
1

SNARL:
Simulating Known Actors with Machine Learning

Bryan Cai, Yasyf Mohamedali
{bcai, yasyf}@mit.edu

I. ABSTRACT

We present SNARL, a suite of tools that is able to simulate
a user’s typing pattern with the goal of exposing the vul-
nerabilities of new biometric based identification techniques.
Researchers have known for many years that password based
verification systems are insecure, in part due to security holes
in applications, and in part due to users (e.g. password reuse).
In an effort to bolster security, some applications leverage
additional data; we are particularly interested in the merits and
drawbacks of biometric data. Biometric identification schemes
are in some aspects very secure, because a person can often be
uniquely identified by some combination of biometric factors.
On the other hand, if somehow this information were to be
stolen, akin to a password being leaked, it is nearly impossible
to change, since they are often either physical traits that exist
from birth or habits developed over many years. Our paper
demonstrates a system that is able to rapidly learn and simulate
user password typing habits, and suggests that keypress timings
should only be used as an inexpensive technique that does not
significantly boost security.

II. INTRODUCTION

The past few years have seen several attempts to in-
crease security in password-based authentication systems by
adding secondary factors derived from biometric patterns in
user behavior. Examples of this include Yang and Haddad’s
punchTimeAuth [4] and the commercial product being
developed by UnifyID [1]. However, there has not been much
focus on the barrier this presents to attackers who are capable
of mimicking their targets, particularly in the age of commodity
cloud hardware and effective deep learning methods.

We present an exploration into the pitfalls of relying on
input-delay-based biometric data as a second factor for authen-
tication, using punchTimeAuth as our standard for compar-
ison. We show that the model introduces a prohibitively high
number of false negatives when exposed to real-world usage.
Furthermore, we present several adversarial models which can
successfully impersonate a user typing their password, trained
on background typing data that need not include the password
itself. In order to collect this data, we built two collection
mediums: a Google Documents look-alike and an extension for
Google Chrome. We collect which keys are pressed, the length
of time each is held for, and the delay between each pair of
keys. Finally, we present a novel neural model for attempting

to distinguish users based on the information we collect, along
with some conclusions and observations about this source of
data as a second factor for security.

The code for the systems described in this paper can be
found at https://github.com/yasyf/snarl.

III. THREAT MODEL

Our exploration focuses specifically on the systems which
analyze the delays between a user’s keypresses while she is
typing her password. We assume that the system in question
has been previously trained with multiple samples of the user’s
typing patterns. Our tests were against the seventh quantile-
based punchTimeAuth. We assume the role of an adversary
which has managed to obtain the password of a user (such
as through a database breach, phishing scam, or cross-site
scripting exploit), and is attempting to gain access to a system
employing the second factor of security described above. We
further assume that the adversary has time to build tools as we
did to collect typing data on their target. Importantly, we do
not require the adversary to ever witness their target typing the
password in question.

IV. APPROACH

A. Data Collection

In order to collect sufficient typing data from the users that
agreed to participate in our exploration, we built two interactive
tools. In both cases, we solicited complacent users by inviting
them to use our applications, relying on their lack of careful
inspection when receiving a link from someone they trust.

The first is a Google Docs look-alike [2], which imitates a
well-known service in a phishing-style attempt to convince a
complacent user to type on the page. We overlaid a text box on
a webpage containing the CSS from a Google Doc we created,
allowing the user to type as if this were the application they
are so familiar with.

We implemented a small client-side library in JavaScript
which listens for the KeyDown and KeyUp DOM events
emitted from the textbox, so as to record the length of time
each key is held for and the delay between key presses, as well
as the actual characters being typed. This data is stored in a

https://github.com/yasyf/snarl

2

local buffer and is periodically uploaded to our servers, where
a Flask app records the logged objects to a MongoDB instance,
tagged with a unique identifier for the user in question.

Figure 1: Google Docs look-alike

The second technique we developed for data collection is
a key-logging Google Chrome extension [3]. While the data
quality from a document editor was vastly superior to the flow
of data from casual bursts of typing in a browser, our models
demanded as much data as we could possibly collect. Thus we
augmented our corpus by creating an extension that injects a
script into every web page, using the same library as before.
We asked participants to install the extension and made them
aware of the implications; our proof-of-concept was installed
with consent but could just as easily be installed through less
transparent means by a bad actor.

The combined results of these two methods resulted in a
data set of approximately 25000 character pairs across several
users.

B. Models

1) Means Model: For this project we trained several types of
models. We first focused on the problem of tricking a security
system into believing that we, as a hypothetical bad actor, were
the original user, by simulating the delays that the original user
would have in their password typing.

To begin, we trained a simple means model to estimate
the delay a specific user exhibits between any two characters,
regardless of context. We simply used the average delay be-
tween a given pair of characters for the user in question, filling
in missing data with a global mean. This model performed
surprisingly well.

2) Neural Models: Our first neural model has the goal of
mimicking how a user types, building on the simple means
model and capturing additional context. For each use when
given a sequence of letters, the model outputs a sequence of
delays between each consecutive pair of letters that mimics
how the user would have typed those letters. It does this one
pair at a time; the model takes as input W letters preceding
and W letters following the pair we are predicting. For each

of these N letters, the model constructs a vector of length
V , which represents the forward and backwards context in the
word. Using these two vectors, one delay is produced. Iterating
over every consecutive pair of letters gives the desired sequence
of delays.

The next model, the distinguisher, tries to achieve the
opposite effect; given a sequence of letters and timings, it tries
to guess whether the sequence was typed by the user. This
model takes as input a sequence of vectors, where each vector
encodes what letter was typed, how long the key was held
down for, and the delay from the last keypress.

V. IMPLEMENTATION

We built a Python backend in Flask with an API to support
our collection and processing. This included routines to receive
JavaScript objects with KeyCodes and translate them to one-
hot vectors which could be fed into our neural models. In
order to aid with supervision of the collection process, we
built several tools and dashboards to explore the data being
collected.

Figure 2: Data Debugging Dashboard

A. Models

1) Means Model: Our means model for a given user u
was the result of a few simple NumPy operations, with the
final means matrix defined as follows. means is an N ×N
matrix, where N = |C| is the cardinality of the set of characters
that can appear in a string. For simplicity, we limited this set
to lowercase letters, numbers, and punctuation. Element (i, j)
of means indicates the predicted user delay between typing
character i and character j.

Let yu be the flattened length-n vector of measurements
(c1, c2,delay) taken for user u, where delay is the delay
between this particular instance of typing c1 and c2. Let
Nc1,c2 = count(yu : c1 = i, c2 = j).

means[i][j] :=


∑

yu:c1=i,c2=j delay

Nc1,c2
Nc1,c2 > 0∑

means:Ni,j>0 means[i][j]

count(means:Ni,j>0)
Nc1,c2 = 0

3

2) Neural Models: The neural models were implemented in
Python, using Keras with a TensorFlow backend. Characters
were represented using one-hot vectors, and delays and hold
times were measured in milliseconds. We first discuss the
mimic model. This model takes two W × A matrices, where
W is the size of the context we consider and A is the alphabet
size. The first matrix represents the forward context, and the
second matrix represents the backwards context.

For example, if the word is “SECURITY,” if we had a
window size of 4 and we are trying to predict the delay between
the “R” and the “I”, the first matrix is the sequence of one-
hot vectors representing [“C”, “U”, “R”, “I”] and the second
is the sequence of one-hot vectors representing [“R”, “I”, “T”,
“Y”]. If there are not enough letters, we pad the matrix with
zero vectors. Each of these W ×A matrices is fed through an
RNN that produces the intermediate vector of length V . We
then concatenate these two vectors and feed it through a fully
connected layer with 50 nodes, and then then to a final output
node.

We used the mean absolute error as the loss function, and
standard gradient descent as the optimizer.

The distinguisher model takes as input a matrix of size
L × (A + 2), where L is the maximum word length we
allow, which is set to 15 but can be set higher in the future if
necessary. Each row of the matrix consists of the one-hot vector
of length A, with the keydown time and delay time appended.
This is fed through one RNN layer, then through several dense
layers, culminating in an final layer with 2 outputs and softmax
activation.

VI. RESULTS

A. Means Model

As we will discuss later, the laborious and manual process
of training systems like punchTimeAuth left us in the
difficult position of not having many options for automated
testing. Thus, our testing efforts were the result of us randomly
sampling words and attempting to have our model type them
in the fashion of the training user. The same user would train
the security system by using that word as their password for
a new account, and we would inject JavaScript to simulate
our predicted delays at a login screen. Using this method, our
means model was able to successfully imitate several users
90% of the time. This result is somewhat surprising, given
that we did not expect users to necessarily type in a document
editor the same way they type a familiar password.

B. Neural Models

Our neural models for mimicking user input achieved
a lower success rate on the task of imitating users to
punchTimeAuth, succeeding on about 70% of passwords.

However, there are several possible explanations. We believe
that the most likely reason is because the punchTimeAuth is
based on deviation from the median for each keypress, which
the means model learns more directly. Secondly, our neural
model may be overfitting to the data, and we believe results
would improve if there was more data, collected over a longer
span of time, to train on.

The distinguisher model had a validation accuracy of 80%
to 85%, which indicates that there is an appreciable difference
between how distinct users type; however, it is clearly also not
enough to uniquely identify a user. Again, this analysis suffers
from low sample size, as we were only able to analyze four
user’s typing habits.

VII. DISCUSSION

We faced several challenges in collecting data and imple-
menting the models for this exploration. One of the largest
barriers to rigorous results was the fact that the systems
we attempted to break all require significant effort to train.
Concretely, in order to evaluate an imitation of a user’s typing
of a specific password, that user must train the security system
on how she types that password. This high barrier to the end
user is a shortcoming of the string-specific model used in
punchTimeAuth, and something we tried to address with our
generalized neural distinguisher. However, as we discovered,
simple typing timing and language context do not provide
sufficient information to produce a generalized model of a
user’s biometric profile.

Another particularly interesting challenge occurred in the
client-side data collection library we authored. Detecting
lengths of key presses in addition to delays meant we could
not simply listen for KeyPress events, and put us at the
mercy of the JavaScript event loop scheduler. We spent a
nontrivial amount of time post-processing the stream of events
we received to piece together the sequence of user key presses.

On the data collection front, we experienced expected chal-
lenges including a lack of willing study participants, and
foreign scripts interfering with our injected collection routines
in the browser. The latter resulted in the data collected from
our Chrome extension being very noisy and hard to use.

As part of our analysis of user typing data, we made some
interesting observations with regards to the delays between
typing keys on a standard QWERTY keyboard. Our initial
hypothesis was that keys which are farther apart on the standard
keyboard would experience the greatest delay. However, as
seen in Figure 3, this is not quite the case.

Instead, we see a pattern where keys that are typed by
the same finger (on either side of the keyboard) follow each
other in quick succession, with the distance between keys
not rendering much information. The exception to this is the
peculiarity of typing the same key multiple times. It appears
that users consistently slow down when repeating a key.

4

Figure 3: Keyboard Distance vs Mean Delay

VIII. FUTURE WORK

We have shown that there is significant differentiation be-
tween user’s typing patterns, as evidenced by the results of our
distinguisher model. However, it is not clear to the authors that
there exists sufficient entropy in this data to uniquely identify
a user in a large system. Certainly, timing delays and key hold
times do not render a model that should be used as a second
factor alone. We would like to explore how the signal from such
a model can be used a heuristic for other biometric factors, as
well as whether or not such signals could be aggregated to
provide a secure authentication system.

IX. CONCLUSION

SNARL has demonstrated that timing-enhanced password
authentication has approximately the same level of security as
a password-only scheme, given 10,000 to 15,000 characters of
data per user, which is about 4 pages of typed words. We suc-
cessfully defeated the scheme presented in punchTimeAuth
using both a very simple means model and a neural model.
However, our distinguisher models show that there is differ-
entiation in user typing habits, and typing patterns could be
aggregated with other data to effectively enhance security.

REFERENCES

[1] URL: https://unify.id.
[2] URL: https://snarl.herokuapp.com.
[3] URL: https://snarl.herokuapp.com/client.
[4] Joy Yang and Don Derek Haddad. punchTimeAuth: A

Biometric keystroke based authentication. URL: http : / /
css.csail.mit.edu/6.858/2017/projects/yangjy-ddh.pdf.

https://unify.id
https://snarl.herokuapp.com
https://snarl.herokuapp.com/client
http://css.csail.mit.edu/6.858/2017/projects/yangjy-ddh.pdf
http://css.csail.mit.edu/6.858/2017/projects/yangjy-ddh.pdf

	Abstract
	Introduction
	Threat Model
	Approach
	Data Collection
	Models
	Means Model
	Neural Models

	Implementation
	Models
	Means Model
	Neural Models

	Results
	Means Model
	Neural Models

	Discussion
	Future Work
	Conclusion

