Dryer21, a Bitcoin Anonymizer Service
https://github.com/dannybd/dryer21

Adam Suhl, Danny Ben-David, Peter Schmidt-Nielsen
December 12, 2014

Abstract

Bitcoin transactions are stored in the blockchain (effectively a public ledger),
which makes Bitcoin merely pseudonymous, rather than fully anonymous. The
canonical solution to this problem is a mizer that receives “dirty” Bitcoins from
many users, routes them all through a single mixing address, and dispenses them
back out to new “clean” output addresses in a random order, or at random times.
We provide Dryer21, an implementation of such a mixing service that gives un-
usually strong privacy guarantees. Specifically, through the use of Chaum’s blind
signing protocol we guarantee that no one — not even the administrators of the
Dryer21 service — can link which dirty input addresses correspond to which clean
output addresses. Dryer21 is implemented as a highly privilege separated Python
application, which is run as a Tor hidden service. Additionally, a client script for
using this service is provided.

1 Overview

As with many Bitcoin mixing services, Dryer21 aggregates payments from a large set of
clients through a single mixing address, and issues payments back out in a randomized
fashion. If the payout schedule is appropriately designed then even an adversary with
complete access to the transaction record cannot reliably link payments into and out of
the mixing service.

Our scheme opts for simplicity by using a bond selling and redeeming mechanism.
Users purchase bonds from our server, and then are free to redeem them at a date and
time of their choice. These bonds are of a fixed denomination (currently 100 mBTC, or
about $35), to prevent payments from being linked by their exact size. However, the
most exciting feature of Dryer21 is that these bonds are issued using blind signatures,
which results in the server being provably unable to link input and output addresses. This
feature will be discussed in more detail shortly.

The Dryer21 server has a publicized bond signing RSA key with public exponent e
and private exponent d. Any message fitting a particular exact format signed under this
key will be considered a valid bond that the server is obligated to make good on. The
protocol for buying bonds proceeds as follows, and is summarized in figure

1

https://github.com/dannybd/dryer21

Time Client Server

publicn, e

random x SELLER
m = OAEP(H(n, x) || x)
nonce r
token = m-ré token
P price, addr
B BTC

sign token: (m-ré)d

protobond = mdr
protobond

A

bond = (m%r)r' =md

check bond:
(m)e==m
OAEP-'(m) == H(n, x) || x

ee— | [

REDEEMER
bond, addr _

>

check bond:
(m)e==m
OAEP-(m) == H(n, X) || X

compare m vs. blacklist
BTC add m to blacklist

Lo

Figure 1: The entirety of the Dryer21 protocol in a nutshell.

1. The client generates a randomized unsigned bond m fitting the special bond format,
and blinds it by multiplying by ¢ for a randomly chosen nonce r. This produces
the token mr¢ shown in figure [I} which is sent to the server.

2. The server stores this token, and replies with a price quote and Bitcoin address for
the client to pay to.

3. Upon receiving payment from the client, the server signs the token to produce the
d d

protobond (mr€)* = m®r, and sends it back to the client.
4. Finally, the client multiplies the protobond by r~1, yielding (mfr)r—t = m?, which
is a valid bond.

Observe that the server only ever learns the protobond mfr, which is the actual bond
multiplied by a random group element r» known only to the client. Therefore, the server
learns absolutely nothing about the bond m¢. This is the key insight that gives us
our privacy guarantees. Naturally, there are numerous additional messy details, such as
correctly using OAEP in the right places to break the homomorphic structure of RSA,
but these details can be found in any cryptography text covering blind signatures, and

are unimportant to this high-level overview.

At some later date the client redeems his or her blinded bond by simply sending it
to the server along with a requested payout address. The server encrypts the blinded
bond, and verifies that it is of the prescribed format. At this point the server blacklists
the bond, permanently marking it as used up, and issues the requested payment from the
main mixing wallet.

Because the client connects via separate Tor circuits for buying and redeeming the
bond, his or her payment and payout addresses are completely unlinkable. Further,
because the bond was blindly signed, they’re not even linkable by the server itself!

2 Privilege Separation

The main obstacle in developing Dryer21 was writing a server that automatically performs
Bitcoin transactions to fulfill bonds in a secure way. To do this, we developed a simple
framework for privilege separating a server via chrooted processes that communicate via
RPC, then designed the entire server within this framework. The access control policies
for the entire server are defined through a series of declarations like:

Lets IssueProtobond perform RPC calls to SellerDB.
grant_rpc("IssueProtobond", "SellerDB")

Lets Sign read (but not write) the signing private key file.
grant("Sign", "/dryer21/data/signing_private_key")

Every single file and process in Dryer21 is managed via such declarations. Dryer21’s per-
missions framework reads in this human readable policy, automatically assigns UIDs and
GIDs to processes and files, and launches all the processes with the minimal permissions
required to achieve the access policy.

For extreme auditability, Dryer21 is split into eleven processes, the longest of which is
a mere 64 lines long, and the entire permissions/RPC framework is under 300 lines long.
Each process declares its RPC interface by applying a Python decorator to the exposed
methods.

Figures on the final page show how these processes communicate to service a user
request. Unfortunately, the page limit (which we are already stretching) prevents us from
delving into the many security implications of our particular design choices. Let it simply
be said that we put a lot of thought into it, and the entire design assumes that the
front-end processes can be completely compromised.

3 Comparison to Existing Work

Many Bitcoin mixers exist, operating with various threat models in mind. The table
below compares Dryer21 to two existing popular mixers in four crucial ways. For each
comparison a rating of v indicates that the service provides the privacy guarantee au-
tomatically. A rating of ~ indicates that the privacy guarantee is possible, but requires
appropriate user action. A rating of x indicates that the given service does not provide
the given guarantee.

Mixer

Hides Participation

Timing Obscured

Amount Obscured

Server Blinded

Bitcoin Fog ? v ~ X
BitMixer.io X ~ ~ X
Dryer21 X ~ v v

Here the mixers are rated for four qualities:

1. Hides Participation: It cannot be readily determined that a given address either
sent or received Bitcoins from the service.

2. Timing Obscured: Payout times are properly randomized in a way that makes it
hard to connect payments to payouts.

3. Amount Obscured: The payout amounts are either randomized or discretized in a
way that makes it hard to correlate payments with payouts by the exact transfer
amounts.

4. Server Blinded: The server is no more capable of deanonymizing its users than any
Joe Schmoe who can read the blockchain.

Unfortunately, the precise way that Bitcoin Fog mixes its internal pool is unspecified, so
we give it a question mark on hiding participation out of uncertainty.

4 Limitations and Future Work

Our current implementation relies upon the pybitcointools library, which in turn relies
upon blockchain.info for blockchain operations. This effectively means that the oper-
ators of blockchain.info can steal all our Bitcoin at any time. The correct solution is
to have a Bitcoin client with a full copy of the blockchain running locally, and to rely on
it for all blockchain operations. This is our plan for when we actually run this service,
but it is beyond the scope of our final project.

The actual movement of Bitcoin from the mixing address to a client’s address upon
redeeming a bond tends to fail due to what we believe to be a bug in the pybitcointools
library. Since it’s possible to carry out these transfers by simply importing the server keys
into Electrum and manually issuing all the transfers listed in the redeemer database (say,
on a biweekly schedule), and since in the end we won’t be using pybitcointools for
blockchain operations anyway, we are content to consider this a limitation of the current
implementation (albeit, a pretty obnoxious one).

5 Acknowledgments

Our project was inspired by the work of our friend Duncan Townsend, who implemented an
almost identical Bitcoin anonymization service three years ago that also used Chaumian
blind signing. His implementation had a security flaw, and only by sheer luck did he
manage to shut the service down before all of his Bitcoin was stolen. Our project would
not have been possible without his guidance.

Time Client Frontend
BOND SELLER
gen
token
token token find token
-
get if duplicate
gen
quote add token,
price, addr price, addr addr, price
............... collor
BTC BTC db
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA v addr i BTC D MIXER
AAAAAAAAAAAAAA IN
“I sent it”,
token token token
addr
. addr
issue
BTC
protob BTC recv? check
ond [E—
token
gen
protobond protobond protobond protob
ond
gen,
check,
& save
v bond

Figure 2: The seller privilege separation. Each box is a separate process running under a
distinct UID.

Time Client Frontend
BOND REDEEMER
load
bond bond, addr bond, addr
verify
“Thanks!” bond bond, addr
s : . bond
: : unfulfilled txs db
BTC : MIXER | BTC .
v Laddr e A cend |_setas fulfiled

Figure 3: The redeemer privilege separation, also split into processes.

	Overview
	Privilege Separation
	Comparison to Existing Work
	Limitations and Future Work
	Acknowledgments

