
Exploiting common Intent vulnerabilities in Android
applications

Kelly Casteel, kcasteel
Owen Derby, oderby

Dennis Wilson, dennisw

December 12, 2012

Problem
The Android framework allows apps and components within apps to communicate with
one another by passing messages, called Intents, which effectively specify both a procedure
to call and the arguments to use. Applications must declare in a static manifest file
which Intents each component services, as well as both application and component level
permissions. While the security vulnerabilities in outgoing Intents have been well studied
[1] and developer tools exist to limit potentially insecure Intents [5], little has been done
to address malicious incoming Intents.

Exploits of this nature have been discovered in firmware of various Android phones
[4], but exploits in third-party applications are not well studied. Application developers
must make sure their manifest file has been properly configured to only accept desired
Intents, which can limit usability. We believe that developers will trust Intent input by
default, allowing malicious input to potentially crash or abuse the application.

Our work is twofold: we developed a static analysis tool to inspect third party appli-
cations for malicious Intent vulnerabilities, and we built a working exploit which takes
advantage of such a vulnerability.

Static analysis
To start, we implemented a basic static analysis tool to aid us in identifying potential
vulnerabilities in Android applications. We are not the first to look at such vulnerabilities
[1], nor to build such a tool [4]. However, in the absence of any freely-available such tools,
we took it as a learning opportunity to build our own, borrowing ideas freely from the
previous literature. Here, we describe the basic design of our tool and any interesting
decisions we made, but the curious reader should reference [1] and [4] for more details.

We built our tool using Androguard [2], a python FOS library built, in part, to support
the creation of static analysis tools for the Android platform. It supports disassembly
and decompilation of apks, Android application packages, into Java-approximate source
code for human-readability, as well as intermediate basic blocks for static analysis and
control-flow graph creation. It provides basic search functionality over the decompiled
basic blocks. Despite this long list of features, a lot of work went into understanding how
to use the library and coercing it into doing what we wanted.

1

https://developer.android.com/reference/android/content/Intent.html


Our tool examines execution traces through an application, looking for places where
malicious Intents might cause the program to perform unintended privileged actions.
We implement the component analysis strategy from [1] (see section 4.3) to detect open
components. We also identify all privileged calls made by the application [3]. Then we
use a control flow graph of the program to determine which open components lead to
privileged calls - these paths represent potential vulnerabilities.

First, we extract the manifest file from the apk and compile a list of “open” com-
ponents: public components, protected by weak or no permissions which are exported
by the app. A component is public if the manifest specifies an Intent filter for it. How-
ever, developers can explicitly make components private (regardless of any intent filters)
by setting the “exported” attribute to false for each component in the manifest file.
Developers can set the “permission” attribute to require a certain permission to access
each component, thereby restricting access to the component. We only considered public,
exported components which had permissions of level dangerous or normal.

After determining all open components, we need to identify all privileged calls made
by the application. A privileged call is a method call (usually Android API call) which
the Android OS requires the calling application to hold a permission in order to execute.
The mapping from API calls to required permissions is derived from work in [3]. Using
this mapping and the decompiled source code in the apk, we search for privileged calls
with permission levels of dangerous or signature.

Finally, we construct a control flow graph of the application and search for any paths of
execution leading from an open component to a privileged call. We ignore paths between
open components and privilege calls which require the exact same permission. We report
any such path found as a potential vulnerability in the analyzed application. These paths
represent possible vulnerabilities because they allow an unprivileged application to cause
execution of privileged methods via an Intent.

Because our intention was to quickly discover many vulnerabilities in 3rd party ap-
plications, but not exhaustively so, we did not attempt to handle discontinuities in the
control flow graph resulting from callbacks (see 2.1.1 in [4]). This means there are possi-
bly many more vulnerabilities in the applications we examined than what we reported.
Further, because many non-harmful methods still require permissions, there are a lot of
“vulnerabilities” identified which are not very harmful in practice. For example, getNum-
berFromIntent requires dangerous permission CALL PRIVILEGED. However, without
any additional vulnerabilities in the application, invoking such a privileged call via intent
is not very interesting. Many of the applications flagged by our tool had this sort of
“harmless” vulnerability.

Gathering apps for analysis
We downloaded 382 applications as apk files using Real Apk Leecher [6], a utility we found
online. This connects to Google Play to get applications, so all results were verified appli-
cations in the Android market. Various keywords for potential interesting attack vectors,
such as “camera,” “contacts,” “sms,” and more were used to search for applications.

The free applications from the top 60 search results for each keyword, sorted by
application popularity, were downloaded for analysis. This ensured that the applications
were popular and currently used applications; the attacker could be fairly certain that
some were already downloaded by a potential victim.

2

https://developer.android.com/reference/android/telephony/PhoneNumberUtils.html#getNumberFromIntent%28android.content.Intent,%20android.content.Context%29
https://developer.android.com/reference/android/telephony/PhoneNumberUtils.html#getNumberFromIntent%28android.content.Intent,%20android.content.Context%29


Table 1: Permission use and leakage

Permission Use Vulnerabilites
INTERNET 319 97
READ PHONE STATE 183 60
ACCESS FINE LOCATION 140 36
READ LOGS 51 14
READ CONTACTS 120 11
CHANGE COMPONENT ENABLED STATE 10 7
GET TASKS 47 6
CAMERA 68 5
DISABLE KEYGUARD 23 5
AUTHENTICATE ACCOUNTS 17 3
CALL PRIVILEGED 7 3
SEND SMS 32 3
BLUETOOTH 29 2
NFC 7 1
READ SMS 45 1
Total 254

Android permissions leaked in the analyzed applicatons. Use indicates the number of
applications that declared the permission in their manifest, and vulnerabilities indicates the

number of applications that exposed one or more vulnerabilities involving permission.
Permissions that were declared but not exposed are not shown. Signature or system

permissions are in bold, all others are dangerous.

Findings of analysis
The permissions most commonly leaked were the permissions most used by applica-
tions. Either INTERNET, READ PHONE STATE, or ACCESS FINE LOCATION were
leaked in 113 of 382 applications. While exploits are possible with these permissions, the
more active permissions (and thus provide more interesting exploits if leaked), such as
CAMERA or SEND SMS, were much less frequently exposed. The correlation between
exposed permissions and common ones suggests that developers don’t consider the se-
curity risks of the common permissions. Users are also probably more willing to simply
allow an app to have these permissions.

We were surprised to discover that none of the flagged vulnerabilities represented leaks
of sensitive or privileged information. We confirmed this by checking to see if any of the
apps made calls to setResult. Very few did, and most were only statically setting result
codes (i.e. result codes were not informative of whether the activity request succeeded or
not).

We looked at apps which called any of the Android API calls to extract data from
an Intent, like getBundleExtra, getCharArrayExtra, getIntExtra, etc, and found that
many were properly sanitizing the input, but some were not. An example is Vault Hide
SMS, Pics & Videos, an app that allows users to store SMS messages, contacts, call logs,

3

https://developer.android.com/reference/android/app/Activity.html#setResult%28int%29
https://play.google.com/store/apps/details?id=com.netqin.ps&feature=search_result#?t=W251bGwsMSwxLDEsImNvbS5uZXRxaW4ucHMiXQ..
https://play.google.com/store/apps/details?id=com.netqin.ps&feature=search_result#?t=W251bGwsMSwxLDEsImNvbS5uZXRxaW4ucHMiXQ..


photos, and videos in a password-protected and encrypted space. This app leaks the
permissions CHANGE COMPONENT ENABLED STATE, GET TASKS, INTERNET,
READ PHONE STATE, and SEND SMS. The message sender gets number information
from the user and message data from an Intent, allowing an attacker to send arbitrary
text in place of the user’s original message. While the user still enters the number and
knows that the text message is being sent, this could potentially be used to generate SMS
spam.

Close inspection of the decompiled application code returned by our application led
to the discovery of similar potential attack vectors. Some are not linked to any one
permission, but rather the functionality of the application, and are therefore not in the
current scope of the static analysis tool. Detection of these vulnerabilities from decom-
piled bytecode proved difficult and may be more suited for source code analysis.

The decompiled application code for active permissions such as CAMERA or
SEND SMS revealed that most applications require user confirmation or alert the user
of the permission use inherently by changing screens or displaying input text before
execution. An example of this is the CAMERA permission; applications including the
system camera app allowed Intents to start the camera. However, once the camera is
started, the user will see the camera output and will have to click for a picture to be
taken. Android does provide a system level permission INJECT EVENTS that lets the
application inject events such as clicks into the event stream for any window, but this
permission is purposefully warned against by Android and would be suspicious in any
app. The attack vector is further limited by the transfer of control to the vulnerable
application; the malicious application can not regain contol after sending an Inent in
most applications.

Internet Based Exploits
The most commonly leaked permission was INTERNET, and of the 97 applications re-
turned by our static analysis tool as exposing that permission, 7 allowed arbitrary URLs
to be loaded in the app’s WebView. For example, we found two apps, Jazz Internet Radio
and Sky.FM, both of which import CatalogActivity from the Flurry library, which will
load any URL sent to it in an Intent. Although a malicious application which exploited
these vulnerabilities not receive the response from the request, the application could
submit forms containing any data that the it had access to as well as visit malicious
websites.

This has several security related implications. First, it allows the attacker to exfiltrate
data from the app that the user believed would be used only by the application. Users
may be less careful about giving sensitive data to apps that they believe do not have
access to the internet. Also, a malcious app could connect to an ad server and generate
fraudulent ad clicks, while potentially depleting the user’s data plan. Finally, the ability
to force the user to visit an attacker-controlled URL means that attackers can learn the
IP address of any user, which is one of the factors used to determine the coarse location
of the device, which is supposed to be protected.

Interestingly, the stock Android browser will also load any URL that it receives in an
Intent. This means that any app can force the browser to visit any link using the user’s
cookies; it is reasonable to assume that a mobile user would visit many cookie-saving
sites in the default browser. Phishing attacks can therefore be embedded in apps that

4

https://play.google.com/store/apps/details?id=com.audioaddict.jr&feature=search_result#?t=W251bGwsMSwxLDEsImNvbS5hdWRpb2FkZGljdC5qciJd
https://play.google.com/store/apps/details?id=com.audioaddict.sky&feature=search_result#?t=W251bGwsMSwxLDEsImNvbS5hdWRpb2FkZGljdC5za3kiXQ..
http://support.flurry.com/index.php?title=AppCircle/GettingStarted/Android/TechnicalQuickStart


were not supposed to have access to the internet in the first place.

Example Exploit
We built an exploit to demonstrate the vulnerability we found in the Android browser.
We developed an app that appears to the users to be a private diary. It does not request
any permissions. However, when the user tries to save the diary entry, the app URL
encodes the entry and uses the browser to submit it to a website we control. If the user
has a login cookie saved for the zoobar website, our website changes the user’s zoobar
profile to the diary entry along with a timestamp and the user’s IP address. Control is
then returned to the application using a link click on our website, which creates an Intent.
Our application’s Intent filter catches Intents of that specific URI scheme (malware://)
and returns control to the application.

Conclusion
Our analysis of 3rd party apps looked for possible ways a malicious Intent could trigger
privileged calls by the app. We found that over half of the apps examined leaked one
or more privileged calls. However, very few (7 out of 97, for INTERNET-leaking apps)
leaked interesting, actionable exploits.

While our static analysis tool checked for permission differences between entry and
exit points in applications, we only found permission escalation from no permissions
to those enumerated above. This suggests that app developers are not checking the
permissions of incoming Intents, otherwise we would have seen a greater diversity of entry
point permissions. A search for questions about the checkCallingPermissions methods
on StackOverflow, the now official Android help forum, does not return many results
which supports the hypothesis that developers are not using this feature. The default
Android applications also allow privilge escalation through Intents; we found privilege
escalation paths in both the default browser and camera apps. However, there are very few
applications that rely on Intent data for important or sensitive parts of their functionality.

The static analysis tool we developed does not completely detect permission esca-
lation, and future work could be done to refine the tool. However, this would mostly
support potential attackers in finding exploitable applications. The tools [5] for pro-
tecting against privelege escalation exploits already exist, along with default Android
functions like checkCallingPermissions that limit incoming Intents. Developers do
not seem to be using these tools, which suggests that the Android platform needs better
vetting of applications before allowing them in the app market.

References

[1] Erika Chin, Adrienne Porter Felt, Kate Greenwood, and David Wagner. Analyzing
inter-application communication in android. In Proceedings of the 9th international
conference on Mobile systems, applications, and services, MobiSys ’11, page 239252,
New York, NY, USA, 2011. ACM.

[2] Anthony Desnos. Androguard. https://code.google.com/p/androguard/.

5

https://code.google.com/p/androguard/


[3] A. P. Felt, E. Chin, S. Hanna, D. Song, and D. Wagner. Android permissions demys-
tified. In Proceedings of the 18th ACM conference on Computer and communications
security, page 627638, 2011.

[4] M. Grace, Y. Zhou, Z. Wang, and X. Jiang. Systematic detection of capability leaks in
stock android smartphones. In Proceedings of the 19th Annual Symposium on Network
and Distributed System Security, 2012.

[5] Long Lu, Zhichun Li, Zhenyu Wu, Wenke Lee, and Guofei Jiang. CHEX: statically
vetting android apps for component hijacking vulnerabilities. In Proceedings of the
2012 ACM conference on Computer and communications security, CCS ’12, page
229240, New York, NY, USA, 2012. ACM.

[6] Wu Dang Thang. Real apk leecher. http://forum.xda-developers.com/

showthread.php?t=1563894.

6

http://forum.xda-developers.com/showthread.php?t=1563894
http://forum.xda-developers.com/showthread.php?t=1563894

