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Overview of Today’s Lecture 

 Static analysis for 
bug finding  

 

 Scripting languages 
analyzed (UsenixSec 
‘05 paper) 

 

 Runtime analysis 
 Fuzzing 

Pen testing 

 Tainting 

 Symbolic execution 
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Compilers Under the Hood 
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Static Analysis 
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 Pros? 

 

 

 

 Cons? 



Static Analysis Tool for Bug Finding: Plan 
11 

1. Read the program 

 

2. Transform into an Intermediate Representation 
(IR) 

 

3. Do analysis on the IR 

 

4. Output results 



Dimensions of Analysis 
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 Intraprocedural vs. interprocedural 

 

 Flow sensitive vs. flow-insensitive 

 

 Context sensitive vs. context-insensitive 

 

 



Cost vs. Effectiveness  
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bugs found  

• interprocedural 
• flow-sensitive 
• context-sensitive 
• hard to implement 

grep 
or grep++ like 

LCLink 

• intraprocedural 
• flow-insensitive 
• context-insensitive 
• not too hard to build 



 Historical background 

14 

 Intrinsa 
 1997-200? 

 paved way for MS 

 

 Coverity 
 Out of Stanford 

 Commercial static analysis 
tools 

 

 Fortify 
 Tools for security 

 

 Klockwork 

 

 



Paper Contributions 
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 Interprocedural static analysis algorithm 

 Address dynamic language features  

 Hash table use 

 Regular expression matching 

 

 Features 

 Symbolic execution inside basic blocks 

 Basic block summaries 

 



Paper Contributions 
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 Focus 

 SQL injection vulnerabilities. Why? Good idea? 

 XSS – claim to handle with minor modifications 

 

 Experiments 

 6 PHP apps  

 Finds 105 previously unknown vulnerabilities 

 



PHP Language Features 
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 Natural SQL integration 
 $rows = mysql_query( 

 “UPDATE users SET pass=‘$pass’ WHERE userid=‘$userid’”); 
 

 Dynamic types and implicit casts 
 If ($userid < 0) exit; 

 $query = “SELECT * from users  

 WHERE userid=‘$userid’”; 

 

 Global environment 
 $_GET[‘name’] or $name 

 $ used with register_globals = on? Attacker may provide arbitrary 
value for $superuser by inserting something like $superuser=1 into 
HTTP request 

 



Analysis Steps (Section 3) 
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Basic blocks: Simulation 
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 Build up a model mapping labels -> values  

 

 Special treatment of strings. Why? 

 

 Special treatment of (some) booleans. Why? 

 

 



Various Data Types: Representation 
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Basic Block Summary 
21 

Set Symbol Description 

Error set E Input variables which must be sanitized before 
entering this basic block 

Return value R Representation for return value 

Untaint set U Sanitized locations for each successor 

Termination 
predicate 

T Block contains exit() or calls another 
termination function 

Value flow F  Set of location pairs (l1, l2) where l1 is a 
substring of l2 on exit 

Definitions D  Defined memory locations 



Function Summary 
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Set Symbol Description 

Error set E Input variables which must be sanitized before 
entering this basic block 

Return value R Representation for return value 

Sanitized 
values 

S Sanitized locations for each successor 

Program exit X Block contains exit() or calls another 
termination function 

Memory location that can flow to database inputs 
 

for main function, this cannot include  
$_GET[…] or $_POST[…] 



Function Summary 
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Set Symbol Description 

Error set E Input variables which must be sanitized before 
entering this basic block 

Return value R Representation for return value 

Sanitized 
values 

S Sanitized locations for each successor 

Program exit X Block contains exit() or calls another 
termination function 

string-typed parameters or globals that might be 
returned, either fully or as part of a longer string 

 
function make query($user, $pass) { 
  global $table; 
  return "SELECT * from $table ". 
    "where user = $user and  
                    pass = $pass"; 
} 
 
R = {$table, $arg#1, $arg#2} 



Function Summary 
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Set Symbol Description 

Error set E Input variables which must be sanitized before 
entering this basic block 

Return value R Representation for return value 

Sanitized 
values 

S Sanitized locations for each successor 

Program exit X Block contains exit() or calls another 
termination function 

the set of parameters or global variables that are 
sanitized on function exit 
 
function is_valid($x) { 
  if (is numeric($x)) return true; 
  return false; 
} 
 
S = (false => {}, true => {arg#1}) 



Function Summary 
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Set Symbol Description 

Error set E Input variables which must be sanitized before 
entering this basic block 

Return value R Representation for return value 

Sanitized 
values 

S Sanitized locations for each successor 

Program exit X Block contains exit() or calls another 
termination function 

 
a Boolean which indicates whether 

the current function terminates 
program execution on all paths 

 



Interprocedural Analysis 
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Why On Demand? 

 PHP Fusion 

 version 7-02-03 

 

 about 52K lines 
of code 

 

 But really only 
about 16,000 
matter 
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Checker Input 
28 

 

 We seed the checker with a small set of query 
functions (e.g. mysql_query) and sanitization 
operations (e.g. is_numeric).  

 

 The checker infers the rest automatically 



Checker Output 
29 

 

 Errors 

 Variables controlled by the attacker $_GET[…] and 
$_POST[…] 

 

 Warnings 

 Other environment-define variables at the level of 
main 



Result Summary 
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Are the techniques in the 
paper sound, i.e. do they 
find all SQL injection bugs? 

question of the day 31 



Runtime Analysis Overview 

• Black-box analysis 

• Fuzzing 

• Penetration testing 

 

 

• White-box analysis 

• Tainting 

• Symbolic execution 
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Fuzzing: A Definition 
33 

“Fuzz testing or fuzzing is a software testing technique 

that provides invalid, unexpected, or random data to the 

inputs of a program. If the program fails (for example, 

by crashing or failing built-in code assertions), the 

defects can be noted.” 

 

 

Wikipedia 



Why Fuzz in General? 

 Another point of view of testing 
 

 If its automated, why not? 
 

 Some Fuzzing Successes: 
 Apple Wireless flaw DoS (MOKB-30-11-2006) 
 Month of Browser Bugs in 2006,  many found with input fuzzing: 

 IE: 25 
 Safari: 2 
 Firefox: 2 
 Opera: 1 
 Konquerer: 1 



Need a Fuzzing Specification 
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Fuzz testing of web applications, Hammersland and Snekkenes 

What do they look for? 
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Penetration Testing Overview  

DB 
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Penetration Testing: Phases 

White Hat 

Tester 

Web 
Application 

HTML 

Servlets 

Information 
Gathering 

Attack 
Generation 

Response 
Analysis Report 

Target 
Selection  

Analysis 
Feedback 

Information 
Attacks 

Responses 



Tainting 

 Negative tainting 
 Mark or taint untrusted 

input data at runtime 

 Stop execution when 
untrusted input reaches 
“sinks” 

 

 Positive tainting 
 Taint trusted data such as 

constant strings only 

 Stop execution when data 
reaching “sinks” is not 
tainted 

 

 

 Propagate the taint through 
at the application executes 

String s =      

     req.getParameter(“userName”); 

String s2 = “hello” + s; 

output.println(“<div>”); 

output.println(s2); 

output.println(“</div>”); 
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Questions About Tainting 
39 

 How do we identify all sources in negative 
tainting? 

 

 How do we remote taint? 

 

 What is the runtime overhead? 



Symbolic Execution 
40 

String s; 

if (!P) { 

  s = req.getParameter(“userName”); 

} else { 

  s = “”; 

} 

 

String s2 = “hello” + s; 

if (P) {  

  output.println(“<div>”); 

  output.println(s2); 

  output.println(“</div>”); 

} else { 

  output.println(“hello”); 

} 

 

 Treat input values 
symbolically 

 Propagate symbolic 
values through 

 When encountering a 
conditional, consider 
both branches 

 Use a theorem prover to 
eliminate infeasible paths 

 



Summary 
 Static analysis for 

bug finding  

 
 Scripting languages 

analyzed (UsenixSec 
‘05 paper) 

 

 Runtime analysis 

 
 Black-box 

 Fuzzing 
Pen testing 

 
 White-box 

 Tainting 
 Symbolic execution 
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