Wooster: Mandatory Access Control for Rails
Julian Bangert, Alexander Lin, Julia Huang

Abstract

We introduce Wooster, a system for enforcing flexible mandatory access control policies
in Ruby on Rails’ ActiveRecord database wrapper. Currently, Rails applications
maintain access control in the controllers and views, requiring programmers to
implement access control checking in many locations throughout their code. Wooster
allows programmers to specify a single policy that controls access to all data in a web
application, removing this burden and leading to more comprehensive policies.

1. Introduction and Motivation

Access control is a major security threat and even slightly improper implementation can
cause enormous security leaks. For example, we discussed in class a flaw in Citibank’s
website that allowed users to view each other’s balances by changing the user id in the
URL. Furthermore, these bugs can be rather subtle and thus hard to detect; three of the
OWASP Top Ten vulnerability classes (Insecure Direct References, Sensitive Data
Exposure and Missing Function Level Access Control) are related to improper access
control.

As we will discuss, existing access control solutions for Ruby on Rails provide only
incomplete protection. Our mandatory access control scheme provides complete
coverage without requiring extensive developer work by transparently performing
access control checks whenever data is accessed.

2. Design

Wooster consists of two components: a domain-specific language to express policies
and a reference monitor that hooks ActiveRecord to enforce this policy. Programmers
write a Wooster policy for all data models in their application in one file and include the
Wooster gem, which will automatically load the reference monitor.

Our policy allows access control entries for both entire records and individual fields
within that record. For records, reading, writing, creating and deleting are covered by
individual rules, and individual fields support different rules for reading and writing. For
simplicity and efficiency, these policies are only enforced at a database layer - code



may modify fields and create records at will, but Wooster will guarantee that any attempt
to save invalid changes will result in an error.

In order to access a field in a record, the policy checks for both the record and the field
must succeed. Because we expect most applications to initially only use record-level
security, the default policy for fields is to allow access, whereas the entire record is
denied by default. Therefore, while there is no access by default, a programmer needs
to write just a single rule to allow access to all columns.

As opposed to traditional ACL rules, which just match on an ‘actor’ - e.g. the logged-in
user - our rules match on arbitrary ruby expressions, which allows very flexible policies,
such as granting access to any photos posted by a friend in a social network setting.

An example policy for a users table follows:

permissions Client {
read (client)-> {current_user.admin or
client == current_user.client}
is_admin = (x)->{current_user.admin}
employed by client = (x)->{x == current_user.client}
create is_admin
write any(is_admin, employed by client)
field readwrite :taxnumber, employed by client
field read :taxnumber, (x)->{[false, x.taxnumber.anonymize]}

}

00 NOUVT A~ WN PR

The first line within the block specifies what conditions have to be met in order to see
the Client record - the user either has to be an administrator, or the current user has to
belong to this client. Conditions can also be stored in variables (line 2 and 3). We use
this to implement a form of role-based access control (RBAC), and provide various
convenience helpers to compose conditions, such as any, all, deny and allow.
These helpers are used in line 5 to repeat the same condition as in line 1 more
concisely. As shown in the full policy in Appendix 1, read and write statements can be
specified together in one line (record :read, :write, any(is_admin,
employed by client)).

Lines 7 and 8 show rules governing access to a single sensitive fields. Wooster allows
the policy to create a substitute value to be shown to unprivileged users instead of a
sensitive value. Currently, checks for fields can either return true (in which case the
access is granted) or false and an optional fake value (which will be exposed to the



model). When no fake value is returned, the default value for that column is inserted by
Wooster. Different contexts can therefore receive different anonymization results.
When more than one rule for an action is specified, at least one of the checks has to
succeed for the access to be allowed.

We implemented Wooster by hooking ActiveRecord. This enforced the policy
transparently without changing any application code. We use the provided hooks to
inspect updates, creates and deletes before they are committed to the database. We
also insert a after_find hook that applies the field checks, transparently replacing the
values in the model. Finally, to support restrictions on queries, we override the
find_by_sqgl method which all ActiveRecord helpers ultimately invoke.

3. Use Cases
We tested Wooster by implementing a policy for RailsGoat.

RailsGoat is a Rails 3 application maintained by OWASP which demonstrates web
vulnerabilities, among them many of the common access control problems endemic to
rails applications. It demonstrates each of OWASP’s Top 10 most common web
vulnerabilities; as mentioned before, three of these ten issues are related to access
control.

We added the Wooster gem and wrote the 35 line policy shown in Appendix 1, which
successfully prevented the (intentional) vulnerabilities in RailsGoat without any
application changes.

4. Prior Work

Traditionally, Rails programmers had to manually check for permissions on every
request, e.g. with before_filter. Recently, a few libraries for providing access control,
such as restful_acl and cancan, have emerged.

Restful ACL (https://github.com/mdarby/restful_acl/) allows the programmer to specify
access control lists on individual actions. Any allowed page could however still leak
sensitive information; for example, a page could query other database objects based on
a form parameter and thus potentially violate access control policies.

CanCan (https://github.com/ryanb/cancan) provides a very expressive DSL for writing
policies and provides convenient shorthand for checking whether a certain access is ok.


https://www.google.com/url?q=https%3A%2F%2Fgithub.com%2Fmdarby%2Frestful_acl%2F&sa=D&sntz=1&usg=AFQjCNEcq1Zzo6LbziHCcMaDAWErFJcZuQ
https://www.google.com/url?q=https%3A%2F%2Fgithub.com%2Fryanb%2Fcancan&sa=D&sntz=1&usg=AFQjCNGMGZyGZ52-72GlmgKlNApkrVfanw

A policy might state “if user.admin? can :destroy, :post end”, but it is the programmers
responsibility to check that a given user is indeed an administrator before allowing users
to destroy posts. This both requires programmers to rewrite significant amounts of their
code and potentially creates holes in an application if a developer forgets to add a
check to any of the myriad pages that might require one.

Our work was also inspired by Jeeves (https://projects.csail.mit.edu/jeeves/about.php),
a programming language developed at MIT for providing anonymity through faceted
execution. However, we found faceted execution hard to implement in an imperative
language like Ruby. The full expressive power of faceted execution is also not
necessary in a web application, where each request goes only to one destination and is
relatively short lived. Therefore, we can implement policies similar to Jeeves with
Wooster.

Appendix 1: Access Control Policy for RailsGoat

Wooster::Policy.build do

admins = ->(x){ current_user.admin }
current = ->(x){ current_user.user_id == x.user_id}
admins_and_current = ->(x){ current_user.admin or x.user_id ==

current_user.user_id}

permissions User do
read allow
write admins_and_current
delete admins
create admins
field _write :admin, admins
end
permissions WorkInfo do
record admins_and_current
field_readwrite :ssn, current
end
record Schedule,admins_and_current
record Retirement,admins_and_current
record Performance, admins_and current
record Pay, admins_and_current
record PaidTimeOff,admins_and_current
record KeyManagement, admins_and_current


https://www.google.com/url?q=https%3A%2F%2Fprojects.csail.mit.edu%2Fjeeves%2Fabout.php&sa=D&sntz=1&usg=AFQjCNHIxWXMdWAL7m2bh-_MRGnaSYaSQg

permissions Analytics do
create allow
read admins

end

permissions Message do
receiver = ->(x) {current_user.user_id == x.receiver_id}
sender = ->(x) {current_user.user_id == x.creator_id}

read(any receiver, sender)
create sender
delete receiver
end
end



