

£);

4

anw*“iwgoum

overwste. to Change
e contol Flow

= B"‘S‘Jﬁ Boynd

ret
s

.

ba

et <|
¢) 33@
Vet @

12%

9. [6 points]:
AFalse If function test 1 is called, an adversary can construct an input that will cause the
program to jump to an arbitrary address.
B. True If function test 2 is called, an adversary can construct an input that will cause the
program to jump to an arbitrary address. e P‘”QN el'\k b B
3 Se E I

C. True If function test 3 is called, an adversary can construct an input that will caus
prograni'tomp to an arbitrary address.

@ False If function test4 is called, an adversary can construct an input that will cause the
progfam (o jump to an arbitrary address.

For the next four questions, determine what is the minimum number of bytes that an adversary has to provide
as input to cause this program to likely crash, when running different test functions. Do not count the newline
character that the adversary has to type in to signal the end of the line to get s. Recall that get s terminates
its string with a zero byte.

10. [4 points]: What is the minimum number of bytes that an adversary has to provide as input to
likely cause a program running test 1 to crash?

32 overwrite ‘c

11. [4 points]: What is the minimum number of bytes that an adversary has to provide as input to
likely cause a program running test 2 to crash?

64 —4 =po

12. [4 points]: What is the minimum number of bytfs that an advaag hbas to provide as input to

likely cause a program running t est 3 to crash?

&4

13. [4 points]: What is the minimum number of bytes that an adversary has to provide as input to
likely cause a program running test4 to crash?

22 ovewrite &

Assume the compiler performs no optimizations and places vaiables on the stack in the order declared, ()
stack grows down (from high address to low address), that this is a 32-bit system, and that the address of

handle contains no zerg bytes.

