
SERVER-SIDE ANALYSIS

Ben Livshits, Microsoft Research

Overview of Today’s Lecture

 Static analysis for
bug finding

 Scripting languages
analyzed (UsenixSec
‘05 paper)

 Runtime analysis
 Fuzzing

Pen testing

 Tainting

 Symbolic execution

2

Compilers Under the Hood
3

Stages of Compilation

Source code

Lexing

Parsing

Analysis

IR

Executable code

Code generation

4

Stages of Compilation

Source code

Lexing

Parsing

Analysis

IR

Executable code

Code generation

5

Stages of Compilation

Source code

Lexing

Parsing

Analysis

IR

Executable code

Code generation

6

Stages of Compilation

Source code

Lexing

Parsing

Analysis

IR

Executable code

Code generation

7

Stages of Compilation

Source code

Lexing

Parsing

Analysis

IR

Executable code

Code generation

8

Stages of Compilation

Source code

Lexing

Parsing

Analysis

IR

Executable code

Code generation

9

Static Analysis
10

 Pros?

 Cons?

Static Analysis Tool for Bug Finding: Plan
11

1. Read the program

2. Transform into an Intermediate Representation
(IR)

3. Do analysis on the IR

4. Output results

Dimensions of Analysis
12

 Intraprocedural vs. interprocedural

 Flow sensitive vs. flow-insensitive

 Context sensitive vs. context-insensitive

Cost vs. Effectiveness
13

o
ve

rh
ea

d

bugs found

• interprocedural
• flow-sensitive
• context-sensitive
• hard to implement

grep
or grep++ like

LCLink

• intraprocedural
• flow-insensitive
• context-insensitive
• not too hard to build

 Historical background

14

 Intrinsa
 1997-200?

 paved way for MS

 Coverity
 Out of Stanford

 Commercial static analysis
tools

 Fortify
 Tools for security

 Klockwork

Paper Contributions
15

 Interprocedural static analysis algorithm

 Address dynamic language features

 Hash table use

 Regular expression matching

 Features

 Symbolic execution inside basic blocks

 Basic block summaries

Paper Contributions
16

 Focus

 SQL injection vulnerabilities. Why? Good idea?

 XSS – claim to handle with minor modifications

 Experiments

 6 PHP apps

 Finds 105 previously unknown vulnerabilities

PHP Language Features
17

 Natural SQL integration
 $rows = mysql_query(

 “UPDATE users SET pass=‘$pass’ WHERE userid=‘$userid’”);

 Dynamic types and implicit casts
 If ($userid < 0) exit;

 $query = “SELECT * from users

 WHERE userid=‘$userid’”;

 Global environment
 $_GET[‘name’] or $name

 $ used with register_globals = on? Attacker may provide arbitrary
value for $superuser by inserting something like $superuser=1 into
HTTP request

Analysis Steps (Section 3)
18

Basic blocks: Simulation
19

 Build up a model mapping labels -> values

 Special treatment of strings. Why?

 Special treatment of (some) booleans. Why?

Various Data Types: Representation
20

Basic Block Summary
21

Set Symbol Description

Error set E Input variables which must be sanitized before
entering this basic block

Return value R Representation for return value

Untaint set U Sanitized locations for each successor

Termination
predicate

T Block contains exit() or calls another
termination function

Value flow F Set of location pairs (l1, l2) where l1 is a
substring of l2 on exit

Definitions D Defined memory locations

Function Summary
22

Set Symbol Description

Error set E Input variables which must be sanitized before
entering this basic block

Return value R Representation for return value

Sanitized
values

S Sanitized locations for each successor

Program exit X Block contains exit() or calls another
termination function

Memory location that can flow to database inputs

for main function, this cannot include
$_GET[…] or $_POST[…]

Function Summary
23

Set Symbol Description

Error set E Input variables which must be sanitized before
entering this basic block

Return value R Representation for return value

Sanitized
values

S Sanitized locations for each successor

Program exit X Block contains exit() or calls another
termination function

string-typed parameters or globals that might be
returned, either fully or as part of a longer string

function make query($user, $pass) {
 global $table;
 return "SELECT * from $table ".
 "where user = $user and
 pass = $pass";
}

R = {$table, $arg#1, $arg#2}

Function Summary
24

Set Symbol Description

Error set E Input variables which must be sanitized before
entering this basic block

Return value R Representation for return value

Sanitized
values

S Sanitized locations for each successor

Program exit X Block contains exit() or calls another
termination function

the set of parameters or global variables that are
sanitized on function exit

function is_valid($x) {
 if (is numeric($x)) return true;
 return false;
}

S = (false => {}, true => {arg#1})

Function Summary
25

Set Symbol Description

Error set E Input variables which must be sanitized before
entering this basic block

Return value R Representation for return value

Sanitized
values

S Sanitized locations for each successor

Program exit X Block contains exit() or calls another
termination function

a Boolean which indicates whether

the current function terminates
program execution on all paths

Interprocedural Analysis
26

Why On Demand?

 PHP Fusion

 version 7-02-03

 about 52K lines
of code

 But really only
about 16,000
matter

27

Checker Input
28

 We seed the checker with a small set of query
functions (e.g. mysql_query) and sanitization
operations (e.g. is_numeric).

 The checker infers the rest automatically

Checker Output
29

 Errors

 Variables controlled by the attacker $_GET[…] and
$_POST[…]

 Warnings

 Other environment-define variables at the level of
main

Result Summary
30

Are the techniques in the
paper sound, i.e. do they
find all SQL injection bugs?

question of the day 31

Runtime Analysis Overview

• Black-box analysis

• Fuzzing

• Penetration testing

• White-box analysis

• Tainting

• Symbolic execution

32

Fuzzing: A Definition
33

“Fuzz testing or fuzzing is a software testing technique

that provides invalid, unexpected, or random data to the

inputs of a program. If the program fails (for example,

by crashing or failing built-in code assertions), the

defects can be noted.”

Wikipedia

Why Fuzz in General?

 Another point of view of testing

 If its automated, why not?

 Some Fuzzing Successes:
 Apple Wireless flaw DoS (MOKB-30-11-2006)
 Month of Browser Bugs in 2006, many found with input fuzzing:

 IE: 25
 Safari: 2
 Firefox: 2
 Opera: 1
 Konquerer: 1

Need a Fuzzing Specification
35

Fuzz testing of web applications, Hammersland and Snekkenes

What do they look for?

36

Penetration Testing Overview

DB

Other

Systems

White Hat

Tester

!@#$

Secret Data!

Web
Application

HTML

Servlets

Penetration Testing: Phases

White Hat

Tester

Web
Application

HTML

Servlets

Information
Gathering

Attack
Generation

Response
Analysis Report

Target
Selection

Analysis
Feedback

Information
Attacks

Responses

Tainting

 Negative tainting
 Mark or taint untrusted

input data at runtime

 Stop execution when
untrusted input reaches
“sinks”

 Positive tainting
 Taint trusted data such as

constant strings only

 Stop execution when data
reaching “sinks” is not
tainted

 Propagate the taint through
at the application executes

String s =

 req.getParameter(“userName”);

String s2 = “hello” + s;

output.println(“<div>”);

output.println(s2);

output.println(“</div>”);

38

Questions About Tainting
39

 How do we identify all sources in negative
tainting?

 How do we remote taint?

 What is the runtime overhead?

Symbolic Execution
40

String s;

if (!P) {

 s = req.getParameter(“userName”);

} else {

 s = “”;

}

String s2 = “hello” + s;

if (P) {

 output.println(“<div>”);

 output.println(s2);

 output.println(“</div>”);

} else {

 output.println(“hello”);

}

 Treat input values
symbolically

 Propagate symbolic
values through

 When encountering a
conditional, consider
both branches

 Use a theorem prover to
eliminate infeasible paths

Summary
 Static analysis for

bug finding

 Scripting languages

analyzed (UsenixSec
‘05 paper)

 Runtime analysis

 Black-box

 Fuzzing
Pen testing

 White-box

 Tainting
 Symbolic execution

41

