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7. [6 points]:
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The program prints O 0100 5a. What was N? Hint 1: there is only one correct answer. Hint 2: recall
that Baggy manipulatgs certain bits in pointers for bookkeeping.
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struct foo {
int a; 4
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Consider a system that runs the following code under the Baggy bounds checking system, as described in he
Baggy boungs

paper by Akritidis et al, with slot_size=16:

struct sa {
char buf[32];
void (+f)T (voi
yi

void (xf)
char buf[32];

.

s struct sb {
s

9 }i

u void handle (void) (
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2 printf("Hello.\n");

1B}

15 void buggy(char sbuf, void Ay{f) (void)) {

6  *f = handle;
v gets(buf);
i (x£) (;
W}

2 void testl(void) {
2z struct sa x;

» buggy (x.buf, &x.f);

£

% void test2(void) {
»  struct sb x;

5 buggy (x.buf, &x.£) ;X

E

a1 void test3(void) {
»  struct sb y;
»  struct sa x;

w void testd (void)
s  struct sb x[2]

»  buggy (x[0]. buf, ax(1].

w )

% buggy (x.buf, &y.f);
}
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9. [6 points]:
AFalse If function test 1 is called, an adversary can construct an input that will cause the
program to jump to an arbitrary address.
B. True If function test 2 is called, an adversary can construct an input that will cause the
program to jump to an arbitrary address. e P‘”QN el'\k b B
3 Se E I

C. True If function test 3 is called, an adversary can construct an input that will caus
prograni'tomp to an arbitrary address.

@ False If function test4 is called, an adversary can construct an input that will cause the
progfam (o jump to an arbitrary address.

For the next four questions, determine what is the minimum number of bytes that an adversary has to provide
as input to cause this program to likely crash, when running different test functions. Do not count the newline
character that the adversary has to type in to signal the end of the line to get s. Recall that get s terminates
its string with a zero byte.

10. [4 points]: What is the minimum number of bytes that an adversary has to provide as input to
likely cause a program running test 1 to crash?

32 overwrite ‘c

11. [4 points]: What is the minimum number of bytes that an adversary has to provide as input to
likely cause a program running test 2 to crash?

64 —4 =po

12. [4 points]: What is the minimum number of bytfs that an advaag hbas to provide as input to

likely cause a program running t est 3 to crash?

&4

13. [4 points]: What is the minimum number of bytes that an adversary has to provide as input to
likely cause a program running test4 to crash?

22 ovewrite &

Assume the compiler performs no optimizations and places vaiables on the stack in the order declared, ()
stack grows down (from high address to low address), that this is a 32-bit system, and that the address of

handle contains no zerg bytes.



