SERVER-SIDE ANALYSIS

Overview of Today’s Lecture

Static analysis for Runtime analysis
bug finding Fuzzing
Pen testing

Tainting
Symbolic execution

Scripting languages
analyzed (UsenixSec
‘05 paper)

Compilers Under the Hood

File Edit Options Buffers Tools C Help
i)

printf("hello,worldtsrsn'):;

return (0):

All L1 (C-1 Abbreu)
—=— mode: compilation: default-directory: "~homerdodolook-" —=

Compilation started at Mon May 30 15:36:27
gcc —o hello 123.c
: In function Emainm:
123.c:3:3: warning: incompatible implicit declaration of built-in function mpri%
ntfm

Compilation finished at Mon May 30 15:36:29

All L1 (Compilation

Compilation finished

Stages of Compilation

Source code B)

_ et e
D-HGS $-0-Q- BFF- i G- & (@) N
= Mew Editar = =
{3 Package Exp 2 i} Hierarchﬂ EI](Help.class ﬂ class] 1 { B = Jaqu (]
. " 3
o o @l <‘}==D| 6 BT) Open Perspective u| B8 s e w7
= Softpedia a public cla Show\View v & Ant @ Softpedia
IBE.Ec(“ — @ I Custornize Perspecive.. B consale AltShifts0.C | g com.:l;‘co‘rbat‘se.\mp\‘a
efault package, = import declarations
[1] Softy Zd\a Sva TR S apaeiR A @ Dectarstion AL, O é SerierToo\
pedial * @) ErrarLog Alt+Shift+Q, L -
= IRE Systern Library [jre] o Reset Perspective GL RegisterServer
L ttjar - CAProgram Files'Eas Close Perspective T Hierarchy AteShIfteQ T @ LnRegisterServer
i com.zun.accessibility.ini packag Close All Perspectives &) dls iz G LocateServer
3 com.sunbeans _ %5 Navigator G LocateServerForORE
B com.suncarbaseimplz =] import Mavigation 3 g; Guidliia Q GetServerlD
CommandHandler.c import ListServers
GetServerD.class ﬁnrt L Working Sets > |8 |Colegpbplmy ASii@,P g ListictiveServers
Help.class import Preferences... {ZL Problems GL Listtliases
ListhctiveServers.cla import jave.util.Properties; & Progress @ ShutdownServer
ListAliases.class import java.util.StringTokenizer; = proneties @ StartServer
ListOREs.class T . G Quit
N . Search Alt+Shift+0), 5
ListServers.class mnrt oryg. omg. CORBL. ORE: » @ Help
LocsteServer.class import org.omg.CORBA. INITIALIZE; £ Tasks G LitoRes
import org.omg.CORBL.Completions
LocateServerforORD import com.sun.corba.se.impl.orb Other... Alt+Shift+Q, Q
I S StanTh)) U °
0;?; eIN'ce 2 import com.sun.corba.se.impl.orbutil.CorbaResourcelUtils B
. =]
b Er:;s ™ import com.sun.corba.se.spi.activation.?*:
rocessMonitorThre import com.sun.corba.se.spil.activation.ServerHeldDown: E
Quit.class import com.sun.corba.se.spil.activation.RepositoryPackage.:
RegisterServer.class import cow.sun.corba.se.spi.activation.LocatorPackage.Ser ™
Repositordmpl.class 4 . | 3 4 I +
ServerCallback.class =
Serverhain.class [Prablems 22 @ Javadocw & Declaratmﬂ Y =]
Serverhanagedmpl. 0 errars, Dwarnings, 0infos
ServerTableEntry.cla | Description - | Resource Path Location
ServerTool.class
ShutdownServer.clss
StartServer.class
UnRegisterServer.cla _
] [' v
Writable Smart Insert T

Stages of Compilation

Parsing

[IR

Analysis

Code generation

[Executable code

File Edit Tools Syntax Buffers Window Help
= | C | S =

/* This tells flex to read only one input file */
%option noyywrap

* [0-9]+ matches a string of one or more digits */

{

printf("Saw an integ

'* Ignore all other

* C Code section *#*/
int main{void)

all the lexer, then quit. #*/

xt is a strir ning the matched text. */

Stages of Compilation

Source code

Lexing

Parsing

o GLYD 2.0 - GUI for Lexx and Yacc with Delphi

| hody error
{ errorjerror_ in rule); }

action lbrace { copy action; } rhrace
| eq { copy single action; }
A% 0ld language feature;: code must be
single statement ending with “:' #/

pprec literal
{ add rule prec(§2): }
opt_action

pprec litid
{ add_rule_precilitsymi$2, 0)): }

opt_action

TP Yacc Version 4.1 [May 1995], Copyright (c) 1990-95 Albhert Graetf
parse ... sSort closures first sets= LRO set
code generation ... DONE

lockaheads

866 lines, 102/900 rules, 12871200 s, 300/9600 i, 255/9600 t, 11171200 r.

g shift/reduce conflicts.

fyacc. lat:

Stages of Compilation
4

WordCounter::.ctor : void(})

Source COde Joethod public hidebysig specialnamwe rtspecialnsame
Cmoend)
Lexing >
©

@S D @S @

Parsing

]] e > G G
E3 E3
.

<
%
¥
==
i
2
z
m
!
<
%
>
-]
f
z
z
m
2
2
2
|5.
£
§'.
=2
g
B
Z
§v

Stages of Compilation

¢ coverity-
a higher code’

Stages of Compilation

-
|

Source code

Lexing

Parsing

Analysis

- ==l .
@ hitp://risedfun.c.. O v & X || @ Vee @ RiSE4fun - AVe

o
RiSE4fun

gave 116,689 answers!
Click on a tool to Load a sample then ask!

ek

#include <vcc.h>

-~

int main{)
{
int =, v;
_lassert = >= vy)
return 0;

h
m Does this C program always
work? Click 'ask vec'! Read

more or watch the video.

|3 Tweet | [Like | |151]

-

Static Analysis

I e
1 Pros?

1 Cons?

Static Analysis Tool for Bug Finding: Plan

11|
Read the program

[HY

>. Transform into an Intermediate Representation
(IR)

5. Do analysis on the IR

2. Output results

Dimensions of Analysis
12 |

- Intraprocedural vs. interprocedural
- Flow sensitive vs. flow-insensitive

1 Context sensitive vs. context-insensitive

Cost vs. Effectiveness

.GA

(@) .

Q interprocedural
§ flow-sensitive

o context-sensitive

hard to implement

intraprocedural
flow-insensitive
context-insensitive

not too hard to build

Or gl - - RN
LCLink

bugs found

SOFTWARE—PRACTICE AND EXPERIENCE
Saoftw. Pract. Exper. 2000; 30:775-802

A static analyzer for finding RI
dynamic programming errors

William R. Bush®*, Jonathan D. Pincus and David J. Sielaff

Intrinsa Corporation, Mountain View, C4, US.A.

SUMMARY

There are important classes of programming errors that are hard to diagnose, both manually and
automatically, because they involve a program’s dynamic behavior. This article describes a compile-time
analyzer that detects these dynamic errors in large, real-world programs. The analyzer traces execution
paths through the source code, modeling memory and reporting inconsistencies. In addition to avoiding false
paths through the program, this approach provides valuable contextual information to the programmer
who needs to understand and repair the defects. Automatically-created models, abstracting the behavior
of individual functions, allow inter-procedural defects to be detected efficiently. A product built on these
techniques has been used effectively on several large commercial programs. Copyright © 2000 John Wiley
& Sons, Ltd.

KEY WORDS: program analysis; program error checking

INTRODUCTION

There are important classes of programming errors that are hard to diagnose. both manually and
automatically, because they involve a program’s dynamic behavior. They include invalid pointer
references. faulty storage allocation. the use of uninitialized memory. and improper operations on
resources such as files (trying to close a file that is already closed. for example).

Finding and fixing such errors is difficult and expensive. They are usually found late in the
development process. Extensive testing is often needed to find them. because they are commonly
caused by complex interactions between components. Our measurements indicate that in commercial
C and C++ code. on the order of 90% of these errors are caused by the interaction of multiple functions.
In addition. problems may be revealed only in error conditions or other unusual situations. which are
difficult to provoke by standard testing methods.

Traditional checking provided by the error-checking portion of compilers identifies errors relating
to the static expression of a program. such as syntax errors. type violations, and mismatches between

*Correspondence to: William R. Bush, 1739 Lexington Avenue. San Mateo, CA 94402-4024. US.A.

Received 9 November 1998
Copyright © 2000 John Wiley & Sons, Ltd. Revised 27 December 1999
Accepted 28 December 19090

Historical background

Intrinsa
1997-2007
paved way for MS

Coverity
Out of Stanford

Commercial static analysis
tools

Fortify
Tools for security

Klockwork

Paper Contributions

Interprocedural static analysis algorithm
Address dynamic language features
Hash table use
Regular expression matching

Features
Symbolic execution inside basic blocks
Basic block summaries

Paper Contributions

Focus
SQL injection vulnerabilities. Why? Good idea?
XSS — claim to handle with minor modifications

Experiments
6 PHP apps
Finds 105 previously unknown vulnerabilities

PHP Language Features

Natural SQL integration
Srows = mysql_query(
“UPDATE users SET pass=‘Spass’ WHERE userid=‘Suserid’”);

Dynamic types and implicit casts
If (Suserid < 0) exit;
Squery = “SELECT * from users
WHERE userid=‘Suserid’”;

Global environment
S_GET[‘name’] or Sname

S used with register_globals = on? Attacker may provide arbitrary

value for Ssuperuser by inserting something like Ssuperuser=1 into
HTTP request

Analysis Steps (Section 3)

T e
PHP Source

JStandard PHP Parser
Abstract Syntax Trees
Jh’ Function
Control Flow Graph
llntrablock Analysis
Block Summary
Jlntraprncedural Analysis
Function Summary
Jlnterpmcedural Analysis

Result

Basic blocks: Simulation

19 |
- Build up a model mapping labels -> values

-1 Special treatment of strings. Why?

-1 Special treatment of (some) booleans. Why?

Various Data Types: Representation
[

Strings Most fundamental type

» Concatenation of string segments
» contains(o): String with substrings from a set o of
memory locations

Basic Block Summary
I TS

Set Symbol Description
Error set E Input variables which must be sanitized before
entering this basic block
Return value R Representation for return value
Untaint set U Sanitized locations for each successor
Termination T Block contains exit() or calls another
predicate termination function
Value flow F Set of location pairs (I, |,) where |, is a

substring of |, on exit

Definitions D Defined memory locations

Function Summary

Error set
Memory location that can flow to database inputs

Return value

for main function, this cannot include

Sanitized S iti
values $ GET[..] or$ POST]..]

Program exit X

Function Summary

Error set

Return value

Sanitized
values

string-typed parameters or globals that might be
%S returned, either fully or as part of a longer string

function make query($user, $pass) {
global $table;
return "SELECT * from $table ".
"where user = $user and

Program exit

pass = $pass”;

R ={$table, $arg#l, $arg#2}

Function Summary

Error set

the set of parameters or global variables that are
sanitized on function exit

Return value

function is_valid($x) {

Sanitized
values

S if (is numeric($x)) return true;
return false;

Program exit

Block }

termi
S= (false => {}, true => {arg#l})

Function Summary

Description

Error set E Input variables which must be sanitized before
entering this basic block

Return value

Sanitized

values a Boolean which indicates whether

the current function terminates
program execution on all paths

Program exit

Interprocedural Analysis
I

Since we require the summary information of a function
before we can analvze its callers, the order in which func-
tions are analvzed is important. Due to the dynamic nature
of PHP (e.g., include statements), we analyze functions on
demand—a function f is analyzed and summarized when we
first encounter a call to f. The summary is then memoized
to avoid redundant analysis. Recursive function calls are
rare in PHP programs. If we encounter a cycle during the
analysis, our current implementation uses a dummy “no-op”
summary as a model for the second invocation.

Why On Demand?

PHP Fusion
version 7-02-03

about 52K lines
of code

But really only
about 16,000
matter

G]

—

d Console?

Checker Input

We seed the checker with a small set of query
functions (e.g. mysgl _query) and sanitization
operations (e.g. 1s_numeric).

The checker infers the rest automatically

Checker Output

Errors

Variables controlled by the attacker S_GET]...] and
S_POSTI...]

Warnings

Other environment-define variables at the level of
main

Result Summary

Err Msgs Bugs (FP) Warn

el07 16 16 (0) 23
News Pro 8 8 (0) 8
myBloggie 16 16 (0) 23
DCP Portal 39 39 (0) 55
PHP Webthings 20 20 (0) 6
~“Total 99 99 (0) 115

Table 1: Summary of experiments. Err Msgs: num-
ber of reported errors. Bugs: number of confirmed
bugs from error reports. FP: number of false pos-
itives. Warn: number of unique warning messages
for variables of unresolved origin (uninspected).

qguestion of the day

Are the techniques in the
paper sound, i.e. do they
find all SQL injection bugs?

Runtime Analysis Overview

Blacl

Fu:
Per

ttDatabase
Hackers
Handbook

T \d

David Litchfield, Chris Anley, John
Heasman, Bill Grindlay

Shellcoders
”:ln(llmnl\

Shellcoders
”:lll(llumk

Chris Anley, John Heasman

Web Applic: mnll

||(1(Ker's
[andbook

Dafydd Stuttard, Marcus Pinto

SOL=
ERVER
SEGURITY

TrixBox

Barrie Dempster

IPCop Firewalls

tn

Barrie Dempster

Building Telephony
Systems with Asterisk

Barrie Dempster

analysis

axecution

Fuzzing: A Definition

“Fuzz testing or fuzzing is a software testing technique
that provides invalid, unexpected, or random data to the
inputs of a program. If the program fails (for example,

by crashing or failing built-in code assertions), the

defects can be noted.”

Wikipedia

Why Fuzz in General?

Another point of view of testing
If its automated, why not?

Some Fuzzing Successes:
Apple Wireless flaw DoS (MOKB-30-11-2006)

Month of Browser Bugs in 2006, many found with input fuzzing:
|E: 25
Safari: 2
Firefox: 2
Opera: 1
Konquerer: 1

Need a Fuzzing Specification
o3 4

setup "Webapp" do

fhost = "10.0.0.2"
Gport = 3000
fheaders = "HTTP_AC

attack "search-box
many :get, "/sea:
e What do they look for?
rquery => {

end

attack "post-page" do
cnce :get, "/login.p Ty =>
{:user => :adng rpass => radmin}
many :peost, "/postfphp", :query =>
{:title => word, :body => byte(50)]

end
end

Fuzz testing of web applications, Haommersland and Snekkenes

Penetration Testing Overview

Al o

%
iy

Secret Data!

White Hat
Tester

Systems

Penetration Testing: Phases

Attacks
Information

Target
Selection

Analysis
Feedback

White Hat
Tester

Responses

Tainting

Negative tainting

Mark or taint untrusted
input data at runtime

Stop execution when
untrusted input reaches
“sinks”

Positive tainting

Taint trusted data such as
constant strings only

Stop execution when data
reaching “sinks” is not
tainted

Propagate the taint through
at the application executes

String s =
req.getParameter(“userName”);
String s2 = “hello” + s;
output.println(“<div>”);
output.println(s2);
output.println(“</div>”);

Questions About Tainting

1 How do we identify all sources in negative
tainting?

- How do we remote taint?

7 What is the runtime overhead?

Symbolic Execution

Treat input values
symbolically

Propagate symbolic
values through

When encountering a
conditional, consider
both branches

Use a theorem prover to
eliminate infeasible paths

String s;
if (!'P) {

s = req.getParameter(“userName”);

1} else {

_ €.,
S = 5

String s2 = “hello” + s;

if (P) {
output.println(“<div>”);
output.println(s2);
output.println(“</div>”);

} else {
output.println(“hello”);

Summary

Static analysis for
bug finding

Scripting languages
analyzed (UsenixSec
‘05 paper)

Runtime analysis

Black-box

Fuzzing
Pen testing

White-box
Tainting
Symbolic execution

