
Dark Cloud: A Secure File System

by Brando Miranda, Marcel Polanco and Pedro Cattori

December 13, 2013

Abstract

Dark Cloud is an encrypted file system that aims to store encrypted
data remotely in an unstrusted remote server. The service seeks to provide
confidentiality to the user’s data and data integrity. The untrusted server
will not be able to learn about the data being stored nor the names of
the files. Furthermore, if the server attempts to tamper with any of the
files, due to the cryptographic protocol and signatures being used in Dark
Cloud, the user will be able to detect any changes immediately. At a high
level, Dark Cloud will have a set of different keys that protect each file
and using these keys is how sharing is impemented. The keys for each
file are also stored at the server, which means that we need to secure this
information before its sent to the server. This is done by generating using
user keys derived from the user’s password, username and the path to the
file we want to secure.

1 Introduction

The goal of our design is to minimize the amount of information and keys the
user has to remember in order access all his data from the server while still
providing data integrety and confidentiality. Every file stored in the untrusted
server will be stored in a format we will refer in this paper to as a secure file1.
The secure file will be computed as follows before being sent to the server:

EKAES−CBC
[plaintext, SignRSA[Hash[plaintext]]] (1)

For every secure file there will be two set of keys; one set generated for
AES-CBC and another generated from RSA. It is important to note that for
every file, there will be one validation key and one signing key. These will be
asymmetric because this allows us to enforce a MAC policy.

Dark Cloud aims to store as much data as possible in a secure manner in
the untrusted sever. When a user creates a file, keys are generated randomly
for that file and are used to make a secure version of the file as in equation (1).
These randomly generated keys are created only on the client and the untrusted
server never sees the plaintext version of the keys. The keys securing the user’s

1Unix treats directories and files in a very similar manner. Therefore, we will treat them
in similar way when making a secure directory. The only difference is as follows: within
a seperate, secure file stored with the directory are the contents that the directory would
output with an ls command. This will make detecting an unauthorized change in a directory
easy because we will simply check if the directory content in the server matches that of the
accompanying secure file that we encrypt and sign.

1



file are made into a secure keychain file that is stored on the untrusted server.
The secure keychain file is encrypted and signed using the user’s password and
salt as in equation (1). The server will not be able to get the original file the user
created because he does not know the password that locked the keychain file,
thus he cannot get the file’s keys to unlock the user’s secure file. Furthermore,
the server will not even be able to tell the difference between a keychain file or
a normal file because everything it gets will be encrypted (including the names
of the files/directories).

Now one should question, why is having a keychain file even neccesary? Why
is everything not just encrypted with the user key dervived from his password?
The reason is as follows: if a user wanted to share a file then he would either
have to share his password or the user key, giving complete access to the owner’s
file system. To avoid this, we choose to have randomly generated keys for each
file such that they can be individually shared with other users and only provide
access to one file/directory at a time. Enforcing read/write permissions is as
simple as limiting the keys sent within the keychain file; we only share the AES-
CBC key and the verification key from RSA to decrypt and verify the contents,
inherently enforcing read permissions. Intrinsically, to allow write permissions,
we share all keys for that specific file. The shared user can encrypt the keychain
file with his own user key for the owner to place back in the containing directory.

We will also enforce that directory contents do not change without the user’s
permission. We do this by making a Dark Cloud version of the directory contents
file (i.e. the data that would be outputed with an ls command) known as a
directory content file. With this, our file system tracks a directory’s contents
from the server and verifies by matching them to those in the directory content
file. Since the protocol could be known by the server, each directory content file
will be made into a secure file as in equation (1) and stored in the server (for it
to be possible to guarantee data integrity and confidentility).

All files and directory names will remain confidential and thus will be en-
crypted. They will be encrypted with the AES-CBC key corresponding to the
file that it corresponds to. To change names, the user has to re-encrypt the
names. TODO: explain why names don’t have to be signed

Due to the way that we are making secure files as in equation (1), the
untrusted server will not be able change the user’s file without Dark Cloud
detecting the changes because the cryptographic signature will not verify. Fur-
thermore, it will not be able to understand the contents of the files because
they will be encrypted. One last nice property that CBC provides is of forward
diffussion that makes changing bits in the encrypted version hard to manipulate
in order to get changes as desired (that can be made even harder to do with
applying AES-CBC on both directions or simply using BitLocker’s diffusion
techniques). An obvious benefit of this method is that malicious users trying to
change files are also easily detected.

2 Definitions and terms

To make the rest of the paper easier to read, I will define the following terms
(some of which have been already used on the previous section). The details of
how keys are generated can be found on the DarkCloudCryptoLib library.

2



keychain: a key chain is the set of keys used to make some data secure. It
comprises of the AES-CBC key, the IV key for encryption and the RSA verifi-
cation and signing key. The main purpose of keychains is to make secure files
and data as in equation (1).

lock: locking a file is a function any keychain can perform that makes a
secure file with the set of keys the keychain has by using equation (1).

unlock: unlocking a file is a function any keychain can perform that inverts
equation (1) and returns the plaintext. In the process of this, the signature is
verified.

user keychain: a user keychain is a keychain generated from the user’s pass-
word, username and pathname to the file to lock. The goal of it is to secure
key files. When the user keychain is created it generates its keyAES key, its
iv vector and its RSA keys by using a salt from the sha256 on the username,
the PBKDF2 algorithm on the password and the path of the file it intends to
lock. The details of how is generated can be found on the DarkCloudCryptoLib
library.

file keychain: a set of keys generated randomly used to lock and protect the
actual user contents. It is used to lock the user’s actual data content on his
files. This keychain has the same keys as the user keychain, but the important
difference is that the keys are generated randomly. Since the user does not have
to remember these, they are stored as a secure key file in the untrusteded server.
The details of how they are generated can be found on the DarkCloudCryptoLib
library.

directory keychain: a directory keychain is used to make a secure file of the
directory content file

secure file: a data file protected and locked by equation (1).

directory content file: the directory content file is the Dark Cloud version of
the directory content that the unix system would output with a ls command.
It’s use is to detect that the server’s directory content matches with the what
the user has created and deleted.

secure directory content file: the locked version of a directory content file.

keychain file: has the same content as a file keychain, but stored as a string
in a file that will be stored at the server after being locked.

directory keychain file: are the keys that lock the directory content file. i.e.
the keys that lock and secure the ls file for a directory

Dark Cloud Client: is the file system software installed at the user’s side
that enfornces the Dark Cloud protocol for storing files at the server. It is also
in charge of creating files and securing them with the cryptography in equation
(1).

3



3 Protocol Design

3.1 Overview

The main idea behinde the protocol is that every file the user makes has a
corresponding keychains for protecting that file. In turn, the keys for each file
are stored at the untrusted server and protected from it by the keys made from
user’s passwords, username and file pathname. If a user wants to share a file
he shares the appropriate keys with his friend and his friend in turn securely
stores those files with the original keys. However, his friend will now store the
his with his own password and username so that he can lock and unlock the the
shared file.

3.2 Creating files

When a file is created by the user the Dark Cloud Client will create a keychain
file that will be used to lock the new file. After locking, it is safe to send
the secure contents of the user’s data. Furthermore, the keychain file will be
locked with the user’s password, username and path to file. This will protect
the keychain file from any untrusted entity. Only the user that can create a user
keychain can unlock this keyfile. Furthermore, the path will aid to detect if the
server responses with the contents of a different keychain file.

It will also be neccesary to update the directory contents at the server.
Therefore, the directory contents that Dark Cloud is tracking will be compared
to the one the server have and make sure the server is creating thing that we
command. This directory content file will also have its own directory keychain
that is protected with the user’s keychain. Notice that this means that there
will be two directory contents in Dark Cloud, one being tracked by the server
and another version that the server cannot change tracked by the Dark Cloud
Client.

3.3 Deleting files

When deleting files the procedure will be very similar to creating one. A delete
command will be send to the server and an update to the directory content file
will be required. This way we track that the untrusted server is deleting the
files that we command.

3.4 Sharing files

When sharing file with another user, the user of the original file will give him
the plaintext of the keychain file for the file he wants to share. Depending what
privileges it wants to share it will share different keys in the key chain:

reading files: if the owner of the file only wants to give read access, then the
other user must be able to decrypt equation (1) and verify it but not sign any
new plaintexts. Therefore a keychain file version only containing the AES-CBC
keys and the RSA validation key will be shared with the other user. The new
user will need to store this shared keys in some way. Therefore, it will lock the
shared keys in a secure file with its own user keychain. This way it can always

4



re-read the file that it wants.

writing files: if the owner of the file wants to give write access to the file,
then the other user must be able to decrypt equation (1), verify it and any sign
new plaintexts. Therefore, the user will share the plaintext of the keychain file
with all the keys. Again the new user will store his own version of the keychain
file on the server protected by his own user keychain. Notice that the actual
shared file is always locked with the same keychain.

Notice that because the user gives keys (and therefore privilege) to other
user’s when it wants set permission for files, it implements a Mandatory Access
Control (MAC) permission scheme to control access to its files.

3.5 Directories

Directories are supported by Dark Cloud. The way we support them is to treat
them as similar as possible as unix does. The import idea to understand is that
the untrusted server will keep track of two directory contents. One will be the
usual one that unix would be tracking. The second one will be tracked by Dark
Cloud and it will be encrypted. At all time the files that the server is following
should match the ones Dark Cloud is following. Otherwise, the untrusted server
has tampered with the directory. The will be two verification steps to verify that
the directory was not tampered with. First, we will cryptographically verify that
the one that Dark Cloud is following has not been changed. Secondly, we will
compare the directory contents the server is following with the ones it should
have, and if it matches, we conclude that the directory has not been tampered.
Obviously, if the server decides to lie to us about what it has and it says it has a
file when it really doesn’t, this will be easily detected if the user tries to access
that file again.

3.6 Naming for Files and Directories

3.6.1 Confidentiality of names

File names remain confidential and they are encrypted with the file keychain for
that file or directory keychain for that directory. Filenames for keychain files
are encrypted with the user’s keychains.

3.6.2 Renaming

When a file is renamed the directory content that Dark Cloud is tracking has to
change. Therefore, the Dark Cloud Client will change the name in this file. It
will also issue a rename unix command to the server and will change the name
at the server. Again, if the directory content file that Dark Cloud is tracking
does not match the one the server is tracking, we can easily detect that the
server is not changing file names as we wanted. To change the file name, the
Dark Cloud Client simply performs:

new encrypted name = EKAES−CBC
[new name]

5



and issue the unix change name command to the server.

4 Security

The main idea about the security of Dark Cloud is that every file is locked with
some keychain. When sharing a file, a user will share it’s file keychain and
the receiving user will make sure that that keychain remains secure from the
server by locking it with its own user key. If the user has the correct keychain
corresponding to the file it is trying to access, then the cryptographic signature
should verify (if it was not tampered with). Otherwise, the keychain does not
match and it cannot possibly verify.

4.1 Cryptography

Recall equation (1)

keychain.lock(plaintext) = EKAES−CBC
[plaintext, SignRSA[Hash[plaintext]]]

(1)
Unlocking is the following operation:

keychain.unlock(secure file) = plaintext (1)

Included in the unlocking operation is a verification step (not shown). If
that verification step does not pass then even if you can decrypt the file you are
not guaranteed its correct. Therefore, unlock will return an error.

4.2 Detecting unauthorized behavior by the untrusted server

Detecting changes to files and directories is simple. Since the untrusted server
does not have access to the plaintext version of the keychains, it cannot decrypt
the protected data nor it can create signatures. Therefore, if the untrusted
server tries to flip bits of the cipher text (due to the properties of AES-CBC) it
will change the plaintext too and changed signature and plaintext are extremely
unlikely to verify (since he doesn’t even have the RSA keys he does not know
how to change the signature).

4.3 Detecting unauthorized behavior by the untrusted user

The case where there is an untrusted user is nearly identical to an untrusted
server. If the untrusted user does not have read privileges, then we can treat
this case the same as an untrusted server. However, if we do give read privileges
to the user, then he can see the signature and verify it. If the server is trusted
but the user is not, then unless he has the signing key dervided user’s password
and the encryption key, then the user is unable to do anything malicious that
we cannot detect.

6



4.4 Detecting when the Server supplies the wrong file

Dark Cloud is able to identify the case when the untrused server gives the incor-
rect secure file even though we asked for a different one. The reason is because
the user at his end will request the keychain file too. Unless the untrusted server
is able to supply the correct version of the keychain file, then we will get keys
that do not match for the file that we got and therefore verification will not
pass. However, notice that this argument does not apply for when we request
for a secure file keychain. If the user gives a wrong secure file keychain, then
how would be able to detect this with the password and username alone? You
can’t unless use the unencrypted path to the keychain file that you requested.
So that is what we do. We use the unencrypted path to the keychain file, so
that every keychain file also has dependency on their unencrypted name. This
way, if the server gives us the wrong keychain file, Dark Cloud would create the
wrong user keychain (because it depends on the unencrypted name of the file)
and then create wrong keys, which would not pass the verification step.
The way to think about this is, its similar to bitlocker, where they use sector
numbers, which can be thought as the name of the object being encrypted, but
we instead use the path and the unencrypted name which are unique to each
file. Notice that the path is neccesary because in the unfortunate accident that
we have two files with the same name, they might be locked with the same user
keychain. We got around this by using the path.

5 Implementation

5.1 Dark Cloud Crypto Library

The Dark Cloud Crypto Library is a custom made library using other crypto-
graphic libraries to implement locking files and unlocking files.

5.2 Generating key chains

Every keychain is made from two set of keys: one from RSA and the other from
AES-CBC keys.

5.2.1 User keychain:

A user keychain is called DCTableKey (due to backward compatibility in our
own code). This object holds all the keys for implementing equation (1). The
KeyAES is generated from a salt and the user’s password. The salt is generated
from the sha256 of the username and the PBDKDF2 is used on the password
to generate this key. The iv vector is generated from KeyAES and the sha256
of path to file. In turn these two are used by the PBDKDF2 library to make
the iv vector. This make the user keychain dependent by the user’s password
and the name of the object that is planned to be encrypted.

5.2.2 file and directory keychain:

The algorithm for making the keys for this is the same as the user keychain.
The difference is the input that this algorithm takes. When generating the keys

7



istead of passwords and usernames we instead use os.urandom to make keys for
each file.

5.3 Dark Cloud Client

The Dark Cloud Client controls a shell, our Crypto library, and an HTTP
server together in order to accomplish the security goals of Dark Cloud all on
the client-side.

DCClient implements the Dark Cloud Client as described above.
DCWorkingDirectory keeps the state of the working directory on the client-

side as the fileserver may have multiple users at different working directores.
DCDir modularizes the updates made to the directory content file when

there is a write made to a directory (i.e. creating/deleting a file/directory at
that directory).

DCClientParser implements the shell that takes input from the user.
DCCrytoClient implements an object representation of our customized crypto-

library.

5.4 Future work and bugs

Dark Cloud has the capability to share files but this is not currently an option
available to the user. With the implemented security scheme, it is possible to
share files by communicating the unlocked file keychain to a desired user and
the encrypted path to the file to be shared over a secure channel. The user
should then respond by encrypting the keyfile with their own user keychain and
sending it back to the original shared file owner to write to the file’s parent
directory. Using the originally sent encrypted file path, the shared user can
access the shared file by using their key written in the same parent directory by
the file owner.

Encoding schemes that ”play well” with our HTTP client/server, our en-
cryption library, and Unix filenames should be employed as currently the url-
lib.quote() encoding we use occasionaly results in unparsable input for our en-
cryption library. Currently, there is a bug in our HTTP client/server imple-
mentation resulting in Nonetype headers being received at the server despite
the input provided by the client. Writing more durable adapters for a variety
of fileservers would make our client more appealing. Due to the design of Dark
Cloud, none of the security is done server-side, thus making adapters possible
for virtually any fileserver.

8


