
cuckoo-http

Using the Cuckoo Cycle Proof-Of-Work problem to harden web
servers against denial-of-service attacks

Srinivas Kaza

github.com/AnimatedRNG/cuckoo-http

1. Abstract

Denial-of-Service attacks incur billions of dollars in damages every year, and have
caused outages for major services. cuckoo-http is a front-end web proxy server
and framework which issues clients a Cuckoo Cycle proof-of-work problem, and
uses the solution as an access token to guard computationally intensive tasks.
The Cuckoo Cycle problem has several desirable properties for this application –
it is memory latency-bound (given a certain set of parameters), has no known
practical time-memory trade-off, and is trivial to verify. To that end, the front-
end proxy processes a small subset of HTTP by representing the parser state as
a simple finite state machine and drops TCP connections as soon as possible.

2. Introduction

In a denial of service attack, the attacker attempts to make a service unavailable
by flooding the underlying system with superfluous requests 1. Generally, the
aim is to prevent legitimate users from accessing the service. A distributed
denial-of-service attack involves using more than one IP address. Collections
of private computers that have been previously compromised by malware, also
known as botnets, can be used to perform large denial of service attacks. Some
of these are more than able to incapacitate small websites, and weaken larger
ones 2.

In the last few years, there have been a few examples of large-scale DDoS attacks
that have managed to disable popular services for hours on end. In late 2016,
the Mirai botnet attacked the DNS service provider Dyn and disabled several
high-profile websites, such as Netflix, AirBnB, Twitter, and Github 3. This
attack was particularly devastating due to the sheer scale of requests received
by incoming servers – the highest peak was estimated to be around 1 terabit

1https://www.incapsula.com/ddos/denial-of-service.html
2https://www.incapsula.com/ddos/botnet-ddos.html
3https://www.wired.com/story/mirai-botnet-minecraft-scam-brought-down-the-internet/

1



per second. Mirai was also unique in that it used poorly-secured IoT (Internet
of Things) devices to accomplish its ends. Given how many unique devices
participated in the attack, traditional DDoS prevention mechanisms were unable
to throttle this traffic. Earlier this month, a record 1.3 terabit per second attack
was attempted on Github, which was fortunately able to redirect the incoming
packets to a CDN (Akamai) 4.

Blockchain-based distributed consensus protocols typically use a proof-of-work
algorithm to generate blocks. A proof of work is a solution to a problem which
is easy to verify (i.e prove that a given solution is correct) but hard to solve (i.e
generate a solution solely given the problem). Bitcoin uses a PoW system based
on the SHA-256 hashing algorithm. The general gist of the algorithm is that the
miner (i.e the person who wishes to solve the PoW problem) must find a string,
given some set of constraints, that has a hash with a certain number of leading
zeros. Given a well-designed hash function, the process of obtaining this string
is very computationally difficult. However, determining that the solution string
is correct is quite simple – just check that the hash of the string has the correct
number of leading zeros 5.

Unfortunately, the SHA-256 hash function is not memory-intensive. Despite
the author’s original intent for most Bitcoin mining to occur on a miner’s
CPU, mining software was quickly developed for GPUs (graphics processing
units), which were orders of magnitude faster. Soon after, FPGAs (field pro-
grammable gate arrays) were designed to mine the coin, and then dedicated
ASICs (application-specific integrated circuits) became a viable option. Mining
pools became dominated by a handful of powerful miners. And to that end,
these miners have used their clout to influence development of Bitcoin. As of
2018, cryptocurrency mining uses as much power as the country of Greece.

Over the years, other cryptocurrencies have emerged that use better PoW
algorithms. Litecoin used the memory-intensive scrypt KDF (key derivation
function) to prevent the proliferation of custom mining hardware 6. While this
endeavor failed, more recent currencies such as Ethereum (based on Ethash),
Zash (based on Equihash), and Monero (based on CryptoNight), have all been
somewhat successful at providing ASIC-resistant proof of work algorithms that
avoid Bitcoin’s tragedy of the commons scenario.

In late 2014, the Cuckoo Cycle algorithm was published by John Tromp. Unlike
other proof-of-work algorithms, Cuckoo Cycle is graph-theoretic, based on the
idea of finding length 42 cycles in massive random graphs 7. The siphash function
is used to determine the edges of the graph 8. Unlike some other cryptocurrencies
(Ethereum or Monero), the verification algorithm (check whether the list of edges

4https://nakedsecurity.sophos.com/2018/03/05/worlds-largest-ddos-attack-thwarted-in-
minutes/

5https://en.bitcoin.it/wiki/Proof_of_work#Example
6https://www.tarsnap.com/scrypt.html
7Cuckoo Cycle: a memory bound graph-theoretic proof-of-work
8SipHash: a fast short-input PR

2



is a cycle) is not at all computationally heavy, Cuckoo Cycle was designed to be
memory latency bound, making it a much less power-intensive algorithm given
that the CPU/GPU is spending most of its time waiting on memory fetches. A
smartphone charging overnight would be a suitable miner. Better miners are
memory bandwidth bound rather than latency bound, but the same principles
apply, except that the CPU/GPU would likely be more busy.

3. Motivation

Most botnets are capable of staging effective attacks because they are limited by
network bandwidth rather than any other computational resource. As evidenced
by the case study above, this is an unfortunate property. To that end, a
“challenge” posed to the user should use a scarce computational resource, such as
processing time, memory, or storage; or a human resource, such as a CAPTCHA.

We intend to use Cuckoo Cycle to introduce this challenge, by requiring clients
to solve a Cuckoo Cycle problem in order to access certain resources on a website.
We use a set of parameters for the Cuckoo Cycle problem that ensure that it is
memory latency bound and requires a substantial amount of memory.

It might not seem obvious why these constraints greatly limit the number of
requests that a client can send to a server. To emphasize this point, consider a
simple example. Imagine a simple botnet which has 10000 computers each with
4 GB of memory and a 1 GHz CPU with 2 cores. That would imply that the
entire botnet has 40000 GB of memory total (ignoring the possibility of swapping
to disk). If each request requires 100 MB of memory and takes 2 seconds to
compute, then the botnet is capable of issuing at most 200000 requests per
second. Despite the sheer volume of requests in the above example, it is actually
not that much – well under 1 gigabit, given the largest request size that this
protocol supports. Also, during an attack the memory requirements can be
increased. This paper assumes that it is reasonable to expect that users of a web
site will tolerate a 1-2 second page load delay and the brief use of 100 MB of
memory.

Another way to look at this solution is from the perspective of total work
performed by the server operator versus the botnet. As mentioned earlier, the
Cuckoo Cycle verification algorithm is computationally lightweight – it merely
involves verifying that the provided nonces (edges in the random bipartite
graph) are a cycle. However, finding such a cycle is several orders of magnitude
more difficult. If verifying the result of some computation requires performing
n operations (i.e for the server), ideally performing the computation (i.e the
client/botnet) should be on the order of 10000n.

Faced with the difficulty of computing the cuckoo problem, an attacker may
instead decide to exploit other flaws in the system, such as the behavior of the
front-end proxy itself. They may decide to spam the server with garbage HTTP

3



requests that do not include valid solutions to the cuckoo problem, in hopes of
exhausting the server’s resources. An easy way to mitigate this problem is to
simplify the front-end proxy as much as possible, parsing the enough amount
of information from the request needed to determine whether it ought to be
cuckoo-verified and whether it is already cuckoo verified, and then forward it to
the primary server. A simple finite state machine will do.

Finally, the memory-latency bound of the Cuckoo Cycle problem makes the
technique friendlier to less powerful internet-connected devices. The majority of
memory accesses in the Cuckoo Cycle miner (given certain problem parameters
that will be detailed in the next section) are cache misses (as they are edge
lookups on a large random graph), which implies that the CPU will be stalled
waiting for data to become available. Indeed, some analysis of core temperatures
during mining suggest pipeline stalling does occur. A natural consequence of this
behavior is that the device will use less of the CPU’s functionality, running cooler
and drawing less power. Given that memory latency in smartphones (LPDDR*)
is comparable to its laptop/desktop counterparts (DDR*), the mining algorithm
runs roughly as fast on mobile (e.g requests take 2-3 seconds rather than 1-2
seconds) as it does on a powerful desktop.

4. Design

cuckoo-http requires a certain handshake between the client and the proxy
server before the request is forwarded to the web application. This handshake
demonstrates that the client has performed a certain amount of work before it
interacts with the server.

For the purposes of this project, the model specified in 4.1 has been implemented.
Section 4.2 covers a more flexible model, which was not implemented for this
proof-of-concept.

4.1 Wrapped Request Model

This request model offers the greatest level of abstraction around the
cuckoo-http service. The web application need not be designed in a way that
takes cuckoo hardening into effect. Unfortunately, this model constrains the
kinds of requests that can be handled by the application.

In the Wrapped Request Model, clients start by requesting a webpage from
the proxy server. The proxy server generates a random 32-byte bytestring,
which represents the header of the cuckoo problem to solve, as well as the other
parameters of the cuckoo problem (easiness and hash difficulty, see section 4.3
for details). It then responds to the client’s request for the webpage with a page
solely consisting of a script tag containing the JavaScript code which solves this
problem, as well as the parameters of the problem embedded in script data tags.

4



This page also contains a script data tag containing the original message request.
At runtime, the miner examines these tags to determine the problem parameters.
Once the problem is solved, the client responds back to the server with another
message, containing the solution to the cuckoo problem, as well as the original
request. The server verifies the solution, and if it is correct, it forwards the result
to the web application.

Figure 1: Wrapped Request Model – A is the client, B is the proxy server, C is
the web application

Admittedly, this is an inflexible and crude solution to performing the handshake.
However, the operation of the proxy server is completely opaque to the web
application, simplifying the process of cuckoo hardening web applications that
already exist.

4.2 Access Token Model

The request model in section 4.1 is a plug-and-play solution designed to guard
HTTP requests (usually GET requests). Unfortunately, it constrains the web
application developer and requires processing within iframes in order to properly
handle POST requests. Integrating cuckoo-hardened requests into the front-end
logic gives the web app more control over the cuckoo handshake and simplifies
reasoning about asynchronous requests.

In the Access Token Model, clients begin the handshake by requesting a cuckoo
header from the server. This request includes a HTTP header that indicates
this intention. The server replies with a 32-byte bytestring, which represents the

5



Figure 2: Access Token Model Diagram

6



header of the cuckoo problem to solve, as well as the other parameters of the
cuckoo problem. Unlike the response from 4.1, the response is not an HTML
page with embedded JavaScript; it just has the header, the easiness, and the hash
difficulty. The client reads the problem parameters, solves it, and then requests
an access token (including the solution as a header). Upon receiving this request,
the server issues a temporary access token to the client, which expires after a
certain amount of time (usually less than 30 seconds). Any request sent to the
server which contains a valid access token is forwarded to the web application.

The short lifespan of the access token is important, as it guarantees that an
attacker cannot effectively share access tokens among its botnet. Even though
the proxy server does verify that each access token is used by only one client, a
botnet operator can circumvent this measure by spoofing individual client IP
addresses. A short access token timeout and IP checks should make spoofing
more difficult. Alternatively, the access token could be limited by use rather
than time. Perhaps access tokens can only be used a limited number of times
before they expire.

The access token model was not implemented for this project, although it
would be easy to add given that all the requisite components have already been
developed.

4.3 Cuckoo Cycle Parameters

Small modifications have been made to the Cuckoo Cycle problem to improve
control over the difficulty of the problem, as well invalidate mining strategies
which attempt to trim edges (and thus are no longer memory-latency bound).
As mentioned before, the Cuckoo Cycle solver attempts to find a length 42 cycle
in a random bipartite graph. Despite the author’s original intent to make the
problem memory-latency bound, a mining strategy known as edge trimming was
developed that could solve certain kinds of Cuckoo Cycle problems much more
efficiently than the memory-latency solver. From then on, much (but not all) of
the work on this problem included edge-trimming, which is undesirable for our
use-case.

Edge trimming attempts to remove vertices from the graph which have a degree
of 1. In a graph in which the ratio of edges to vertices is less than or equal to 1

2 ,
this strategy is easy due to the large number of degree 1 vertices. This ratio,
somewhat confusingly, is referred to as the “easiness” of the problem. Increasing
the easiness to 70% makes edge trimming less effective, and also practically
guarantees finding at least one length 42-cycle (i.e the probability of not finding
a solution is less than 10−5).

The original implementation of the simple, memory-latency bound miner included
a strategy for parallelizing the memory reads. Unfortunately, this approach has a
race condition in the cuckoo hash table code which requires an hacky workaround
to circumvent. One could solve this problem by performing that particular code

7



in a dedicated thread, but the entire notion of having a multi-threaded miner for
a single problem was not considered because WebAssembly (see Section 5) does
not currently support threading. Having a parallelizable solution is ideal, if it
can improve performance – there is no point leaving a CPU core idle if it could
be used to accelerate the computation. The chosen approach was to add an
additional “hash difficulty” problem constraint, and issue additional problems.
A solution is only considered valid if the hash of all of its nonces are less than
the hash difficulty. Thus, the probability of finding a solution at all in a given
graph is set to be around 0.4, and the miner likely has to solve multiple problems
if it wants to find a valid solution at all. The ideal way to approach this problem
is to run multiple miners at once in different threads (i.e the new Web Workers
feature).

We opt to parallelize the problem in this manner to not only consume all available
CPU resources, but to also gain more control over the CPU-memory tradeoff
required to solve it. See Section 6 for details.

5. Implementation Details

With the exception of the Cuckoo Cycle problem itself, all of the requisite web
features required to perform the steps mentioned in Section 4 were developed
many years ago. That said, this implementation uses a distinctively modern
language and framework, which hopefully should reduce the number of security-
related bugs in the front-end proxy server and also greatly improve performance,
both on the client and server side.

5.1 Why Rust is the best language for security-oriented
applications

Almost all of the code for this project was written in Rust, from the (re)-
implementation of the Cuckoo Cycle miner and verifier, to the proxy server,
to even the majority of the client-side scripting that executes the miner and
parses the HTML response. Rust is an ideal language for this project for several
reasons:

• Rust is safe. For security applications, safety is far more important than
performance. By design, many of the bugs that occur in memory-managed
languages cannot occur in safe Rust. Rust disallows derferencing a dangling
pointer, prevents mutable pointer aliasing, and enforces a stronger form
of const-correctness. Rust even prevents some problems in languages that
are not described as memory-managed. Rust cannot have null pointer
exceptions – functions that may not return a value return an Option
type, and Rust forces the programmer to take account of this property.
Memory is not default initialized; the programmer must set the memory

8



before it can be read – eliminating problems from default constructors and
from uninitialized memory. Rust’s powerful type system also enforces safe
casting between types and throws exceptions on overflow (in debug mode).
The ownership semantics make data races over a variable impossible, thus
making race conditions more difficult to accidentally introduce. Perhaps
most importantly, there is almost no undefined (or platform-specific) be-
havior. These protections prevent many security bugs from ever being
compiled in the first place.

• Rust is fast. The language is primarily focused on zero-cost abstractions –
there is no garbage collection. Rust compiles directly into LLVM, and can
benefit from all of the optimizations that LLVM performs. Benchmarks
have shown that Rust code has comparable performance to analogous C
code. Preventing a DDoS attack requires that the proxy server keep up
with the unending barrage of fake requests. To that end, the default hash
map implementation in Rust is designed to be DoS-resistant.

• Rust can be easily compiled to WebAssembly. Given WebAssembly’s
near-native performance, we opt to compile our Rust miner (which the
client should execute to solve the problem issued to it by the proxy server)
directly to WebAssembly. No alterations were made to the Rust mining
code in order for it to run in the browser, other than the wrapper code
which executed it.

• Easy-to-use tools/frameworks for concolic testing and fuzzing. While a
more traditional approach to testing was used for this project, it would be
easy to test our code this way.

5.2 Front-end Proxy Implementation

Neither the model mentioned in 4.1 nor the model mentioned in 4.2 require
the entire HTTP header to be parsed, just certain headers. As a result, we
can implement a far simpler HTTP parser. We also want the parser to quickly
determine whether a request is malformed. Thus, a simple finite state machine
was implemented to extract the relevant parts of the HTTP request. Because
this HTTP parser has to do much less work than a full fledged parser, it runs
much faster than most HTTP parsers.

Unfortunately, Rust only support UTF-8 strings – there is no support for string
operations upon simple ASCII strings. Oddly enough, converting a string from
ASCII to UTF-8 is slow in Rust, despite the fact that pure ASCII is encompassed
in UTF-8! Additionally, the string processing operations in Rust were somewhat
slower than expected. Given that I only need a find and find/replace operation,
I decided to reimplement this functionality upon byte-strings.

Notably, the front-end proxy server ignores the request header field “Connection,”
and opts to always drop requests after it responds. This implementation detail
was motivated by DoS attacks that exploit the idle/active resource consumption
of open TCP sockets.

9



There were other design decisions which improved the performance of the front-
end proxy, such as buffering the randomly generated cuckoo headers; however,
there are still opportunities to micro-optimize the parser (as section 6 would
suggest).

5.3 WebAssembly

I had few issues getting my Rust code to properly compile into WebAssembly,
although I should say that performance varied a lot across different compiler
backends. Emscripten created large WebAssembly files that took a long time
to load and even longer to execute. I also tried compiling to asm.js, but that
performed even worse than the Emscripten backend. The Rust nightly backend
worked quite well though; the miner took only a ~20% performance penalty.

Currently, the client requests both the WebAssembly file and the script that
loads the WebAssembly file from the proxy server. That task could be offloaded
to a CDN, taking even more load off of the proxy server.

6. Evaluation

The performance of the proxy server can be measured in several ways. One
evaluation metric is to merely determine how many requests it can serve per
second. The goal of this test is to spam the HTTP server with requests, ignoring
the actual cuckoo problem itself. A test was performed using the wrk utility
with 12 threads running for 30 seconds, with Python’s simple-http, NodeJS’s
example HTTP server, and lighttpd, a popular front-end proxy. All applications
were serving a blank page, all of which were larger than 50 KB in size.

I suspect that Lighttpd’s incredible performance comes from aggressive caching.
Given the relatively immature state of cuckoo-http’s optimization, I am confi-
dent that it can eventually reach Lighttpd’s performance and exceed it.

I also benchmarked the time to solve a Cuckoo Cycle problem given different
hash difficulties on my Intel i7-4712HQ. All tests have an easiness of 70%, and a
graph size of 223 (and thus, consume around 223 bytes). Note that larger hash
difficulty values are easier to solve, and smaller hash difficulties are more difficult
to solve.

One interesting side-effect of the memory latency-bound behavior is that the
CPU temperature does not increase very much. Running the cuckoo miner
on a large random graph of 229 vertices only increased the core temperature
by ~20 degrees Celsius to ~70 degrees Celsius. Most computationally intensive
applications raise the core temperature to at least 80 degrees Celsius.

10



Figure 3: wrk HTTP Benchmark

Figure 4: Hash Difficulty Benchmark

11



Figure 5: CPU Temperature Benchmark

12



7. Conclusion

Over the course of this project, I have implemented an limited HTTP server
from the TCP socket level. While reinventing the wheel is a fun experience, I
strongly suggest using already-existing components to perform HTTP parsing if
possible. Most of the time spent on this project was writing the HTTP server,
including some of the TCP plumbing.

Transitioning from unsafe languages like C++ and C to Rust was somewhat
difficult, but once my code compiled, there were very few bugs. I was also
impressed by the Rust-WebAssembly ecosystem. With the presence of “standard
web” libraries like stdweb, one could create entire web applications without
writing more than a few lines of JavaScript.

If a protocol like cuckoo-http were adopted on a larger scale, custom hardware
(i.e an ASIC) could be used to operate the front-end proxy server, given the
limited requirements. A NetFPGA board could be a good choice 9. There
is something to be said about the notion of using proof-of-work problems to
gain access to computational resources – one day it might even be feasible to
incorporate the cuckoo-http handshake into the TCP handshake itself.

9https://netfpga.org/site/#/

13


	cuckoo-http
	1. Abstract
	2. Introduction
	3. Motivation
	4. Design
	4.1 Wrapped Request Model
	4.2 Access Token Model
	4.3 Cuckoo Cycle Parameters

	5. Implementation Details
	5.1 Why Rust is the best language for security-oriented applications
	5.2 Front-end Proxy Implementation
	5.3 WebAssembly

	6. Evaluation
	7. Conclusion

