Network Function Virtualization using Native Client

Shivam Handa
(Dated: May 15, 2017)

I. ABSTRACT

Network Functions like firewalls, filters are built upon
specialized hardware built specially to run each function.
This is done due to performance reasons. These devices
lack customization options and implementing new func-
tions require to build new hardware devices.

In recent years new NICs have appeared which pro-
vide high speed network access to commodity machines.
These NICs have made implementing these functions on
commodity hardware possible. But currently how com-
modity OS are built, exploiting this speed require you
to build these functions within the OS. Running multi-
ple untrusted functions require you to run them on VMs
which have performance penalties.

An alternate choice is to run these functions as processes
and map device driver memory to userspace so that we
dont have to go to kernel for every packet. But we lose
all security guarantees in this case.

We provide a solution to the above problem by protecting
device memory using native client. We also extend na-
tive client such that zero coping takes place while sending
and receiving packets.

II. NON ZERO COPY IDEA

We use €1000 device driver for this case. E1000 com-
patible devices are DMA devices and require no privi-
leged instructions to send and receive packets. The de-
vice can be controlled by just reading and writing on
device memory.

These devices have a send ring and a receive ring
(Queues). For the send queue the driver controls the
tail of the queue and the device controls the head of the
queue. To send a packet we point the tail slot to our
send buffer and increase the tail by 1. Device will see
that there is a packet to be sent and will send the packet
and update the head by 1.

For receive queue the driver controls the head and the
device controls the tail. The driver first maps every slot
with a buffer address. When a packet comes in the de-
vice writes the packet to he buffer pointed by the header
slot and increases the head by 1. The important thing
here is that buffer in which it copies has to be decided
before the packet is received by the device. This become
important as we need a trusted code which can give the
packet correctly to the process which is allowed to receive
it.

Native client provides us a sandbox to run similar to OS-
process boundary. The device memory and code is part
of the trusted code and the untrusted code can make

syscall-like calls to use the device. But since the sand-
box’s memory is fixed, the trusted code has to copy re-
ceive buffer data to its untrusted memory and for safety
reasons have to copy send buffer out of its memory.

III. ZERO COPY IDEA

This solution is only for the x86-64 version of native
client. It works differently from the 32 bit version we
read in our class. This is due to the fact that segment
registers are now not supported by all processors which
was the core of the sandbox for 32 bit version.
x86-64 introduced new 64 bit registers (r8 - r15) and 64
bit extensions to previous registers (rax for eax ). When-
ever you do a 32-bit operation (like addl %eax %ebx) all
the higher bits of that register is cleared out.

It also introduces relative addressing i.e. address can be
written in the form base + index x scale.

64-bit native client only accepts 32-bit code (i.e. all oper-
ations are 32-bit non privileged code). It makes the regis-
ter r15 and replaces ever memory operation with relative
addressing for example movl * %eax, %eax is replaced by
movl(rl15,rax, 1), %eax (This reads r15 + rax * 1 loca-
tion). Since we are only doing 32-bit operations on eax
registers its top bits will be zero. Thus by changing eax ,
untrusted code can index r15 to r15 4+ 4GB space. If we
put 715 as the base of the sandbox the code will run cor-
rectly. (I am jumping over details of esp, ebp, eip which
are also required to be correct.)

The Zero copy idea is simple (I am brushing details here).
What we do is allow our code to do relative addressing
by not only using r15 register but also other r8 — r14
registers. Let me take 714, based on the value of r14, the
code can index 114 to r14 + 4GB space. If we keep only
one buffer in each 4 GB space, we can at runtime change
the value of r14(only trusted code can change this) and
change which buffer our code can index.

We use the above concept to make zero copy happen.
(Again T am brushing over details here).

As a part of the implementation I had to change the na-
tive client verifier to allow operations like above.

IV. LIES

There is currently a problem with current code (not the
idea). I explained above that I have to allocate one buffer
in each 4GB space. What we also need is that that to be
pinned (because we dont want OS to swap them out and
we need physical address for our driver rings.) This can
be done easily (allow kernel module for our device driver



to allocate them in which case they are not swapped out
and we can map them to userspace). The problem is right
now mmap implementation of the OS doesnot allow me
to map one page in 4GB space. This can be circumvented
by bootstrapping the loading of native client (Currently
this is how native client does it for its own code right
now for the 4GB sandbox space). And I will also have to
change the malloc implementation for native client such
that it never allocates in these spaces. Currently, all the
buffers are in one continuous space. (I didnt have the
courage in me to get into it.)

This was meant to be a proof of concept something like

this can be done, which I feel this succeeds in doing that.

V. CODE LOCATION

The code runs on 64-bit VM and you still
need to make changes to VM spec so that you
have correct device working and other details.
Code is at https://drive.google.com/file/d/
0B1qVwLBrF61ITzRjdGZfTESEczg/viewTusp=sharing



