
Side-Channel Defense: Defeating Physical Attacks by
Measuring Current Draw

Leah Goggin

1 Background and Motivation

Physical attacks on computers are difficult to defend against. While they are often (and often rea-
sonably) considered unlikely compared to remote attacks, addressing them is critical in situations
such as defending valuable air-gapped systems. In particular, USB-sized devices such as the Bash
Bunny can spoof almost any other USB device and do anything from opening a shell and running
code to sniffing the buffer used by the actual keyboard. A malicious-USB attack can be delivered
either by an attacker gaining physical access to a computer or by a legitimate user being tricked
into inserting the malicious device.
Authenticating all USB devices at the protocol level is impractical because it would require capa-
bilities that are not present in most devices. Rather than attempting this, I used physical measure-
ments of the devices as a way of gathering information about what they are, regardless of what
they may claim to be in their token packets. In particular, I used current draw to distinguish Bash
Bunnies from devices they might emulate and established proof-of-concept for this approach.
Bash Bunnies contain a quad-core Arm A7, 512 MB DDR3, and 8 GB NAND disk and require
about 1.5 amps to operate (considered the ”Battery Charging” spec by the USB standard). Because
the majority of this current is needed by the processor, it is not possible for the Bash Bunny to
spoof this value while it is operating. The USB 2.0 standard allows 500 mA to be drawn by non-
charging devices and the 3.0 standard allows 900 mA.

2 Hardware description

The core of the system is an Intel 8051 microcontroller. The USB host and the 8051 are bridged
by a Cypress 8CKIT-059 PSoC breakout board, which connects to the host with a USB-to-RS232
cable, receives device descriptors, and forwards necessary information to a pin of the 8051. The
breakout board also operates an LCD screen as a UI, telling the user what device is claiming to
be connected. The 8051’s other input is the voltage across a one-ohm resistor on the connected
device’s power line, collected by an ADC0804 analog-to-digital converter.
As outputs, the 8051 controls the power to red and green LEDs and (in some configurations) the
enable pin of an LM18296 buffer on the connected device’s Vcc line.

1

3 Software description

3.1 8051
The 8051 runs x86 assembly responsible for checking current consumption, deciding if it is reason-
able, and operating the LEDs and buffer accordingly–that is, turning on a green LED if the device
is accepted and a red LED and cutting the device’s power if it is judged to be malicious. Since
the ADC is measuring voltage drop across a one-ohm resistor, the incoming voltage measurement
is equivalent to the current into the connected device. At present, the threshhold which devices
identifying themselves as HIDs or mass storage may not exceed is hardcoded into the assembly.

3.2 PSoC
The PSoC receives the connected device class from the host as a single-byte identifier, converts
it to a human-friendly string, and displays it on the LCD. (The present system only distinguished
between HIDs, mass storage, and ”other”, but it would be straightforward to add code for all device
classes.) It is also responsible for exercising the policy of what classes may draw what currents.
It sends an interrupt to the 8051 and operates another pin to signify whether the device may or
may not exceed the threshhold. The current implementation allows all devices other than HIDs
or storage to do so, but this is mostly meant to allow demonstration that the 8051 isn’t blindly

2

rejecting all devices that exceed the amperage threshhold, i.e. the 8051 and hardware will behave
appropriately if something like a cell phone is connected as long as the relevant code is added to
the PSoC. The ”other” classification can be considered a stand-in for legitimate charging devices
that have high current draws.

3.3 Host
The host uses a Python wrapper of existing C libraries to query the ID of a connected device, then
passes this information to the PSoC, which is also connected as a USB device. In practice this
code would need to run in the kernel to ensure it happens immediately upon connection of a USB
device, before the driver is loaded, but for proof-of-concept it is implemented as a script using a
Python-wrapped version of libusb.

4 Results

4.1 Successes
Overall, the project was successful as a proof-of-concept. My system is able to reliably distinguish
between Bash Bunnies emulating keyboards/flash drives and real keyboards and flash drives. It
can enforce a policy, configurable in simple C code, of what device classes may draw what level of
current. It can in principle efficiently disconnect power to a malicious device, with shortfall in that
respect described below. It displays a human-friendly string on an LCD, alerting a hypothetical
user that what they may have thought was a flash drive is attempting to emulate a keyboard.

4.2 Shortcomings
Current cutoff My system can make and signal (through LEDs) a decision about whether a
connected device is malicious. It can also cut off current to a device by manipulating the enable
pin of an LM18296 buffer. Unfortunately, this buffer is only rated for up to 1 amp and so it is
not possible to run the Bash Bunny with its power line routed through the buffer. Other devices
can be powered through it, and I temporarily tweaked the code to establish that the approach does
work, i.e. if the current threshhold is lowered to below a keyboard’s current draw and a keyboard
is plugged in, the 8051 is able to cut power to the device port upon deciding it’s ”malicious” and
restore it on reset. I’m confident that swapping the LM18296 for a similar chip with a higher max
amperage would give the full desired functionality.
Another issue with the current cutoff is that the host-side software currently takes the form of
a Python script that must be launched by the user from the command line, meaning that huge
amounts of USB traffic could be exchanged by the time the 8051 is brought into play. The Python
script consists largely of stitched-together wrapped libc functions, so it should be straightforward to
achieve the same functionality in C. This code would have to run in the kernel, executing between
the initial USB setup protocol and the loading of the device driver.

3

Adherence to USB standard As discussed in the background, the Bash Bunny’s spec calls for
a 1.5A current source, well above the .9A maximum allowed by the USB standard. In practice,
the Bash Bunny may draw less than .9A for periods of time. While this is in some sense not
a problem because the real keyboards and flash drives draw so little current that it is still easy to
distinguish them, it does imply that a system built on the current-draw principle can never guarantee
detecting the Bash Bunny with no false positives against legitimate USB devices. Using an average
rather than instantaneous current measurement could probably give negligible false negatives and
positives.

Requirement of host-side software My hope was to locate my system completely external to
the host, such that a more streamlined version could function as a transparent sleeve over a USB
port. Unfortunately, it is very difficult to determine a USB device’s device class just by watching
the electrical signals it sends across a breadboard. The options were either to use a surface-mount
chip that carries on a full USB protocol with the device and the host (impossible for this project
because breakout boards with accessible pins were prohibitively expensive) or to work around the
problem by asking the host for the device class. This is not an ideal solution because 1. it forces a
user to modify their kernel, as mentioned above, and 2. it requires 2 host USB ports to connect a
single device. A more developed version may either use more complex chips or be located entirely
within the host to avoid this.

4.3 Security characteristics
As mentioned above, the system is currently only aware of HIDs, mass storage, and ”other” USB
devices. For a complete system, it would be necessary to add code for each device class and deter-
mine a policy defining which classes may draw how much current.
There is currently no functionality allowing the host to make sure that my system is connected to
its port, meaning an attacker with physical access could unplug it amd plug their own device in
normally. This functionality could be implemented by some sort of handshake conducted before
new device connections are accepted. This would require the module capable of USB communi-
cation with the host (currently the PSoC) and the module that carries connected-device traffic (the
Main USB Pipeline in the diagram) to be collapsed to a single port (which is obviously desirable
in a more developed version anyway).
My system assumes that the device under study is being powered by the host. It is possible for an
attacker to externally power a device and not connect to the host power line at all, in which case
the current measurement will always be zero. A better version of my device could prevent this in
at least two ways. One would be to prevent the attacker from accessing the GND pin, since the
connected device must share a common ground with the host to communicate with it (and to avoid
damaging itself or the host). Another would be to note that no operating device draws no current,
and anything doing so should be considered suspicious.
This rule was not possible to implement since the available analog-to-digital converter is not sen-
sitive enough to reliably distinguish between true zero and a keyboard’s current draw, but like the
buffer, this should be fixable just by getting higher-end chips. Some range vs. precision difficulties

4

counld be introduced, but this could be fixed by, for example, including one ADC that covers the
0 to 2 volt range and one that covers something like 0 to 30 mV.

5

5 Appendix A: Host-side script

import serial.tools.list_ports
import usb.core

ports = [comport.device for comport in
serial.tools.list_ports.comports()]

name = ports[0] # making assumption of exactly 1 serial port
port = serial.Serial(name)

#stash everything already plugged in
devs = usb.core.find(find_all=True) # generator
stash = []
for dev in devs:

stash.append((dev.idVendor, dev.bDeviceClass, dev.bus, dev.address))

junk = input("please plug in device and press Enter")

def dev_eq(dev1, dev2):
for i in range(4):

if dev1[i] != dev2[i]:
return False

return True

plugged_dev = None
now see what’s new
new_devs = usb.core.find(find_all=True)
for new_dev in new_devs:

found_match = False
new_dev_tuple = (new_dev.idVendor, new_dev.bDeviceClass,

new_dev.bus, new_dev.address)
for old_dev_tuple in stash:

if dev_eq(old_dev_tuple, new_dev_tuple):
found_match = True

if not found_match:
plugged_dev = new_dev
break # assume user only added 1 device

config = plugged_dev[0]
intf = usb.util.find_descriptor(config)
dev_class = intf.bInterfaceClass
print (dev_class)

keyboard: 413c:2107

6

psoc: 04b4:f131
flash drive: 0781:5575

message = str(dev_class)
port.write(message.encode(’utf-8’))
port.close()

7

6 Appendix B: 8051 code

; used: R0, R1, R2, R3, R4

; P3.2 is interrupt from ADC (unused)
; P3.3 is interrupt from PSoC
; P3.4 is can_use_high bool from PSoC
; P3.5 is LM18293 (current control to device)

.org 00h
ljmp start

.org 013h
ljmp EX1_ISR

start:
; init R1 to store most recent ADC value
mov R1, #0h

; init R3 to store our ADC result cutoff
mov R3, #06h

; start ADC
mov dph, #0feh
mov dpl, #10h
mov a, #0h
movx @dptr, a

; SETUP 8255
; all ports output
mov dph, #0feh
mov dpl, #0bh
mov a, #80h
movx @dptr, a
lcall waste_time

;set LCD disp for 8bit, 5x7 char set
mov dpl, #0ah ; port C
mov a, #0h
movx @dptr, a ; lower E line
lcall waste_time
mov dpl, #09h ; port B
mov a, #38h
movx @dptr, a ; do stuff? this is probably wrong

8

lcall waste_time
mov dpl, #0ah ; port C
mov a, #04h
movx @dptr, a ; raise E
lcall waste_time
mov a, #0h
movx @dptr, a ; lower E
lcall waste_time

; turn disp on, hide cursor
mov dpl, #09h
mov a, #0ch
movx @dptr, a
lcall waste_time
mov dpl, #0ah ; port C
mov a, #04h
movx @dptr, a ; raise E
lcall waste_time
mov a, #0h
movx @dptr, a ; lower E
lcall waste_time

lcall clear
lcall RAM0

; enable interrupts
mov ie, #84h ; enable EX1

; default allow current to device port
setb P3.5

; default to being a voltmeter
mainloop:

mov dpl, #10h
movx a, @dptr ; fetch ADC value
movx @dptr, a ; start next conversion
mov R1, a ; store newest voltage measure
mov 20h, a ; need to bit-address into voltage
mov a, 0h
jnb 7h, loop6
add a, #25d
loop6: jnb 6h, loop5
add a, #13d
loop5: jnb 5h, loop4
add a, #6d

9

loop4: jnb 4h, loop3
add a, #3d
loop3: jnb 3h, loop2
add a, #2d
loop2: jnb 2h, loopend
add a, #1d
loopend: ; a holds tenths of volts

push acc
lcall clear
pop acc
mov b, #10d
div ab ; quotient in a, remainder in b
anl a, #0fh ; clear high nibble
orl a, #30h ; set high nibble to 0011
mov R2, a ; quotient in R2
lcall display ; print quotient
mov R2, #2eh ; ’.’ in R2
lcall display ; print ’.’
mov a, b ; remainder in a
anl a, #0fh ; clear high nibble
orl a, #30h ; set high nibble to 0011
mov R2, a ; remainder in R2
lcall display ; print remainder

ljmp mainloop

EX1_ISR: ; do nothing if R1 < R3. if more, do something.
mov R4, a ; store whatever main had in acc
mov P1, P3 ; debug
jb P3.4, greenlight ; don’t bother testing current if it’s a known

high-i device

current_test:
mov a, R1
subb a, R3 ; this will be a carry if measured V is less than cutoff
jnc high_current

greenlight: ; not malicious
mov dpl, #0ah ; port C
mov a, #40h ; set C6 (green light)
movx @dptr, a
hang: sjmp hang ; wait for reset
mov a, R4
reti

high_current: ; malicious
clr P3.5 ; disconnect device power

10

mov dpl, #0ah ; port C
mov a, #80h ; set C7 (red light)
movx @dptr, a
hang2: sjmp hang2 ; wait for reset
mov a, R4
reti

display: ; print contents of R2
mov dpl, #0ah
mov a, #01h
movx @dptr, a ; lower e
lcall waste_time ; give LCD time to balance its chakras
mov dpl, #09h ; port B
mov a, R2
movx @dptr, a ; write
lcall waste_time
mov dpl, #0ah ; back to C
mov a, #05h
movx @dptr, a
lcall waste_time
mov a, #01h
movx @dptr, a
lcall waste_time
ret

waste_time:
mov R0, #0ffh
inner:

djnz R0, inner
mov R0, #0ffh
inner2:

djnz R0, inner2
mov R0, #0ffh
inner3:

djnz R0, inner3
ret

clear:
mov dpl, #09h
mov a, #01h
movx @dptr, a
lcall waste_time
mov dpl, #0ah ; port C
mov a, #04h
movx @dptr, a ; raise E

11

lcall waste_time
mov a, #0h
movx @dptr, a ; lower E
lcall waste_time
ret

RAM0:
mov dpl, #0ah ; port C
mov a, #00h
movx @dptr, a ; raise E
lcall waste_time
mov dpl, #09h
mov a, #80h
movx @dptr, a
lcall waste_time
mov dpl, #0ah ; port C
mov a, #04h
movx @dptr, a ; raise E
lcall waste_time
mov a, #0h
movx @dptr, a ; lower E
lcall waste_time
ret

12

7 Appendix C: PSoC code

/* ==

*
* Copyright MIT 6.115, 2013

* All Rights Reserved

* UNPUBLISHED, LICENSED SOFTWARE.

*
* CONFIDENTIAL AND PROPRIETARY INFORMATION

* WHICH IS THE PROPERTY OF MIT 6.115.

*
* This file is necessary for your project to build.

* Please do not delete it.

*
* ==

*/

#include <device.h>

const uint8 HID = ’3’;
const uint8 STORAGE = ’8’;

// unused since rearranged so PSoC decides bool of whether device can
have high current

void data_Write(uint8 data) {
data_0_Write((data & (1 << 0)) ? 1 : 0);
data_1_Write((data & (1 << 1)) ? 1 : 0);
data_2_Write((data & (1 << 2)) ? 1 : 0);
data_3_Write((data & (1 << 3)) ? 1 : 0);
data_4_Write(0);
data_5_Write(0);
data_6_Write(0);
data_7_Write(0);

}

CY_ISR(RX_INT)
{

uint8 incoming = UART_ReadRxData();
//data_Write(incoming) ; // send to output pins to 8051
high_current_bool_Write(((incoming == HID) || (incoming ==

STORAGE)) ? 0 : 1);
int_8051_Write(0); // send interrupt to 8051
CyDelayUs(8);
int_8051_Write(1); // unsend interrupt to 8051

13

if (incoming == HID) {
LCD_ClearDisplay();
LCD_PutChar(’K’);
LCD_PutChar(’E’);
LCD_PutChar(’Y’);
LCD_PutChar(’B’);
LCD_PutChar(’O’);
LCD_PutChar(’A’);
LCD_PutChar(’R’);
LCD_PutChar(’D’);

} else if (incoming == STORAGE) {
LCD_ClearDisplay();
LCD_PutChar(’S’);
LCD_PutChar(’T’);
LCD_PutChar(’O’);
LCD_PutChar(’R’);
LCD_PutChar(’A’);
LCD_PutChar(’G’);
LCD_PutChar(’E’);

} else {
LCD_ClearDisplay();
LCD_PutChar(’O’);
LCD_PutChar(’T’);
LCD_PutChar(’H’);
LCD_PutChar(’E’);
LCD_PutChar(’R’);

}
}

void main()
{

int_8051_Write(1);
LCD_Start(); // initialize lcd
LCD_ClearDisplay();

CyGlobalIntEnable;
rx_int_StartEx(RX_INT); // start RX interrupt (look for CY_ISR

with RX_INT address)
// for code that writes received bytes

to LCD.

UART_Start(); // initialize UART
UART_ClearRxBuffer();

14

for(;;)
{}

}

/* [] END OF FILE */

15

