intel.

Intel® 64 and IA-32 Architectures
Software Developer's Manual

Volume 3A:
System Programming Guide, Part 1

NOTE: The Intef® 64 and IA-32 Architectures Software Developer’s Manual
consists of five volumes: Basic Architecture, Order Number 253665;
Instruction Set Reference A-M, Order Number 253666; Instruction Set
Reference N-Z, Order Number 253667; System Programming Guide,
Part 1, Order Number 253668; System Programming Guide, Part 2, Order
Number 253669. Refer to all five volumes when evaluating your design
needs.

Order Number: 253668-031US
June 2009

INFORMATION IN THIS DOCUMENT IS PROVIDED IN CONNECTION WITH INTEL PRODUCTS. NO LICENSE,
EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE, TO ANY INTELLECTUAL PROPERTY RIGHTS IS
GRANTED BY THIS DOCUMENT. EXCEPT AS PROVIDED IN INTEL'S TERMS AND CONDITIONS OF SALE FOR
SUCH PRODUCTS, INTEL ASSUMES NO LIABILITY WHATSOEVER AND INTEL DISCLAIMS ANY EXPRESS OR
IMPLIED WARRANTY, RELATING TO SALE AND/OR USE OF INTEL PRODUCTS INCLUDING LIABILITY OR
WARRANTIES RELATING TO FITNESS FOR A PARTICULAR PURPOSE, MERCHANTABILITY, OR INFRINGEMENT
OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

UNLESS OTHERWISE AGREED IN WRITING BY INTEL, THE INTEL PRODUCTS ARE NOT DESIGNED NOR IN-
TENDED FOR ANY APPLICATION IN WHICH THE FAILURE OF THE INTEL PRODUCT COULD CREATE A SITU-
ATION WHERE PERSONAL INJURY OR DEATH MAY OCCUR.

Intel may make changes to specifications and product descriptions at any time, without notice. Designers
must not rely on the absence or characteristics of any features or instructions marked "reserved" or "un-
defined."” Intel reserves these for future definition and shall have no responsibility whatsoever for conflicts
or incompatibilities arising from future changes to them. The information here is subject to change without
notice. Do not finalize a design with this information.

The Intel® 64 architecture processors may contain design defects or errors known as errata. Current char-
acterized errata are available on request.

Intel® Hyper-Threading Technology re%uires a computer system with an Intel® processor supporting Hyper-
Threading Technology and an Intel™ HT Technology enabled chipset, BIOS and operating system.
Performance will vary depending on the specific hardware and software you use. For more information, see
http://www.intel.com/technology/hyperthread/index.ntm; including details on which processors support Intel HT
Technology.

Intel® Virtualization Technology requires a computer system with an enabled Intel® processor, BIOS, virtual
machine monitor (VMM) and for some uses, certain platform software enabled for it. Functionality, perfor-
mance or other benefits will_vary depending on hardware and software configurations. Intel® Virtualization
Technology-enabled BIOS and VMM applications are currently in development.

64-bit computing on Intel architecture requires a computer system with a processor, chipset, BIOS, oper-
: .] I 6] -

ating system, device drivers and applications enabled for Intel™ 64 architecture. Processors will not operate

(including 32-bit operation) without an Intel® 64 architecture-enabled BIOS. Performance will vary depend-

ing on your hardware and software configurations. Consult with your system vendor for more information.

Enabling Execute Disable Bit functionality requires a PC with a processor with Execute Disable Bit capability
and a supporting operating system. Check with your PC manufacturer on whether your system delivers Ex-
ecute Disable Bit functionality.

Intel, Pentium, Intel Xeon, Intel NetBurst, Intel Core Solo, Intel Core Duo, Intel Core 2 Duo, Intel Core 2
Extreme, Intel Pentium D, Itanium, Intel SpeedStep, MMX, Intel Atom, and VTune are trademarks or reg-
istered trademarks of Intel Corporation or its subsidiaries in the United States and other countries.

*Other names and brands may be claimed as the property of others.

Contact your local Intel sales office or your distributor to obtain the latest specifications and before placing
your product order.

Copies of documents which have an ordering number and are referenced in this document, or other Intel
literature, may be obtained by calling 1-800-548-4725, or by visiting Intel’s website at http://www.intel.com

Copyright © 1997-2009 Intel Corporation

i Vol.3A

CONTENTS

PAGE
CHAPTER 1
ABOUT THIS MANUAL
1.1 PROCESSORS COVERED IN THIS MANUAL . ..o v ettt 1-1
1.2 OVERVIEW OF THE SYSTEM PROGRAMMING GUIDEc.vviiiiii i 1-3
13 NOTATIONAL CONVENTIONS ..ottt e 1-6
1.3.1 Bitand Byte Order. ..o e 1-6
13.2 Reserved Bits and Software Compatibility..............coooiiiiiiii i, 1-6
133 INSTrUCTION OPEraNdS. v vttt e 1-7
134 Hexadecimal and Binary NUmbers. ... e 1-8
135 Segmented AddreSSINg. ... vt 1-8
1.3.6 Syntax for CPUID, CR,and MSR VaIUBS . ..o 1-9
137 (=T 0 3 1-10
14 RELATED LTERATURE . .ottt i 1-11
CHAPTER 2
SYSTEM ARCHITECTURE OVERVIEW
2.1 OVERVIEW OF THE SYSTEM-LEVEL ARCHITECTURE.ev v 2-2
2.1.1 Global and Local Descriptor Tablesvv v 2-5
2.1.1.1 Global and Local Descriptor TablesinlA-32eMode..........ccoovviiiivinininnn. 2-5
2.1.2 System Segments, Segment Descriptors,and Gates..............cocvviiiiinnnt. 2-5
2.1.2.1 GateS N TA-32E MO . ..ot 2-6
213 Task-State Segments and Task GatesS........oviiiiiiii it 2-6
2.1.31 Task-State SegmentsinIA-32e Mode. ..ot 2-7
214 Interrupt and Exception Handlingcoi i 2-7
2.1.4.1 Interrupt and Exception HandlingIA-32eModecoooviviviiiii i 2-7
215 Memory Managementt e 2-8
2.1.5.1 Memory ManagementinlA-32eModeccoiviiiiiiii i 2-8
2.1.6 Sy S M RIS IS .ottt ettt 2-9
2.1.6.1 System RegistersinlA-32e Mode. ..o 2-9
217 Other SYSTeM RESOUMCES . . .\ttt ettt ettt ettt et eaaaaas 2-10
2.2 MODES OF OPERATION . . .ttt e 2-10
2.3 SYSTEM FLAGS AND FIELDS IN THE EFLAGS REGISTER. ..o 2-12
2.3.1 System Flags and Fields inIA-32eMode. ..o i 2-15
2.4 MEMORY-MANAGEMENT REGISTERSt 2-15
241 Global Descriptor Table Register (GDTR).vvvvi i 2-16
24.2 Local Descriptor Table Register (LDTR).......vviiii i 2-16
243 IDTR Interrupt Descriptor Table Register.........covvviviiiiiiii i 2-17
244 Task REGISTEN (TR) . v vttt et 2-17
2.5 CONTROL REGISTERS ..\ttt et e 2-17
2.5.1 CPUID Qualification of Control Register FIags..........covviiiiiiiiiniiiiiiinnns 2-26
2.6 EXTENDED CONTROL REGISTERS (INCLUDING THE XFEATURE_ENABLED_MASK REGISTER)

2-26

2.7 SYSTEM INSTRUCTION SUMMARY. . ..ttt 2-27
271 Loading and Storing System RegiStersovviiiiiii i 2-29
27.2 Verifying of AcCess Privilegesc..vviiii i e 2-30
273 Loading and Storing Debug RegiStersovvviiiiiiii i 2-31
274 Invalidating Caches and TLBSo i i 2-31

Vol. 3A iii

CONTENTS

PAGE

275 Controlling the ProCeSSOr. . ..o vttt e 2-31
2.7.6 Reading Performance-Monitoring and Time-Stamp Counters 2-32
2.7.6.1 Reading Countersin 64-BitMode ...t 2-33
277 Reading and Writing Model-Specific Registerscocviiiiiiiiiiiiinann, 2-33
2771 Reading and Writing Model-Specific Registers in 64-Bit Mode.................. 2-34
278 Enabling Processor Extended States ...t 2-34
CHAPTER 3
PROTECTED-MODE MEMORY MANAGEMENT
3.1 MEMORY MANAGEMENT OVERVIEW.ot 3-1
3.2 USING SEGMENT S .ottt e e e 3-3
3.2.1 BaSiC FIRt MOEL . ..ot e 3-3
3.2.2 Protected FIat Model. 3-4
3.2.3 Multi-Segment Model. 3-5
324 Segmentation N IA-32e MOdeo ittt e e 3-6
3.25 Paging and Segmentationo 3-7
33 PHYSICAL ADDRESS SPACE . ..ttt et e 3-7
3.3.1 Intel® 64 Processors and Physical Address Spacecovvviiiiiiiiiiiininanns 3-8
3.4 LOGICAL AND LINEAR ADDRESSES ettt 3-8
3.4.1 Logical Address TranslationinlA-32eModec..oviii i 3-9
34.2 Y =T =T Y =] 1= Ton (o] 5 3-9
343 SEgMENT REGIS OIS, .ttt ittt 3-10
344 Segment Loading Instructions in1A-32eModecovvii i 3-12
345 SEgMENT DESCIIPIOrS . . ottt i e e 3-13
34.5.1 Code- and Data-Segment Descriptor TYpes.o v 3-16
35 SYSTEM DESCRIPTOR TYPES ..\ttt 3-18
3.5.1 Segment Descriptor Tables.o e 3-20
35.2 Segment Descriptor Tables inlA-32e Mode..........coovviii it 3-22
CHAPTER 4
PAGING
4.1 PAGING MODES AND CONTROL BITS ..ttt ittt 4-1
411 Three Paging Modesoviviiii it e e e 4-2
41.2 Paging-Mode ENabling.ouvuiriiir 4-3
41.3 Paging-Mode Modifiersovviii i 4-5
414 Enumeration of Paging Featuresby CPUIDo 4-6
4.2 HIERARCHICAL PAGING STRUCTURES: ANOVERVIEW 4-7
43 32-BIT PAGING. . .ottt e e e 4-8
44 PAE PAGING © vttt e 4-15
441 PP T E REGISTEIS. .« vttt vttt ettt e e 4-16
442 Linear-Address Translation with PAEPaging.coo i 4-17
45 [A-32E PAGING. . oottt e 4-23
46 ACCESS RIGHT S . ot e e 4-32
4.7 PAGE-FAULT EXCEPTIONS. .\ttt ettt e e e e ees 4-34
48 ACCESSED AND DIRTY FLAGS . . . ottt ettt et 4-36
49 PAGING AND MEMORY TYPING. . ..ottt ettt 4-36
491 Paging and Memory Typing When the PAT is Not Supported (Pentium Pro and Pentium Il

0 Tol S Yo) 4-37
492 Paging and Memory Typing When the PAT is Supported (Pentium Ill and More Recent

Processor Families)v.ie s 4-37

iv Vol. 3A

CONTENTS

PAGE
493 Caching Paging-Related Information about Memory Typingcovivnntn 4-38
4.10 CACHING TRANSLATION INFORMATION.t e ettt 4-38
410 Translation Lookaside Buffers (TLBs)4-39
410.1.1 Page Numbers, Page Frames, and Page Offsets............ccoovvivivinnns, 4-39
410.1.2 Caching Translations in TUBS. .. .vvv i 4-39
410.1.3 Details Of TLB USE. . vttt e ettt e 4-40
41014 GlODAl Pages . ..ottt 4-41
410.2 Paging-Structure Caches. v e 4-41
N 1 Caches for Paging Structures4-41
4.10.2.2 Using the Paging-Structure Caches to Translate Linear Addresses 4-44
41023 e Multiple Cached Entries for a Single Paging-Structure Entry4-45
4103 e Invalidation of TLBs and Paging-Structure Caches4-45
410.3.1 Operations that Invalidate TLBs and Paging-Structure Caches 4-46
4.103.2 Recommended Invalidation. ..o 4-47
41033 Optional Invalidation. e 4-48
4104 .. Propagation of Paging-Structure Changes to Multiple Processors4-49
411 INTERACTIONS WITH VIRTUAL-MACHINE EXTENSIONS (VMX).....vvviiiiiieeennes 4-50
4111 VMX TranSitiONS. .o v vttt et e 4-51
411.2 VMX Support for Address Translation ..ot 4-51
412 USING PAGING FOR VIRTUALMEMORY ...\ttt eeenes 4-52
413 MAPPING SEGMENTS TO PAGES . ..ottt et 4-52
CHAPTER 5
PROTECTION
5.1 ENABLING AND DISABLING SEGMENT AND PAGE PROTECTION........ovvvvvvvnennnn 5-1
5.2 FIELDS AND FLAGS USED FOR SEGMENT-LEVEL AND
PAGE-LEVEL PROTECTION L.ttt ettt sttt e e et e e e 5-2
5.2.1 Code Segment Descriptorin 64-bitMode ... 5-5
53 LIMIT CHECKING . . ottt et e e e e 5-6
531 Limit Checkingin 64-bit Mode.o e e 5-7
54 TYPE CHECKING . . ettt e e e e 5-7
5.4.1 Null Segment Selector Checking.........vuvriii e 5-9
54.1.1 NULL Segment Checkingin 64-bitMode ... 5-9
55 PRIVILEGE LEVELS. . ..ttt e 59
56 PRIVILEGE LEVEL CHECKING WHEN ACCESSING DATASEGMENTSovvinnt 5-11
56.1 Accessing Datain Code Segmentsot e 5-14
57 PRIVILEGE LEVEL CHECKING WHEN LOADING THE SSREGISTER........cvvvvvninnt 5-14
5.8 PRIVILEGE LEVEL CHECKING WHEN TRANSFERRING PROGRAM CONTROL BETWEEN CODE
SEGMEN T S ettt e 5-14
5.8.1 Direct Calls or Jumps to Code SEgMENTS. .. ov v it ieiaas 5-15
58.1.1 Accessing Nonconforming Code Segments...........ovvviiiiiiiiiiiniennns 5-16
58.1.2 Accessing Conforming Code Segments.ovii i eaans 5-17
5.8.2 GatE DS P ONS v ittt et e e 5-18
583 (0= N 7= 1= 5-19
5.83.1 IA-32e Mode Call Gates . ..o e 5-20
584 Accessing a Code Segment Througha CallGatecovviviviiii i, 5-22
585 Stack SWItChING ... 5-25
5.8.5.1 Stack Switchingin 64-bitMode. ...t 5-28
586 Returning from a Called Procedureovviiiiii i 5-28
5.8.7 Performing Fast Calls to System Procedures with the
SYSENTER and SYSEXIT INStruCtionsSvvvve e 5-30

Vol.3A v

CONTENTS

PAGE
58.7.1 SYSENTER and SYSEXIT Instructions inIA-32e Mode.covvvivinennnn, 5-31
588 Fast System Calls in 64-bit Mode.covviii e 5-32
5.9 PRIVILEGED INSTRUCTIONS ...ttt ettt et ees 5-33
5.10 POINTER VALIDATION. . .ottt ettt et e ees 5-34
5.10.1 Checking Access Rights (LAR INStruction)........coovviririiiiiiiiii i 5-35
5.10.2 Checking Read/Write Rights (VERR and VERW Instructions) 5-36
5103 Checking That the Pointer Offset Is Within Limits (LSLU Instruction)................ 5-36
5.104 Checking Caller Access Privileges (ARPL Instruction)coovviiiiiinnnnn, 5-37
5.105 Checking AlIgNmEnt i i e 5-39
511 PAGE-LEVEL PROTECTION. ..\ttt ettt ettt e et et nees 5-39
5111 Page-Protection FIags. . ..o vvvt it 5-40
511.2 Restricting Addressable Domain ..o 5-40
5113 PagE Ty P . ettt 5-40
5114 Combining Protection of Both Levels of Page Tables...............coovviiiiinn 5-41
5115 Overrides to Page Protection. ...t e i 5-41
512 COMBINING PAGE AND SEGMENT PROTECTION . ..o 5-41
513 PAGE-LEVEL PROTECTION AND EXECUTE-DISABLEBIT.ovvviiiiieiiieeeee 5-43
5131 Detecting and Enabling the Execute-Disable Capabilitycoovvvinnt 5-43
5.13.2 Execute-Disable Page Protectioncoooiiiiiii it 5-44
5.133 Reserved Bit CheCKing ... ovvvvrie e 5-45
5134 EXceptioN Handling.o ov v 5-47
CHAPTER 6
INTERRUPT AND EXCEPTION HANDLING
6.1 INTERRUPT AND EXCEPTION OVERVIEW \vv e 6-1
6.2 EXCEPTION AND INTERRUPT VECTORS ...ttt it et iaeeens 6-2
6.3 SOURCES OF INTERRUP TS, . ..ottt s 6-2
6.3.1 EXTErNal I I TUPES. ottt e 6-2
6.3.2 Maskable Hardware INtermupts. ..o 6-4
633 Software-Generated INtermUPTS.ot 6-5
6.4 SOURCES OF EXCEPTIONSottt ettt 6-5
6.4.1 Program-Error EXCEPLIONS v ettt e 6-5
6.4.2 Software-Generated EXCEPLIONSvr it 6-6
643 Machine-Check EXCEPTIONS. ...\ vu it e 6-6
6.5 EXCEPTION CLASSIFICATIONS L.ttt e 6-6
6.6 PROGRAM OR TASK REST ART .ttt ittt et 6-7
6.7 NONMASKABLE INTERRUPT (NMI) ..t 6-8
6.7.1 Handling Multiple NMISo e 6-9
6.8 ENABLING AND DISABLING INTERRUPTS . ..ttt eees 6-9
6.8.1 Masking Maskable Hardware Interrupts ..o 6-9
6.8.2 Masking Instruction Breakpointsovveii i 6-10
6.83 Masking Exceptions and Interrupts When Switching Stacks....................... 6-11
6.9 PRIORITY AMONG SIMULTANEOQUS EXCEPTIONS AND INTERRUPTS.................. 6-11
6.10 INTERRUPT DESCRIPTOR TABLE (IDT). vttt e et 6-12
6.11 DT DESCRIPTORS . ittt ettt e e e e 6-14
6.12 EXCEPTION AND INTERRUPT HANDLING ovteee e 6-15
6.12.1 Exception- or Interrupt-Handler Procedurescooovviiiiiiiiiiiiiinn, 6-16
6.12.1.1 Protection of Exception- and Interrupt-Handler Procedures 6-18
6.12.1.2 Flag Usage By Exception- or Interrupt-Handler Procedure..................... 6-19
6.12.2 INTErTUPT TasKS . . vttt s 6-20
6.13 ERROR CODE ...ttt ettt e e e et e e e 6-21

vi Vol.3A

6.14 EXCEPTION AND INTERRUPT HANDLING IN 64-BIT MODE...........
6.14.1 B64-BitMode IDT. ...
6.14.2 64-Bit Mode Stack Frame v
6.14.3 IRETINTA-326MOde. ..o\ i it
6.144 Stack SwitchinginlA-32eMode.........coovvviiiiiiiiiiinn
6.14.5 Interrupt Stack Table ...
6.15 EXCEPTION AND INTERRUPT REFERENCE.vvvvvennnn.
Interrupt O—Divide Error Exception (#DE)......................
Interrupt 1—Debug Exception (HDB)...........ccovvvvvvninn.n.
Interrupt 2—NMIInterrupt
Interrupt 3—Breakpoint Exception (#BP)
Interrupt 4—Overflow Exception (HOF)...........ccovvvvvnnen.
Interrupt 5—BOUND Range Exceeded Exception (#BR).........
Interrupt 6—Invalid Opcode Exception (#UD)...................
Interrupt 7—Device Not Available Exception (#NM).............
Interrupt 8—Double Fault Exception (#DF).....................
Interrupt 9—Coprocessor Segment Overrun....................
Interrupt 10—Invalid TSS Exception (#TS)oovvvvvvnnns.
Interrupt 11—Segment Not Present (#NP).....................
Interrupt 12—Stack Fault Exception (#SS)............covvints
Interrupt 13—General Protection Exception (#GP)..............
Interrupt 14—Page-Fault Exception (#PF)
Interrupt 16—x87 FPU Floating-Point Error (#MF)..............
Interrupt 17—Alignment Check Exception (#AC)................
Interrupt 18—Machine-Check Exception (HMC).................
Interrupt 19—SIMD Floating-Point Exception (BXM)
Interrupts 32 to 255—User Defined Interrupts.................
CHAPTER 7
TASK MANAGEMENT
7.1 TASK MANAGEMENT OVERVIEW ..o
7.1.1 Task StrUCtUNE .o
7.1.2 TaSK STt vttt
713 Executinga Task ...t
7.2 TASK MANAGEMENT DATASTRUCTURES.covvivieiennes
7.2.1 Task-State Segment (TSS) ... vvirii e
7.2.2 TSS PSP O .« ettt et e e
7.23 TSS Descriptorin64-bitmode.ooovviiiiiiii
724 Task Register
7.25 Task-Gate Descriplor ..ot
73 TASK SWITCHING. ..ot
74 TASK LINKING . oo e
741 Use of Busy Flag To Prevent Recursive Task Switching.........
74.2 Modifying Task Linkages.........covvviiiiiiiiiiiiiiiienn
75 TASK ADDRESS SPACE. ... vttt
7.5.1 Mapping Tasks to the Linear and Physical Address Spaces
75.2 Task Logical Address SPacevvvvvi i iii e,
7.6 16-BIT TASK-STATE SEGMENT (TSS) +.vvvviii i
7.7 TASK MANAGEMENT IN64-BITMODEovvviiviieiiiinns

CONTENTS

Vol. 3A Vi

CONTENTS

PAGE

CHAPTER 8
MULTIPLE-PROCESSOR MANAGEMENT
8.1 LOCKED ATOMIC OPERATIONS . . .ottt ettt e e e 8-2
8.1.1 Guaranteed Atomic Operationsovvvr v it e e 8-3
8.1.2 BUS LOCKING. . oottt e e 8-3
8.1.2.1 AUtomMatic LOCKING ..\ v ottt e e e e 8-4
8.1.2.2 Software Controlled Bus Locking ..o 8-5
8.1.3 Handling Self- and Cross-ModifyingCodecoviiii i 8-6
8.14 Effects of a LOCK Operation on Internal Processor Caches 8-7
8.2 MEMORY ORDERING............ G g e Bt 8-8
8.2.1 Memory Ordering in the Intel™ Pentium ™~ and Intel486 Processors............. 8-8
8.2.2 Memory Ordering in P6 and More Recent Processor Families 8-9
8.2.3 Examples lllustrating the Memory-Ordering Principles....................cooiat. 8-11
8.2.3.1 Assumptions, Terminology, and Notation...............cocviiiiiiininninns, 8-11
8232 Neither Loads Nor Stores Are Reordered with Like Operations8-12
8.23.3 Stores Are Not Reordered With Earlier Loads.ccoovvviiiiiiniinnnnn, 8-13
8.234 Loads May Be Reordered with Earlier Stores to Different Locations 8-13
8.2.3.5 Intra-Processor Forwarding Is Allowedccoiiiiiiiii i 8-14
8.2.3.6 Stores Are Transitively Visible. ... 8-15
8.2.3.7 Stores Are Seen in a Consistent Order by Other Processors................... 8-15
8.238 Locked Instructions Have a Total Ordercoovviviii i 8-16
8239 ... Loads and Stores Are Not Reordered with Locked Instructions8-16
8.24 Out-of-Order Stores For String Operationsvvviiii i 8-18
8.2.4.1 Memory-Ordering Model for String Operations on Write-back (WB) Memory8-18
8.24.2 Examples lllustrating Memory-Ordering Principles for String Operations........ 8-19
8.2.5 Strengthening or Weakening the Memory-OrderingModel........................ 8-22
83 SERIALIZING INSTRUCTIONS . . o ettt e e ees 8-24
84 MULTIPLE-PROCESSOR (MP) INITIALIZATION ... 8-26
8.4.1 BSP @nd AP PrOCESSOmS. . vttt ettt et et e 8-27
84.2 MP Initialization Protocol Requirements and Restrictions......................... 8-27
84.3 MP Initialization Protocol Algorithm for Intel Xeon Processors.................... 8-28
844 MP Initialization EXamMPleo 8-29
8.4.4.1 Typical BSP Initialization Sequence. ...t e 8-30
844.2 Typical AP Initialization SEqQUENCE.o 8-32
84.5 Ide&tifying Logical Processors in an MP System. .. R 8-33
85 INTEL™ HYPER-THREADING TECHNOLOGY AND INTEL™ MULTI-CORE TECHNOLOGY. 8-35
8.6 DETECTING HARDWARE MULTI-THREADING SUPPORT AND TOPOLOGY.............. 8-35
8.6.1 Initializing Processors Supporting Hyper-Threading Technology 8-36
86.2 Initializing Multi-Core Processors...... ("I T 8-37
8.6.3 Executing Multiple Threads on an Intel™ 64 or IA-32 Processor Supporting Hardware

MUR-TRFEAAING . . oo vttt e e 8-37
8.6.4 Handling Interrupts on an IA-32 Processor Supporting Hardware Multi-Threading . 8-37
8.7 INTEL™ HYPER-THREADING TECHNOLOGY ARCHITECTUREcovviviinenen 8-38
8.7.1 State of the Logical Processorst e 8-39
8.7.2 APIC FUNCHIONAITY ..ot e e e 8-40
8.7.3 Memory Type Range Registers (MTRR).vviiiiiiii i 8-40
874 Page Attribute Table (PAT) .. .ot s 8-41
8.75 Machine Check ArchiteCtUre e ens 8-41
8.7.6 Debug Registers and EXTENSIONS. v 'ttt 8-41
8.7.7 Performance Monitoring CoOUNTErSvu it 8-42
8.7.8 IA32_MISC_ENABLE MSR. ..\ttt e 8-42

viii Vol. 3A

CONTENTS

PAGE
8.7.9 MemMOrY OrABIING. . ottt ettt e e e e 8-42
8.7.10 Serializing INStrUCTIONS. . ..o v vt 8-42
8.7.11 MICROCODE UPDATE RESOUMCES . . .t vttt vttt e e et ettt ieeieans 8-43
8.7.12 Self Modifying Codevv it 8-43
87.13 Implementation-Specific Intel HT Technology Facilitiesovvint 8-43
8.7.13.1 Processor Cathes. . ..ot 8-43
8.7.13.2 Processor Translation Lookaside Buffers (TLBS).ovvvvvivniininnnnn. 8-44
8.7.133 Thermal MONITOr. ...ttt 8-44
8.7.134 External Signal Compatibility.........ccoiiiii e 8-45
8.8 MULTI-CORE ARCHITECTURE\ttt ettt e 8-46
8.8.1 LOgiCal ProCeSSOr SUP PO, v vttt ettt e iaas 8-46
8.8.2 Memory Type Range Registers (MTRR)coovriii e 8-46
8.8.3 Performance Monitoring CoUNters.viiii i i ie e 8-47
884 IA32_MISC_ENABLE MSR ...ttt 8-47
885 MICROCODE UPDATE RESOUMCES. . .t vttt ettt et e ettt ettt 8-47
89 PROGRAMMING CONSIDERATIONS FOR HARDWARE MULTI-THREADING CAPABLE
PROCESSORS. . . ittt e e 8-47
8.9.1 Hierarchical Mapping of Shared Resourcesooviiiiiiiii it eiiiieienns 8-48
8.9.2 Hierarchical Mapping of CPUID Extended Topology Leaf 8-50
893 Hierarchical ID of Logical Processorsinan MP Systemcovvvviiinininn 8-51
8.9.3.1 Hierarchical ID of Logical Processors with x2APICID.ccovovviennn.. 8-53
894 Algorithm for Three-Level Mappings of APIC_ID...........ccviiiiiiiiiiiiienns, 8-54
8.9.5 Identifying Topological Relationshipsina MP System.............c.cooviviiinn, 8-60
8.10 MANAGEMENT OF IDLE AND BLOCKED CONDITIONS\ ovviiii e 8-64
8.10.1 (I o o 8-64
8.10.2 PAUSE INSTTUCTION . . o vttt e 8-65
8.10.3 Detecting Support MONITOR/MWAIT Instructionoiiiiiiiiiiiiiinn., 8-65
8.10.4 MONITOR/MWAIT INSTrUCTION. .+« ot vttt e 8-66
8.10.5 Monitor/Mwait Address Range Determination.............ovviiiiiiiinnninenanns 8-67
8.10.6 Required Operating System SUPPOrt. . ..o i e 8-68
8.10.6.1 Use the PAUSE Instruction in Spin-Wait Loops.covviiiiiiiiiiiienns, 8-68
8.10.6.2 Potential Usage of MONITOR/MWAIT in COIdle Loopscvvvvvivininvnnnns 8-69
8.10.6.3 Halt Idle Logical ProCeSSOrS .. v v ittt ittt i aaas 8-71
8.1064 Potential Usage of MONITOR/MWAIT inCT Idle Loopscovvvvvvnvninnnn.. 8-71
8.10.6.5 Guidelines for Scheduling Threads on Logical Processors Sharing Execution
RS OUICES vttt e 8-72
8.10.6.6 Eliminate Execution-Based Timing LOOPS.vvvviii it iiiciiei e 8-72
8.10.6.7 Place Locks and Semaphores in Aligned, 128-Byte Blocks of Memory........... 8-73
CHAPTER 9
PROCESSOR MANAGEMENT AND INITIALIZATION
9.1 INITIAUIZATION OVERVIEW .ottt e e e 9-1
9.1.1 Processor State After Reset ...t 9-2
9.1.2 Processor Built-In Self-Test (BIST). .. .vvvviiii i 9-2
9.1.3 Model and Stepping Information.cooi i e 9-5
9.1.4 First INnStruction EXECULed. . ..o v vv e 9-6
9.2 X87 FPU INITIALIZATION ..ttt 9-6
9.2.1 Configuring the x87 FPU ENViroNmMeNt.oiii i eeeaas 9-6
9.2.2 Setting the Processor for x87 FPU Software Emulationoovvnints. 9-7
93 CACHE ENABLING. . vttt ettt e e e e e 9-8
9.4 MODEL-SPECIFIC REGISTERS (MSRS) . . .ottt ettt 9-9

Vol. 3A ix

CONTENTS

9.11.85
9.11.86
9.11.87
9.11.88
9.11.89

X Vol. 3A

PAGE
MEMORY TYPE RANGE REGISTERS (MTRRS) ..t v vttt 9-9
INITIALIZING SSE/SSE2/SSE3/SSSE3 EXTENSIONS ... oo 9-10
SOFTWARE INITIALIZATION FOR REAL-ADDRESS MODE OPERATION...........cv.ee 9-10
Real-Address Mode IDT . .. v vttt 9-11
NMIInterrupt Handling oo e 9-11
SOFTWARE INITIALIZATION FOR PROTECTED-MODE OPERATION..........ovvvvnes 9-11
Protected-Mode System Data STrUCtUreS.ovv v v i i i eeaas 9-12
Initializing Protected-Mode Exceptions and Interrupts.covvivviiinennn. 9-13
INItialiZINg Pagingoi i e 9-13
Initializing Multitasking 9-14
INitializZiNg JA-32€ MO . ..o 9-14
IA-32e Mode System Data Structures. ...t 9-15
IA-32e Mode Interrupts and EXCEPLIONSvvv v 9-15
64-bit Mode and Compatibility Mode Operation............ovvviiiiininnnnnn., 9-16
Switching Out of IA-32e Mode Operation............ccooviiiiiii it 9-16
MODE SWITCHING . . o ettt et e e e 9-17
Switching to Protected Mode. ..ot 9-17
Switching Back to Real-Address Mode. ..ot 9-18
INITIALIZATION AND MODE SWITCHING EXAMPLEcoveiiiii i 9-19
ASSEMDIEr USB0E .ot v vttt 9-22
STARTUP.ASM LiSTiNg .« vt ovve ettt ettt e e e 9-23
MAIN.ASM SOUMCE COAE. . .ottt ettt e e 9-33
SUPPOMtING FilES. . oottt 9-34
MICROCODE UPDATE FACILITIES ..ottt ettt e et 9-36
MICroCode UPdate. v vttt e 9-37
Optional Extended Signature Tablecoovriii i e 9-41
Processor Identificationvvu i 9-41
Platform Identificationcovvriiii 9-42
Microcode Update ChecKSUMu i 9-44
Microcode Update Loadervvviii i e 9-45
Hard ResetsinUpdate Loading ... 9-46
Update in @ MUltiprocessor SYStemo.vv i iaaas 9-46
Update in a System Supporting Intel Hyper-Threading Technology 9-46
Update in a System Supporting Dual-Core Technologycccovvvvnnt. 9-46
Update Loader ENhancementso.vvivviiii it 9-47
Update Signature and Verification ... 9-47
Determining the Signature ...ttt e 9-48
Authenticatingthe Updatecoviiii i e 9-48
Pentium 4, Intel Xeon, and P6 Family Processor
Microcode Update Specifications.co vt 9-49
Responsibilities of the BIOSot 9-49
Responsibilities of the Calling Program............cccoviiiiiii i 9-52
Microcode Update FUNCHIONS.covvrii e et 9-55
INT 15H-based Interfaceovuvii e 9-55
Function OOH—Presence Testoiiiiii i e 9-56
Function 0TH—Write Microcode Update Data.............cccovviiiivininnnnnn, 9-57
Function 02H—Microcode Update Controloovvvviviiiiiiiiiinnnnns 9-62
Function 03H—Read Microcode UpdateData..............coviiiiiviiininnn, 9-63
RETUMN COdBS . vttt et 9-64

CONTENTS

PAGE
CHAPTER 10
ADVANCED PROGRAMMABLE
INTERRUPT CONTROLLER (APIC)
10.1 LOCAL AND I/0 APIC OVERVIEW . . v e et e 10-1
10.2 SYSTEM BUS VS, APIC BUS . ..ottt 10-5
103 THE INTEL™ 82489DX EXTERNAL APIC, THE APIC, THE XAPIC, AND THE X2APIC.... 10-5
104 LOC AL APIC ittt e e e e e 10-6
10.4.1 The Local APIC BIock Diagram cv vt eaes 10-6
104.2 Presence of the LoCal APIC.t e 10-10
1043 Enabling or Disabling the Local APICooii i 10-10
104.4 Local APIC Status and LOCation.vuveii i 10-11
10.4.5 Relocating the Local APIC REGISTErS ... vvvi i 10-12
104.6 LOCal APIC D ittt 10-12
104.7 LOCal APIC STaTB. ottt ettt 10-13
104.7.1 Local APIC State After Power-UporReset..........cocvviiiiiiiiiiiinnnnn, 10-14
104.7.2 Local APIC State After It Has Been Software Disabled....................... 10-14
104.7.3 Local APIC State After an INIT Reset (“Wait-for-SIPI” State).................. 10-15
104.7.4 Local APIC State After It Receives an INIT-Deassert IPl...................... 10-15
1048 Local APIC Version Register.vu i 10-15
10.5 EXTENDED XAPIC (X2APIC) vttt ittt e 10-16
10.5.1 DETECTING AND ENABLING X2APIC. ...t 10-16
10.5.1.1 Instructions to Access APICREGISTErSovviiiii s 10-17
10.5.1.2 APIC Register Address SPaCte. ... vv ittt ittt ettt 10-18
10.5.1.3 Reserved Bit Checking.ovvvvuiir i e 10-21
10.5.2 Xx2APIC Register Availability. ... 10-22
10.5.3 MSR Access in X2APICMOAE e 10-22
1054 VM-exit Controls for MSRs and x2APIC Registers.ovvviviiiiiiinnnnnnns 10-22
10.5.5 Directed EOI with X2APICMOdEvvvv it 10-23
10.5.6 X2APIC State Transitionsvverr e 10-24
10.5.6.1 X2 AP StaTS. . vttt ettt 10-24
X2APIC AftEr RESET .\ttt e 10-26
Xx2APIC Transitions From X2APICModeoooviii e 10-27
x2APIC Transitions From DisabledModecovviiiiiiiiii e 10-27
State Changes From xAPIC Mode to Xx2APICMode...........cvvviiiiiininnns. 10-27
10.5.7 System Software Transitionso.vuvr i 10-27
10.5.8 CPUID Extensions And Topology Enumeration.............covovvviiiniinnennnn. 10-28
10.5.8.1 Consistency of APICIDs and CPUIDovoviiiii i e e 10-29
10.6 HANDLING LOCAL INTERRUPTS ..ot 10-30
10.6.1 Local VeCtor Table. .o v e e 10-30
10.6.2 Valid INtermUPt VettorS oot e e e e e 10-33
10.6.3 Error Handling.o 10-34
10.6.3.1 x2APIC Differences in Error Handling..........c.oovviiiii i 10-35
10.6.4 [O I 1= 10-36
10.6.5 LoCal INtermUPt ACCEPTANCE. « . vttt ettt e 10-38
10.7 ISSUING INTERPROCESSOR INTERRUPTS ..\ttt 10-38
10.7.1 Interrupt Command Register (ICR)ovvnv e e 10-38
10.7.1.1 ICR Operation in X2APICMOde.v i 10-44
10.7.2 Determining IPI Destinationovuivii 10-46
10.7.2.1 Physical Destination Modet e e 10-46
10.7.2.2 Logical Destination Modecoviiiiiii i e 10-47
10.7.23 Logical Destination Mode in X2APICMode.covviiiiiiiiiiiiienes 10-49

Vol. 3A Xi

CONTENTS

PAGE

10.7.24 Deriving Logical x2APIC ID from the Local X2APICIDcoovvvvnent.. 10-50
10.7.2.5 Broadcast/Self Delivery Modecovviiiiii i 10-51
10.7.26 Lowest Priority Delivery Mode. ... 10-51
10.7.3 IPI Delivery and ACCEPTaNCE ... vv vttt ettt e e 10-52
10.7.4 SELF TPl REGIS O .« .ttt ettt e 10-52
10.8 SYSTEM AND APIC BUS ARBITRATION. . . .ottt t e e i e aeaaas 10-53
109 HANDLUING INTERRUPTSottt et e e 10-54
10.9.1 Interrupt Handling with the Pentium 4 and Intel Xeon Processors 10-54
109.2 Interrupt Handling with the P6 Family and Pentium Processors.................. 10-55
10.9.3 Interrupt, Task, and Processor Prioritycoviiiiiiiii i 10-57
10.9.3.1 Task and Processor Priorities.ovvve v 10-58
1094 Interrupt Acceptance for Fixed Interrupts.ooviiii i 10-59
10.9.5 Signaling Interrupt Servicing Completion ..o 10-61
10.9.5.1 Signaling Interrupt Servicing Completion in x2APICMode...................t 10-61
1096 Task Priority in[A-32e Mode.o 10-61
10.9.6.1 Interaction of Task Priorities between CRBand APIC.ccovvvvinnt 10-62
10.70 SPURIOUS INTERRUPT ...ttt ettt et et eens 10-63
10.11 APIC BUS MESSAGE PASSING MECHANISM AND

PROTOCOL (P& FAMILY, PENTIUM PROCESSORS) ...\ttt vieeiiei e 10-64
10.11.1 BUS MESSAge FOrmMatS . .. v vttt 10-65
10.12 MESSAGE SIGNALLED INTERRUPTS ..\ttt e 10-65
10.12.1 Message Address Register FOrmat.ovviiiiii it 10-66
10.12.2 Message Data Register FOrmatovvv i 10-67
CHAPTER 11
MEMORY CACHE CONTROL
11.1 INTERNAL CACHES, TLBS, AND BUFFERSttt 11-1
11.2 CACHING TERMINOLOGY. ...ttt ettt e 11-7
11.3 METHODS OF CACHING AVAILABLEttt 11-8
11.3.1 Buffering of Write Combining Memory Locations.covviiivinn.t. 11-11
11.3.2 Choosing @ MemOrY Ty P, .. vttt e 11-12
1133 Code Fetches in Uncacheable Memory.coviiiiii e 11-13
114 CACHE CONTROL PROTOCOL . vttt vt et e e e e e e e n e aaas 11-13
115 CACHE CONTROL. . v vttt et e et e e et et eenes 11-14
11.5.1 Cache Control Registers and Bits.coovviiiiiii e 11-15
11.5.2 Precedence of Cache CoNtrolsovvvii v i 11-20
11.5.2.1 Selecting Memory Types for Pentium Pro and Pentium Il Processors.......... 11-20
11522 Selecting Memory Types for Pentium lll and More Recent Processor Families. .11-22
11523 Writing Values Across Pages with Different Memory Types 11-23
1153 Preventing Cachingovvviii e 11-24
1154 Disabling and Enablingthe L3 Cacheccooiiiiiii e 11-25
1155 Cache Management INStruCtionSot e i 11-25
1156 L1 Data Cache ContexXt Modevvvii e 11-26
11.5.6.1 Adaptive MOe. . ..ot 11-26
11.56.2 SNArEA MOGE .ottt 11-26
116 SELF-MODIFYING CODE. ...ttt ittt et 11-27
11.7 IMPLICIT CACHING (PENTIUM 4, INTEL XEON,

AND P6E FAMILY PROCESSORS). . v vttt ettt et e et eaeanes 11-27
11.8 EXPLICIT CACHING .. .ottt et e e 11-28
11.9 INVALIDATING THE TRANSLATION LOOKASIDE BUFFERS (TLBS).vvvvvevnnn 11-29
1170 STOREBUFFER ...ttt et e 11-29

xii Vol. 3A

CONTENTS

PAGE
1111 MEMORY TYPE RANGE REGISTERS (MTRRS). ..ottt 11-30
11.111 MTRR Feature Identificationcovuiiiiiii e 11-32
11.11.2 Setting Memory Ranges WithMTRRS ...t e 11-33
11.11.21 IA32_MTRR_DEF_TYPEMSR. ... ittt 11-33
11.11.2.2 Fixed RANGE MTRRS .. .o\t e 11-34
11.11.23 Variable RaNge MTRRS.ot i e e 11-34
11.11.24 System-Management Range Register Interfacecovvvenen. 11-37
11.11.3 Example Base and Mask Calculations ..o 11-38
11.11.31 Base and Mask Calculations for Greater-Than 36-bit Physical Address Support11-40
11.114 Range Size and Alignment Requirement ...t 11-41
11.11.4.1 I = Tor=Ta 1= ol = 11-41
11.11.5 MTRR INITialization. . ..o e 11-41
11116 Remapping MEMOTY TYPES .. vttt e ettt it aaaas 11-42
11.11.7 MTRR Maintenance Programming Interface.............ooiiiiiiiiiiiiininnnns 11-42
11.11.71 MemTypeGet() FUNCHION e 11-42
11.11.7.2 MemTypeSet() FUNCTION ...\ vu e 11-44
11.11.8 MTRR Considerations in MP SyStemsoviiiiii i 11-46
11119 Large Page Size Considerationscooiiiiiiiii it 11-47
1112 PAGE ATTRIBUTE TABLE (PAT). vttt ettt et e 11-48
11121 Detecting Support for the PAT Feature.oviiiii it 11-48
11.12.2 JAB 2 P AT MO R ..ttt 11-49
11.12.3 Selecting a Memory Type fromthe PAT ... 11-50
11.124 Programming the PAT ... e 11-50
11125 PAT Compatibility with Earlier IA-32 Processors.co.vviiiiiiiiiiiiiennnnns 11-52
CHAPTER 12
INTEL™ MMX ~ TECHNOLOGY SYSTEM PROGRAMMING
12.1 EMULATION OF THE MMX INSTRUCTION SET. ..ottt 12-1
12.2 THE MMX STATE AND MMX REGISTER ALIASINGot 12-1
12.2.1 Effect of MMX, x87 FPU, FXSAVE, and FXRSTOR
Instructions on the x87 FPU TagWordcovviiiiiiiii e 12-3
123 SAVING AND RESTORING THE MMX STATEAND REGISTERSovvvviiiinnn 12-4
124 SAVING MMX STATE ON TASK OR CONTEXT SWITCHEScoviiiiininns 12-5
125 EXCEPTIONS THAT CAN OCCUR WHEN EXECUTING MMX INSTRUCTIONS 12-5
12.5.1 Effect of MMX Instructions on Pending x87 Floating-Point Exceptions. 12-6
126 DEBUGGING MMX CODEottt ettt ettt 12-6
CHAPTER 13
SYSTEM PROGRAMMING FOR INSTRUCTION SET EXTENSIONS AND
PROCESSOR EXTENDED STATES
13.1 PROVIDING OPERATING SYSTEM SUPPORT FOR
SSE/SSE2/SSE3/SSSE3/SSES EXTENSIONS. ..o 13-1
13.1.1 Adding Support to an Operating System for SSE/SSE2/SSE3/SSSE3/SSE4 Extensions. .
13-2
13.1.2 Checking for SSE/SSE2/SSE3/SSSE3/SSE4 Extension Support.oovvvvvnnts, 13-2
13.1.3 Checking for Support for the FXSAVE and FXRSTOR Instructions 13-3
13.1.4 Initialization of the SSE/SSE2/SSE3/SSSE3/SSE4 Extensions.........covvvvviinne 13-3
13.1.5 Providing Non-Numeric Exception Handlers for Exceptions Generated by the
SSE/SSE2/SSE3/SSSE3/SSES INSTrUCtioNS. ..o v e 13-5
13.1.6 Providing an Handler for the SIMD Floating-Point Exception (#XM)................ 13-7

Vol. 3A xiii

CONTENTS

PAGE
13.1.6.1 Numeric Error fllagand IGNNEH#o e 13-8
13.2 EMULATION OF SSE/SSE2/SSE3/SSSE3/SSE4 EXTENSIONS. .. .ovvvvivvi i 13-8
133 SAVING AND RESTORING THE SSE/SSE2/SSE3/SSSE3/SSE4 STATE. ...ovvvvevve 13-8

134 SAVING THE SSE/SSE2/SSE3/SSSE3/SSE4 STATE ON TASK OR CONTEXT SWITCHES . 13-9
135 DESIGNING OS FACILITIES FOR AUTOMATICALLY SAVING X87 FPU, MMX, AND

SSE/SSE2/SSE3/SSSE3/SSE4 STATE ON TASK OR CONTEXT SWITCHES. 13-9

13.5.1 Using the TS Flag to Control the Saving of the
x87 FPU, MMX, SSE, SSE2, SSE3 SSSE3 and SSE4 State.ovvvvvvvvven 13-10

136 XSAVE/XRSTOR AND PROCESSOR EXTENDED STATE MANAGEMENT 13-12
13.6.1 XS AV E HEAET . o vttt ettt e e e 13-13
13.7 INTEROPERABILITY OF XSAVE/XRSTOR AND FXSAVE/FXRSTORcvvnte 13-15
138 DETECTION, ENUMERATION, ENABLING PROCESSOR EXTENDED STATE SUPPORT.. 13-17
13.8.1 Application Programming Model and Processor Extended States................. 13-18
CHAPTER 14
POWER AND THERMAL MANAGEMENT
14.1 ENHANCED INTEL SPEEDSTEP® TECHNOLOGY vv e eeee e, 14-1
14.1.1 Software Interface For Initiating Performance State Transitions 14-1
14.2 P-STATE HARDWARE COORDINATION.. . ..ottt 14-2
143 SYSTEM SOFTWARE CONSIDERATIONS AND OPPORTUNISTIC PROCESSOR PERFORMANCE

OPERATION. . vttt e e e 14-4
14.3.1 Intel Dynamic ACCElErationvvi i 14-4
14.3.2 System Software Interfaces for Opportunistic Processor Performance Operation . 14-4
143.2.1 Discover Hardware Support and Enabling of Opportunistic Processor Operation 14-5
143.2.2 0S Control of Opportunistic Processor Performance Operation................ 14-5
14323 Required Changes to OS Power Management P-state Policy................... 14-6
14324 Application Awareness of Opportunistic Processor Operation (Optional)........ 14-7
144 MWAIT EXTENSIONS FOR ADVANCED POWER MANAGEMENTcovvvvvivnnn 14-8
145 THERMAL MONITORING AND PROTECTION . ..o vttt 14-9
14.5.1 Catastrophic Shutdown Detector ..ot e 14-10
145.2 ThermMal MONITOr . .. e e 14-11
14.5.2.1 Thermal Monitor 1. ... e e 14-11
145.2.2 Thermal MOoNItor 2 ... ov e s 14-11
14523 Two Methods for Enabling TM2. e 14-12
14524 Performance State Transitions and Thermal Monitoring...................... 14-13
14.5.2.5 Thermal Status INformationovvviiii e 14-13
145.26 Adaptive Thermal Monitor. . ..ot e 14-15
1453 Software Controlled Clock Modulation..........ccoviviiiiiiii e 14-15
1454 Detection of Thermal Monitor and Software Controlled

Clock Modulation FaCilities. ov v 14-17

1455 On Die Digital Thermal SEeNSOrsvvriiii e 14-17
145.5.1 Digital Thermal Sensor Enumeration ...ttt 14-17
14.55.2 Reading the Digital SENSOrvvit i e 14-18
CHAPTER 15
MACHINE-CHECK ARCHITECTURE
15.1 MACHINE-CHECK ARCHITECTURE ..\ttt aaees 15-1
15.2 COMPATIBILITY WITHPENTIUMPROCESSOR ...ttt 15-2
153 MACHINE-CHECK MSRSttt 15-2
15.3.1 Machine-Check Global ControlMSRS. . ..o\t 15-3

Xiv Vol. 3A

15.3.1.1
153.1.2
153.1.3
15.3.2

15.3.2.1
153.2.2
153.2.3
153.24
15.3.25
15.3.2.6
1533

15.4

15.10.2
15103
15.10.4

15.10.4.1
15.104.2

CONTENTS

PAGE
IA32_MCG_CAP MSR. .ttt 15-3
IA32_MCG_STATUS MSR. ..ottt e 15-5
IA32_MCG_CTUMSR . it e e 15-6
Error-Reporting Register Banksovviiiiiiiii i 15-6
A2 MO _CTLU MSRS vttt ettt et e et 15-6
IA32 MU _STATUS MSRS L.ttt e 15-7
IA32_MUi_ADDR MSRS. . . ittt ittt 15-11
IA32_MCI_MISC MSRS ..\ttt ettt ettt et eaes 15-12
LN T O 8 S 15-13
IA32_MCG Extended Machine Check StateMSRSovvviiiii i 15-15
Mapping of the Pentium Processor Machine-Check Errors
to the Machine-Check Architecture ..o 15-17
ENHANCED CACHE ERROR REPORTING ...t vvve et eneens 15-18
CORRECTED MACHINE CHECK ERRORINTERRUPT 15-18
CMCI Local APIC INterfate . .o v v v v et ettt 15-19
System Software Recommendation for Managing CMCI and Machine Check Resources .
15-21
CMCINItIliZatioN.o e 15-21
CMCI Threshold Management.co.vuvin i e ens 15-22
CMCl Interrupt Handler ... e 15-23
RECOVERY OF UNCORRECTED RECOVERABLE (UCR)ERRORSc.vvvviivenn, 15-23
Detection of Software Error Recovery Supportcoeiiiiiiiinennnnnnss 15-24
UCR Error Reporting and Logging. vvvvvevinii i eeneaaaas 15-24
UCR Error CIassifiCation v v ettt e 15-25
UCR Error OVerwrite RUIES. . ..ottt 15-27
MACHINE-CHECK AVAILABILITY .ttt 15-28
MACHINE-CHECK INITIAUZATION . . . oottt 15-28
INTERPRETING THEMCA ERROR CODES ...\ttt ea e 15-29
SIMPIE ErTOr COABS ..ttt e 15-30
Compound Ermor COQeS. . o v vttt e e e e e 15-31
Correction Report Filtering (F) Bitc.vvvvrvii s 15-31
Transaction Type (TT)Sub-Field. ..ot e 15-32
Level (LL) Sub-Field.o 15-32
Request (RRRR) SUD-Field.ovvv e 15-32
Bus and INterconneCt ErrOrSvvvvtet et 15-33
Memory Controller ErmOrSottt e e e e 15-34
Architecturally Defined UCR EITOrSovvririi i iee e 15-34
Architecturally Defined SRAO EFTOrS. ... ov vttt aen 15-34
Architecturally Defined SRAR EITOrS. ... vvie i 15-36
MUHPIE MCA BT, .\ttt ettt ettt e et 15-38
Machine-Check Error Codes Interpretationcooovvvviiiiiiiiiiinnnnns 15-39
GUIDELINES FOR WRITING MACHINE-CHECK SOFTWAREov i 15-39
Machine-Check Exception Handler.............cooiiiiiii i 15-40
Pentium Processor Machine-Check ExceptionHandling 15-41
Logging Correctable Machine-Check Errors. ...t 15-42
Machine-Check Software Handler Guidelines for Error Recovery 15-44
Machine-Check Exception Handler for Error Recoveryoovvvvnns. 15-44
Corrected Machine-Check Handler for Error Recovery 15-50

Vol. 3A Xv

CONTENTS

PAGE
CHAPTER 16
8086 EMULATION
16.1 REAL-ADDRESS MODE. . .ttt ettt et e e e 16-1
16.1.1 Address Translation in Real-Address Modeovvvviiii i 16-3
16.1.2 Registers Supported in Real-AddressMode.coovviiiiiiiii i 16-4
16.1.3 Instructions Supported in Real-AddressMode. ... 16-4
16.1.4 Interrupt and Exception Handling ...ttt e 16-6
16.2 VIRTUAL-BOBE MODEo tete et e ees 16-8
16.2.1 Enabling Virtual-8086 Modeot 16-9
16.2.2 Structure of @ Virtual-8086 Taskovvvvvii i 16-9
16.2.3 Paging of Virtual-8086 Tasks.uuiuiriiiiiiii it 16-10
16.2.4 Protection within a Virtual-8086 Task ... 16-11
16.2.5 Entering Virtual-8086 Mode. ... 16-11
16.2.6 Leaving Virtual-8086 Mode.ov v 16-14
16.2.7 SeNSItiVe INSTTUCTIONS . ..o e 16-15
16.2.8 Virtual-8086 Mode 1/0 ..o 16-15
16.2.8.1 1/0-Port-Mapped 1/0. 16-15
16.2.8.2 Memory-Mapped /0.o 16-16
16.2.8.3 Special /O BUFTrS . ..ot e 16-16
16.3 INTERRUPT AND EXCEPTION HANDLING
INVIRTUAL-B08E MODE ...ttt ettt ettt e 16-16
16.3.1 Class 1—Hardware Interrupt and Exception Handling in Virtual-8086 Mode....... 16-18
16.3.1.1 Handling an Interrupt or Exception Through a Protected-Mode Trap or Interrupt Gate
16-18
16.3.1.2 Handling an Interrupt or Exception With an 8086 Program Interrupt or Exception
Handler ..o 16-20
16.3.1.3 Handling an Interrupt or Exception Througha Task Gate..................... 16-21
16.3.2 Class 2—Maskable Hardware Interrupt Handling in Virtual-8086 Mode Using the Virtual
INterrupt MeChanisSm 16-22
16.3.3 Class 3—Software Interrupt Handling in Virtual-8086 Mode..................... 16-24
16.3.3.1 Method 1: Software Interrupt Handlingoooiiiiiiinne, 16-27
16.3.3.2 Methods 2 and 3: Software Interrupt Handlingcooovivione, 16-28
16333 Method 4: Software Interrupt Handlingcooiiiiiiiinnn... 16-28
16334 Method 5: Software Interrupt Handling ..., 16-28
16.3.3.5 Method 6: Software Interrupt Handlingcoovii i, 16-29
164 PROTECTED-MODE VIRTUALINTERRUPTS ..\ttt 16-30
CHAPTER 17
MIXING 16-BIT AND 32-BIT CODE
17.1 DEFINING 16-BIT AND 32-BIT PROGRAMMODULESo 17-2
17.2 MIXING 16-BIT AND 32-BIT OPERATIONS WITHIN A CODE SEGMENT 17-2
17.3 SHARING DATA AMONG MIXED-SIZE CODE SEGMENTSovviiiii i 17-4
174 TRANSFERRING CONTROL AMONG MIXED-SIZE CODE SEGMENTSvvviennen 17-4
17.4.1 Code-Segment POINter Size. .. .vvvv i 17-5
174.2 Stack Management for Control Transfer............cocooiiiiiiii i 17-5
17.4.2.1 Controlling the Operand-Size Attribute ForaCallcovvviiint, 17-7
174.22 Passing Parameters Witha Gate..........covviii i 17-8
1743 Interrupt Control Transfers. . ..o e e 17-8
1744 Parameter TransIationvvrvie e 17-8
1745 Writing Interface Procedures ... 17-9

Xvi Vol. 3A

CONTENTS

PAGE
CHAPTER 18

ARCHITECTURE COMPATIBILITY

18.1 PROCESSOR FAMILIES AND CATEGORIES. ...\ ov ettt it 18-1
18.2 RESERVED BITS ..ttt ettt e e 18-2
183 ENABLING NEW FUNCTIONS AND MODES . ..ot 18-2
184 DETECTING THE PRESENCE OF NEW FEATURES THROUGH SOFTWARE.............. 18-3
185 INTEL MMX TECHNOLOGY . . .ottt ittt ettt e 18-3
18.6 STREAMING SIMD EXTENSIONS (SSE) . . oo v 18-3
18.7 STREAMING SIMD EXTENSIONS 2 (SSE2). .ot vo vt 18-4
18.8 STREAMING SIMD EXTENSIONS 3 (SSE3). v v vveei e 18-4
189 ADDITIONAL STREAMING SIMD EXTENSIONSo 18-4
1810 INTEL HYPER-THREADING TECHNOLOGY ..\ttt i eieaean 18-5
1811 MULTI-CORE TECHNOLOGY . ..ottt ettt e e 18-5
18.12 SPECIFIC FEATURES OF DUAL-CORE PROCESSORoiviiiiiiiii e 18-5
18.13 NEW INSTRUCTIONS IN THE PENTIUM AND LATER IA-32 PROCESSORS. 18-5
18.13.1 Instructions Added Prior to the Pentium Processor...........covvvviviiiienninnns 18-6
18,14 OBSOLETEINSTRUCTIONS ...ttt e 18-7
1815 UNDEFINED OPCODES ...\ttt ittt ettt e e eaes 18-7
1816 NEW FLAGS IN THE EFLAGS REGISTER. ..o\ttt 18-7
18.16.1 Using EFLAGS Flags to Distinguish Between 32-Bit IA-32 Processors. 18-8
1817 STACK OPERATIONS . . .ttt e e 18-8
18.17.1 PUSH SP . . e 18-8
18.17.2 EFLAGS Pushed onthe Stack........ovuiiii s 18-9
1818 XB7 FPU . ittt e e 18-9
18.18.1 Control Register CRO FIags. . .. ovvvvei e 18-9
18.18.2 X87 FPU Status Word.t 18-10
18.18.2.1 Condition Code Flags (COthrough C3).......ovvviiii e 18-10
18.18.2.2 Stack FAUIL FlIag . oot e 18-11
18.18.3 X87 FPU Control Wordov e 18-11
18.184 X87 FPU Tag Word v vttt et 18-11
18.18.5 DAt Ty DS, ittt e 18-12
18.18.5.1 NEN S L 18-12
18.18.5.2 Pseudo-zero, Pseudo-NaN, Pseudo-infinity, and Unnormal Formats. 18-12
18.18.6 Floating-Point EXCEPLIONS. ... v i e e e 18-13
18.18.6.1 Denormal Operand Exception (D).cvvvviiiii i 18-13
18.186.2 Numeric Overflow Exception (HO)ovvvivii i i 18-13
18.18.6.3 Numeric Underflow Exception (HU)........oooviiiiinii s 18-14
18.18.6.4 EXCEPLiON PreCedENCE . ..o\ttt 18-14
18.18.6.5 CSand EIP For FPU EXCEPLIONSot i i i e 18-14
18.18.6.6 FPU Error Signals. ..o v ettt e e 18-14
18.18.6.7 Assertion of the FERREPIN......ooiii 18-15
18.18.6.8 Invalid Operation Exception On Denormals.c.vvvii i 18-15
18.18.6.9 Alignment Check Exceptions (BAC)c.vvvvi i 18-16
18.18.6.10 Segment Not Present Exception During FLDENVcocovivivinen, 18-16
18.186.11 Device Not Available Exception (HNM) 18-16
18.186.12 Coprocessor Segment Overrun EXCEption.coovvviviiiii i, 18-16
18.186.13 General Protection Exception (HGP) ... i 18-16
18.186.14 Floating-Point Error Exception (BMF) ... 18-16
18.18.7 Changes to Floating-Point Instructions. ... e 18-17
18.18.7.1 FDIV, FPREM, and FSQRT INStruCtionsovvviiiiiiiii i 18-17
18.18.7.2 FSCALE INSTrUCTION ..ot e sttt 18-17

Vol. 3A xvii

CONTENTS

PAGE
18.18.7.3 FPREMT INStrUCHION . ..\ v vttt 18-17
18.18.7.4 FPREM INSTIUCTION .« .o v et 18-17
18.18.7.5 FUCOM, FUCOMP, and FUCOMPP INStructionsovvvvvvierniniinennens 18-17
18.18.7.6 FPTAN INSTIUCTION « .ottt e 18-18
18.18.7.7 Stack OVErfIOW . v v e 18-18
18.18.7.8 FSIN, FCOS, and FSINCOS INSTructionS oo v e 18-18
18.18.7.9 FPATAN INSTTUCTION . .. vttt 18-18
18.18.7.10 F2XMT INSTIIUCTION . .o 18-18
18.18.7.11 FLD INSTrUCTION .\t 18-18
18.18.7.12 FXTRACT INSTTUCTION. . vttt et 18-19
18.18.7.13 Load Constant INSTrUCtiONSo v v 18-19
18.18.7.14 FSETPM INSITUCTION . oo vt e e 18-19
18.18.7.15 FXAM INSTrUCTION ottt 18-20
18.18.7.16 FSAVE and FSTENV INStruCtionsovvvieii i 18-20
18.18.8 Transcendental INSTrUCtioONS e 18-20
18.189 Obsolete INSTTUCTIONS ...ttt 18-20
18.18.10 WAIT/FWAIT Prefix Differences.ovvviiiiii e 18-21
18.18.11 Operands Split Across Segmentsand/orPagescccvviiiiiiiiiiinnnnnn. 18-21
18.18.12 FPU Instruction Synchronization...........ccov i i 18-21
1819 SERIAUZING INSTRUCTIONS.ttt 18-21
1820 FPU AN%)MATH COPROCESSOR INITIALIZATION ..o 18-22
18.20.1 Intel™ 387 and Intel ™ 287 Math Coprocessor Initialization..................... 18-22
18.20.2 Intel486 SX Processor and Intel 487 SX Math Coprocessor Initialization 18-22
1821 CONTROL REGISTERS .\ttt e e e 18-24
1822 MEMORY MANAGEMENT FACILITIES. . .ottt 18-25
18.22.1 New Memory Management Control FIags..........oovviiiii it 18-25
18.22.1.1 Physical Memory Addressing EXtensionoiiii i, 18-25
18.22.1.2 GlIODAl PageS. v v v ettt e 18-26
18.22.1.3 Larger Page Sizes. .. vttt 18-26
18.22.2 CDand NW Cache Control FIagsS voi i e 18-26
18.22.3 Descriptor Types and ContentSvvvit it eaas 18-26
18.22.4 Changes in Segment Descriptor Loads.vvvvviiiiiiii i 18-27
1823 DEBUG FACILITIES. .ottt e e e 18-27
18.23.1 Differences in Debug Register DREc.coviiiiiiiii it 18-27
18.23.2 Differences in Debug Register DR7vviiiiiiii it 18-27
18.233 Debug Registers DR4 and DRS.ot e e 18-27
18.24 RECOGNITION OF BREAKPOINTS .. .ottt e 18-28
18.25 EXCEPTIONS AND/OR EXCEPTION CONDITIONSt 18-28
18.25.1 Machine-Check Architecture e 18-30
18.25.2 Priority OF EXCEPTIONS ..\ttt ittt ettt 18-30
18.26 INTERRUPT S, ..ttt e i 18-30
18.26.1 Interrupt Propagation Delayt e 18-30
18.26.2 NME I U . oot e e e e e 18-30
18.26.3 10 18-31
1827 ADVANCED PROGRAMMABLE INTERRUPT CONTROLLER (APIC)......ovvvvvvnennt 18-31
18.27.1 Software Visible Differences Between the Local APIC and the 82489DX......... 18-31
18.27.2 New Features Incorporated in the Local APIC for the P6 Family and Pentium Processors

18-32
18.27.3 New Features Incorporated in the Local APIC of the Pentium 4 and Intel Xeon Processors
18-32

1828 TASK SWITCHING AND TSS .ottt ittt et e e 18-32
18.28.1 P6 Family and Pentium Processor TSSt 18-33

Xviii Vol. 3A

CONTENTS

PAGE

18.28.2 TSS Selettor WIS vttt e 18-33
18.28.3 Order of Reads/Writesto the TSSo 18-33
18.284 Using A 16-Bit TSS with 32-Bit CONStructs. ... 18-33
18.28.5 Differences in I/0 Map Base AddreSSesvvvvvririiie it eienenanns 18-33
1829 CACHE MANAGEMENT ...ttt 18-34
18.29.1 Self-Modifying Code with Cache Enabled. ...t 18-35
18.29.2 Disablingthe L3 Cache. . ..o v i e 18-36
18.30 PAGING ..ottt e e e e 18-36
18.30.1 LargE PageS. . vttt 18-36
18.30.2 PCD and PWT Flags . ..ottt et ettt et 18-36
18.30.3 Enabling and Disabling Pagingvvviiiiii i 18-37
1831 STACK OPERATIONS . ..ttt e s 18-37
18.31.1 Selector Pushes and PopS.o e 18-37
1831.2 Error Code PUSNES. ...t e 18-38
18.31.3 Fault Handling Effectsonthe Stack ... 18-38
18314 Interlevel RET/IRET From a 16-Bit Interrupt or CallGate........................ 18-38
1832 MIXING 16- AND 32-BIT SEGMENTS. . ..o\ttt 18-39
1833 SEGMENT AND ADDRESS WRAPAROUND.\ttt it 18-39
18.33.1 Segment WraparoUNd.ot 18-40
1834 STORE BUFFERS AND MEMORY ORDERINGvvviii e 18-40
18.35 BUS LOCKING ..ottt ettt ettt e e e e e e 18-42
18.36 BUSHOULD . ..ttt e 18-42
18.37 MODEL-SPECIFIC EXTENSIONS TO THE IA-32 . oo 18-42
18.37.1 Model-Specific RegISTErSv it i e 18-43
18.37.2 RDMSR and WRMSR INSTIUCTIONS ..o\ vvv et 18-43
18373 Memory Type Range REGISTErS. vvvt it 18-43
18374 Machine-Check Exception and Architecture ..o 18-44
18.37.5 Performance-Monitoring COUNTerS.vvvi it eenaaas 18-44
1838 TWO WAYS TORUN INTEL 286 PROCESSOR TASKS ... 18-45
CHAPTER 19
DEBUGGING AND PERFORMANCE MONITORING
19.1 OVERVIEW OF DEBUG SUPPORT FACILITIES. ..ot 18-1
19.2 DEBUG REGISTERS. ...ttt e 18-2
19.2.1 Debug Address Registers (DRO-DR3)oviiiiii e 18-4
19.2.2 DebugRegisters DR4and DRS ...t 18-4
19.2.3 Debug Status Register (DRB).vvvit i e 18-4
19.2.4 Debug Control Register (DR7)ttt 18-5
19.2.5 Breakpoint Field Recogniti@p .. 18-6
19.2.6 Debug Registers and Intel™ 64 ProCeSSOrSvv vt ittt einineianas 18-8
19.3 DEBUG EXCEPTIONS ..ttt e e e e 18-9
19.3.1 Debug Exception (#DB)—Interrupt Vector 1.........ovviiii e 18-9
19.3.1.1 Instruction-Breakpoint Exception Condition...............cocoviiiiiiinns, 18-10
19.3.1.2 Data Memory and I/0 Breakpoint Exception Conditions 18-12
193.1.3 General-Detect Exception Conditionooiivii i 18-12
193.1.4 Single-Step Exception Condition.covvii i 18-12
19.3.1.5 Task-Switch Exception Condition. ..o 18-13
19.3.2 Breakpoint Exception (#BP)—Interrupt Vector 3cooviviiiiiiiinnne 18-13
194 LASTBRANCHRECORDINGOVERVIE\/\I.........................@ e 18-14
19.5 LAST ANCH,JMNTERRUPT, AND EXCEPTION RECORDING (INTEL™ CORE 2 DUO AND

INTEL™ ATOM PROCESSOR FAMILY) ..\ttt e aea e 18-14

Vol. 3A Xix

CONTENTS

PAGE

19.5.1 IA32_DEBUGCTL MSR Lttt 18-15
19.5.2 LBR StaCK . vttt 18-17
1953 BTS and Related Facilitiesovi e 18-18
19.5.3.1 Freezing LBR and Performance CountersonPMIl.................cooveientn. 18-18
19.5.3.2 Debug Store (DS) Mechanismcovvvviviniiiiinann Iy B 18-19
19.6 LAST BRANCH, INTERRUPT, AND EXCEPTION RECORDING (INTEL™ CORE 17 PROCESSOR

FAMILY) Lttt e 18-20
19.6.1 LBR StaCK vttt 18-21
19.6.2 Filtering of Last Branch Recordsooii i e 18-22
19.7 LAST BRANCH, INTERRUPT, AND EXCEPTION RECORDING (PROCESSORS BASED ON INTEL

NETBURST ™ MICROARCHITECTURE). ...\ evo et 18-22
19.7.1 CPL-Qualified Branch Trace Mechanism.coviiiiiiiiiiiii i 18-23
19.7.2 MSR_DEBUGCTLA MSR . . .ottt 18-26
19.7.3 LBR Stack for Processors Based on Intel NetBurst Microarchitecture 18-27
19.7.3.1 LBR Stack and INtel™ 64 ProCeSSOrSvverteeerteeiteeeieainieannens 18-28
19.7.4 Monitoring Branches, Exceptions, and Interrupts.cccoviviiiiiiiiinnn. 18-28
19.7.5 Single-Stepping on Branches, Exceptions, and Interrupts.................covvues. 18-29
19.7.6 Branch Trace MeSSages . .. vv vttt e e 18-29
19.7.7 Last EXCEPLION RECOMAS ... vttt 18-30
19.7.7.1 Last Exception Records and Intel 64 Architecture ..o, 18-30
19.7.8 Branch Trace Store (BTS). oo e 18-30
19.7.8.1 Detection of the BTS FaCilities. v.vvvrie i 18-30
19.7.8.2 Setting Up the DS Save Area ... v ittt 18-31
19.7.83 Setting Up the BTS BUffer.o e 18-32
19.7.84 Setting Up CPL-Qualified BTS. . ..ot 18-33
19.7.85 Writing the DS Interrupt Service Routine................. Ty B 18-34
19.8 LAST ANCHMIANTERRUPT, AND EXCEPTION RECORDING (INTEL™ CORE SOLO AND

INTEL™ CORE DUO PROCESSORS) ..\ttt 18-35
199 LAST BRANCH, INTERRUPT, AND EXCEPTION

RECORDING (PENTIUM M PROCESSORS) ..ttt 18-37
19.10 LAST BRANCH, INTERRUPT, AND EXCEPTION

RECORDING (P6 FAMILY PROCESSORS). ..ttt e 18-39
19.10.1 DEBUGCTULMSR REGISTEI. o vt vv vttt ettt ettt et eaas 18-39
19.10.2 Last Branch and Last EXception MSRS.vvv it 18-40
19.10.3 Monitoring Branches, Exceptions, and Interrupts.covviviiiiiiii e, 18-41
1977 TIME-STAMP COUNTER. ..ttt ettt e e et 18-42
19.11.1 1Y T T Y 18-43
19.11.2 IA32_TSC_AUX Register and RDTSCP SUPPOrt.vvvviiiii it iiiiiniiianes 18-44
19.12 PERFORMANCE MONITORING OVERVIEW . ..ot ev et 18-44
19.13 ARCHITECTURAL PERFORMANCE MONITORING\ v it eieeaaaes 18-45
19.13.1 Architectural Performance Monitoring Version 1..........covoviiiiiiiiiiinnn, 18-46
19.13.1.1 Architectural Performance Monitoring Version 1 Facilities.................... 18-47
19.13.2 Additional Architectural Performance Monitoring Extensions.................... 18-49
19.13.2.1 Architectural Performance Monitoring Version 2 Facilities.................... 18-50
19.13.2.2 Architectural Performance Monitoring Version 3 Facilities.................... 18-53
19133 Pre-defined Architectural Perfornaance Evgpts.............. ESTIRECE e 18-56
19.14 PERFORMANCE MONITORING (INTEL™ CORE SOLO AND INTEL™ CORE DUO

PROCESSORS). ..ot ittt i et et ce e e SRS T 18-58
19.15 PERFORMANCE MONITORING (PROCESSORS BASED ON INTEL™ CORE

MICROARCHITECTURE) . v vttt ettt 18-60
19.15.1 Fixed-function Performance COUNTErs.ovvvvriiiii it 18-62
19.15.2 Global Counter Control FaCilitieSvvvv e e 18-63

XX Vol. 3A

CONTENTS

PAGE
19.15.3 At-RetiremMENt EVENTS ..\ttt e 18-65
19.154 Precise Event Based Sampling (PEBS). ..o 18-66
19.15.4.1 Settingup the PEBS Buffer ... e 18-67
19.15.4.2 PEBS ReCOrd FOMMat. ..ot vt ettt ettt 18-67
19.154.3 Writing a PEBS Interrupt Service Routine SLIARRRR T RREERRERY 18-67
19.16 PERFORMANCE MONITORING (PROCESSORS BASED ON INTEL ATOM
MICROARCHITECTURE). . . ettt ettt en s 18-69
19.17 PERFORMANCE MONITORING FOR PROCESSORS BASED ON INTEL MICROARCHITECTURE
(NEHALEM). .ot e e 18-70
19.17.1 Enhancements of Performance Monitoring in the Processor Core 18-71
19.17.1.1 Precise Event Based Sampling (PEBS). ..ot 18-71
19.17.1.2 Load Latency Performance Monitoring Facilityoooiiintt. 18-76
19.17.1.3 Off-core Response Performance Monitoring in the Processor Core........... 18-78
19.17.2 Performance Monitoring Facility intheUncorecoovviiii i 18-81
19.17.21 Uncore Performance Monitoring Management Facility 18-81
19.17.2.2 Uncore Performance Event Configuration Facility 18-84
19.17.23 Uncore Address/Opcode Match MSR. ...t 18-86
19.18 PERFORMANCE MONITORING (PROCESSORS
BASED ON INTEL NETBURST MICROARCHITECTURE)vvvv v 18-87
19.18.1 SR MO RS, ittt 18-91
19.18.2 Performance COUNTEIS. ..ttt ettt et e 18-93
19.18.3 0000 1 Y 18-94
19.184 Debug Store (DS) MeChanism. vv vttt 18-97
19.18.5 DS SV AT .ttt e 18-97
19.18.5.1 DS Save Area and IA-32e Mode Operationcovviiiiiiiinennnanns 18-101
19.18.6 Programming the Performance Counters
for Non-Retirement EVENTSvvviv e 18-103
19.18.6.1 Selecting Events t0 CoUNt.ot 18-104
19.186.2 FIering BVENTS ..ttt e 18-106
19.186.3 Starting Event Countingov it e 18-108
19.18.64 Reading a Performance Counter's Count...........covvviiiiiiiinnnnenennnns 18-108
19.186.5 Halting Event CoUNting ovvvtein e 18-109
19.18.6.6 CasCading CoUNTErS. . vttt it e it e it e 18-109
19.186.7 EXTENDED CASCADING . . v ettt e e eaes 18-110
19.18.6.8 Generating an Interrupton Overflow ..., 18-112
19.18.6.9 Counter Usage GUIdeling. ..ottt e 18-112
19.18.7 At-Retirement Countingovviiii e 18-113
19.18.7.1 Using At-Retirement Countingcoovvvriiiii i 18-114
19.18.7.2 Tagging Mechanism for Front_end_event.................cociiiiiiiinn... 18-115
19.18.7.3 Tagging Mechanism For Execution_event.............ovoveiiiiiiiiinnnnn., 18-115
19.18.7.4 Tagging Mechanism for Replay_event...........coooiiiiiii i 18-116
19.18.8 Precise Event-Based Sampling (PEBS)coovriiiiii 18-116
19.18.8.1 Detection of the Availability of the PEBS Facilities 18-117
19.18.8.2 Setting Up the DS SaVve Area. . ..o vivr et 18-117
19.18.8.3 SettingUp the PEBS Buffer. ..o 18-117
19.18.84 Writing a PEBS Interrupt Service Routineocoviviviiiiiienns,. 18-117
19.18.8.5 Other DS Mechanism Implications.cooviiii i 18-118
19.189 Operating System Implications ...t e 18-118
19.179 PERFORMANCE MONITORING AND INTEL HYPER-THREADING TECHNOLOGY IN
PROCESSORS BASED ON INTEL NETBURST MICROARCHITECTURE 18-118
19.19.1 SR MO RS . vttt ettt 18-119
19.19.2 000 1 Y 18-120

Vol. 3A xxi

CONTENTS

PAGE

19.19.3 IA32_PEBS_ENABLE MSR ...ttt 18-122
19.19.4 Performance Monitoring EVENTSovti i 18-122
19.20 COUNTING CLOCKS. ..ttt ittt ettt 18-124
19.20.1 Non-Halted CloCKTICKS . ..o v v 18-125
19.20.2 NON-SIEEP CIOCKTICKS .+ v vt v ettt 18-126
19.20.3 Incrementing the Time-Stamp Counter..........ccoiviiii it 18-127
19.204 Non-Halted Reference Clockticksc.covvviiiiiii e 18-127
19.20.5 Cycle Counting and Opportunistic Processor Operation.............ovvvvvenns. 18-127
19.21 PERFORMANCE MONITORING, BRANCH PROFILING AND SYSTEM EVENTS......... 18-128
19.22 PERFORMANCE MONITORING AND DUAL-CORE TECHNOLOGYcovvvvvvnnnnn 18-129
19.23 PERFORMANCE MONITORING ON 64-BIT INTEL XEON PROCESSOR MP WITH UP TO 8-

MBYTE L3 CACHE .. ottt e e 18-129
19.24 PERFORMANCE MONITORING ON L3 AND CACHING BUS CONTROLLER SUB-SYSTEMS.. 18-

134
19.24.1 Overview of Performance Monitoring with L3/Caching Bus Controller.......... 18-136
19.24.2 GBSQ Event INterface . ..ot 18-137
19.24.3 GSNPQ Event INterface. . . ovv vt 18-139
19.24.4 FSB EVent INterface. ...t 18-141
19.24.4.1 FSB Sub-Event Mask Interface.vovviiiviiiii i 18-142
19.24.5 Common Event Control INterface.c.oooviiii i e 18-143
19.25 PERFORMANCE MONITORING (P6 FAMILY PROCESSOR) ... vvvvviieiiiiiaanes 18-143
19.25.1 PerfEvtSel0 and PerfEVtSElT MSRS v vt 18-144
19.25.2 PerfCtrO and PerfCtrT MSRS. ..o e 18-146
19.25.3 Starting and Stopping the Performance-Monitoring Counters.................. 18-146
19.25.4 Event and Time-Stamp Monitoring Software...............cccoiiiiiiiinnnns. 18-147
19.25.5 Monitoring Counter OVerflow.o e 18-147
19.26 PERFORMANCE MONITORING (PENTIUM PROCESSORS). ...t v iieiaaes 18-148
19.26.1 Control and Event Select Register (CESR)..........covvviiiiiiiiiiiiiiininns 18-148
19.26.2 Use of the Performance-Monitoring Pins ..o 18-150
15.26.3 EVENtS COUNTEA. ...t e 18-150
CHAPTER 20
INTRODUCTION TO VIRTUAL-MACHINE EXTENSIONS
20.1 OVERVIEW. . ettt e e e 19-1
20.2 VIRTUAL MACHINE ARCHITECTURE ..\ttt 19-1
203 INTRODUCTION TO VMX OPERATION. . . oottt i einaees 19-1
20.4 LIFE CYCLE OF VMM SOFTWARE . ..\ttt 19-2
20.5 VIRTUAL-MACHINE CONTROL STRUCTUREttt 19-3
20.6 DISCOVERING SUPPORT FOR VMX 1\ttt ittt e ittt einaae e 19-3
20.7 ENABLING AND ENTERING VMX OPERATION. . ..ot e e 19-4
20.8 RESTRICTIONS ON VMX OPERATION ... ovt ittt et 19-5
CHAPTER 21
VIRTUAL-MACHINE CONTROL STRUCTURES
21.1 OVERVIEW. . ettt e e e e e e e e e 20-1
21.2 FORMAT OF THE VMCS REGION. ..o\ttt 20-2
21.3 ORGANIZATION OF VMCS DAT A ittt 20-3
21.4 GUEST-STATE AREA .ttt e e e 20-3
21.4.1 GUEST REGISTEr STat. vttt e 20-3
214.2 Guest NON-Register State ..ot 20-6

xXii Vol. 3A

CONTENTS

PAGE

215 HOST-ST AT E ARE A ettt et e e e 20-9
216 VM-EXECUTION CONTROL FIELDS\t 20-9
21.6.1 Pin-Based VM-Execution Controlsooovvii i eeeas 20-10
21.6.2 Processor-Based VM-Execution Controls.oovvviiiiiiniieiiniininnns 20-11
216.3 EXCEPLION BitmMaD. ..ttt 20-14
2164 1/0-Bitmap AddreSSES. . ot ittt e e 20-15
2165 Time-Stamp Counter Offset. e 20-15
21.6.6 Guest/Host Masks and Read Shadows for CROandCR4...............covvvvnes. 20-15
21.6.7 CR3-Target ControlS. . oottt et e e e e e 20-15
216.8 CoNtrols fOr APIC ACCESSES. . .\ vttt vttt ettt et 20-16
2169 MSR-BItmap AdAreSS v vt v vttt 20-17
216.10 EXecUtive-VMCS Pointer .. .o 20-18
21.6.11 Extended-Page-Table Pointer (EPTP)ovvvvi i 20-18
216.12 Virtual-Processor Identifier (VPID).ovvririni it 20-18
21.6.13 Controls for PAUSE-LOOP EXItiNGcvovi i e 20-19
21.7 VM-EXIT CONTROL FIELDS . . . oottt 20-19
21.7.1 VM-EXIt CONTIOIS . vttt 20-19
21.7.2 VM-ExXit Controls for MSRS ...\ v vttt 20-21
218 VM-ENTRY CONTROL FIELDSttt 20-22
21.8.1 VM-ENTry CONtrolS. .. vt e 20-22
21.8.2 VM-Entry Controls for MSRS.t 20-23
2183 VM-Entry Controls for EventInjection ...t 20-23
219 VM-EXIT INFORMATION FIELDS.ottt 20-25
21.9.1 Basic VM-Exit INnformation.c.virii i 20-25
21.9.2 Information for VM Exits Due to Vectored Events...........covvvvviiniinninnns 20-26
2193 Information for VM Exits That Occur During Event Delivery..................... 20-27
2194 Information for VM Exits Due to Instruction Execution..............ocovvvvinnn. 20-28
21.9.5 VM-Instruction Error Field.o.ove e 20-28
21.10 SOFTWARE ACCESS TO THE VMCS AND RELATED STRUCTURES ...t 20-29
21.101 Software Access to the Virtual-Machine Control Structure...................... 20-29
21.10.2 VMREAD, VMWRITE, and Encodings of VMCS Fields............covvivviinninnnn. 20-30
21.103 Software Access to Related Structures.coovvvii i 20-32
21.104 VMXON REGION . vt ittt ettt ettt et e e 20-32
21.11 USING VMCLEAR TO INITIALIZE AVMCS REGION.ot 20-33
CHAPTER 22
VMX NON-ROOT OPERATION
22.1 INSTRUCTIONS THAT CAUSE VM EXITS ..ottt it 21-1
22.1.1 Relative Priority of Faults and VM EXitS. ... 21-1
22.1.2 Instructions That Cause VM Exits Unconditionallycocoviiiiiiiinnn 21-2
22.1.3 Instructions That Cause VM Exits Conditionally. ..ot 21-3
22.2 APIC-ACCESS VM EXITS .ttt e e 21-7
22.2.1 Linear Accesses t0 the APIC-AcCesS Page. ..o e 21-7
22.2.1.1 Linear Accesses That Cause APIC-Access VM EXItSovovvvviviiiiiiiennnnss 21-7
22.2.1.2 Priority of APIC-Access VM Exits Caused by Linear ACCESSES.........ovvvvnn... 21-9
22.2.1.3 Instructions That May Cause Page Faults or EPT Violations Without Accessing

1= 03T Y 21-10
22.2.2 Guest-Physical Accesses to the APIC-AccessPage...........ccooiiiiiiiinns, 21-10
22.2.2.1 Guest-Physical Accesses That Might Not Cause APIC-Access VM Exits........ 21-11
22.2.2.2 Priority of APIC-Access VM Exits Caused by Guest-Physical Accesses......... 21-12
22.2.3 e Physical Accesses to the APIC-Access Page21-12

Vol. 3A xxiii

CONTENTS

PAGE
2224 VTPR ACCESSES . .ot e ettt ettt e e et e 21-13
22.3 OTHER CAUSES OF VM EXITS . ot 21-14
22.4 CHANGES TO INSTRUCTION BEHAVIOR IN VMX NON-ROOT OPERATION 21-16
22.5 APIC ACCESSES THAT DONOT CAUSE VM EXITS . ..o 21-21
22.5.1 Linear Accesses to the APIC-Access Page Using Large-Page Translations 21-22
225.2 Physical Accesses to the APIC-Access Page. ...t e 21-22
2253 VTPR ACCESSES .o ettt ettt e ettt 21-22
22.5.3.1 Treatment of Individual VTPR ACCESSES .. .o vvvvii e 21-23
22532 Operations with Multiple ACCESSES ittt 21-23
22533 TPR-Shadow Updatesovvvieii ittt e 21-25
22.6 OTHER CHANGES IN VMX NON-ROOT OPERATIONevviiiiei e 21-25
22.6.1 EVent BloCKINg.o 21-25
22.6.2 Treatment of Task SWItChes. s 21-26
22.7 FEATURES SPECIFIC TO VMX NON-ROOT OPERATION. ..o 21-27
22.7.1 VMX-Preemption Timer ... e e e i 21-27
227.2 MONItOr Trap Flag. . ..o e 21-28
22.7.3 Translation of Guest-Physical Addresses Using EPT............covvvivivinininns. 21-29
22.8 UNRESTRICTED GUEST S, ittt ettt e eaas 21-29
CHAPTER 23
VM ENTRIES
23.1 BASICVM-ENTRY CHECKS . ..ottt 22-2
23.2 CHECKS ON VMX CONTROLS AND HOST-STATEAREA. e 22-3
23.2.1 Checks 0N VMX Controls.ove e i 22-3
23.2.1.1 VM-Execution Control Fields.ooviii e 22-3
23.2.1.2 VM-Exit Control Fields.o 22-6
23213 VM-Entry Control Fieldsoe i e e 22-7
23.2.2 Checks on Host Control Registers and MSRS 22-8
23.23 Checks on Host Segment and Descriptor-Table Registers......................... 22-9
2324 Checks Related to Address-Space Size ...t i 22-9
233 CHECKING AND LOADING GUEST STATE ..ottt 22-10
23.3.1 Checks onthe GUeST STate Areav v e 22-10
23.3.1.1 Checks on Guest Control Registers, Debug Registers,andMSRs 22-10
233.1.2 Checks on Guest Segment Registersvvvii it 22-12
23313 Checks on Guest Descriptor-Table Registers.c.ocoviiiiiiininnns. 22-15
233.14 Checks on Guest RIPand RFLAGS 22-15
233.15 Checks on Guest Non-Register State........ocovvviiiiiiiiiiiii i, 22-16
233.16 Checks on Guest Page-Directory-Pointer-Table Entries....................... 22-18
233.2 Loading GUEST STate ..ot e 22-19
23.3.2.1 Loading Guest Control Registers, Debug Registers,and MSRs. 22-20
233.2.2 Loading Guest Segment Registers and Descriptor-Table Registers............ 22-21
23323 Loading Guest RIP, RSP, and RFLAGS. oot 22-22
23324 Loading Page-Directory-Pointer-Table Entries...........cvvviiiiiiiinnnen.n. 22-22
23325 Updating Non-Register Stateoooviiii i 22-23
2333 Clearing Address-Range Monitoringvv v iiii i e e 22-23
234 LOADING MSRS ..ottt e e e 22-23
23.5 EVENT INJECTION . ettt e e e 22-24
23.5.1 Vectored-Event INjeCtionovv i 22-24
23.5.1.1 Details of Vectored-Event Injection ..ot 22-25
235.1.2 VM Exits During Event Injection. 22-27
23513 Event Injection for VM Entries to Real-AddressMode 22-28

XXiv Vol. 3A

CONTENTS

PAGE
23.5.2 Injection of Pending MTF VM EXitS. . ..ovvviiiii i 22-28
236 SPECIAL FEATURES OF VM ENTRY ..ottt 22-29
23.6.1 Interruptibility State.o 22-29
236.2 ACTIVITY STatE . ..ot e 22-30
236.3 Delivery of Pending Debug Exceptions after VMENtry............ccovvvvvinnns 22-31
2364 VMX-Preemption Timer.ot e et 22-32
23.6.5 Interrupt-Window EXIitiNgovvirt i e 22-32
23.6.6 NMI-WINAOW EXItING ..o v v e 22-33
23.6.7 VM Exits Induced by the TPRShadow ... e 22-33
23.6.8 Pending MTF VM EXITS ...\ttt e e e 22-34
2369 VM Entries and Advanced Debugging Features..........oovviviviiiiininnnnnnns 22-34
23.7 VM-ENTRY FAILURES DURING OR AFTER LOADING GUEST STATE........cvvvnen. 22-34
238 MACHINE CHECKS DURING VM ENTRY ..ottt ieeeen 22-35
CHAPTER 24
VM EXITS
24.1 ARCHITECTURAL STATEBEFORE AVMEXIT ..ottt 23-1
24.2 RECORDING VM-EXIT INFORMATION AND UPDATING VM-ENTRY CONTROL FIELDS. .. 23-5
24.2.1 Basic VM-Exit INformation.oiuiiii 23-5
24.2.2 Information for VM Exits Due to Vectored Events...........covvviiiininnnnnnns 23-14
24.2.3 Information for VM Exits During Event Deliverycocoiiiiiiiiinnt, 23-15
24.2.4 Information for VM Exits Due to Instruction Execution.................oovenne 23-17
24.3 SAVING GUEST ST AT .ottt et e e e 23-26
24.3.1 Saving Control Registers, Debug Registers,andMSRsoevnt 23-27
24.3.2 Saving Segment Registers and Descriptor-Table Registers...................... 23-27
2433 Saving RIP, RSP, and RFLAGS.ttt 23-28
2434 Saving Non-Register State. ... 23-30
24.4 SAVING MRS . 23-32
24.5 LOADING HOST STATE. .ttt ettt et e e e 23-33
24.5.1 Loading Host Control Registers, Debug Registers, MSRS 23-33
24.5.2 Loading Host Segment and Descriptor-Table Registerscocovvvvnne 23-35
2453 Loading Host RIP, RSP, and RFLAGS ...\ ov it 23-36
2454 Checking and Loading Host Page-Directory-Pointer-Table Entries 23-36
2455 Updating Non-Register State.ovvvvuiiiii i i 23-37
24.5.6 Clearing Address-Range Monitoring.ovvvvve i 23-38
24.6 LOADING MRS . ittt e e 23-38
24.7 VM ABOR TS ottt e 23-39
24.8 MACHINE CHECK DURING VM EXIT. .ottt eeens 23-40
CHAPTER 25
VMX SUPPORT FOR ADDRESS TRANSLATION
25.1 VIRTUAL PROCESSOR IDENTIFIERS (VPIDS) . vt v ettt 24-1
25.2 THE EXTENDED PAGE TABLE MECHANISM (EPT) ..ot 24-2
25.2.1 Lo I 0= Y P 24-2
25.2.2 EPT Translation Mechanismvuie i 24-4
25.2.3 EPT-INduCed VM EXItS .. vvt et 24-9
25.2.3.1 EPT Misconfigurationsvuiiiii i i e 24-10
25.23.2 EPT Vi0lations. . .ottt 24-11
25233 Prioritization of EPT-Induced VM EXitS.o vviiiiiii i 24-12
25.2.4 EPT and Memory TYPING . ..o vttt 24-13

Vol. 3A XXV

CONTENTS

PAGE

25.2.4.1 Memory Type Used for Accessing EPT Paging Structures 24-14
25.24.2 Memory Type Used for Translated Guest-Physical Addresses 24-14
253 CACHING TRANSLATION INFORMATION . ..ottt 24-15
25.3.1 Information ThatMayBe Cached ...t 24-15
253.2 Creating and Using Cached Translation Information....................cooiuts 24-16
2533 Invalidating Cached Translation Information...................cocoiiiiiiiint, 24-18
25.3.3.1 Operations that Invalidate Cached Mappings.coovviviiiiiiiiennnn.n. 24-18
2533.2 Operations that Need Not Invalidate Cached Mappings..............ovvvvnen. 24-19
25333 Guidelines for Use of the INVVPID Instructionocovivviiniinnnnnn, 24-20
25334 Guidelines for Use of the INVEPT Instructionocovvvvviiniinnnnnn, 24-21
CHAPTER 26
SYSTEM MANAGEMENT
26.1 SYSTEM MANAGEMENT MODE OVERVIEWo v it 25-1
26.1.1 System Management Mode and VMX Operationcccoviiiiiiiiinnnnn., 25-2
26.2 SYSTEM MANAGEMENT INTERRUPT (SMI) ..o 25-3
26.3 SWITCHING BETWEEN SMM AND THE OTHER

PROCESSOR OPERATING MODESttt 25-3
26.3.1 ENTEriNg SMM. L ot 25-3
26.3.2 EXItING FrOm SMM. Lo 25-4
26.4 SR A . L 25-5
26.4.1 SMRAM STate SAVE MaD . . ot v et 25-6
26.4.1.1 SMRAM State Save Map and Intel 64 Architecture.............coviiiinn. 25-8
26.4.2 SMRAM CaCNING. .+« v v vttt et e e 25-11
26.4.2.1 System Management Range Registers (SMRR).covviviviiiiiiininn 25-12
26.5 SMI HANDLER EXECUTION ENVIRONMENT. ...t ie e 25-12
26.6 EXCEPTIONS AND INTERRUPTS WITHINSMM. ...t 25-14
26.7 MANAGING SYNCHRONOUS AND ASYNCHRONOUS

SYSTEM MANAGEMENT INTERRUPTS .. vt 25-15
26.7.1 1/0 State Implementation. e 25-16
26.8 NMIHANDLING WHILE IN SMM ..o e 25-17
26.9 SMM REVISION IDENTIFIER ...ttt et e 25-18
26.10 AUTO HALT REST AR T ..ottt ittt e e 25-18
26.10.1 Executing the HLT Instruction in SMM. ... e 25-19
26.1T SMBASE RELOCATION . ..\ttt e e 25-19
26.11.1 Relocating SMRAM to an Address Above TMByte........coovviiiiiiiiinnt, 25-20
26.12 /OINSTRUCTION RESTART . ..\ttt ettt e 25-20
26.12.1 Back-to-Back SMI Interrupts When I/0 Instruction Restart Is Being Used 25-22
26.13 SMM MULTIPLE-PROCESSOR CONSIDERATIONSot 25-22
26.14 DEFAULT TREATMENT OF SMIS AND SMM WITH VMX OPERATION AND SMX OPERATION..

25-23
26.14.1 Default Treatment of SMIDeliVEry. ...t e 25-23
26.14.2 Default Treatment of RSM.o e 25-24
26.14.3 Protection of CRAVMXEINSMM ...t e 25-26
26.15 DUAL-MONITOR TREATMENT OF SMISAND SMM.oovv i 25-26
26.15.1 Dual-Monitor Treatment OVErVIEW.vvvve ettt iaeeens 25-26
26.15.2 SMM VUM EXITS .+ttt ittt e 25-27
26.15.2.1 Architectural State Before a VM EXit.cooviii i 25-27
26.15.2.2 Updating the Current-VMCS and Executive-VMCS Pointers.................... 25-27
26.15.2.3 Recording VM-Exit Information ... 25-28
26.15.2.4 SaVviNg GUEST STate. ..ot 25-29

XXvi Vol. 3A

CONTENTS

PAGE
26.15.2.5 Updating Non-Register State.ovviiiiiii it 25-29
26.15.3 Operation of an SMM MONITOr . ..o v v 25-30
26.154 VM Entries that Return from SMM. . ..o e 25-30
26.15.4.1 Checks on the Executive-VMCS Pointer Field.cooov i 25-30
26.154.2 Checks on VM-Execution Control Fieldscoviiiiiiiii s 25-31
26.154.3 Checks on VM-Entry Control Fields ...t 25-31
26.15.44 Checks onthe GUest State ArEa. ... vvvvi v 25-32
26.154.5 Loading GUEST STaT . ..ottt e 25-32
26.15.4.6 VMX-Preemption Timer. i e i e i e 25-32
26.154.7 Updating the Current-VMCS and SMM-Transfer VMCS Pointers............... 25-33
26.154.8 VM Exits Induced by VM ENTIY o ovninii e 25-33
26.1549 SMIBIOCKING .+ vttt et et e e 25-33
26.15.4.10 Failures of VM Entries That Return from SMM.ooiiiiiii it 25-34
26.15.5 Enabling the Dual-Monitor Treatment.o 25-34
26.15.6 Activating the Dual-Monitor Treatment. ...t e 25-36
26.15.6.1 INItIAl CNECKS .« v 25-36
26.156.2 MSEG CheCKiNg . . .o vttt 25-38
26.15.6.3 Updating the Current-VMCS and Executive-VMCS Pointers................... 25-38
26.15.6.4 Loading HOSt State . ..ottt e 25-38
26.15.6.5 Loading MSRS ..ttt 25-40
26.15.7 Deactivating the Dual-Monitor Treatment. ...ttt 25-40
26.16 SMI AND PROCESSOR EXTENDED STATE MANAGEMENTovvvviiiiiieenn, 25-41
CHAPTER 27
VIRTUAL-MACHINE MONITOR PROGRAMMING CONSIDERATIONS
27.1 VMX SYSTEM PROGRAMMING OVERVIEWo 26-1
27.2 SUPPORTING PROCESSOR OPERATING MODES IN GUEST ENVIRONMENTS........... 26-1
27.2.1 Emulating GUeST EXBCULION.t i et e e 26-2
27.3 MANAGING VMCS REGIONS AND POINTERS ..ot e 26-2
27.4 USING VMX INSTRUCTIONS ..ottt e 26-5
27.5 VMM SETUP & TEARDOWN . .ottt 26-5
27.5.1 Algorithms for Determining VMX Capabilities.c.ooviiiiiiiins, 26-6
27.6 PREPARATION AND LAUNCHING A VIRTUALMACHINE. ..o 26-9
27.7 HANDLING OF VM EXITS Lttt 26-11
27.7.1 Handling VM Exits Due to EXCeptionS........ovviiii e 26-11
27.7.1.1 Reflecting Exceptions to Guest Software.............cocoiiiiiiiiiinnnnnns. 26-11
27.7.1.2 Resuming Guest Software after Handling an Exception...................... 26-13
27.8 MULTI-PROCESSOR CONSIDERATIONS . ..\ttt 26-15
27.8.1 INItIAlZatION . .. e 26-15
27.8.2 Moving @ VMCS BetWeeN PrOCESSOIS ... vv vttt ieiii e enanes 26-16
2783 Paired Index-Data Registersoviiiiiii 26-16
2784 External Data SIrUCTUMES. . ..ottt 26-17
27.8.5 CPUID EMUIGLION. .. vttt 26-17
279 32-BIT AND 64-BIT GUEST ENVIRONMENTS . ..\ivii i 26-17
27.9.1 Operating Modes of Guest Environmentscccoviiiiiiiiiiiiiiieienns. 26-17
27.9.2 Handling Widths of VMCS Fieldsvvvii i 26-18
27.9.2.1 Natural-Width VMCS Fields.o i 26-18
27.9.2.2 B4-Bit VMCS Fields . ..o 26-18
2793 IA-328 MO HOSTS . .ottt 26-19
2794 JA-328 MO GUESTS . . ottt ettt et e 26-20
27.9.5 3Bt GUESTS vttt ettt 26-21

Vol. 3A xxvii

CONTENTS

PAGE
2710 HANDUING MODEL SPECIFICREGISTERS ...ttt 26-21
27.10.1 Using VM-Execution CoNtrolS ovve i 26-21
27.10.2 Using VM-Exit Controls for MSRS.cooiii i 26-22
27.10.3 Using VM-Entry Controls for MSRSt 26-22
27.104 Handling Special-Case MSRs and Instructionsc.covviiiiviiininiinannn, 26-23
27.104.1 Handling IA32_EFER MSR ..ot 26-23
27.104.2 Handling the SYSENTER and SYSEXIT Instructions..............cocvvvnnnn.. 26-23
27.104.3 Handling the SYSCALL and SYSRET Instructionscocovvveivnininnnnn, 26-23
271044 Handling the SWAPGS Instruction. ...t 26-24
27.104.5 Implementation Specific Behavior on Writing to CertainMSRs 26-24
27.10.5 Handling Accesses to Reserved MSR Addresseso.ovvvvvivinneniiinennnnn, 26-24
2711 HANDLUING ACCESSES TO CONTROL REGISTERS. . ..o v 26-25
27.12 PERFORMANCE CONSIDERATIONS ..\ttt 26-25
CHAPTER 28
VIRTUALIZATION OF SYSTEM RESOURCES
28.1 OV RV EW. . ittt e e e e e 27-1
28.2 VIRTUALIZATION SUPPORT FOR DEBUGGING FACILITIESo oo 27-1
28.2.1 DEDUG EXCEPTIONS . .« vttt ettt e 27-2
28.3 MEMORY VIRTUALIZATION Lottt et 27-3
28.3.1 Processor Operating Modes & Memory Virtualizationcal. 27-3
283.2 Guest & Host Physical Address SPaces vvvvvii i innenens 27-3
2833 Virtualizing Virtual Memory by Brute Force............coooiviiiiiiii s 27-4
2834 Alternate Approach to Memory Virtualization..............cocoiiiiii i 27-4
283.5 Details of Virtual TLB Operationovvuiuiriiiiiii ittt iiienieieanns 27-6
28.3.5.1 Initialization of Virtual TLB ..o oo e 27-7
28.35.2 Response to Page Faults . ..o 27-8
283.5.3 Response to Uses Of INVLPG ... 27-11
28354 Response to CRI WIIteS.vvv e 27-11
284 MICROCODE UPDATE FACILITY .ttt et 27-11
28.4.1 Early Load of Microcode Updatescvvvviiiiiiiiiiiii it 27-12
284.2 Late Load of Microcode Updates.ovveieiiiii e 27-12
CHAPTER 29
HANDLING BOUNDARY CONDITIONS IN A VIRTUAL MACHINE MONITOR
29.1 OVERVIEW. . ittt e e e e e e e e 28-1
29.2 INTERRUPT HANDLING IN VMX OPERATIONttt 28-1
29.3 EXTERNAL INTERRUPT VIRTUALIZATION ...t e 28-3
29.3.1 Virtualization of Interrupt Vector Space. ..ot 28-4
29.3.2 Control of Platform INtermupts . ..o.ov e 28-5
29.3.2.1 PICVirtualizationoovei e e 28-6
293.22 XAPIC Virtualizationot 28-6
293.23 Local APIC Virtualization. v v e 28-6
29324 I/0 APIC Virtualization.o vt 28-7
29.3.25 Virtualization of Message Signaled Interruptsc.covviviviiiion.t. 28-8
2933 Examples of Handling of External INterrupts. ..o 28-8
29.33.1 GUEST SO U .ttt i e 28-8
29332 Processor Treatment of External Interrupt..............cociiiiiiiiiiinint, 28-9
29333 Processing of External Interrupts by VMM, ... 28-9
29334 Generation of Virtual Interrupt Eventsby VMM...........ooiiiiiiiie 28-10

xXxviii Vol. 3A

CONTENTS

PAGE
29.4 ERROR HANDLUING BY VMM i 28-11
29.4.1 VM-EXIt FailUMES . o e e 28-11
294.2 Machine Check Considerations.o.vuieiiiii e 28-12
294.3 MCA Error Handling Guidelines for VMM. ..ot 28-13
294.3.1 VMM Error Handling Strategies.ovviii i 28-13
29.4.3.2 Basic VMM MCA error recovery handling.............cooiiiiiiiiiiiiinnn, 28-14
29433 Implementation Considerations for the BasicModel 28-14
29434 MCA VIrtUaliZation.o v 28-15
29435 Implementation Considerations for the MCA Virtualization Model. 28-15
29.5 HANDLING ACTIVITY STATESBY VMM, ..o 28-15
APPENDIX A
PERFORMANCE-MONITORING EVENTS
A1 ARCHITECTURAL PERFORMANCE-MONITORING EVENTS ...y v A-1

A2 PERFORMANCE MONITORING EVENTS FOR INTEL™ CORE." 17 PROCESSOR FAMILY.. A-2
A3 PERFORMANCE MONITORING EVENTS FOR INTEL ™ XEON™ PROCESSOR 5200, 5400

SERIES AND INTEL ™ CORE 2 EXTREME PROCESSORS QX 9000 SERIES............. A-57
A4 PERFORMANCE MONITORING EVENTS FQR INTEL™ XEON™ PROCESSOR 3000, 3200,

5100, 5300 SERIES AND INTEL™ CORE 2DUO PROCESSORS.ccvvvvvvinns A-58
A5 PERFORMANCE MONITORING EVENTS FOR INTEL ATOM,, PROCESSORS.. R .A-102
Ab PERFORMANCE MONITORING EVENTS FOR INTEL® CORE " SOLO AND INTEL® CORE'

DUO PROCESSORS. ...t A-125

A7 PENTIUM 4 AND INTEL XEON PROCESSOR PERFORMANCE-MONITORING EVENTS... A-134
A8 PERFORMANCE MONITORING EVENTS FOR

INTEL™ PENTIUM™ M PROCESSORSt A-183
AS P6 FAMILY PROCESSOR PERFORMANCE-MONITORING EVENTScovvieennens A-186
A10 PENTIUM PROCESSOR PERFORMANCE-

MONITORING EVENTS. ..ot A-204
APPENDIX B
MODEL-SPECIFIC REGISTERS (MSRS)
B.1 ARCHITECTURAL MO RS .ottt e e e B-2
B.2 MSRS IN THE INTEL CORE w2 PROCESSORFAMILY ..., B-37
B3 MSRS IN THE INTELE ATOM ™ PROCESSOR FAMILY ...\ eveeeeeeaeeineennns B-58
B4 MSRS IN THE INTEL® MICROARCHITEC URE (N%IALEM) B-73
B.5 MSRS IN THE PENTIUM™ 4 AND INTEL™ XEON™" PROCESSORSccvvvvunns B-96
B.5.1 MSRs Unlqug@to Inte] Xeon Processor M%)wnh L3 fache...........ooi B-136
B.6 MSRS IN INTEL™ CORE SOLO AND INTEL™ CORE DUO PROCESSORS........... B-139
B.7 MSRS IN THE PENTIUM M PROCESSOR. .. .ottt eieeeens B-152
B8 MSRS IN THE P6 FAMILY PROCESSORS ...\ttt B-162
B9 MSRS IN PENTIUM PROCESSORS ..\ttt B-174
APPENDIX C
MP INITIALIZATION FOR P6 FAMILY PROCESSORS
C1 OVERVIEW OF THE MP INITIALIZATION PROCESS FOR P6 FAMILY PROCESSORS C-1
C2 MP INITIALIZATION PROTOCOL ALGORITHM ..ot es c-2
C.2.1 Error Detection and Handling During the MP Initialization Protocol C-4

Vol. 3A XXiX

CONTENTS

PAGE
APPENDIX D
PROGRAMMING THE LINTO AND LINT1 INPUTS
D.1 CON ST AN T S Lttt e e e e e e D-1
D.2 LINT[O:1] PINS PROGRAMMING PROCEDUREttt D-1
APPENDIX €
INTERPRETING MACHINE-CHECK
ERROR CODES
€1 INCREMENTAL DECODING INFORMATION: PROCESSOR FAMILY 06H MACHINE ERROR
CODES FOR MACHINE CHECK ..ttt et et E-1
E2 INCREMENTAL DECODING INFORMATION: INTEL CORE 2 PROCESSOR FAMILY MACHINE
ERROR CODES FORMACHINE CHECK\ttt €-5

E2.1 Model-Specific Machine Check Error Codes for Intel Xeon Processor 7400 Series. .. .E-9
€2.1.1 Processor Machine Check Status Register

Incremental MCA Error Code Definition........covoveiiiiiii s €-9
E2.2 Intel Xeon Processor 7400 Model Specific Error Code Field....................... E-10
€2.2.1 Processor Model Specific Error Code Field

Type B: Bus and Interconnect Ermor.oovv v €-10
€222 Processor Model Specific Error Code Field

Type C: Cache Bus Controller Errorvvvii e i ee e €-10

€3 INCREMENTAL DECODING INFORMATION: PROCESSOR FAMILY WITH CPUID
DISPLAYFAMILY_DISPLAYMODEL SIGNATURE 06_1AH, MACHINE ERROR CODES FOR

MACHINE CHECK ..ttt e e e E-11
€.3.1 QPIMaching Check EITOTS. .. v ettt e E-12
E3.2 Internal Machine Check EMTOrsS . ..o v E-13
€33 Memory Controller ErTOrS. ... vv vttt e E-14
€4 INCREMENTAL DECODING INFORMATION: PROCESSOR FAMILY OFH MACHINE ERROR CODES
FOR MACHINE CHECK. .. .ottt e e e e e E-15
€4.1 Model-Specific Machine Check Error Codes for Intel Xeon Processor MP 7100 Series. . E-
16

E4.1.1 Processor Machine Check Status Register

MCA Error Code Definition. vvv v E-18
€4.2 Other_Info Field (all MCA Error TYPES). ..t v vttt €-19
€43 Processor Model Specific Error Code Fieldcoviviii i E-21
L T MCA Error Type A: L3 Error€-21
€4.3.2 Processor Model Specific Error Code Field

Type B: Bus and Interconnect Emmor.ovvie it ci i ae E-21
€433 Processor Model Specific Error Code Field

Type C: Cache Bus Controller Errorvvvv v €-23
APPENDIX F
APIC BUS MESSAGE FORMATS
F.1 BUS MESSAGE FORMAT S ittt et e e F-1
F.2 BOIMES S AGE . ..ttt e F-1
F.2.1 SNOTE MBS AR, . v ettt ettt e e e F-2
F.2.2 Non-focused Lowest Priority MesSageo.vviriiiiiiiii i ieeaens F-3
F.2.3 APIC BUS Status CYCIES . ..ottt ettt e e F-5

XXX Vol. 3A

APPENDIX G

VMX CAPABILITY REPORTING FACILITY
G.1 BASIC VMX INFORMATION
G2 RESERVED CONTROLS AND DEFAULT SETTINGS
G3 VM-EXECUTION CONTROLS
G.3.1 Pin-Based VM-Execution Controls
G3.2 Primary Processor-Based VM-Execution Controls
G33 Secondary Processor-Based VM-Execution Controls
c4 VM-EXIT CONTROLS
G5 VM-ENTRY CONTROLS
G6 MISCELLANEOUS DATA
G.7 VMX-FIXED BITS IN CRO
G8 VMX-FIXED BITS IN CR4
G9 VMCS ENUMERATION
G.10 VPID AND EPT CAPABILITIES

FIELD ENCODING IN VMCS
16-BIT FIELDS
1 16-Bit Control Field
2 16-Bit Guest-State Fields
H.1.3 16-Bit Host-State Fields

H.2.1 64-Bit Control Fields
H.2.2 64-Bit Read-Only Data Field
H.2.3 64-Bit Guest-State Fields
H.2.4 64-Bit Host-State Fields

H.3.1 32-Bit Control Fields
H.3.2 32-Bit Read-Only Data Fields
H.3.3 32-Bit Guest-State Fields
H3.4 32-Bit Host-State Field
H.4 NATURAL-WIDTH FIELDS

H.4.1 Natural-Width Control Fields
H.4.2 Natural-Width Read-Only Data Fields
H.4.3 Natural-Width Guest-State Fields
H4.4 Natural-Width Host-State Fields

APPENDIX H

H.1

H.1.

H.1

H2 64-BIT FIELDS
H3 32-BIT FIELDS
APPENDIX |

VMX BASIC EXIT REASONS

CONTENTS

PAGE

Vol. 3A Xxxxi

CONTENTS

FIGURES

Figure 1-1.
Figure 1-2.
Figure 2-1.
Figure 2-2.
Figure 2-3.
Figure 2-4.
Figure 2-5.
Figure 2-6.
Figure 2-7.
Figure 3-1.
Figure 3-2.
Figure 3-3.
Figure 3-4.
Figure 3-5.
Figure 3-6.
Figure 3-7.
Figure 3-8.
Figure 3-9.
Figure 3-10.
Figure 3-11.
Figure 4-1.
Figure 4-2.
Figure 4-3.
Figure 4-4.
Figure 4-5.
Figure 4-6.
Figure 4-7.
Figure 4-8.
Figure 4-9.
Figure 4-10.
Figure 4-11.
Figure 4-12.

Figure 5-1.
Figure 5-2.
Figure 5-3.
Figure 5-4.
Figure 5-5.
Figure 5-6.
Figure 5-7.

Figure 5-8.
Figure 5-9.
Figure 5-10.
Figure 5-11.
Figure 5-12.
Figure 5-13.
Figure 5-14.
Figure 5-15.
Figure 6-1.

XXxii Vol. 3A

PAGE
Bit and Byte Order.t 1-7
Syntax for CPUID, CR, and MSR Data Presentation.............covvvvvvvnnnn, 1-10
IA-32 System-Level Registers and Data Structurescocvviiiiinnnne 2-3
System-Level Registers and Data Structures in IA-32e Mode................... 2-4
Transitions Among the Processor’'s OperatingModescoovvvent 2-11
System Flags in the EFLAGS Registerovvviiii it ieaees 2-13
Memory Management REGISTErS vt 2-16
CoNtrol REGISTENS ...ttt e 2-19
XFEATURE_ENABLED_MASK Register (XCRO) ... vvvvviiiiiii i cinieeenn 2-26
Segmentation and Pagingvvvriiii 3-2
FIRtMOAEL . .ot 3-4
Protected Flat Model.coiei 3-4
Multi-Segment Model.ooii 3-6
Logical Address to Linear Address Translation. ..o, 3-9
SeMENt SIEC O . . o\ttt 3-10
SEgMENT RIS OIS, vttt et 3-11
SegMENT DESCrIPTOr. . . vttt e 3-13
Segment Descriptor When Segment-Present FlagisClear..................... 3-15
Global and Local Descriptor Tablesvvvivii i et 3-20
Pseudo-Descriptor FOMMAtsS. vv i 3-22
Enabling and Changing PagingModesccoviiiiiiii i e 4-4
Linear-Address Translation to a 4-KByte Page using 32-Bit Paging 4-10
Linear-Address Translation to a 4-MByte Page using 32-Bit Paging............ 4-11
Formats of CR3 and Paging-Structure Entries with 32-Bit Paging.............. 4-15
Linear-Address Translation to a 4-KByte Page using PAE Paging 4-18
Linear-Address Translation to a 2-MByte Page using PAE Paging.............. 4-18
Formats of CR3 and Paging-Structure Entries with PAE Paging................ 4-23
Linear-Address Translation to a 4-KByte Page using IA-32e Paging............ 4-25
Linear-Address Translation to a 2-MByte Page using IA-32e Paging 4-26
Formats of CR3 and Paging-Structure Entries with IA-32e Paging 4-33
Page-Fault Error Code. ..o v e 4-35
Memory Management Convention That Assigns a Page Table
10 EaCh SEgMENT. ..o 4-53
Descriptor Fields Used for Protectionovvviiiiiiiiiiiiiici i 5-4
Descriptor Fields with FlagsusedinlA-32eMode. ..., 5-6
Protection RINGS . ..o e 5-10
Privilege Check for Data ACCESS. ..\ttt et eaaas 5-12
Examples of Accessing Data Segments From Various Privilege Levels.......... 5-13
Privilege Check for Control Transfer Without UsingaGate 5-15
Examples of Accessing Conforming and Nonconforming Code Segments From Various
Privilege Levels. e 5-17
Call-Gate DS P O . . vttt ettt e e e 5-19
Call-Gate Descriptor in IA-32e Mode.o oo 5-21
Call-Gate MeChaniSmttt e 5-22
Privilege Check for Control Transfer with Call Gate............................ 5-23
Example of Accessing Call Gates At Various Privilege Levels................... 5-25
Stack Switching During an Interprivilege-Level Call. ... 5-27
MSRs Used by SYSCALL and SYSRET oot i 5-33
Use of RPL to Weaken Privilege Level of Called Procedure 5-38
Relationship of the IDTRaNd IDT........coviii e 6-14

Figure 6-2.
Figure 6-3.
Figure 6-4.
Figure 6-5.
Figure 6-6.
Figure 6-7.
Figure 6-8.
Figure 6-9.
Figure 7-1.
Figure 7-2.
Figure 7-3.
Figure 7-4.
Figure 7-5.
Figure 7-6.
Figure 7-7.
Figure 7-8.
Figure 7-9.
Figure 7-10.
Figure 7-11.
Figure 8-1.
Figure 8-2.
Figure 8-3.
Figure 8-4.
Figure 8-5.
Figure 8-6.
Figure 8-7.

Figure 9-1.
Figure 9-2.
Figure 9-3.
Figure 9-4.

Figure 9-5.
Figure 9-6.
Figure 9-7.
Figure 9-8.
Figure 9-9.
Figure 10-1.
Figure 10-2.

Figure 10-3.

Figure 10-4.
Figure 10-5.
Figure 10-6.
Figure 10-7.
Figure 10-8.
Figure 10-9.

Figure 10-10.
Figure 10-11.
Figure 10-12.
Figure 10-13.

CONTENTS

PAGE
IDT Gate DESCIIPTOrS. vttt ettt ettt e ettt 6-15
Interrupt Procedure Calloui i 6-16
Stack Usage on Transfers to Interrupt and Exception-Handling Routines 6-18
Interrupt Task Switch.o 6-21
BITOr GO0 . vttt e 6-22
B64-Bit IDT Gate DeSCriPtOrS . .o v ittt e et 6-23
IA-32e Mode Stack Usage After Privilege Level Change........................ 6-26
Page-Fault Error Code ..ottt 6-55
Structure 0F @ TasK. ..ot e 7-2
32-Bit Task-State Segment (TSS) .. .vvvrii i e 7-5
IS Ll {51 o 7-7
Format of TSS and LDT Descriptors in 64-bitMode................ccoviinnn, 7-9
TaSK REGIS O .« vttt e e 7-10
TasK-Gate DESCIIPTOr . o\ vttt ettt e 7-11
Task Gates Referencingthe Same TasK. ..ot 7-12
NeStEd TasKs ... vt 7-17
Overlapping Linear-to-Physical Mappingscoiiiiiiiiiiiiii i 7-20
16-Bit TSS FOMMat. .ottt ittt e 7-22
B4-Bit TSS FOMmMat. oottt e 7-24
Example of Write Ordering in Multiple-Processor Systems 8-10
Interpretation of APIC ID in Early MP Systems............coiiiiiiiiiiinennns. 8-34
Local APICs and I/0 APIC in MP System Supporting Intel HT Technology 8-38
IA-32 Processor with Two Logical Processors Supporting Intel HT Technology. .8-39
Generalized Four level Interpretation of the APICID..............coivintntt. 8-49
Conceptual Five-level Topology and 32-bit APIC ID Composition................ 8-49
Topological Relationships between Hierarchical IDs in a Hypothetical MP Platform 8-
52
Contents of CRO Register after Resetcovviiiiiiiii i 9-5
Version Information in the EDX Register afterReset............covvvvvvinnnt 9-5
Processor State After RESEt ... vvviv i 9-21
Constructing Temporary GDT and Switching to Protected Mode (Lines 162-172 of
I 1= 9-31
Moving the GDT, IDT, and TSS from ROM to RAM (Lines 196-261 of List File)...9-32
Task Switching (Lines 282-296 of ListFile)ooviiviiii i 9-33
Applying Microcode Updatesovvvieiiniiii it e 9-37
Microcode Update Write Operation Flow [1].......coviiiiiiiii e 9-60
Microcode Update Write Operation Flow [2]..........covviiiiiiiiiiiiiii et 9-61
Relationship of Local APIC and I/0 APIC In Single-Processor Systems 10-3
Local APICs and I/0 APIC When Intel Xeon Processors Are Used in Multiple-
PrOCESSOr SY S BMIS L ottt e e e 10-4
Local APICs and I/0 APIC When P6 Family Processors Are Used in Multiple-Processor
S S IS ittt e e e 10-4
LOCal APIC STTUCTUNE .« vttt e e e 10-7
IA32_APIC_BASE MSR (APIC_BASE_MSR in P6 Family)...............covvvne 10-12
LOCal APIC ID REGISTOr vttt et e 10-13
Local APIC Version RegiSTer.vvv it 10-16
IA32_APIC_BASE MSR Supporting X2APICvii i 10-17
Spurious Interrupt Vector Register (SVR) of x2APIC..........c.covviiviinnns 10-24
Local APIC Version Register of X2APIC.ottt 10-24
Local x2APIC State Transitions with IA32_APIC_BASE, INIT, and RESET 10-26
Local Vector Table (LVT). . v e 10-31
Error Status Register (ESR)vvvi e 10-34

Vol. 3A xxXxiii

CONTENTS

Figure 10-14.

Figure 10-15.
Figure 10-16.
Figure 10-17.
Figure 10-18.
Figure 10-19.
Figure 10-20.

Figure 10-21.

Figure 10-22.
Figure 10-23.
Figure 10-24.

Figure 10-25.

Figure 10-26.
Figure 10-27.
Figure 10-28.
Figure 10-29.
Figure 10-30.
Figure 10-31.
Figure 10-32.
Figure 10-33.
Figure 11-1.
Figure 11-2.
Figure 11-3.
Figure 11-4.
Figure 11-5.
Figure 11-6.
Figure 11-7.

Figure 11-8.
Figure 11-9.
Figure 12-1.
Figure 12-2.
Figure 13-1.

Figure 13-2.

Figure 13-3.
Figure 13-4.

Figure 14-1.
Figure 14-2.
Figure 14-3.
Figure 14-4.
Figure 14-5.

Figure 14-6.
Figure 14-7.
Figure 14-8.
Figure 14-9.
Figure 14-10.

XXXiv Vol. 3A

PAGE
Error Status Register (ESR)in X2APICModecovovvviiviiiiii i 10-36
Divide Configuration Register.covvuiiiiiii i e 10-37
Initial Count and Current Count ReqiSters. ... vvviivi it 10-37
Interrupt Command Register (ICR).ovvviii i 10-39
Interrupt Command Register (ICR)in x2APICMode............ovovvvviinnnn,. 10-45
Logical Destination Register (LDR)ovvriiiiiii i 10-47
Destination Format Register (DFR).vvvirvii i 10-48
Logical Destination Register in x2APICModecovvviiiiiiiiiiiiii s 10-49
Arbitration Priority Register (APR)coiii e 10-51
Y =] I I =T) (=T 10-53
Interrupt Acceptance Flow Chart for the Local APIC (Pentium 4 and Intel Xeon
e 0T =1y o 5] R 10-54
Interrupt Acceptance Flow Chart for the Local APIC (P6 Family and Pentium
PrOCES SO).+ vttt ettt ettt e e 10-56
Task Priority Register (TPR)oviei e 10-58
Processor Priority Register (PPR)uvuviiiii i 10-59
IRR, ISR and TMR REGISTEIS. ..o\ttt 10-60
L0 (=T] (=] 10-61
CRB REGIS BT vttt ettt e e 10-62
Spurious-Interrupt Vector Register (SVR) ... 10-64
Layout of the MSI Message Address Register.............coooviviiiivienn.s. 10-66
Layout of the MSI Message DataRegister............ccovvviviiiiiiiinnanns, 10-67
Cache Structure of the Pentium 4 and Intel Xeon Processors.................. 11-1
Cache Structure of the Intel Core i7 Processors.ovvvvvviiiiiiniinennn. 11-2
Cache-Control Registers and Bits Available in Intel 64 and IA-32 Processors...11-16
Mapping Physical Memory WithMTRRS. ..o e 11-31
IA32_MTRRCAP REGISTOr . . vttt vttt 11-32
IA32_MTRR_DEF_TYPEMSR ...\ttt 11-33
IA32_MTRR_PHYSBASEN and IA32_MTRR_PHYSMASKn Variable-Range Register
Pair L 11-36
IA32_SMRR_PHYSBASE and IA32_SMRR_PHYSMASK SMRR Pair 11-38
IA32 PAT MSR i 11-49
Mapping of MMX Registers to Floating-Point Registers........................ 12-2
Mapping of MMX Registers to x87 FPU Data Register Stack................... 12-7
Example of Saving the x87 FPU, MMX, SSE, SSEZ2, SSE3, and SSSE3 State During an
Operating-System Controlled Task Switch. ...t 13-11
Future Layout of XSAVE/XRSTOR Area and XSTATE_BV with Five Sets of Processor
StatE EXTENSIONS. .ottt et 13-14
0S Enabling of Processor Extended State Support..............cccovvvvnn... 13-17

Application Detection of New Instruction Extensions and Processor Extended State.
13-19

IA32_MPERF MSR and IA32_APERF MSR for P-state Coordination............. 14-2
IA32 _PERF_CTL REGISTEr. . vttt ettt ettt 14-6
Periodic Query of Activity Ratio of Opportunistic Processor Operation......... 14-7
Processor Modulation Through Stop-Clock Mechanism 14-10
MSR_THERMZ2_CTL Register On Processors with CPUID Family/Model/Stepping

Signature Encoded as OX69N or OX6DN ..o 14-12
MSR_THERMZ2_CTL Register for Supporting TM2civiiiiiinnan... 14-13
IA32_THERM_STATUS MSR . ..\ttt 14-14
IA32_THERM_INTERRUPT MSR. ...ttt 14-14
IA32_CLOCK_MODULATION MSR. . .ottt 14-16
IA32_THERM_STATUS REGISTON .\ttt ettt 14-18

Figure 14-11.
Figure 15-1.
Figure 15-2.
Figure 15-3.
Figure 15-4.
Figure 15-5.
Figure 15-6.
Figure 15-7.
Figure 15-8.
Figure 15-9.
Figure 15-10.
Figure 16-1.
Figure 16-2.
Figure 16-3.
Figure 16-4.

Figure 16-5.
Figure 17-1.
Figure 18-1.
Figure 19-1.
Figure 19-2.
Figure 19-3.

Figure 19-4.
Figure 19-5.

Figure 19-6.
Figure 19-7.

Figure 19-8.
Figure 19-9.

Figure 19-10.
Figure 19-11.
Figure 19-12.
Figure 19-13.
Figure 19-14.
Figure 19-15.
Figure 19-16.
Figure 19-17.
Figure 19-18.

Figure 19-19.

Figure 19-20.
Figure 19-21.
Figure 19-22.
Figure 19-23.
Figure 19-24.
Figure 19-25.
Figure 19-26.

CONTENTS

PAGE
IA32_THERM_INTERRUPT REGISTEN .t vveeeei i 14-20
Machine-Check MSRS e 15-3
IA32_MCG_CAP REGISTE . vttt vttt ettt et e e 15-4
IA32_MCG_STATUS REGISTEI. . vttt ettt et eenn 15-5
IA32 MG _CTL REGISTEr . .ottt st e 15-6
IA32_MCi_STATUS REGISTON. . ottt vttt et e 15-8
IA32_MUCIi_ADDR MSR. . ittt 15-12
UCR Supportin IA32_MCi_MISCREGISTEr. ..o\ vvv v 15-13
IA32_MCi_CTL2 REGISTET vttt vttt 15-14
CMCI BERaVIOT. . vttt 15-19
Local APIC CMCI LV T REGISTEr ..ottt 15-20
Real-Address Mode Address Translation..............coviiiviiiiiiiiienanns, 16-4
Interrupt Vector Table in Real-AddressModecooviviviiininnns. 16-7
Entering and Leaving Virtual-8086 Modecov v 16-13
Privilege Level O Stack After Interrupt or
Exception in Virtual-8086 Mode.t 16-19
Software Interrupt Redirection Bit Mapin TSS ..., 16-27
Stack after Far 16-and 32-Bit Callscovviiii i 17-6
1/0 Map Base Address Differences.ovvviiiiiiiii it iieneeeens 18-34
DEDUG REGISTEIS. . v vttt et e 18-3
DR6/DR7 Layout on Processors Supporting Intel 64 Technology 18-9
IA32_DEBUGCTL MSR for Processors based
on Intel Core microarchitecture.covvi v s 18-16
64-bit Address Layout of LBRMSRot 18-17
IA32_DEBUGCTL MSR for Processors based
on Intel microarchitecture (Nehalem) ..., 18-21
MSR_DEBUGCTLA MSR for Pentium 4 and Intel Xeon Processors............. 18-26
LBR MSR Branch Record Layout for the Pentium 4
and Intel Xeon Processor Familyovvviiiiiii i 18-28
IA32_DEBUGCTL MSR for Intel Core Solo
and Intel Core DUO PrOCESSOTS .« ..\ vvvtei et et 18-36
LBR Branch Record Layout for the Intel Core Solo
and INtel Core DUO ProCESSOr. ... v vttt nnenees 18-37
MSR_DEBUGCTLB MSR for Pentium M Processors..........covvvvvviivunennns 18-38
LBR Branch Record Layout for the Pentium M Processor 18-39
DEBUGCTLMSR Register (P6 Family Processors).ovvvevviviiiinennnnn. 18-40
Layout of IA32_PERFEVTSELXMSRS 18-48
Layout of IA32_FIXED_CTR_CTRLMSR. ..o 18-50
Layout of IA32_PERF_GLOBAL_CTRLMSR. ..o i 18-51
Layout of IA32_PERF_GLOBAL_STATUSMSR......ovviiiiii i 18-52
Layout of IA32_PERF_GLOBAL_OVF_CTRLMSRcovviiiiiiiiieiees 18-53
Layout of IA32_PERFEVTSELx MSRs Supporting Architectural Performance
MONItOriNg Version 3 ..ottt e e 18-54
Layout of IA32_FIXED_CTR_CTRL MSR Supporting Architectural Performance
MONiItoriNg Version 3 ... i e e 18-55
Layout of Global Performance Monitoring ControlMSR 18-56
Layout of MSR_PERF_FIXED_CTR_CTRLMSRcvviiiiiiiiiiiieenns 18-63
Layout of MSR_PERF_GLOBAL_CTRLMSRvviiiiiiii i 18-64
Layout of MSR_PERF_GLOBAL_STATUSMSR it 18-64
Layout of MSR_PERF_GLOBAL_OVF_CTRLMSR.ccvviiiiiiiiiiennes 18-65
Layout of IA32_PEBS_ENABLE MSR.......i it 18-72
PEBS Programming ENVIFONMENTvriri i eeeas 18-74

Vol. 3A XXXV

CONTENTS

Figure 19-27.
Figure 19-28.

Figure 19-29.
Figure 19-30.
Figure 19-31.
Figure 19-32.
Figure 19-33.
Figure 19-34.
Figure 19-35.

Figure 19-36.
Figure 19-37.
Figure 19-38.
Figure 19-39.
Figure 19-40.
Figure 19-41.
Figure 19-42.
Figure 19-43.
Figure 19-44.
Figure 19-45.

Figure 19-46.
Figure 19-47.
Figure 19-48.
Figure 19-49.
Figure 19-50.
Figure 19-51.
Figure 19-52.

Figure 19-53.
Figure 19-54.
Figure 19-55.
Figure 19-56.
Figure 19-57.
Figure 19-58.
Figure 19-59.

Figure 20-1.
Figure 25-1.
Figure 26-1.
Figure 26-2.
Figure 26-3.
Figure 26-4.
Figure 26-5.
Figure 27-1.
Figure 28-1.
Figure 29-1.
Figure C-1.

XXxvi Vol. 3A

PAGE

Layout of MSR_PEBS_LD_LAT MSR ...\ttt 18-78
Layout of MSR_OFFCORE_RSP_0 MSR to Configure Off-core Response Events.. 18-
79

Layout of MSR_UNCORE_PERF_GLOBAL_CTRLMSRovvviiiiniiiiennns 18-82
Layout of MSR_UNCORE_PERF_GLOBAL_STATUSMSRcovvviiivninnn 18-83
Layout of MSR_UNCORE_PERF_GLOBAL_OVF_CTRLMSR...........covvvivnn 18-83
Layout of MSR_UNCORE_PERFEVTSELX MSRS. ... vviiiii i 18-84
Layout of MSR_UNCORE_FIXED_CTR_CTRLMSRoovvviiiiiieas 18-85
Layout of MSR_UNCORE_ADDR_OPCODE_MATCHMSRovvvvivvinnns 18-86
Event Selection Control Register (ESCR) for Pentium 4

and Intel Xeon Processors without Intel HT Technology Support 18-92
Performance Counter (Pentium 4 and Intel Xeon Processors)................. 18-94
Counter Configuration Control Register (CCCR)ovvvvviiviiiiiininnnn. 18-96
DS SaVE AT . ettt 18-99
32-bit Branch Trace Record Format.covviviiiii e 18-100
PEBS ReCOrd FOrmMat . .. ov vttt 18-101
[A-326 M0de DS SAVE AMBa. ..o\ttt ittt 18-102
64-bit Branch Trace Record Format.ccooviiiiiiiiii i 18-103
64-bit PEBS Record FOrmat. . .. vvv vt 18-103
Effects of Edge Filtering.vvve i e 18-108

Event Selection Control Register (ESCR) for the Pentium 4 Processor, Intel Xeon
Processor and Intel Xeon Processor MP Supporting Hyper-Threading Technology 18-
119

Counter Configuration Control Register (CCCR)ovvvvviiivinnnnnnn. 18-121
Layout of IA32_PERF_CAPABILITIESMSR ..o 18-129
Block Diagram of 64-bit Intel Xeon Processor MP with 8-MByte L3 18-130
MSR_IFSB_IBUSQx, Addresses: 107CCHand 107CDHovvvvenns 18-131
MSR_IFSB_ISNPQx, Addresses: T07CEHand T07CFH 18-132
MSR_EFSB_DRDYx, Addresses: 107D0OHand 1T07DTHoovnts. 18-133
MSR_IFSB_CTL6, Address: 107D2H;

MSR_IFSB_CNTR7, Address: TO7D3Hvvvii i 18-134
Block Diagram of Intel Xeon Processor 7400 Series.ovvvvvvenenennn. 18-135
Block Diagram of Intel Xeon Processor 7100 Series.ccovvvevenen... 18-136
MSR_EMON_L3_CTR_CTLO/1, Addresses: 107CCH/107CDH................ 18-138
MSR_EMON_L3_CTR_CTL2/3, Addresses: 107CEH/T07CFH 18-141
MSR_EMON_L3_CTR_CTL4/5/6/7, Addresses: 107DOH-107D3H 18-142
PerfEvtSel0 and PerfEVtSelT MSRSvv i 18-145
CESR MSR (Pentium Processor Only)ovvvi i 18-149
Interaction of a Virtual-Machine Monitor and Guestscovvvivvennnn. 19-3
Formats of EPTP and EPT Paging-Structure Entries...................coevts. 24-10
SMRAM USQE . v ottt ettt e 25-6
SMM Revision Identifier ..o 25-18
Auto HALT Restart Fieldovov e 25-19
SMBASE Relocation Fieldoovii e 25-20
I/0 Instruction Restart Field ..o e 25-21
VMX Transitions and States of VMCS in a Logical Processor................... 26-4
Virtual TLB SChemME . . e e 27-7
Host External Interrupts and Guest Virtual Interrupts...........cocoivint, 28-5
MP System With Multiple Pentium Il Processorsc.c.ovvviviiiiiiiieiannnns C-3

TABLES
Table 2-1.

Table 2-2.
Table 3-1.
Table 3-2.
Table 4-1.
Table 4-3.
Table 4-2.
Table 4-4.
Table 4-5.
Table 4-6.
Table 4-7.
Table 4-8.
Table 4-9

Table 4-10.
Table 4-11.
Table 4-12.
Table 4-13.

Table 4-15.
Table 4-14.

Table 4-16.
Table 4-17.

Table 5-1.
Table 5-2.
Table 5-3.
Table 5-4.
Table 5-5.

Table 5-6.
Table 5-7.
Table 5-8.

Table 5-9.
Table 6-1.
Table 6-2.
Table 6-3.
Table 6-4.
Table 6-5.
Table 6-6.
Table 6-7.
Table 6-8.
Table 7-1.
Table 7-2.

Table 8-1.

CONTENTS

PAGE
Action Taken By x87 FPU Instructions for Different
Combinations of EM, MP, and TS2-21
Summary of System INSTructions. ... 2-27
Code- and Data-Segment TYPES . .. vttt 3-17
System-Segment and Gate-Descriptor TYPesovvviiviiiiiiiiiieniinnes 3-19
Properties of Different PagingModescoiiiiiiiiiiiiiiiii i 4-3
Use of CR3 with 32-Bit Paging........ccovvvuiiiiiiiii i e 4-9
Paging Structures in the Different PagingModes ... 4-9
Format of a 32-Bit Page-Directory Entry that Maps a 4-MByte Page 4-12
Format of a 32-Bit Page-Directory Entry that References a Page Table 4-13
Format of a 32-Bit Page-Table Entry that Maps a 4-KBytePage 4-14
Use of CR3With PAEPAgINgvviiiiii e 4-16
Format of an PAE Page-Directory-Pointer-Table Entry (PDPTE) 4-17
Format of a PAE Page-Directory Entry that Maps a 2-MByte Page.............. 4-20
Format of a PAE Page-Directory Entry that References a Page Table 4-21
Format of a PAE Page-Table Entry that Maps a 4-KByte Page.................. 4-22
Use of CR3 with IA-32e Paging.coovivnii e 4-24

Format of an IA-32e PML4 Entry (PML4E) that References a Page-Directory-Pointer
Table4-27

Format of an |A-32e Page-Directory Entry that Maps a 2-MByte Page.......... 4-28
Format of an IA-32e Page-Directory-Pointer-Table Entry (PDPTE) that References a
Page Directory4-28

Format of an |A-32e Page-Directory Entry that References a Page Table....... 4-30
Format of an IA-32e Page-Table Entry that Maps a 4-KByte Page.............. 4-31
Privilege Check Rules for Call Gates.o.vvvivii it 5-23
64-Bit-Mode Stack Layout After CALLF with CPLChange...................... 5-28
Combined Page-Directory and Page-Table Protection.......................... 5-42
Extended Feature Enable MSR (IA32_EFER)..........cvviiiiiiiiiiiiii e 5-43

IA-32e Mode Page Level Protection Matrix

with Execute-Disable Bit Capability5-44

Legacy PAE-Enabled 4-KByte Page Level Protection Matrix

with Execute-Disable Bit Capability5-45

Legacy PAE-Enabled 2-MByte Page Level Protection

with Execute-Disable Bit Capability5-45

IA-32e Mode Page Level Protection Matrix with Execute-Disable Bit Capability
Enabled5-46

Reserved Bit Checking WIth Execute-Disable Bit Capability Not Enabled 5-47
Protected-Mode Exceptions and Interrupts ... 6-3
Priority Among Simultaneous Exceptions and Interrupts....................... 6-11
Debug Exception Conditions and Corresponding Exception Classes 6-29
Interrupt and EXception Classes v 6-38
Conditions for GeneratingaDouble Fault ..., 6-39
Invalid TSS Conditionsvv i e 6-42
Alignment Requirements by Data Typecovviiiiiii s 6-60
SIMD Floating-Point Exceptions Priority. ... 6-65
Exception Conditions Checked During a Task Switchcocovvvninas, 7-15

Effect of a Task Switch on Busy Flag, NT Flag,

Previous Task Link Field, and TS Flag7-17

Initial APIC IDs for the Logical Processors in a System that has Four Intel Xeon MP
Processors Supporting Intel Hyper-Threading Technology'8->2

Vol. 3A XXXVii

CONTENTS

Table 8-2.
Table 8-3.

Table 9-1.
Table 9-2.
Table 9-3.
Table 9-4.
Table 9-5.
Table 9-6.
Table 9-7.
Table 9-8.
Table 9-9.
Table 9-10.
Table 9-11.
Table 9-12.
Table 9-13.
Table 9-14.
Table 9-15.
Table 9-17.
Table 9-16.
Table 9-18.
Table 10-1
Table 10-2.
Table 10-3.
Table 10-4.
Table 10-5.
Table 10-6

Table 10-7
Table 11-1.

Table 11-2.
Table 11-3.

Table 11-4.
Table 11-5.
Table 11-6.

Table 11-7.

Table 11-8.
Table 11-9.
Table 11-10.
Table 11-11.
Table 11-12.
Table 12-1.

Table 12-2.
Table 12-3.

xxxviii Vol. 3A

PAGE
Initial APIC IDs for the Logical Processors in a System that has Two Physical
Processors Supporting Dual-Core and Intel Hyper-Threading Technology8-53
Example of Possible x2APIC ID Assignment in a System that has Two Physical
Processors Supporting x2APIC and Intel Hyper-Threading Technology8-53
IA-32 Processor States Following Power-up, Reset, or INIT..................... 9-2
Recommended Settings of EM and MP Flags on IA-32 Processors............... 9-7
Software Emulation Settings of EM, MP,and NEFlags.......................... 9-8
Main Initialization Steps in STARTUP.ASM Source Listing.............covvne 9-21
Relationship Between BLD Item and ASM SourceFileoovintt 9-35
Microcode Update Field Definitions.ccoiiiiiii i 9-38
Microcode Update FOrmato.vuiii i 9-40
Extended Processor Signature Table Header Structure0e 9-41
Processor Signature STrUCTUMe.o v vt 9-41
ProCESSOr Flags. . oot 9-43
Microcode Update Signature. ... 9-48
Microcode Update FUNCHIONS.ovv it eaeaas 9-55
Parameters for the Presence Test........ovviiiiiiiiii i 9-56
Parameters for the Write Update Data Function.............................. 9-57
Parameters for the Control Update Sub-function 9-62
Parameters for the Read Microcode Update Data Function.................... 9-63
MNEmMONIC ValUBS 9-63
Return Code Definitionsvv v 9-65
Local APIC Register AddreSS Map «..vvvvvv vttt 10-8
Xx2APIC Operating Mode Configurationsc.coiiiiiiiiiiiiiinianns 10-17
Local APIC Register Address Map Supported by x2APIC..............ccvees 10-18
MSR/MMIO Interface of a Local x2APIC in Different Modes of Operation 10-22
ESR FIagS. vttt ettt 10-35

Valid Combinations for the Pentium 4 and Intel Xeon Processors’

Local xAPIC Interrupt Command Register10-42

Valid Combinations for the P6 Family Processors’

Local APIC Interrupt Command Register10-43

Characteristics of the Caches, TLBs, Store Buffer, and

Write Combining Buffer in Intel 64 and IA-32 Processors11-2

Memory Types and Their Propertiescoooviiiiiiiiii it 11-9
Methods of Caching Available in Intel Core 2 Duo, Intel Atom, Intel Core Duo, Pentium
M, Pentium 4, Intel Xeon, P6 Family, and Pentium Processors11-10

MESI Cache Line States. ..o v vttt 11-14
Cache Operating Modesvvvi i 11-17
Effective Page-Level Memory Type for Pentium Pro and

Pentium Il Processors11-21

Effective Page-Level Memory Types for Pentium lll and More Recent Processor
Families11-22

Memory Types That Can Be Encoded inMTRRScovviiiiiinnnnn.n. 11-30
Address Mapping for Fixed-Range MTRRSooviiiiii i 11-35
Memory Types That Can Be Encoded With PAToiiiiiiiinnas, 11-49
Selection of PAT Entries with PAT, PCD,and PWT Flags...................... 11-50
Memory Type Setting of PAT Entries Following a Power-up or Reset 11-50

Action Taken By MMX Instructions

for Different Combinations of EM, MP and TS12-1

Effects of MMX Instructionson x87 FPUStatecooviiiiii i, 12-3
Effect of the MMX, x87 FPU, and FXSAVE/FXRSTOR Instructions on the

x87 FPU Tag Word12-4

Table 13-1.

Table 15-2.
Table 15-3.
Table 15-4.

Table 15-5.

Table 15-6.
Table 15-7.
Table 15-8.
Table 15-9.
Table 15-10.
Table 15-11.
Table 15-12.
Table 15-13.
Table 15-14.
Table 15-15.
Table 15-16.
Table 15-17.
Table 15-18.
Table 15-19.
Table 15-20.
Table 16-1.
Table 16-2.
Table 17-1.
Table 18-1.

Table 18-2.

Table 18-3.
Table 19-1.
Table 19-2.
Table 19-3.
Table 19-4.
Table 19-5.
Table 19-6.
Table 19-7.

Table 19-8.

Table 19-9.
Table 19-10.

Table 19-11.

CONTENTS

PAGE

Action Taken for Combinations of OSFXSR, 0SXMMEXCPT, SSE, SSE2, SSE3, EM, MP,
and TS113-4

Action Taken for Combinations of OSFXSR, SSSE3, SSE4, EM, and TS........... 13-5
XSAVE Header FOrmat. ..o vttt 13-14
XRSTOR Action on MXCSR, x87 FPU, XMM Registercocvvvvvnnnnn. 13-16
XSAVE Action on MXCSR, x87 FPU, XMM Register.............ccovvvvvinnn. 13-16
On-Demand Clock Modulation Duty Cycle Field Encoding 14-16

Bits 54:53 in IA32_MCi_STATUS MSRs

when IA32_MCG_CAP[11]=1and UC=015-9

Overwrite Rules for Enabled Errors. ...t 15-11
Address Mode in IA32_MCi_MISC[B:B]vvvviiiiiii i 15-13
Extended Machine Check State MSRs

in Processors Without Support for Intel 64 Architecture15-15

Extended Machine Check State MSRs

In Processors With Support For Intel 64 Architecture15-16

MC Error ClassificationS . . .o v vttt 15-26
Overwrite Rules for UC, CE,and UCR EITOrSo vvvivii i 15-27
1A32_MCi_Status [15:0] Simple Error Code Encodingovvvvvvnnnnn, 15-30
IA32_MCi_Status [15:0] Compound Error Code Encoding.ccvvtn.t. 15-31
Encoding for TT (Transaction Type) Sub-Field...............covvivviinnn. 15-32
Level Encoding for LL (Memory Hierarchy Level) Sub-Field................... 15-32
Encoding of Request (RRRR) Sub-Field.covviiiiiiiiii s 15-33
Encodings of PP, T,and I Sub-Fieldscoooiiiiiiici i 15-33
€ncodings of MMM and CCCC Sub-Fields.coviiiiii et 15-34
MCA Compound Error Code Encoding for SRAOErrorsc.ovvvvvvnnnnn. 15-35
IA32_MCi_STATUS Values for SRAOD EFTOrS ..o vvviii e 15-35
IA32_MCG_STATUS Flag Indication for SRAOErrors..........ovvvvvnvnnn.s. 15-36
MCA Compound Error Code Encoding for SRARErrors.coovvvvvvnnnnn. 15-36
IA32_MCi_STATUS Values for SRAR EITOrS ... ovvvvviieii i 15-37
IA32_MCG_STATUS Flag Indication for SRARErrorsoovvvvnvnnn.s. 15-37
Real-Address Mode Exceptions and Interruptscooviiiiiiiii i, 16-8
Software Interrupt Handling Methods While in Virtual-8086 Mode 16-26
Characteristics of 16-Bit and 32-Bit Program Modules......................... 17-1

New Instruction in the Pentium Processor and

Later IA-32 Processors18-6

Recommended Values of the EM, MP, and NE Flags for Intel486 SX
Microprocessor/Intel 487 SX Math Coprocessor System18-22

EMand MP Flag Interpretation ..o e 18-23
Breakpoint EXamPIes e 18-7
Debug Exception Conditions.ovv i e 18-10
LBR Stack Size and TOS Pointer Range. ... i 18-17
IA32_LASTBRACH_X_FROM_IP ...\ttt 18-21
IA32_LASTBRACH _X_TO_IP .\ttt 18-21
MSR_LBR _SELECT ..ttt e 18-22

LBR MSR Stack Structure for the Pentium® 4 and

the Intel® Xeon® Processor Family18-24

MSR_DEBUGCTLA, IA32_DEBUGCTL, MSR_DEBUGCLTB

Flag Encodings18-32

CPL-Qualified Branch Trace Store ENcodingscovvvviviiiiiiieiininnns 18-33
UMask and Event Select Encodings for Pre-Defined

Architectural Performance Events18-57

Core Specificity Encoding within a Non-Architectural Umask 18-59

Vol. 3A XXXix

CONTENTS

Table 19-12.
Table 19-13.
Table 19-14.
Table 19-15.
Table 19-16.
Table 19-17.

Table 19-19.
Table 19-18.
Table 19-20.
Table 19-21.
Table 19-22.
Table 19-23.
Table 19-24.
Table 19-25.
Table 19-26.

Table 19-27.
Table 19-28.
Table 19-29.

Table 19-30.

Table 21-1.
Table 21-2.
Table 21-3.
Table 21-4.
Table 21-5.
Table 21-6.
Table 21-7.
Table 21-8.
Table 21-9.
Table 21-10.
Table 21-11.
Table 21-12.
Table 21-13.
Table 21-14.
Table 21-15.
Table 21-16.
Table 24-1.
Table 24-2.
Table 24-3.
Table 24-4.
Table 24-5.
Table 24-6.

Table 24-7.
Table 24-8.

Table 24-9.
Table 24-10.

x| Vol. 3A

PAGE
Agent Specificity Encoding within a Non-ArchitecturalUmask 18-59
HW Prefetch Qualification Encoding within a Non-Architectural Umask.. 18-60
MESI Qualification Definitions within @ Non-Architectural Umask.............. 18-60
Bus Snoop Qualification Definitions within a Non-Architectural Umask 18-61
Snoop Type Qualification Definitions within a Non-Architectural Umask....... 18-61
Association of Fixed-Function Performance Counters with
Architectural Performance Events18-62
PEBS Performance Events for Intel Core Microarchitecture................... 18-66
At-Retirement Performance Events for Intel Core Microarchitecture.......... 18-66
Requirements to Program PEBS ...t 18-68
PEBS Record Format for Intel Core i7 Processor Family 18-72
Data Source Encoding for Load Latency Record.cccovviian... 18-77
Off-Core Response Event ENCOdingovvivniiiii i 18-79
MSR_OFFCORE_RSP_Z Bit Field Definition.ooviiiiiiiiiiiennnss 18-79
Opcode Field Encoding for MSR_UNCORE_ADDR_OPCODE_MATCH............ 18-86
Performance Counter MSRs and Associated CCCR and
ESCR MSRs (Pentium 4 and Intel Xeon Processors)18-88
EVENt EXamIPIe. . o 18-104
CCR Names and Bit POSItIONS ..o\ vvvvv e 18-110
Effect of Logical Processor and CPL Qualification
for Logical-Processor-Specific (TS) Events18-123
Effect of Logical Processor and CPL Qualification
for Non-logical-Processor-specific (TI) Events18-124
Format of the VMCS RegioNco it 20-2
Format of AcCess Rightsot e 20-4
Format of Interruptibility State ... 20-7
Format of Pending-Debug-EXceptions.covviiiiviiiii i 20-8
Definitions of Pin-Based VM-Execution Controlscooovvivvinninnns. 20-10
Definitions of Primary Processor-Based VM-Execution Controls 20-11
Definitions of Secondary Processor-Based VM-Execution Controls............ 20-13
Format of Extended-Page-Table Pointer ..., 20-18
Definitions of VM-EXit CONtrolscovvvii e 20-19
Format of anMSR ENtrY. ... e 20-21
Definitions of VM-Entry CoNtrols. ..ot 20-22
Format of the VM-Entry Interruption-Information Field....................... 20-23
Format of EXIt REASON ..\ \vvvt it 20-25
Format of the VM-Exit Interruption-Information Field 20-26
Format of the IDT-Vectoring Information Field.oovut 20-27
Structure of VMCS Component Encodingcovvviviiiiiii e 20-30
Exit Qualification for Debug EXCEPLIONSvvvvv v 23-6
Exit Qualification for Task Switch. ... 23-6
Exit Qualification for Control-Register ACCESSESvvvvvviiiii i, 23-8
Exit Qualification for MOV DR,ot 23-9
Exit Qualification for /0 INStrUCtioONS.vv v 23-9

Exit Qualification for APIC-Access VM Exits from Linear Accesses and Guest-Physical
Accesses23-10

Exit Qualification for EPT Violations.coviiiii it 23-11
Format of the VM-Exit Instruction-Information Field as Used for INS and OUTS. . 23-
18

Format of the VM-Exit Instruction-Information Field as Used for LIDT, LGDT, SIDT, or
SGDT23-19

Format of the VM-Exit Instruction-Information Field as Used for LLDT, LTR, SLDT, and

Table 24-11.
Table 24-12.
Table 24-13.

Table 25-1.
Table 25-2.

Table 25-3.
Table 25-4.

Table 26-6.
Table 26-7.
Table 26-8.
Table 26-9.
Table 26-10.
Table 27-1.
Table A-1.
Table A-2.
Table A-3.
Table A-4.
Table A-5.
Table A-6.

Table A-7.
Table A-8.

Table A-S.

Table A-10.
Table A-11.
Table A-13.
Table A-12.

Table A-14.

CONTENTS

PAGE

STR23-21

Format of the VM-Exit Instruction-Information Field as Used for VMCLEAR, VMPTRLD,
VMPTRST, and VMXON23-22

Format of the VM-Exit Instruction-Information Field as Used for VMREAD and
VMWRITEZ3-24

Format of the VM-Exit Instruction-Information Field as Used for INVEPT and INVVPID
23-25

Format of an EPT PML4 Entry (PML4E)ovviii it e 24-5
Format of an EPT Page-Directory-Pointer-Table Entry (PDPTE) that References an
EPT Page Directory24-6

Format of an EPT Page-Directory Entry (PDE) that Maps a 2-MByte Page....... 24-7
Format of an EPT Page-Directory Entry (PDE) that References an EPT Page Table. .
24-8

Format of an EPT Page-Table ENtryovvvviiiiii i 24-9
SMRAM State Save Map . ..v i e 25-6
Processor Signatures and 64-bit SMRAM State Save Map Format.............. 25-9
SMRAM State Save Map for Intel 64 Architecturecocoviiiiiennn. 25-9
Processor Register Initialization inSMM...............coooiiiiii i 25-13
I/0 Instruction Information in the SMM State SaveMap...................... 25-16
I/0 Instruction Type ENCOAINGS . .« v vttt et 25-17
Auto HALT Restart Flag Values ... e 25-19
I/0 Instruction Restart Field Values. ..o 25-21

Exit Qualification for SMIs That Arrive Immediately
After the Retirement of an I/0 Instruction25-28

Format of MSEG Header ...t e s 25-35
Operating Modes for Host and Guest Environmentscocovvvenen. 26-18
Architectural Performance BVentsS.ovviviiiiii i A-2

Non-Architectural Performance Events In the Processor Core for Intel Core i7
Processor and Intel Xeon Processor 5500 SeriesA-2

Non-Architectural Performance Events In the Processor Uncore for Intel Core i7
Processor and Intel Xeon Processor 5500 SeriesA-35

Non-Architectural Performance Events for Processors based on Enhanced Intel Core
MicroarchitectureA-58

Fixed-Function Performance Counter

and Pre-defined Performance EventsA-58

Non-Architectural Performance Events

in Processors Based on Intel Core MicroarchitectureA-60

Non-Architectural Performance Events for Intel Atom Processors............ A-102
Non-Architectural Performance Events

in Intel Core Solo and Intel Core Duo ProcessorsA-125

Performance Monitoring Events Supported by Intel NetBurst Microarchitecture for
Non-Retirement CountingA-134

Performance Monitoring Events For Intel NetBurst

Microarchitecture for At-Retirement CountingA-166

Intel NetBurst Microarchitecture Model-Specific Performance Monitoring Events (For
Model Encoding 3, 4 or 6)A-173

List of Metrics Available for Execution Tagging

(For Execution Event Only)A-174

List of Metrics Available for Front_end Tagging

(For Front_end Event Only)A-174

List of Metrics Available for Replay Tagging

(For Replay Event Only)A-175

Vol. 3A Xli

CONTENTS

Table A-15.
Table A-16.

Table A-17.
Table A-18.

Table A-19.

Table B-1.
Table B-2.
Table B-3.
Table B-4.
Table B-5.
Table B-6.
Table B-7.

Table B-8.
Table B-9.

Table B-10.
Table B-11.
Table B-12.
Table C-1.
Table E-1.
Table E-2.

Table E-3.
Table E-4.

Table E-5.
Table E-6.
Table E-7.
Table E-8.
Table E-9.
Table E-10.
Table E-11.

Table E-12.
Table E-13.

Table E-14.
Table E-15.
Table E-16.
Table E-17.
Table E-18.
Table E-19.
Table E-20.
Table F-1.

Table F-2.

Table F-3.

xlii Vol. 3A

Event Mask Qualification for Logical Processorso.vvvviivieninnns A-177
Performance Monitoring Events on Intel® Pentium® M

ProcessorsA-183

Performance Monitoring Events Modified on Intel® Pentium® M Processors. . .A-185
Events That Can Be Counted with the P6 Family Performance-

Monitoring CountersA-187

Events That Can Be Counted with Pentium Processor

Performance-Monitoring CountersA-204

CPUID Signature Values of DisplayFamily_DisplayModel B-1
IA-32 Architectural MSRS. .. .ot e B-3
MSRs in Processors Based on Intel Core Microarchitecture B-38
MSRs in Intel Atom Processor Family.ot B-58
MSRs in Processors Based on Intel Microarchitecture (Nehalem)............... B-73
MSRs in the Pentium 4 and Intel Xeon Processorsc.oovvvvivinininenanns B-96

MSRs Unique to 64-bit Intel Xeon Processor MP with

Up to an 8 MB L3 CacheB-136

MSRs Unique to Intel Xeon Processor 7100 Series.ovvvviviiiniinennn. B-138
MSRs in Intel Core Solo, Intel Core Duo Processors, and Dual-Core Intel Xeon
Processor LVB-139

MSRs in PENtiUM M ProCeSSOmS ...\ vvi vttt B-153
MSRs in the P6 Family Processorsvvviriiiiiii ittt i ieens B-162
MSRs in the Pentium ProCeSSOr. ... vvv vttt B-174
Boot Phase IPIMessage FOrmatovvr i C-2
CPUID DisplayFamily_DisplayModel Signatures for Family6..................... E-1

Incremental Decoding Information: Processor Family O6H

Machine Error Codes For Machine Check€E-2

CPUID DisplayFamily_DisplayModel Signatures for Processors Based on Intel Core
Microarchitecture€-5

Incremental Bus Error Codes of Machine Check for Processors Based on Intel Core
Microarchitecture€-6

Incremental MCA Error Code Types for Intel Xeon Processor 7400 €9
Type B Bus and Interconnect Error Codesvvvvviviiiiiiiiiinninnenn, €-10
Type C Cache Bus Controller Error Codesov vt E-10

QPI Machine Check Error codes for IA32_MCO_STATUS and IA32_MC1_STATUSE-12
QPI Machine Check Error codes for IA32_MCO_MISC and IA32_MC1_MISC....... E-13
Machine Check Error codes for IA32_MC7_STATUScooviiiiiiiiinn, E-13
Incremental Memory Controller Error Codes of Machine Check for IA32_MC8_STATUS
E-14

Incremental Memory Controller Error Codes of Machine Check for IA32_MC8_MISC E-
15

Incremental Decoding Information: Processor Family OFH

Machine Error Codes For Machine CheckE-15

MCi_STATUS Register Bit Definition.cooiiiiiiiiii i E-17
Incremental MCA Error Code for Intel Xeon Processor MP 7100 E-18
Other Information Field Bit Definitioncovii i €-20
TYPE Ai L3 ErTOr COOeS. oot ittt ettt e et E-21
Type B Bus and Interconnect Error Codesvvvvviviiiiiiiiiinninannns €-22
Type C Cache Bus Controller Error Codesov vt E-23
Decoding Family OFH Machine Check Codes for Cache Hierarchy Errors E-24
EOIMESSAE (T4 QYIS) vttt F-1
Short Message (21 CYCIES) ..o e e F-2
Non-Focused Lowest Priority Message (34 Cycles).ovvvvviiiniiniinnnnnnns F-3

Table F-4.
Table G-1.
Table H-1.
Table H-2.
Table H-3.
Table H-4.
Table H-5.
Table H-6.
Table H-7.
Table H-8.
Table H-9

Table H-10.

Table H-11.
Table H-12.
Table H-13.
Table H-14.
Table H-15.

Table I-1.

CONTENTS

PAGE
APIC Bus Status Cycles Interpretation ..o F-5
Memory Types Used FOr VMCS ACCESS. .. v v vvivittii ittt eiiiei s G-2
Encoding for 32-Bit Control Fields (0000_00XX_XXXX_XXX0B).........c.covvut H-1
Encodings for 16-Bit Guest-State Fields (0000_10xX_XxXX_xxx0B) H-1
Encodings for 16-Bit Host-State Fields (0000_11TXX_XXXX_XXX0B) H-2
Encodings for 64-Bit Control Fields (0010_00XX_XXXX_XXXAD)........ccvvvvunn H-3
Encodings for 64-Bit Read-Only Data Field (0010_0TXX_XXXX_XXXAD).......... H-4
Encodings for 64-Bit Guest-State Fields (0010_TO0XX_XXXX_XXXADb) H-4
Encodings for 64-Bit Host-State Fields (00T0_T1XX_XXXX_XXXAD) H-5
Encodings for 32-Bit Control Fields (0100_00XX_XXXX_XXXOB)..........c.vvu.s H-6
Encodings for 32-Bit Read-Only Data Fields (0100_01xx_xxxx_xxx0B)......... H-7
Encodings for 32-Bit Guest-State Fields
(0T00_10xx_xxxx_xxx0B)H-7
Encoding for 32-Bit Host-State Field (0100_11TXX_XXXX_XXX0B) H-9
Encodings for Natural-Width Control Fields (0110_00xXx_xxxX_xxx0B).......... H-9

Encodings for Natural-Width Read-Only Data Fields (0110_01xx_xxxx_xxx0B)H-10
Encodings for Natural-Width Guest-State Fields (0110_10xx_xxxx_xxx0B)... H-10
Encodings for Natural-Width Host-State Fields (0110_11xx_xxxx_xxx0B).... H-11
BasiC EXIt REASONS .. v ittt ettt e I-1

Vol. 3A xliii

CONTENTS

PAGE

xliv Vol. 3A

CHAPTER 1
ABOUT THIS MANUAL

The Intel® 64 and 1A-32 Architectures Software Developer’s Manual, Volume 3A:
System Programming Guide, Part 1 (order number 253668) and the Intel® 64 and
I1A-32 Architectures Software Developer’s Manual, Volume 3B: System Programming
Guide, Part 2 (order number 253669) are part of a set that describes the architecture
and programming environment of Intel 64 and 1A-32 Architecture processors. The
other volumes in this set are:

* Intel® 64 and 1A-32 Architectures Software Developer’'s Manual, Volume 1: Basic
Architecture (order number 253665).

® Intel® 64 and 1A-32 Architectures Software Developer’s Manual, Volumes
2A & 2B: Instruction Set Reference (order numbers 253666 and 253667).

The Intel® 64 and 1A-32 Architectures Software Developer’s Manual, Volume 1,
describes the basic architecture and programming environment of Intel 64 and 1A-32
processors. The Intel® 64 and IA-32 Architectures Software Developer’s Manual,
Volumes 2A & 2B, describe the instruction set of the processor and the opcode struc-
ture. These volumes apply to application programmers and to programmers who
write operating systems or executives. The Intel® 64 and 1A-32 Architectures Soft-
ware Developer’s Manual, Volumes 3A & 3B, describe the operating-system support
environment of Intel 64 and 1A-32 processors. These volumes target operating-
system and BIOS designers. In addition, Intel® 64 and 1A-32 Architectures Software
Developer’s Manual, Volume 3B, addresses the programming environment for
classes of software that host operating systems.

1.1 PROCESSORS COVERED IN THIS MANUAL

This manual set includes information pertaining primarily to the most recent Intel®
64 and 1A-32 processors, which include:

* pentium® processors

® P6 family processors

* pentium® 4 processors

* Ppentium® M processors

* Intel® Xeon® processors

® Pentium® D processors

* pentium® processor Extreme Editions
® 64-bit Intel® Xeon® processors

* Intel® Core™ Duo processor

®* Intel® Core™ Solo processor

Vol.3 1-1

ABOUT THIS MANUAL

®* Dual-Core Intel® Xeon® processor LV

® Intel® Core™2 Duo processor

® Intel® Core™2 Quad processor Q6000 series

* Intel® Xeon® processor 3000, 3200 series

* Intel® Xeon® processor 5000 series

* Intel® Xeon® processor 5100, 5300 series

* Intel® Core™2 Extreme processor X7000 and X6800 series
® Intel® Core™2 Extreme QX6000 series

* Intel® Xeon® processor 7100 series

* Intel® Pentium® Dual-Core processor

* Intel® Xeon® processor 7200, 7300 series

® Intel® Core™2 Extreme QX9000 series

* Intel® Xeon® processor 5200, 5400, 7400 series

® Intel® Core™2 Extreme processor QX9000 and X9000 series
* Intel® Core™2 Quad processor Q9000 series

® Intel® Core™2 Duo processor EB000, T9000 series

* Intel® Atom™ processor family

® Intel® Core™i7 processor

P6 family processors are 1A-32 processors based on the P6 family microarchitecture.
This includes the Pentium® Pro, Pentium® 11, Pentium® 1Il, and Pentium® 11l Xeon®
processors.

The Pentium® 4, Pentium® D, and Pentium® processor Extreme Editions are based
on the Intel NetBurst® microarchitecture. Most early Intel® Xeon® processors are
based on the Intel NetBurst® microarchitecture. Intel Xeon processor 5000, 7100
series are based on the Intel NetBurst® microarchitecture.

The Intel® Core™ Duo, Intel® Core™ Solo and dual-core Intel® Xeon® processor LV
are based on an improved Pentium® M processor microarchitecture.

The Intel® Xeon® processor 3000, 3200, 5100, 5300, 7200, and 7300 series, Intel®
Pentium® dual-core, Intel® Core™2 Duo, Intel® Core™2 Quad and Intel® Core™2
Extreme processors are based on Intel® Core™ microarchitecture.

The Intel® Xeon® processor 5200, 5400, 7400 series, Intel® Core™2 Quad processor
Q9000 series, and Intel® Core™2 Extreme processors QX9000, X9000 series, Intel®
Core™2 processor EB000 series are based on Enhanced Intel® Core™ microarchitec-
ture.

The Intel® Atom™ processor family is based on the Intel® Atom™ microarchitecture
and supports Intel 64 architecture.

The Intel® Core™i7 processor is based on the Intel® Microarchitecture (Nehalem)
and supports Intel 64 architecture.

1-2 Vol.3

ABOUT THIS MANUAL

P6 family, Pentium® M, Intel® Core™ Solo, Intel® Core™ Duo processors, dual-core
Intel® Xeon® processor LV, and early generations of Pentium 4 and Intel Xeon
processors support 1A-32 architecture. The Intel® Atom™ processor Z5xx series
support 1A-32 architecture.

The Intel® Xeon® processor 3000, 3200, 5000, 5100, 5200, 5300, 5400, 7100,
7200, 7300, 7400 series, Intel® Core™2 Duo, Intel® Core™2 Extreme processors,
Intel Core 2 Quad processors, Pentium® D processors, Pentium® Dual-Core
processor, newer generations of Pentium 4 and Intel Xeon processor family support
Intel® 64 architecture.

IA-32 architecture is the instruction set architecture and programming environment
for Intel's 32-bit microprocessors. Intel® 64 architecture is the instruction set archi-
tecture and programming environment which is a superset of and compatible with
IA-32 architecture.

1.2 OVERVIEW OF THE SYSTEM PROGRAMMING GUIDE

A description of this manual’s content follows:

Chapter 1 — About This Manual. Gives an overview of all five volumes of the
Intel® 64 and 1A-32 Architectures Software Developer’s Manual. It also describes the
notational conventions in these manuals and lists related Intel manuals and docu-
mentation of interest to programmers and hardware designers.

Chapter 2 — System Architecture Overview. Describes the modes of operation
used by Intel 64 and 1A-32 processors and the mechanisms provided by the architec-
tures to support operating systems and executives, including the system-oriented
registers and data structures and the system-oriented instructions. The steps neces-
sary for switching between real-address and protected modes are also identified.

Chapter 3 — Protected-Mode Memory Management. Describes the data struc-
tures, registers, and instructions that support segmentation and paging. The chapter
explains how they can be used to implement a “flat” (unsegmented) memory model
or a segmented memory model.

Chapter 4 — Protection. Describes the support for page and segment protection
provided in the Intel 64 and 1A-32 architectures. This chapter also explains the
implementation of privilege rules, stack switching, pointer validation, user and
supervisor modes.

Chapter 5 — Interrupt and Exception Handling. Describes the basic interrupt
mechanisms defined in the Intel 64 and IA-32 architectures, shows how interrupts
and exceptions relate to protection, and describes how the architecture handles each
exception type. Reference information for each exception is given at the end of this
chapter.

Chapter 6 — Task Management. Describes mechanisms the 1A-32 architecture
provides to support multitasking and inter-task protection.

Vol.3 1-3

ABOUT THIS MANUAL

Chapter 7 — Multiple-Processor Management. Describes the instructions and
flags that support multiple processors with shared memory, memory ordering, and
Intel® Hyper-Threading Technology.

Chapter 8 — Advanced Programmable Interrupt Controller (APIC). Describes
the programming interface to the local APIC and gives an overview of the interface
between the local APIC and the 1/0 APIC.

Chapter 9 — Processor Management and Initialization. Defines the state of an
Intel 64 or 1A-32 processor after reset initialization. This chapter also explains how to
set up an Intel 64 or 1A-32 processor for real-address mode operation and protected-
mode operation, and how to switch between modes.

Chapter 10 — Memory Cache Control. Describes the general concept of caching
and the caching mechanisms supported by the Intel 64 or 1A-32 architectures. This
chapter also describes the memory type range registers (MTRRs) and how they can
be used to map memory types of physical memory. Information on using the new
cache control and memory streaming instructions introduced with the Pentium lIl,
Pentium 4, and Intel Xeon processors is also given.

Chapter 11 — Intel® MMX™ Technology System Programming. Describes
those aspects of the Intel® MMX™ technology that must be handled and considered
at the system programming level, including: task switching, exception handling, and
compatibility with existing system environments.

Chapter 12 — System Programming For Instruction Set Extensions And
Processor Extended States. Describes the operating system requirements to
support SSE/SSE2/SSE3/SSSE3/SSE4 extensions, including task switching, excep-
tion handling, and compatibility with existing system environments. The latter part of
this chapter describes the extensible framework of operating system requirements to
support processor extended states. Processor extended state may be required by
instruction set extensions beyond those of SSE/SSE2/SSE3/SSSE3/SSE4 extensions.

Chapter 13 — Power and Thermal Management. Describes the architecture’s
power and the thermal monitoring facilities.

Chapter 14 — Machine-Check Architecture. Describes the machine-check archi-
tecture.

Chapter 15 — 8086 Emulation. Describes the real-address and virtual-8086
modes of the 1A-32 architecture.

Chapter 16 — Mixing 16-Bit and 32-Bit Code. Describes how to mix 16-bit and
32-bit code modules within the same program or task.

Chapter 17 — 1A-32 Architecture Compatibility. Describes architectural
compatibility among 1A-32 processors.

Chapter 18 — Debugging and Performance Monitoring. Describes the debug-

ging registers and other debug mechanism provided in Intel 64 or 1A-32 processors.
This chapter also describes the time-stamp counter and the performance-monitoring
counters.

1-4 Vol.3

ABOUT THIS MANUAL

Chapter 19 — Introduction to Virtual-Machine Extensions. Describes the basic
elements of virtual machine architecture and the virtual-machine extensions for
Intel 64 and I1A-32 Architectures.

Chapter 20 — Virtual-Machine Control Structures. Describes components that
manage VMX operation. These include the working-VMCS pointer and the control-
ling-VMCS pointer.

Chapter 21— VMX Non-Root Operation. Describes the operation of a VMX non-
root operation. Processor operation in VMX non-root mode can be restricted
programmatically such that certain operations, events or conditions can cause the
processor to transfer control from the guest (running in VMX non-root mode) to the
monitor software (running in VMX root mode).

Chapter 22 — VM Entries. Describes VM entries. VM entry transitions the processor
from the VMM running in VMX root-mode to a VM running in VMX non-root mode.
VM-Entry is performed by the execution of VMLAUNCH or VMRESUME instructions.

Chapter 23 — VM Exits. Describes VM exits. Certain events, operations or situa-
tions while the processor is in VMX non-root operation may cause VM-exit transitions.
In addition, VM exits can also occur on failed VM entries.

Chapter 24 — Support Address Translation. Describes a facility by which a
logical processor may cache information for multiple linear address spaces and virtu-
alization of physical memory.

Chapter 25 — System Management. Describes Intel 64 and 1A-32 architectures’
system management mode (SMM) facilities.

Chapter 26 — Virtual-Machine Monitoring Programming Considerations.
Describes programming considerations for VMMs. VMMs manage virtual machines
(VMs).

Chapter 27 — Virtualization of System Resources. Describes the virtualization
of the system resources. These include: debugging facilities, address translation,
physical memory, and microcode update facilities.

Chapter 28 — Handling Boundary Conditions in a Virtual Machine Monitor.
Describes what a VMM must consider when handling exceptions, interrupts, error
conditions, and transitions between activity states.

Appendix A — Performance-Monitoring Events. Lists the events that can be
counted with the performance-monitoring counters and the codes used to select
these events. Both Pentium processor and P6 family processor events are described.

Appendix B — Model-Specific Registers (MSRs). Lists the MSRs available in the
Pentium processors, the P6 family processors, the Pentium 4, Intel Xeon, Intel Core
Solo, Intel Core Duo processors, and Intel Core 2 processor family and describes
their functions.

Appendix C — MP Initialization For P6 Family Processors. Gives an example of
how to use of the MP protocol to boot P6 family processors in n MP system.

Vol.3 1-5

ABOUT THIS MANUAL

Appendix D — Programming the LINTO and LINT1 Inputs. Gives an example of
how to program the LINTO and LINT1 pins for specific interrupt vectors.

Appendix E — Interpreting Machine-Check Error Codes. Gives an example of
how to interpret the error codes for a machine-check error that occurred on a P6
family processor.

Appendix F — APIC Bus Message Formats. Describes the message formats for
messages transmitted on the APIC bus for P6 family and Pentium processors.

Appendix G — VMX Capability Reporting Facility. Describes the VMX capability
MSRs. Support for specific VMX features is determined by reading capability MSRs.

Appendix H — Field Encoding in VMCS. Enumerates all fields in the VMCS and
their encodings. Fields are grouped by width (16-bit, 32-bit, etc.) and type (guest-
state, host-state, etc.).

Appendix I — VM Basic Exit Reasons. Describes the 32-bit fields that encode
reasons for a VM exit. Examples of exit reasons include, but are not limited to: soft-
ware interrupts, processor exceptions, software traps, NMls, external interrupts, and
triple faults.

1.3 NOTATIONAL CONVENTIONS

This manual uses specific notation for data-structure formats, for symbolic represen-
tation of instructions, and for hexadecimal and binary numbers. A review of this
notation makes the manual easier to read.

1.3.1 Bit and Byte Order

In illustrations of data structures in memory, smaller addresses appear toward the
bottom of the figure; addresses increase toward the top. Bit positions are numbered
from right to left. The numerical value of a set bit is equal to two raised to the power
of the bit position. Intel 64 and 1A-32 processors are “little endian” machines; this
means the bytes of a word are numbered starting from the least significant byte.
Figure 1-1 illustrates these conventions.

1.3.2 Reserved Bits and Software Compatibility

In many register and memory layout descriptions, certain bits are marked as
reserved. When bits are marked as reserved, it is essential for compatibility with
future processors that software treat these bits as having a future, though unknown,
effect. The behavior of reserved bits should be regarded as not only undefined, but
unpredictable. Software should follow these guidelines in dealing with reserved bits:

¢ Do not depend on the states of any reserved bits when testing the values of
registers which contain such bits. Mask out the reserved bits before testing.

1-6 Vol.3

ABOUT THIS MANUAL

Do not depend on the states of any reserved bits when storing to memory or to a
register.

Do not depend on the ability to retain information written into any reserved bits.

When loading a register, always load the reserved bits with the values indicated
in the documentation, if any, or reload them with values previously read from the
same register.

NOTE

Avoid any software dependence upon the state of reserved bits in
Intel 64 and 1A-32 registers. Depending upon the values of reserved
register bits will make software dependent upon the unspecified
manner in which the processor handles these bits. Programs that
depend upon reserved values risk incompatibility with future
processors.

. Data Structure
fianest 31 2423 1615 8 7 0 <« Bit offset
28
24
20
16
12
8
4
Byte3 | Byte2 Byte 1 ByteO | O

)

Byte Offset

Lowest
Address

Figure 1-1. Bit and Byte Order

1.3.3 Instruction Operands

When instructions are represented symbolically, a subset of assembly language is
used. In this subset, an instruction has the following format:

label: mnemonic argument1, argument2, argument3

where:

A label is an identifier which is followed by a colon.

A mnemonic is a reserved name for a class of instruction opcodes which have
the same function.

The operands argumentl, argument2, and argument3 are optional. There
may be from zero to three operands, depending on the opcode. When present,
they take the form of either literals or identifiers for data items. Operand

Vol.3 1-7

ABOUT THIS MANUAL

identifiers are either reserved names of registers or are assumed to be assigned
to data items declared in another part of the program (which may not be shown
in the example).

When two operands are present in an arithmetic or logical instruction, the right
operand is the source and the left operand is the destination.

For example:

LOADREG: MOV EAX, SUBTOTAL

In this example LOADREG is a label, MOV is the mnemonic identifier of an opcode,
EAX is the destination operand, and SUBTOTAL is the source operand. Some
assembly languages put the source and destination in reverse order.

1.3.4 Hexadecimal and Binary Numbers

Base 16 (hexadecimal) numbers are represented by a string of hexadecimal digits
followed by the character H (for example, F82EH). A hexadecimal digit is a character
from the following set: 0, 1, 2, 3,4,5,6,7,8,9,A,B,C,D,E,and F.

Base 2 (binary) numbers are represented by a string of 1s and Os, sometimes
followed by the character B (for example, 1010B). The “B” designation is only used in
situations where confusion as to the type of number might arise.

1.3.5 Segmented Addressing

The processor uses byte addressing. This means memory is organized and accessed
as a sequence of bytes. Whether one or more bytes are being accessed, a byte
address is used to locate the byte or bytes memory. The range of memory that can
be addressed is called an address space.

The processor also supports segmented addressing. This is a form of addressing
where a program may have many independent address spaces, called segments.
For example, a program can keep its code (instructions) and stack in separate
segments. Code addresses would always refer to the code space, and stack
addresses would always refer to the stack space. The following notation is used to
specify a byte address within a segment:

Segment-register:Byte-address

For example, the following segment address identifies the byte at address FF79H in
the segment pointed by the DS register:

DS:FF79H

The following segment address identifies an instruction address in the code segment.
The CS register points to the code segment and the EIP register contains the address
of the instruction.

1-8 Vol.3

ABOUT THIS MANUAL

CS:elP

1.3.6 Syntax for CPUID, CR, and MSR Values

Obtain feature flags, status, and system information by using the CPUID instruction,
by checking control register bits, and by reading model-specific registers. We are
moving toward a single syntax to represent this type of information. See Figure 1-2.

Vol.3 1-9

ABOUT THIS MANUAL

Syntax Representation for CPUID Input and Output
CPUID.O1H : ECX.SSE [bit 25] = 1

v
Input value for EAX defines output
(NOTE: Some leaves require input values for
EAX and ECX. If only one value is present,
EAX is implied.)

Output register and feature flag or
field name with bit position(s)

Value (or range) of output

For Control Register Values
CR4.0SFXSR[bit 9] = 1

Example CR name i

Feature flag or field name
with bit position(s)

Value (or range) of output

For Model-Specific Register Values

IA32_MISC_ENABLES.ENABLEFOPCODE[bit 2] = 1

Example MSR name i
Feature flag or field name with bit position(s)

Value (or range) of output

OM17732

Figure 1-2. Syntax for CPUID, CR, and MSR Data Presentation

1.3.7 Exceptions

An exception is an event that typically occurs when an instruction causes an error.
For example, an attempt to divide by zero generates an exception. However, some
exceptions, such as breakpoints, occur under other conditions. Some types of excep-
tions may provide error codes. An error code reports additional information about the
error. An example of the notation used to show an exception and error code is shown

below:

#PF(fault code)

1-10 Vol.3

ABOUT THIS MANUAL

This example refers to a page-fault exception under conditions where an error code
naming a type of fault is reported. Under some conditions, exceptions which produce
error codes may not be able to report an accurate code. In this case, the error code
is zero, as shown below for a general-protection exception:

#GP(0)

1.4 RELATED LITERATURE

Literature related to Intel 64 and 1A-32 processors is listed on-line at:
http://developer.intel.com/products/processor/index.htm

Some of the documents listed at this web site can be viewed on-line; others can be
ordered. The literature available is listed by Intel processor and then by the following
literature types: applications notes, data sheets, manuals, papers, and specification
updates.

See also:
® The data sheet for a particular Intel 64 or 1A-32 processor
® The specification update for a particular Intel 64 or 1A-32 processor

* Intel® C++ Compiler documentation and online help
http://www.intel.com/cd/software/products/asmo-na/eng/index.htm

* Intel® Fortran Compiler documentation and online help
http://www.intel.com/cd/software/products/asmo-na/eng/index.htm

* Intel® VTune™ Performance Analyzer documentation and online help
http://www.intel.com/cd/software/products/asmo-na/eng/index.htm

* Intel® 64 and 1A-32 Architectures Software Developer’s Manual (in five volumes)
http://developer.intel.com/products/processor/manuals/index.htm

* Intel® 64 and 1A-32 Architectures Optimization Reference Manual
http://developer.intel.com/products/processor/manuals/index.htm

* Intel® Processor Identification with the CPUID Instruction, AP-485
http://www.intel.com/design/processor/applnots/241618.htm

® TLBs, Paging-Structure Caches, and Their Invalidation,
http://developer.intel.com/products/processor/manuals/index.htm

* Intel® 64 Architecture Memory Ordering White Paper,
http://developer.intel.com/products/processor/manuals/index.htm

* Intel® 64 Architecture x2APIC Specification:
http://developer.intel.com/products/processor/manuals/index.htm
* Intel® Virtualization Technology for Directed 1/0, Rev 1.2 specification

http://download.intel.com/technology/computing/vptech/Intel(r) VT for_Direct_|I
O.pdf

Vol.3 1-11

http://developer.intel.com/products/processor/index.htm
http://www.intel.com/cd/software/products/asmo-na/eng/index.htm
http://www.intel.com/cd/software/products/asmo-na/eng/index.htm
http://www.intel.com/cd/software/products/asmo-na/eng/index.htm
http://developer.intel.com/products/processor/manuals/index.htm
http://developer.intel.com/products/processor/manuals/index.htm

http://developer.intel.com/products/processor/manuals/index.htm
http://www.intel.com/support/processors/sb/cs-009861.htm
http://developer.intel.com/products/processor/manuals/index.htm

ABOUT THIS MANUAL

* Intel® 64 Architecture Processor Topology Enumeration:
http://softwarecommunity.intel.com/articles/eng/3887.htm

* Intel® Trusted Execution Technology Measured Launched Environment
Programming Guide, http://www.intel.com/technology/security/index.htm

® Developing Multi-threaded Applications: A Platform Consistent Approach
http://cache-
www.intel.com/cd/00/00/05/15/51534 developing_multithreaded_applications.pdf

® Using Spin-Loops on Intel Pentium 4 Processor and Intel Xeon Processor MP
http://www3.intel.com/cd/ids/developer/asmo-
na/eng/dc/threading/knowledgebase/19083.htm

More relevant links are:

® Software network link:
http://softwarecommunity.intel.com/isn/home/

® Developer centers:
http://www.intel.com/cd/ids/developer/asmo-na/eng/dc/index.htm

® Processor support general link:
http://www.intel.com/support/processors/

® Software products and packages:
http://www.intel.com/cd/software/products/asmo-na/eng/index.htm

* Intel® 64 and 1A-32 processor manuals (printed or PDF downloads):
http://developer.intel.com/products/processor/manuals/index.htm

* Intel® multi-core technology:
http://developer.intel.com/multi-core/index.htm

* Intel® Hyper-Threading Technology (Intel® HT Technology):
http://developer.intel.com/technology/hyperthread/

1-12 Vol.3

http://www3.intel.com/cd/ids/developer/asmo-na/eng/dc/threading/knowledgebase/19083.htm
http://softwarecommunity.intel.com/isn/home/
http://www.intel.com/cd/ids/developer/asmo-na/eng/dc/index.htm
http://www.intel.com/support/processors/
http://www.intel.com/cd/software/products/asmo-na/eng/index.htm
http://developer.intel.com/products/processor/manuals/index.htm
http://developer.intel.com/multi-core/index.htm
http://developer.intel.com/technology/hyperthread/
http://developer.intel.com/products/processor/manuals/index.htm

CHAPTER 2
SYSTEM ARCHITECTURE OVERVIEW

I1A-32 architecture (beginning with the Intel386 processor family) provides extensive
support for operating-system and system-development software. This support offers
multiple modes of operation, which include:

® Real mode, protected mode, virtual 8086 mode, and system management mode.
These are sometimes referred to as legacy modes.

Intel 64 architecture supports almost all the system programming facilities available
in 1A-32 architecture and extends them to a new operating mode (I1A-32e mode) that
supports a 64-bit programming environment. 1A-32e mode allows software to
operate in one of two sub-modes:

® 64-bit mode supports 64-bit OS and 64-bit applications

® Compatibility mode allows most legacy software to run; it co-exists with 64-bit
applications under a 64-bit OS.

The 1A-32 system-level architecture and includes features to assist in the following
operations:

® Memory management

® Protection of software modules

® Multitasking

® Exception and interrupt handling

® Multiprocessing

® Cache management

® Hardware resource and power management
® Debugging and performance monitoring

This chapter provides a description of each part of this architecture. It also describes
the system registers that are used to set up and control the processor at the system
level and gives a brief overview of the processor’s system-level (operating system)
instructions.

Many features of the system-level architectural are used only by system program-
mers. However, application programmers may need to read this chapter and the
following chapters in order to create a reliable and secure environment for applica-
tion programs.

This overview and most subsequent chapters of this book focus on protected-mode
operation of the 1A-32 architecture. 1A-32e mode operation of the Intel 64 architec-
ture, as it differs from protected mode operation, is also described.

All Intel 64 and 1A-32 processors enter real-address mode following a power-up or
reset (see Chapter 9, “Processor Management and Initialization”). Software then

Vol.3 2-1

SYSTEM ARCHITECTURE OVERVIEW

initiates the switch from real-address mode to protected mode. If IA-32e mode oper-
ation is desired, software also initiates a switch from protected mode to 1A-32e
mode.

2.1 OVERVIEW OF THE SYSTEM-LEVEL ARCHITECTURE

System-level architecture consists of a set of registers, data structures, and instruc-
tions designed to support basic system-level operations such as memory manage-
ment, interrupt and exception handling, task management, and control of multiple
processors.

Figure 2-1 provides a summary of system registers and data structures that applies
to 32-bit modes. System registers and data structures that apply to 1A-32e mode are
shown in Figure 2-2.

2-2 Vol.3

SYSTEM ARCHITECTURE OVERVIEW

EFLAGS Register

Control Registers

Physical Address
>

Linear Address
—>

Y

Code, Data or
Stack Segment

Task-State

CR4 Segment Selector Segment (TSS)
CR2 s
CR1 Co Lo ata
- CRO Global Descriptor Stack
Task Register Table (GDT)
[Segment Sel. | - »| Seg. Desc. |— Irgerrupt Handler
| Code |
Current- — »
Interrupt TSS Seg. Sel.} -~ »| TSS Desc. TSS || Stack
Vector
) - — - - > Seg. Desc.
Interrupt Descriptor | Task-State
Table (IDT) I - > TSSDesc. Segment (TSS) > Task
[-1 Code
Interrupt Gate | — - » | LDT Desc. |— - P Dam
\ - |: >
Task Gate |- - - - - Stack
GDTR
> Trap Gate |- -~ .
‘ Local Descriptor Exception Handler
L Table (LDT) *TCode |
| Current- — > Stack
IDTR Call-Gate -»| Seg. Desc. TSS L
Segment Selector
| F-> CallGate | —|- - 1 Protected Procedure
______ Code
XCRO (XFEM) £<— Current- — »
LB TSS Stack
L
Linear Address Space Linear Address
4’—>| Dir | Table | Offset |
Linear Addr. Page Directory Page Table Page
Physical Addr.
Pg. Dir. Entry Pg. Tbl. Entry
co P L L
o This page mapping example is for 4-KByte pages
and the normal 32-bit physical address size.

*Physical Address

Figure 2-1. IA-32 System-Level Registers and Data Structures

Vol.3 2-3

SYSTEM ARCHITECTURE OVERVIEW

RFLAGS

Linear Address Space

Linear Address

i I
I_Dt])fs_lcgl)Address Code, Data or Stack
Control Register Linear Address Segment (Base =0)
CR8 Task-State
CR4 Segment Selector Segment (TSS)
CR3 Rl >
CR2]
CR1
- CRO Global Descriptor
Task Register Table (GDT)
[SegmentSel.} - »| Seg. Desc. |— Irgelrrupt Handler
NULL - - acode]
Interrupt TR f - »| TSS Desc. Stack
Vector
. - - - -3 Seg. Desc.
Interrupt Descriptor |
Table (IDT) I — — »| Seg.Desc. | Interr. Handler
h > ICode
Interrupt Gate - — — - LDT Desc. —— Current TSS
[’—>
Stack
Interrupt Gate | - - -
< GDTR 1ST—1|
> Trap Gate | -~ -)
! Local Descriptor Exception Handler
. Table (LDT) > Cod
- NULL - — ;OStZ(lk
IDTR Call-Gate - »| Seg. Desc.
Segment Selector
| [~ > CallGate - Protected Procedure
______ Code
XCRO (XFEM) o NULL - — 55

Stack

*Physical Address

J—H PML4 | Dir. Pointer | Directory | Table [Offset |
Linear Addr. . .
PML4 Pg. Dir. Ptr.| Page Dir. Page Table Page
Physical
PMLA4. Pg. Dir. Page Thl Addr.
Entry Entry Entry
>
0o _ This page mapping example is for 4-KByte pages
and 40-bit physical address size.

Figure 2-2. System-Level Registers and Data Structures in IA-32e Mode

2-4 Vol.3

SYSTEM ARCHITECTURE OVERVIEW

2.1.1 Global and Local Descriptor Tables

When operating in protected mode, all memory accesses pass through either the
global descriptor table (GDT) or an optional local descriptor table (LDT) as shown in
Figure 2-1. These tables contain entries called segment descriptors. Segment
descriptors provide the base address of segments well as access rights, type, and
usage information.

Each segment descriptor has an associated segment selector. A segment selector
provides the software that uses it with an index into the GDT or LDT (the offset of its
associated segment descriptor), a global/local flag (determines whether the selector
points to the GDT or the LDT), and access rights information.

To access a byte in a segment, a segment selector and an offset must be supplied.
The segment selector provides access to the segment descriptor for the segment (in
the GDT or LDT). From the segment descriptor, the processor obtains the base
address of the segment in the linear address space. The offset then provides the
location of the byte relative to the base address. This mechanism can be used to
access any valid code, data, or stack segment, provided the segment is accessible
from the current privilege level (CPL) at which the processor is operating. The CPL is
defined as the protection level of the currently executing code segment.

See Figure 2-1. The solid arrows in the figure indicate a linear address, dashed lines
indicate a segment selector, and the dotted arrows indicate a physical address. For
simplicity, many of the segment selectors are shown as direct pointers to a segment.
However, the actual path from a segment selector to its associated segment is always
through a GDT or LDT.

The linear address of the base of the GDT is contained in the GDT register (GDTR);
the linear address of the LDT is contained in the LDT register (LDTR).

2.1.1.1 Global and Local Descriptor Tables in IA-32e Mode

GDTR and LDTR registers are expanded to 64-bits wide in both 1A-32e sub-modes
(64-bit mode and compatibility mode). For more information: see Section 3.5.2,
“Segment Descriptor Tables in 1A-32e Mode.”

Global and local descriptor tables are expanded in 64-bit mode to support 64-bit base
addresses, (16-byte LDT descriptors hold a 64-bit base address and various
attributes). In compatibility mode, descriptors are not expanded.

2.1.2 System Segments, Segment Descriptors, and Gates

Besides code, data, and stack segments that make up the execution environment of
a program or procedure, the architecture defines two system segments: the task-
state segment (TSS) and the LDT. The GDT is not considered a segment because it is
not accessed by means of a segment selector and segment descriptor. TSSs and LDTs
have segment descriptors defined for them.

Vol.3 2-5

SYSTEM ARCHITECTURE OVERVIEW

The architecture also defines a set of special descriptors called gates (call gates,
interrupt gates, trap gates, and task gates). These provide protected gateways to
system procedures and handlers that may operate at a different privilege level than
application programs and most procedures. For example, a CALL to a call gate can
provide access to a procedure in a code segment that is at the same or a numerically
lower privilege level (more privileged) than the current code segment. To access a
procedure through a call gate, the calling procedure1 supplies the selector for the call
gate. The processor then performs an access rights check on the call gate, comparing
the CPL with the privilege level of the call gate and the destination code segment
pointed to by the call gate.

If access to the destination code segment is allowed, the processor gets the segment
selector for the destination code segment and an offset into that code segment from
the call gate. If the call requires a change in privilege level, the processor also
switches to the stack for the targeted privilege level. The segment selector for the
new stack is obtained from the TSS for the currently running task. Gates also facili-
tate transitions between 16-bit and 32-bit code segments, and vice versa.

2.1.2.1 Gates in IA-32e Mode

In 1A-32e mode, the following descriptors are 16-byte descriptors (expanded to allow
a 64-bit base): LDT descriptors, 64-bit TSSs, call gates, interrupt gates, and trap
gates.

Call gates facilitate transitions between 64-bit mode and compatibility mode. Task
gates are not supported in 1A-32e mode. On privilege level changes, stack segment
selectors are not read from the TSS. Instead, they are set to NULL.

2.1.3 Task-State Segments and Task Gates

The TSS (see Figure 2-1) defines the state of the execution environment for a task.
It includes the state of general-purpose registers, segment registers, the EFLAGS
register, the EIP register, and segment selectors with stack pointers for three stack
segments (one stack for each privilege level). The TSS also includes the segment
selector for the LDT associated with the task and the base address of the paging-
structure hierarchy.

All program execution in protected mode happens within the context of a task (called
the current task). The segment selector for the TSS for the current task is stored in
the task register. The simplest method for switching to a task is to make a call or
jump to the new task. Here, the segment selector for the TSS of the new task is given
in the CALL or JMP instruction. In switching tasks, the processor performs the
following actions:

1. Stores the state of the current task in the current TSS.

1. The word “procedure” is commonly used in this document as a general term for a logical unit or
block of code (such as a program, procedure, function, or routine).

2-6 Vol.3

SYSTEM ARCHITECTURE OVERVIEW

Loads the task register with the segment selector for the new task.
Accesses the new TSS through a segment descriptor in the GDT.

4. Loads the state of the new task from the new TSS into the general-purpose
registers, the segment registers, the LDTR, control register CR3 (base address of
the paging-structure hierarchy), the EFLAGS register, and the EIP register.

5. Begins execution of the new task.

A task can also be accessed through a task gate. A task gate is similar to a call gate,
except that it provides access (through a segment selector) to a TSS rather than a
code segment.

2.1.3.1 Task-State Segments in IA-32e Mode

Hardware task switches are not supported in 1A-32e mode. However, TSSs continue
to exist. The base address of a TSS is specified by its descriptor.

A 64-bit TSS holds the following information that is important to 64-bit operation:
® Stack pointer addresses for each privilege level

® Pointer addresses for the interrupt stack table

® Offset address of the 10-permission bitmap (from the TSS base)

The task register is expanded to hold 64-bit base addresses in 1A-32e mode. See
also: Section 7.7, “Task Management in 64-bit Mode.”

2.1.4 Interrupt and Exception Handling

External interrupts, software interrupts and exceptions are handled through the
interrupt descriptor table (IDT). The IDT stores a collection of gate descriptors that
provide access to interrupt and exception handlers. Like the GDT, the IDT is not a
segment. The linear address for the base of the IDT is contained in the IDT register
(IDTR).

Gate descriptors in the IDT can be interrupt, trap, or task gate descriptors. To access
an interrupt or exception handler, the processor first receives an interrupt vector
(interrupt number) from internal hardware, an external interrupt controller, or from
software by means of an INT, INTO, INT 3, or BOUND instruction. The interrupt
vector provides an index into the IDT. If the selected gate descriptor is an interrupt
gate or a trap gate, the associated handler procedure is accessed in a manner similar
to calling a procedure through a call gate. If the descriptor is a task gate, the handler
is accessed through a task switch.

2.1.4.1 Interrupt and Exception Handling IA-32e Mode

In 1A-32e mode, interrupt descriptors are expanded to 16 bytes to support 64-bit
base addresses. This is true for 64-bit mode and compatibility mode.

Vol.3 2-7

SYSTEM ARCHITECTURE OVERVIEW

The IDTR register is expanded to hold a 64-bit base address. Task gates are not
supported.

2.1.5 Memory Management

System architecture supports either direct physical addressing of memory or virtual
memory (through paging). When physical addressing is used, a linear address is
treated as a physical address. When paging is used: all code, data, stack, and system
segments (including the GDT and IDT) can be paged with only the most recently
accessed pages being held in physical memory.

The location of pages (sometimes called page frames) in physical memory is
contained in the paging structures. These structures reside in physical memory (see
Figure 2-1 for the case of 32-bit paging).

The base physical address of the paging-structure hierarchy is contained in control
register CR3. The entries in the paging structures determine the physical address of
the base of a page frame, access rights and memory management information.

To use this paging mechanism, a linear address is broken into parts. The parts
provide separate offsets into the paging structures and the page frame. A system can
have a single hierarchy of paging structures or several. For example, each task can
have its own hierarchy.

2.1.5.1 Memory Management in IA-32e Mode

In 1A-32e mode, physical memory pages are managed by a set of system data struc-
tures. In compatibility mode and 64-bit mode, four levels of system data structures
are used. These include:

® The page map level 4 (PML4) — An entry in a PML4 table contains the physical
address of the base of a page directory pointer table, access rights, and memory
management information. The base physical address of the PML4 is stored in
CR3.

® A set of page directory pointer tables — An entry in a page directory pointer
table contains the physical address of the base of a page directory table, access
rights, and memory management information.

® Sets of page directories — An entry in a page directory table contains the
physical address of the base of a page table, access rights, and memory
management information.

® Sets of page tables — An entry in a page table contains the physical address of
a page frame, access rights, and memory management information.

2-8 Vol.3

SYSTEM ARCHITECTURE OVERVIEW

2.1.6 System Registers

To assist in initializing the processor and controlling system operations, the system
architecture provides system flags in the EFLAGS register and several system
registers:

® The system flags and IOPL field in the EFLAGS register control task and mode
switching, interrupt handling, instruction tracing, and access rights. See also:
Section 2.3, “System Flags and Fields in the EFLAGS Register.”

® The control registers (CRO, CR2, CR3, and CR4) contain a variety of flags and
data fields for controlling system-level operations. Other flags in these registers
are used to indicate support for specific processor capabilities within the
operating system or executive. See also: Section 2.5, “Control Registers.”

® The debug registers (not shown in Figure 2-1) allow the setting of breakpoints for
use in debugging programs and systems software. See also: Chapter 19,
“Debugging and Performance Monitoring.”

® The GDTR, LDTR, and IDTR registers contain the linear addresses and sizes
(limits) of their respective tables. See also: Section 2.4, “Memory-Management
Registers.”

® The task register contains the linear address and size of the TSS for the current
task. See also: Section 2.4, “Memory-Management Registers.”

® Model-specific registers (not shown in Figure 2-1).

The model-specific registers (MSRs) are a group of registers available primarily to
operating-system or executive procedures (that is, code running at privilege level 0).
These registers control items such as the debug extensions, the performance-moni-
toring counters, the machine- check architecture, and the memory type ranges
(MTRRs).

The number and function of these registers varies among different members of the
Intel 64 and 1A-32 processor families. See also: Section 9.4, “Model-Specific Regis-
ters (MSRs),” and Appendix B, “Model-Specific Registers (MSRs).”

Most systems restrict access to system registers (other than the EFLAGS register) by
application programs. Systems can be designed, however, where all programs and
procedures run at the most privileged level (privilege level 0). In such a case, appli-
cation programs would be allowed to modify the system registers.

2.1.6.1 System Registers in IA-32e Mode

In 1A-32e mode, the four system-descriptor-table registers (GDTR, IDTR, LDTR, and
TR) are expanded in hardware to hold 64-bit base addresses. EFLAGS becomes the
64-bit RFLAGS register. CRO-CR4 are expanded to 64 bits. CR8 becomes available.
CR8 provides read-write access to the task priority register (TPR) so that the oper-
ating system can control the priority classes of external interrupts.

In 64-bit mode, debug registers DRO—DR7 are 64 bits. In compatibility mode,
address-matching in DRO-DR3 is also done at 64-bit granularity.

Vol.3 2-9

SYSTEM ARCHITECTURE OVERVIEW

On systems that support 1A-32e mode, the extended feature enable register
(IA32_EFER) is available. This model-specific register controls activation of 1A-32e
mode and other 1A-32e mode operations. In addition, there are several model-
specific registers that govern 1A-32e mode instructions:

® 1A32_KernelGSbase — Used by SWAPGS instruction.

® 1A32_LSTAR — Used by SYSCALL instruction.

® 1A32_SYSCALL_FLAG_MASK — Used by SYSCALL instruction.
® 1A32_STAR_CS — Used by SYSCALL and SYSRET instruction.

2.1.7 Other System Resources

Besides the system registers and data structures described in the previous sections,
system architecture provides the following additional resources:

® Operating system instructions (see also: Section 2.7, “System Instruction
Summary”).

® Performance-monitoring counters (not shown in Figure 2-1).
® Internal caches and buffers (not shown in Figure 2-1).

Performance-monitoring counters are event counters that can be programmed to
count processor events such as the number of instructions decoded, the number of
interrupts received, or the number of cache loads. See also: Section 19, “Debugging
and Performance Monitoring.”

The processor provides several internal caches and buffers. The caches are used to
store both data and instructions. The buffers are used to store things like decoded
addresses to system and application segments and write operations waiting to be
performed. See also: Chapter 11, “Memory Cache Control.”

2.2 MODES OF OPERATION

The 1A-32 supports three operating modes and one quasi-operating mode:

® Protected mode — This is the native operating mode of the processor. It
provides a rich set of architectural features, flexibility, high performance and
backward compatibility to existing software base.

® Real-address mode — This operating mode provides the programming
environment of the Intel 8086 processor, with a few extensions (such as the
ability to switch to protected or system management mode).

¢ System management mode (SMM) — SMM is a standard architectural feature
in all 1A-32 processors, beginning with the Intel386 SL processor. This mode
provides an operating system or executive with a transparent mechanism for
implementing power management and OEM differentiation features. SMM is
entered through activation of an external system interrupt pin (SMI#), which
generates a system management interrupt (SMI). In SMM, the processor
switches to a separate address space while saving the context of the currently

2-10 Vol.3

SYSTEM ARCHITECTURE OVERVIEW

running program or task. SMM-specific code may then be executed transparently.
Upon returning from SMM, the processor is placed back into its state prior to the
SMI.

Virtual-8086 mode — In protected mode, the processor supports a quasi-
operating mode known as virtual-8086 mode. This mode allows the processor
execute 8086 software in a protected, multitasking environment.

Intel 64 architecture supports all operating modes of 1A-32 architecture and 1A-32e
modes:

1A-32e mode — In 1A-32e mode, the processor supports two sub-modes:
compatibility mode and 64-bit mode. 64-bit mode provides 64-bit linear
addressing and support for physical address space larger than 64 GBytes.
Compatibility mode allows most legacy protected-mode applications to run
unchanged.

Figure 2-3 shows how the processor moves between operating modes.

SMI#

> Real-Address
Mode Reset
ese

) or
Reset or _ RSM
PE=0 PE=1
SMI#
Reset
Protected Mode RS System

Management
Mode

LME=1, CRO.PG=1* SMI#
See:\ -
RSM

* See Section 9.8.5
** See Section 9.8.5.4

Virtual-8086
Mode

Figure 2-3. Transitions Among the Processor's Operating Modes

The processor is placed in real-address mode following power-up or a reset. The PE
flag in control register CRO then controls whether the processor is operating in real-
address or protected mode. See also: Section 9.9, “Mode Switching.” and Section
4.1.2, “Paging-Mode Enabling.”

Vol.3 2-11

SYSTEM ARCHITECTURE OVERVIEW

The VM flag in the EFLAGS register determines whether the processor is operating in
protected mode or virtual-8086 mode. Transitions between protected mode and
virtual-8086 mode are generally carried out as part of a task switch or a return from
an interrupt or exception handler. See also: Section 16.2.5, “Entering Virtual-8086
Mode.”

The LMA bit (IA32_EFER.LMA.LMA[bit 10]) determines whether the processor is
operating in 1A-32e mode. When running in 1A-32e mode, 64-bit or compatibility
sub-mode operation is determined by CS.L bit of the code segment. The processor
enters into 1A-32e mode from protected mode by enabling paging and setting the
LME bit (IA32_EFER.LME[bit 8]). See also: Chapter 9, “Processor Management and
Initialization.”

The processor switches to SMM whenever it receives an SMI while the processor is in
real-address, protected, virtual-8086, or 1A-32e modes. Upon execution of the RSM
instruction, the processor always returns to the mode it was in when the SMI
occurred.

2.3 SYSTEM FLAGS AND FIELDS IN THE EFLAGS
REGISTER

The system flags and I0OPL field of the EFLAGS register control 1/0, maskable hard-
ware interrupts, debugging, task switching, and the virtual-8086 mode (see

Figure 2-4). Only privileged code (typically operating system or executive code)
should be allowed to modify these bits.

The system flags and IOPL are:

TF Trap (bit 8) — Set to enable single-step mode for debugging; clear to
disable single-step mode. In single-step mode, the processor generates a
debug exception after each instruction. This allows the execution state of a
program to be inspected after each instruction. If an application program
sets the TF flag using a POPF, POPFD, or IRET instruction, a debug exception
is generated after the instruction that follows the POPF, POPFD, or IRET.

2-12 Vol.3

SYSTEM ARCHITECTURE OVERVIEW

31 22212019181716151413121110 9 8 7 6 5 4 3 2 1 0

O[D|I|T|S|Z A P C
F

I
Reserved (set to 0) ¥ g FlElE
L

ID — Identification FlagQ

VIP — Virtual Interrupt Pending
VIF — Virtual Interrupt Flag
AC — Alignment Check
VM — Virtual-8086 Mode
RF — Resume Flag
NT — Nested Task Flag
IOPL— /O Privilege Level
IF — Interrupt Enable Flag
TF — Trap Flag

I:I Reserved

AlV[R
c 0

IF

10PL

NT

Figure 2-4. System Flags in the EFLAGS Register

Interrupt enable (bit 9) — Controls the response of the processor to
maskable hardware interrupt requests (see also: Section 6.3.2, “Maskable
Hardware Interrupts”). The flag is set to respond to maskable hardware
interrupts; cleared to inhibit maskable hardware interrupts. The IF flag does
not affect the generation of exceptions or nonmaskable interrupts (NMI
interrupts). The CPL, IOPL, and the state of the VME flag in control register
CR4 determine whether the IF flag can be modified by the CLI, STI, POPF,
POPFD, and IRET.

170 privilege level field (bits 12 and 13) — Indicates the 1/0 privilege
level (IOPL) of the currently running program or task. The CPL of the
currently running program or task must be less than or equal to the IOPL to
access the 1/0 address space. This field can only be modified by the POPF
and IRET instructions when operating at a CPL of 0.

The IOPL is also one of the mechanisms that controls the modification of the
IF flag and the handling of interrupts in virtual-8086 mode when virtual
mode extensions are in effect (when CR4.VME = 1). See also: Chapter 13,
“Input/Output,” in the Intel® 64 and 1A-32 Architectures Software Devel-
oper’s Manual, Volume 1.

Nested task (bit 14) — Controls the chaining of interrupted and called
tasks. The processor sets this flag on calls to a task initiated with a CALL
instruction, an interrupt, or an exception. It examines and modifies this flag
on returns from a task initiated with the IRET instruction. The flag can be
explicitly set or cleared with the POPF/POPFD instructions; however,

Vol.3 2-13

SYSTEM ARCHITECTURE OVERVIEW

RF

VM

AC

VIF

changing to the state of this flag can generate unexpected exceptions in
application programs.

See also: Section 7.4, “Task Linking.”

Resume (bit 16) — Controls the processor’s response to instruction-break-
point conditions. When set, this flag temporarily disables debug exceptions
(#DB) from being generated for instruction breakpoints (although other
exception conditions can cause an exception to be generated). When cleatr,
instruction breakpoints will generate debug exceptions.

The primary function of the RF flag is to allow the restarting of an instruction
following a debug exception that was caused by an instruction breakpoint
condition. Here, debug software must set this flag in the EFLAGS image on
the stack just prior to returning to the interrupted program with IRETD (to
prevent the instruction breakpoint from causing another debug exception).
The processor then automatically clears this flag after the instruction
returned to has been successfully executed, enabling instruction breakpoint
faults again.

See also: Section 19.3.1.1, “Instruction-Breakpoint Exception Condition.”

Virtual-8086 mode (bit 17) — Set to enable virtual-8086 mode; clear to
return to protected mode.

See also: Section 16.2.1, “Enabling Virtual-8086 Mode.”

Alignment check (bit 18) — Set this flag and the AM flag in control register
CRO to enable alignment checking of memory references; clear the AC flag
and/or the AM flag to disable alignment checking. An alignment-check
exception is generated when reference is made to an unaligned operand,
such as a word at an odd byte address or a doubleword at an address which
is not an integral multiple of four. Alignment-check exceptions are generated
only in user mode (privilege level 3). Memory references that default to priv-
ilege level O, such as segment descriptor loads, do not generate this excep-
tion even when caused by instructions executed in user-mode.

The alignment-check exception can be used to check alignment of data. This
is useful when exchanging data with processors which require all data to be
aligned. The alignment-check exception can also be used by interpreters to
flag some pointers as special by misaligning the pointer. This eliminates
overhead of checking each pointer and only handles the special pointer when
used.

Virtual Interrupt (bit 19) — Contains a virtual image of the IF flag. This
flag is used in conjunction with the VIP flag. The processor only recognizes
the VIF flag when either the VME flag or the PVI flag in control register CR4 is
set and the IOPL is less than 3. (The VME flag enables the virtual-8086 mode
extensions; the PVI flag enables the protected-mode virtual interrupts.)

See also: Section 16.3.3.5, “Method 6: Software Interrupt Handling,” and
Section 16.4, “Protected-Mode Virtual Interrupts.”

2-14 Vol.3

SYSTEM ARCHITECTURE OVERVIEW

VIP Virtual interrupt pending (bit 20) — Set by software to indicate that an
interrupt is pending; cleared to indicate that no interrupt is pending. This flag
is used in conjunction with the VIF flag. The processor reads this flag but
never modifies it. The processor only recognizes the VIP flag when either the
VME flag or the PVI flag in control register CR4 is set and the IOPL is less than
3. The VME flag enables the virtual-8086 mode extensions; the PVI flag
enables the protected-mode virtual interrupts.

See Section 16.3.3.5, “Method 6: Software Interrupt Handling,” and Section
16.4, “Protected-Mode Virtual Interrupts.”

ID Identification (bit 21). — The ability of a program or procedure to set or
clear this flag indicates support for the CPUID instruction.

2.3.1 System Flags and Fields in IA-32e Mode

In 64-bit mode, the RFLAGS register expands to 64 bits with the upper 32 bits
reserved. System flags in RFLAGS (64-bit mode) or EFLAGS (compatibility mode)
are shown in Figure 2-4.

In 1A-32e mode, the processor does not allow the VM bit to be set because virtual-
8086 mode is not supported (attempts to set the bit are ignored). Also, the processor
will not set the NT bit. The processor does, however, allow software to set the NT bit
(note that an IRET causes a general protection fault in 1A-32e mode if the NT bit is
set).

In 1A-32e mode, the SYSCALL/SYSRET instructions have a programmable method of
specifying which bits are cleared in RFLAGS/EFLAGS. These instructions save/restore
EFLAGS/RFLAGS.

2.4 MEMORY-MANAGEMENT REGISTERS

The processor provides four memory-management registers (GDTR, LDTR, IDTR,
and TR) that specify the locations of the data structures which control segmented
memory management (see Figure 2-5). Special instructions are provided for loading
and storing these registers.

Vol.3 2-15

SYSTEM ARCHITECTURE OVERVIEW

System Table Registers

47(79) 16 15 0
GDTR 32(64)-bit Linear Base Address 16-Bit Table Limit
IDTR 32(64)-bit Linear Base Address 16-Bit Table Limit
System Segment Segment Descriptor Registers (Automatically Loaded)
Registers
5 0 Attributes
Task [seq. sel 32(64)-bit Linear Base Add s t Limit
Register eg. Sel. (64)-bit Linear Base ress egment Limi
LDTR Seg. Sel. 32(64)-bit Linear Base Address Segment Limit

Figure 2-5. Memory Management Registers

2.4.1 Global Descriptor Table Register (GDTR)

The GDTR register holds the base address (32 bits in protected mode; 64 bits in
IA-32e mode) and the 16-bit table limit for the GDT. The base address specifies the
linear address of byte O of the GDT; the table limit specifies the number of bytes in
the table.

The LGDT and SGDT instructions load and store the GDTR register, respectively. On
power up or reset of the processor, the base address is set to the default value of O
and the limit is set to OFFFFH. A new base address must be loaded into the GDTR as
part of the processor initialization process for protected-mode operation.

See also: Section 3.5.1, “Segment Descriptor Tables.”

2.4.2 Local Descriptor Table Register (LDTR)

The LDTR register holds the 16-bit segment selector, base address (32 bits in
protected mode; 64 bits in 1A-32e mode), segment limit, and descriptor attributes
for the LDT. The base address specifies the linear address of byte O of the LDT
segment; the segment limit specifies the number of bytes in the segment. See also:
Section 3.5.1, “Segment Descriptor Tables.”

The LLDT and SLDT instructions load and store the segment selector part of the LDTR
register, respectively. The segment that contains the LDT must have a segment
descriptor in the GDT. When the LLDT instruction loads a segment selector in the
LDTR: the base address, limit, and descriptor attributes from the LDT descriptor are
automatically loaded in the LDTR.

When a task switch occurs, the LDTR is automatically loaded with the segment
selector and descriptor for the LDT for the new task. The contents of the LDTR are not
automatically saved prior to writing the new LDT information into the register.

On power up or reset of the processor, the segment selector and base address are set
to the default value of O and the limit is set to OFFFFH.

2-16 Vol.3

SYSTEM ARCHITECTURE OVERVIEW

243 IDTR Interrupt Descriptor Table Register

The IDTR register holds the base address (32 bits in protected mode; 64 bits in
IA-32e mode) and 16-bit table limit for the IDT. The base address specifies the linear
address of byte 0 of the IDT; the table limit specifies the number of bytes in the table.
The LIDT and SIDT instructions load and store the IDTR register, respectively. On
power up or reset of the processor, the base address is set to the default value of O
and the limit is set to OFFFFH. The base address and limit in the register can then be
changed as part of the processor initialization process.

See also: Section 6.10, “Interrupt Descriptor Table (IDT).”

24.4 Task Register (TR)

The task register holds the 16-bit segment selector, base address (32 bits in
protected mode; 64 bits in 1A-32e mode), segment limit, and descriptor attributes
for the TSS of the current task. The selector references the TSS descriptor in the GDT.
The base address specifies the linear address of byte 0 of the TSS; the segment limit
specifies the number of bytes in the TSS. See also: Section 7.2.4, “Task Register.”

The LTR and STR instructions load and store the segment selector part of the task
register, respectively. When the LTR instruction loads a segment selector in the task
register, the base address, limit, and descriptor attributes from the TSS descriptor
are automatically loaded into the task register. On power up or reset of the processor,
the base address is set to the default value of O and the limit is set to OFFFFH.

When a task switch occurs, the task register is automatically loaded with the
segment selector and descriptor for the TSS for the new task. The contents of the
task register are not automatically saved prior to writing the new TSS information
into the register.

2.5 CONTROL REGISTERS

Control registers (CRO, CR1, CR2, CR3, and CR4; see Figure 2-6) determine oper-
ating mode of the processor and the characteristics of the currently executing task.
These registers are 32 bits in all 32-bit modes and compatibility mode.

In 64-bit mode, control registers are expanded to 64 bits. The MOV CRn instructions
are used to manipulate the register bits. Operand-size prefixes for these instructions
are ignored. The following is also true:

® Bits 63:32 of CRO and CR4 are reserved and must be written with zeros. Writing
a nonzero value to any of the upper 32 bits results in a general-protection
exception, #GP(0).

® All 64 bits of CR2 are writable by software.
® Bits 51:40 of CR3 are reserved and must be 0.

Vol.3 2-17

SYSTEM ARCHITECTURE OVERVIEW

The MOV CRn instructions do not check that addresses written to CR2 and CR3
are within the linear-address or physical-address limitations of the implemen-
tation.

Register CR8 is available in 64-bit mode only.

The control registers are summarized below, and each architecturally defined control
field in these control registers are described individually. In Figure 2-6, the width of
the register in 64-bit mode is indicated in parenthesis (except for CRO).

CRO — Contains system control flags that control operating mode and states of
the processor.

CR1 — Reserved.

CR2 — Contains the page-fault linear address (the linear address that caused a
page fault).

CR3 — Contains the physical address of the base of the paging-structure
hierarchy and two flags (PCD and PWT). Only the most-significant bits (less the
lower 12 bits) of the base address are specified; the lower 12 bits of the address
are assumed to be 0. The first paging structure must thus be aligned to a page
(4-KByte) boundary. The PCD and PWT flags control caching of that paging
structure in the processor’s internal data caches (they do not control TLB caching
of page-directory information).

When using the physical address extension, the CR3 register contains the base
address of the page-directory-pointer table In 1A-32e mode, the CR3 register
contains the base address of the PML4 table.

See also: Chapter 4, “Paging.”

CR4 — Contains a group of flags that enable several architectural extensions,
and indicate operating system or executive support for specific processor capabil-
ities. The control registers can be read and loaded (or modified) using the move-
to-or-from-control-registers forms of the MOV instruction. In protected mode,
the MOV instructions allow the control registers to be read or loaded (at privilege
level 0 only). This restriction means that application programs or operating-
system procedures (running at privilege levels 1, 2, or 3) are prevented from
reading or loading the control registers.

CR8 — Provides read and write access to the Task Priority Register (TPR). It
specifies the priority threshold value that operating systems use to control the
priority class of external interrupts allowed to interrupt the processor. This
register is available only in 64-bit mode. However, interrupt filtering continues to
apply in compatibility mode.

2-18 Vol.3

SYSTEM ARCHITECTURE OVERVIEW

31(63) 18 1413121110 9 8 7 6 5 4 3 2 1 0
a\’\; PIPIM|P P |T|PIV
Reserved (set to 0) 0o cle|c|A[s|2|s|V|M| CR4
g >E< E|E|E|E|E|F|D|I|E
OSXSAVEJ OSXMMEXCPTJ
OSFXSR
31(63) 12 11 54 32
PP
. CR3
Page-Directory Base C\w
9 y o|T (PDBR)
31(63) 0
Page-Fault Linear Address CR2
31(63) 0
CR1
313029 28 1918 17 16 15 6543210
P|C|IN Al |w N|E|T|E|M|P
G|D|wW M| |P E|T|s|m|p|e| CRO

D Reserved

Figure 2-6. Control Registers

When loading a control register, reserved bits should always be set to the values
previously read. The flags in control registers are:

PG

CD

Paging (bit 31 of CRO) — Enables paging when set; disables paging when
clear. When paging is disabled, all linear addresses are treated as physical
addresses. The PG flag has no effect if the PE flag (bit O of register CRO) is
not also set; setting the PG flag when the PE flag is clear causes a general-
protection exception (#GP). See also: Chapter 4, “Paging.”

On Intel 64 processors, enabling and disabling 1A-32e mode operation also
requires modifying CRO.PG.

Cache Disable (bit 30 of CRO) — When the CD and NW flags are clear,
caching of memory locations for the whole of physical memory in the
processor’s internal (and external) caches is enabled. When the CD flag is
set, caching is restricted as described in Table 11-5. To prevent the processor
from accessing and updating its caches, the CD flag must be set and the
caches must be invalidated so that no cache hits can occur.

Vol.3 2-19

SYSTEM ARCHITECTURE OVERVIEW

NW

AM

WP

NE

ET

TS

See also: Section 11.5.3, “Preventing Caching,” and Section 11.5, “Cache
Control.”

Not Write-through (bit 29 of CRO) — When the NW and CD flags are
clear, write-back (for Pentium 4, Intel Xeon, P6 family, and Pentium proces-
sors) or write-through (for Intel486 processors) is enabled for writes that hit
the cache and invalidation cycles are enabled. See Table 11-5 for detailed
information about the affect of the NW flag on caching for other settings of
the CD and NW flags.

Alignment Mask (bit 18 of CRO) — Enables automatic alignment checking
when set; disables alignment checking when clear. Alignment checking is
performed only when the AM flag is set, the AC flag in the EFLAGS register is
set, CPL is 3, and the processor is operating in either protected or virtual-
8086 mode.

Write Protect (bit 16 of CRO) — Inhibits supervisor-level procedures from
writing into user-level read-only pages when set; allows supervisor-level
procedures to write into user-level read-only pages when clear (regardless of
the U/S bit setting; see Section 4.1.3 and Section 4.6). This flag facilitates
implementation of the copy-on-write method of creating a new process
(forking) used by operating systems such as UNIX.

Numeric Error (bit 5 of CRO) — Enables the native (internal) mechanism
for reporting x87 FPU errors when set; enables the PC-style x87 FPU error
reporting mechanism when clear. When the NE flag is clear and the IGNNE#
input is asserted, x87 FPU errors are ignored. When the NE flag is clear and
the IGNNE# input is deasserted, an unmasked x87 FPU error causes the
processor to assert the FERR# pin to generate an external interrupt and to
stop instruction execution immediately before executing the next waiting
floating-point instruction or WAIT/FWAIT instruction.

The FERR# pin is intended to drive an input to an external interrupt
controller (the FERR# pin emulates the ERROR# pin of the Intel 287 and
Intel 387 DX math coprocessors). The NE flag, IGNNE# pin, and FERR# pin
are used with external logic to implement PC-style error reporting. Using
FERR# and IGNNE# to handle floating-point exceptions is deprecated by
modern operating systems; this non-native approach also limits newer
processors to operate with one logical processor active.

See also: “Software Exception Handling” in Chapter 8, “Programming with
the x87 FPU,” and Appendix A, “Eflags Cross-Reference,” in the Intel® 64 and
1A-32 Architectures Software Developer’s Manual, Volume 1.

Extension Type (bit 4 of CRO) — Reserved in the Pentium 4, Intel Xeon, P6
family, and Pentium processors. In the Pentium 4, Intel Xeon, and P6 family
processors, this flag is hardcoded to 1. In the Intel386 and Intel486 proces-
sors, this flag indicates support of Intel 387 DX math coprocessor instruc-
tions when set.

Task Switched (bit 3 of CRO) — Allows the saving of the x87
FPU/MMX/SSE/SSE2/SSE3/SSSE3/SSE4 context on a task switch to be

2-20 Vol.3

SYSTEM ARCHITECTURE OVERVIEW

delayed until an x87 FPU/MMX/SSE/SSE2/SSE3/SSSE3/SSE4 instruction is
actually executed by the new task. The processor sets this flag on every task
switch and tests it when executing x87
FPU/MMX/SSE/SSE2/SSE3/SSSE3/SSE4 instructions.

* Ifthe TS flag is set and the EM flag (bit 2 of CRO) is clear, a device-not-
available exception (#NM) is raised prior to the execution of any x87
FPU/MMX/SSE/ SSE2/SSE3/SSSE3/SSE4 instruction; with the exception
of PAUSE, PREFETCHh, SFENCE, LFENCE, MFENCE, MOVNTI, CLFLUSH,
CRC32, and POPCNT. See the paragraph below for the special case of the
WAIT/FWAIT instructions.

* Ifthe TS flag is set and the MP flag (bit 1 of CRO) and EM flag are clear, an
#NM exception is not raised prior to the execution of an x87 FPU
WAIT/FWAIT instruction.

¢ If the EM flag is set, the setting of the TS flag has no affect on the
execution of x87 FPU/MMX/SSE/SSE2/SSE3/SSSE3/SSE4 instructions.

Table 2-1 shows the actions taken when the processor encounters an x87
FPU instruction based on the settings of the TS, EM, and MP flags. Table 12-1
and 13-1 show the actions taken when the processor encounters an
MMX/SSE/SSE2/SSE3/SSSE3/SSE4 instruction.

The processor does not automatically save the context of the x87 FPU, XMM,
and MXCSR registers on a task switch. Instead, it sets the TS flag, which
causes the processor to raise an #NM exception whenever it encounters an
x87 FPU/MMX/SSE /SSE2/SSE3/SSSE3/SSE4 instruction in the instruction
stream for the new task (with the exception of the instructions listed above).

The fault handler for the #NM exception can then be used to clear the TS flag (with
the CLTS instruction) and save the context of the x87 FPU, XMM, and MXCSR regis-
ters. If the task never encounters an x87 FPU/MMX/SSE/SSE2/SSE3//SSSE3/SSE4
instruction; the x87 FPU/MMX/SSE/SSE2/ SSE3/SSSE3/SSE4 context is never saved.

Table 2-1. Action Taken By x87 FPU Instructions for Different
Combinations of EM, MP, and TS

CRO Flags x87 FPU Instruction Type

EM MP TS Floating-Point WAIT/FWAIT
0 0 0 Execute Execute.

0 0 1 #NM Exception Execute.

0 1 0 Execute Execute.

0 1 1 #NM Exception #NM exception.

1 0 0 #NM Exception Execute.

1 0 1 #NM Exception Execute.

1 1 0 #NM Exception Execute.

Vol.3 2-21

SYSTEM ARCHITECTURE OVERVIEW

Table 2-1. Action Taken By x87 FPU Instructions for Different
Combinations of EM, MP, and TS

CRO Flags x87 FPU Instruction Type

1

‘ 1 ‘ 1 #NM Exception #NM exception.

EM

MP

PE

PCD

Emulation (bit 2 of CRO) — Indicates that the processor does not have an
internal or external x87 FPU when set; indicates an x87 FPU is present when
clear. This flag also affects the execution of
MMX/SSE/SSE2/SSE3/SSSE3/SSE4 instructions.

When the EM flag is set, execution of an x87 FPU instruction generates a
device-not-available exception (#¥NM). This flag must be set when the
processor does not have an internal x87 FPU or is not connected to an
external math coprocessor. Setting this flag forces all floating-point instruc-
tions to be handled by software emulation. Table 9-2 shows the recom-
mended setting of this flag, depending on the 1A-32 processor and x87 FPU
or math coprocessor present in the system. Table 2-1 shows the interaction
of the EM, MP, and TS flags.

Also, when the EM flag is set, execution of an MMX instruction causes an
invalid-opcode exception (#UD) to be generated (see Table 12-1). Thus, if an
IA-32 or Intel 64 processor incorporates MMX technology, the EM flag must
be set to O to enable execution of MMX instructions.

Similarly for SSE/SSE2/SSE3/SSSE3/SSE4 extensions, when the EM flag is
set, execution of most SSE/SSE2/SSE3/SSSE3/SSE4 instructions causes an
invalid opcode exception (#UD) to be generated (see Table 13-1). If an I1A-32
or Intel 64 processor incorporates the SSE/SSE2/SSE3/SSSE3/SSE4 exten-
sions, the EM flag must be set to O to enable execution of these extensions.
SSE/SSE2/SSE3/SSSE3/SSE4 instructions not affected by the EM flag
include: PAUSE, PREFETCHh, SFENCE, LFENCE, MFENCE, MOVNTI, CLFLUSH,
CRC32, and POPCNT.

Monitor Coprocessor (bit 1 of CR0O). — Controls the interaction of the
WAIT (or FWAIT) instruction with the TS flag (bit 3 of CRO). If the MP flag is
set, a WAIT instruction generates a device-not-available exception (#NM) if
the TS flag is also set. If the MP flag is clear, the WAIT instruction ignores the
setting of the TS flag. Table 9-2 shows the recommended setting of this flag,
depending on the 1A-32 processor and x87 FPU or math coprocessor present
in the system. Table 2-1 shows the interaction of the MP, EM, and TS flags.

Protection Enable (bit O of CRO) — Enables protected mode when set;
enables real-address mode when clear. This flag does not enable paging
directly. It only enables segment-level protection. To enable paging, both the
PE and PG flags must be set.

See also: Section 9.9, “Mode Switching.”

Page-level Cache Disable (bit 4 of CR3) — Controls caching of the first
paging structure of the current paging-structure hierarchy. When the PCD

2-22 Vol.3

PWT

VME

PVI

TSD

DE

SYSTEM ARCHITECTURE OVERVIEW

flag is set, caching of the page-directory is prevented; when the flag is clear,
the page-directory can be cached. This flag affects only the processor’s
internal caches (both L1 and L2, when present). The processor ignores this
flag if paging is not used (the PG flag in register CRO is clear) or the CD
(cache disable) flag in CRO is set.

See also: Chapter 11, “Memory Cache Control” (for more about the use of
the PCD flag) and Section 4.9, “Paging and Memory Typing” (for a discussion
of a companion PCD flag in page-directory and page-table entries).

Page-level Write-Through (bit 3 of CR3) — Controls the write-through or
write-back caching policy of the first paging structure of the current paging-
structure hierarchy. When the PWT flag is set, write-through caching is
enabled; when the flag is clear, write-back caching is enabled. This flag
affects only internal caches (both L1 and L2, when present). The processor
ignores this flag if paging is not used (the PG flag in register CRO is clear) or
the CD (cache disable) flag in CRO is set.

See also: Section 11.5, “Cache Control” (for more information about the use
of this flag), and Section 4.9, “Paging and Memory Typing” (for a discussion
of a companion PCD flag in the page-directory and page-table entries).

Virtual-8086 Mode Extensions (bit O of CR4) — Enables interrupt- and
exception-handling extensions in virtual-8086 mode when set; disables the
extensions when clear. Use of the virtual mode extensions can improve the
performance of virtual-8086 applications by eliminating the overhead of
calling the virtual-8086 monitor to handle interrupts and exceptions that
occur while executing an 8086 program and, instead, redirecting the inter-
rupts and exceptions back to the 8086 program’s handlers. It also provides
hardware support for a virtual interrupt flag (VIF) to improve reliability of
running 8086 programs in multitasking and multiple-processor environ-
ments.

See also: Section 16.3, “Interrupt and Exception Handling in Virtual-8086
Mode.”

Protected-Mode Virtual Interrupts (bit 1 of CR4) — Enables hardware
support for a virtual interrupt flag (VIF) in protected mode when set; disables
the VIF flag in protected mode when clear.

See also: Section 16.4, “Protected-Mode Virtual Interrupts.”

Time Stamp Disable (bit 2 of CR4) — Restricts the execution of the
RDTSC instruction (including RDTSCP instruction if
CPUID.80000001H:EDX[27] = 1) to procedures running at privilege level O
when set; allows RDTSC instruction (including RDTSCP instruction if
CPUID.80000001H:EDX[27] = 1) to be executed at any privilege level when
clear.

Debugging Extensions (bit 3 of CR4) — References to debug registers
DR4 and DR5 cause an undefined opcode (#UD) exception to be generated

Vol.3 2-23

SYSTEM ARCHITECTURE OVERVIEW

PSE

PAE

MCE

PGE

PCE

when set; when clear, processor aliases references to registers DR4 and DR5
for compatibility with software written to run on earlier 1A-32 processors.

See also: Section 19.2.2, “Debug Registers DR4 and DR5.”

Page Size Extensions (bit 4 of CR4) — Enables 4-MByte pages with 32-bit
paging when set; restricts 32-bit paging to pages to 4 KBytes when clear.

See also: Section 4.3, “32-Bit Paging.”

Physical Address Extension (bit 5 of CR4) — When set, enables paging
to produce physical addresses with more than 32 bits. When clear, restricts
physical addresses to 32 bits. PAE must be set before entering 1A-32e mode.

See also: Chapter 4, “Paging.”

Machine-Check Enable (bit 6 of CR4) — Enables the machine-check
exception when set; disables the machine-check exception when clear.

See also: Chapter 15, “Machine-Check Architecture.”

Page Global Enable (bit 7 of CR4) — (Introduced in the P6 family proces-
sors.) Enables the global page feature when set; disables the global page

feature when clear. The global page feature allows frequently used or shared
pages to be marked as global to all users (done with the global flag, bit 8, in
a page-directory or page-table entry). Global pages are not flushed from the
translation-lookaside buffer (TLB) on a task switch or a write to register CR3.

When enabling the global page feature, paging must be enabled (by setting
the PG flag in control register CRO) before the PGE flag is set. Reversing this
sequence may affect program correctness, and processor performance will
be impacted.

See also: Section 4.10, “Caching Translation Information.”

Performance-Monitoring Counter Enable (bit 8 of CR4) — Enables
execution of the RDPMC instruction for programs or procedures running at
any protection level when set; RDPMC instruction can be executed only at
protection level O when clear.

OSFXSR

Operating System Support for FXSAVE and FXRSTOR instructions
(bit 9 of CR4) — When set, this flag: (1) indicates to software that the oper-
ating system supports the use of the FXSAVE and FXRSTOR instructions, (2)
enables the FXSAVE and FXRSTOR instructions to save and restore the
contents of the XMM and MXCSR registers along with the contents of the x87
FPU and MMX registers, and (3) enables the processor to execute
SSE/SSE2/SSE3/SSSE3/SSE4 instructions, with the exception of the PAUSE,
PREFETCHh, SFENCE, LFENCE, MFENCE, MOVNTI, CLFLUSH, CRC32, and
POPCNT.

If this flag is clear, the FXSAVE and FXRSTOR instructions will save and
restore the contents of the x87 FPU and MMX instructions, but they may not
save and restore the contents of the XMM and MXCSR registers. Also, the

2-24 Vol.3

SYSTEM ARCHITECTURE OVERVIEW

processor will generate an invalid opcode exception (#UD) if it attempts to
execute any SSE/SSE2/SSE3and instruction, with the exception of PAUSE,
PREFETCHh, SFENCE, LFENCE, MFENCE, MOVNTI, CLFLUSH, CRC32, and
POPCNT. The operating system or executive must explicitly set this flag.

NOTE

CPUID feature flags FXSR indicates availability of the
FXSAVE/FXRSTOR instructions. The OSFXSR bit provides operating
system software with a means of enabling FXSAVE/FXRSTOR to
save/restore the contents of the X87 FPU, XMM and MXCSR registers.
Consequently OSFXSR bit indicates that the operating system
provides context switch support for SSE/SSE2/SSE3/SSSE3/SSEA4.

OSXMMEXCPT

VMXE

SMXE

Operating System Support for Unmasked SIMD Floating-Point Excep-
tions (bit 10 of CR4) — When set, indicates that the operating system
supports the handling of unmasked SIMD floating-point exceptions through
an exception handler that is invoked when a SIMD floating-point exception
(#XF) is generated. SIMD floating-point exceptions are only generated by
SSE/SSE2/SSE3/SSE4.1 SIMD floating-point instructions.

The operating system or executive must explicitly set this flag. If this flag is
not set, the processor will generate an invalid opcode exception (#UD)
whenever it detects an unmasked SIMD floating-point exception.

VMX-Enable Bit (bit 13 of CR4) — Enables VMX operation when set. See
Chapter 20, “Introduction to Virtual-Machine Extensions.”

SMX-Enable Bit (bit 14 of CR4) — Enables SMX operation when set. See
Chapter 6, “Safer Mode Extensions Reference” of Intel® 64 and IA-32 Archi-
tectures Software Developer’s Manual, Volume 2B.

OSXSAVE

TPL

XSAVE and Processor Extended States-Enable Bit (bit 18 of CR4) —
When set, this flag: (1) indicates (via CPUID.01H:ECX.OSXSAVE[bit 27])
that the operating system supports the use of the XGETBV, XSAVE and
XRSTOR instructions by general software; (2) enables the XSAVE and
XRSTOR instructions to save and restore the x87 FPU state (including MMX
registers), the SSE state (XMM registers and MXCSR), along with other
processor extended states enabled in the XFEATURE_ENABLED_MASK
register (XCRO); (3) enables the processor to execute XGETBV and XSETBV
instructions in order to read and write XCRO. See Section 2.6 and Chapter
13, “System Programming for Instruction Set Extensions and Processor
Extended States”.

Task Priority Level (bit 3:0 of CR8) — This sets the threshold value corre-
sponding to the highest-priority interrupt to be blocked. A value of O means

Vol.3 2-25

SYSTEM ARCHITECTURE OVERVIEW

all interrupts are enabled. This field is available in 64-bit mode. A value of 15
means all interrupts will be disabled.

2.5.1 CPUID Qualification of Control Register Flags

The VME, PVI, TSD, DE, PSE, PAE, MCE, PGE, PCE, OSFXSR, and OSXMMEXCPT flags
in control register CR4 are model specific. All of these flags (except the PCE flag) can
be qualified with the CPUID instruction to determine if they are implemented on the
processor before they are used.

The CR8 register is available on processors that support Intel 64 architecture.

2.6 EXTENDED CONTROL REGISTERS (INCLUDING THE
XFEATURE_ENABLED_MASK REGISTER)

If CPUID.0O1H:ECX.XSAVE[bit 26] is 1, the processor supports one or more
extended control registers (XCRs). Currently, the only such register defined is
XCRO, the XFEATURE_ENABLED__MASK register. This register specifies the set of
processor states that the operating system enables on that processor, e.g. x87 FPU
States, SSE states, and other processor extended states that Intel 64 architecture
may introduce in the future. The OS programs XCRO to reflect the features it
supports.

63 210

r
Reserved for XCRO bit vector expansion

Reserved / Future processor extended states
SSE state
x87 FPU/MMX state (must be 1)

I:I Reserved (must be 0)

Figure 2-7. XFEATURE_ENABLED_MASK Register (XCRO)

Software can access XCRO only if CR4.0SXSAVE[bit 18] = 1. (This bit is also readable
as CPUID.01H:ECX.OSXSAVE[bit 27].) The layout of XCRO is architected to allow
software to use CPUID leaf function ODH to enumerate the set of bits that the
processor supports in XCRO (see CPUID instruction in Intel® 64 and 1A-32 Architec-
tures Software Developer’s Manual, Volume 2A). Each processor state (X87 FPU

2-26 Vol.3

SYSTEM ARCHITECTURE OVERVIEW

state, SSE state, or a future processor extended state) is represented by a bit in
XCRO. The OS can enable future processor extended states in a forward manner by
specifying the appropriate bit mask value using the XSETBV instruction according to
the results of the CPUID leaf ODH.

With the exception of bit 63, each bit in the XFEATURE_ENABLED_MASK register
(XCRO0) corresponds to a subset of the processor states. XCRO thus provides space
for up to 63 sets of processor state extensions. Bit 63 of XCRO is reserved for future
expansion and will not represent a processor extended state.

Currently, the XFEATURE_ENABLED_MASK register (XCRO) has two processor states
defined, with up to 61 bits reserved for future processor extended states:

® XCRO0.X87 (bit 0): If 1, indicates x87 FPU state (including MMX register states) is
supported in the processor. Bit 0 must be 1. An attempt to write O causes a #GP
exception.

® XCRO.SSE (bit 1): If 1, indicates MXCSR and XMM registers (XMMO-XMM15 in 64-
bit mode, otherwise XMMO-XMM7) are supported by XSAVE/XRESTOR in the
processor.

Any attempt to set a reserved bit (as determined by the contents of EAX and EDX
after executing CPUID with EAX=0DH, ECX= OH) in the XFEATURE_ENABLED_MASK
register for a given processor will result in a #GP exception. An attempt to write O to
XFEATURE_ENABLED_MASK.x87 (bit 0) will result in a #GP exception.

If a bit in the XFEATURE_ENABLED_MASK register is 1, XSAVE instruction can selec-
tively (in conjunction with a save mask) save a partial or full set of processor states
to memory (See XSAVE instruction in Intel® 64 and 1A-32 Architectures Software
Developer’'s Manual, Volume 2B).

After reset all bits (except bit 0) in the XFEATURE_ENABLED_ _MASK register (XCRO)
are cleared to zero. XCRO[O] is set to 1.

2.7 SYSTEM INSTRUCTION SUMMARY

System instructions handle system-level functions such as loading system registers,
managing the cache, managing interrupts, or setting up the debug registers. Many of
these instructions can be executed only by operating-system or executive proce-
dures (that is, procedures running at privilege level 0). Others can be executed at
any privilege level and are thus available to application programs.

Table 2-2 lists the system instructions and indicates whether they are available and
useful for application programs. These instructions are described in the Intel® 64 and
IA-32 Architectures Software Developer’'s Manual, Volumes 2A & 2B.

Table 2-2. Summary of System Instructions

Useful to Protected from
Instruction Description Application? Application?
LLDT Load LDT Register No Yes

Vol.3 2-27

SYSTEM ARCHITECTURE OVERVIEW

Table 2-2. Summary of System Instructions (Contd.)

Useful to Protected from
Instruction Description Application? Application?
SLDT Store LDT Register No No
LGDT Load GDT Register No Yes
SGDT Store GDT Register No No
LTR Load Task Register No Yes
STR Store Task Register No No
LIDT Load IDT Register No Yes
SIDT Store IDT Register No No
MOV CRn Load and store control registers No Yes
SMSW Store MSW Yes No
LMSW Load MSW No Yes
CLTS Clear TS flag in CRO No Yes
ARPL Adjust RPL Yes'-> No
LAR Load Access Rights Yes No
LSL Load Segment Limit Yes No
VERR Verify for Reading Yes No
VERW Verify for Writing Yes No
MOV DRn Load and store debug registers No Yes
INVD Invalidate cache, no writeback No Yes
WBINVD Invalidate cache, with writeback No Yes
INVLPG Invalidate TLB entry No Yes
HLT Halt Processor No Yes
LOCK (Prefix) Bus Lock Yes No
RSM Return from system management No Yes
mode
RDMSR3 Read Model-Specific Registers No Yes
WRMSR3 Write Model-Specific Registers No Yes
RDPMC* Read Performance-Monitoring Yes Yes?
Counter

RDTSC3 Read Time-Stamp Counter Yes Yes?
RDTSCP’ Read Serialized Time-Stamp Counter Yes Yes?

2-28 Vol.3

SYSTEM ARCHITECTURE OVERVIEW

Table 2-2. Summary of System Instructions (Contd.)

Useful to Protected from
Instruction Description Application? Application?
XGETBV Return the state of the the Yes No
XFEATURE_ENABLED_MASK register
XSETBV Enable one or more processor No® Yes
extended states

NOTES:
1. Useful to application programs running at a CPL of 1 or 2.

2. The TSD and PCE flags in control register CR4 control access to these instructions by application
programs running at a CPL of 3.

3. These instructions were introduced into the IA-32 Architecture with the Pentium processor.

4. This instruction was introduced into the IA-32 Architecture with the Pentium Pro processor and
the Pentium processor with MMX technology.

5. This instruction is not supported in 64-bit mode.
6. Application uses XGETBV to query which set of processor extended states are enabled.
7.RDTSCP is introduced in Intel Core i7 processor.

2.7.1 Loading and Storing System Registers

The GDTR, LDTR, IDTR, and TR registers each have a load and store instruction for
loading data into and storing data from the register:

® LGDT (Load GDTR Register) — Loads the GDT base address and limit from
memory into the GDTR register.

® SGDT (Store GDTR Register) — Stores the GDT base address and limit from
the GDTR register into memory.

® LIDT (Load IDTR Register) — Loads the IDT base address and limit from
memory into the IDTR register.

¢ SIDT (Load IDTR Register — Stores the IDT base address and limit from the
IDTR register into memory.

® LLDT (Load LDT Register) — Loads the LDT segment selector and segment
descriptor from memory into the LDTR. (The segment selector operand can also
be located in a general-purpose register.)

® SLDT (Store LDT Register) — Stores the LDT segment selector from the LDTR
register into memory or a general-purpose register.

® LTR (Load Task Register) — Loads segment selector and segment descriptor
for a TSS from memory into the task register. (The segment selector operand can
also be located in a general-purpose register.)

® STR (Store Task Register) — Stores the segment selector for the current task
TSS from the task register into memory or a general-purpose register.

Vol.3 2-29

SYSTEM ARCHITECTURE OVERVIEW

The LMSW (load machine status word) and SMSW (store machine status word)
instructions operate on bits O through 15 of control register CRO. These instructions
are provided for compatibility with the 16-bit Intel 286 processor. Programs written
to run on 32-bit 1A-32 processors should not use these instructions. Instead, they
should access the control register CRO using the MOV instruction.

The CLTS (clear TS flag in CRO) instruction is provided for use in handling a
device-not-available exception (#¥NM) that occurs when the processor attempts to
execute a floating-point instruction when the TS flag is set. This instruction allows
the TS flag to be cleared after the x87 FPU context has been saved, preventing
further #NM exceptions. See Section 2.5, “Control Registers,” for more information
on the TS flag.

The control registers (CRO, CR1, CR2, CR3, CR4, and CR8) are loaded using the MOV
instruction. The instruction loads a control register from a general-purpose register
or stores the content of a control register in a general-purpose register.

2.7.2 Verifying of Access Privileges

The processor provides several instructions for examining segment selectors
and segment descriptors to determine if access to their associated segments
is allowed. These instructions duplicate some of the automatic access rights
and type checking done by the processor, thus allowing operating-system or
executive software to prevent exceptions from being generated.

The ARPL (adjust RPL) instruction adjusts the RPL (requestor privilege level)
of a segment selector to match that of the program or procedure that
supplied the segment selector. See Section 5.10.4, “Checking Caller Access
Privileges (ARPL Instruction),” for a detailed explanation of the function and
use of this instruction. Note that ARPL is not supported in 64-bit mode.

The LAR (load access rights) instruction verifies the accessibility of a speci-
fied segment and loads access rights information from the segment’s
segment descriptor into a general-purpose register. Software can then
examine the access rights to determine if the segment type is compatible
with its intended use. See Section 5.10.1, “Checking Access Rights (LAR
Instruction),” for a detailed explanation of the function and use of this
instruction.

The LSL (load segment limit) instruction verifies the accessibility of a speci-
fied segment and loads the segment limit from the segment’s segment
descriptor into a general-purpose register. Software can then compare the
segment limit with an offset into the segment to determine whether the
offset lies within the segment. See Section 5.10.3, “Checking That the
Pointer Offset Is Within Limits (LSL Instruction),” for a detailed explanation
of the function and use of this instruction.

The VERR (verify for reading) and VERW (verify for writing) instructions
verify if a selected segment is readable or writable, respectively, at a given
CPL. See Section 5.10.2, “Checking Read/Write Rights (VERR and VERW

2-30 Vol. 3

SYSTEM ARCHITECTURE OVERVIEW

Instructions),” for a detailed explanation of the function and use of this
instruction.

2.7.3 Loading and Storing Debug Registers

Internal debugging facilities in the processor are controlled by a set of 8 debug regis-
ters (DRO-DR7). The MOV instruction allows setup data to be loaded to and stored
from these registers.

On processors that support Intel 64 architecture, debug registers DRO-DR7 are 64
bits. In 32-bit modes and compatibility mode, writes to a debug register fill the upper
32 bits with zeros. Reads return the lower 32 bits. In 64-bit mode, the upper 32 bits
of DR6-DR7 are reserved and must be written with zeros. Writing one to any of the
upper 32 bits causes an exception, #GP(0).

In 64-bit mode, MOV DRn instructions read or write all 64 bits of a debug register
(operand-size prefixes are ignored). All 64 bits of DRO-DR3 are writable by software.
However, MOV DRn instructions do not check that addresses written to DRO-DR3 are
in the limits of the implementation. Address matching is supported only on valid
addresses generated by the processor implementation.

2.74 Invalidating Caches and TLBs

The processor provides several instructions for use in explicitly invalidating its caches
and TLB entries. The INVD (invalidate cache with no writeback) instruction invali-
dates all data and instruction entries in the internal caches and sends a signal to the
external caches indicating that they should be also be invalidated.

The WBINVD (invalidate cache with writeback) instruction performs the same func-
tion as the INVD instruction, except that it writes back modified lines in its internal
caches to memory before it invalidates the caches. After invalidating the internal
caches, WBINVD signals external caches to write back modified data and invalidate
their contents.

The INVLPG (invalidate TLB entry) instruction invalidates (flushes) the TLB entry for
a specified page.

2.7.5 Controlling the Processor

The HLT (halt processor) instruction stops the processor until an enabled interrupt
(such as NMI or SMI, which are normally enabled), a debug exception, the BINIT#
signal, the INIT# signal, or the RESET# signal is received. The processor generates a
special bus cycle to indicate that the halt mode has been entered.

Hardware may respond to this signal in a number of ways. An indicator light on the
front panel may be turned on. An NMI interrupt for recording diagnostic information
may be generated. Reset initialization may be invoked (note that the BINIT# pin was

Vol.3 2-31

SYSTEM ARCHITECTURE OVERVIEW

introduced with the Pentium Pro processor). If any non-wake events are pending
during shutdown, they will be handled after the wake event from shutdown is
processed (for example, A20M# interrupts).

The LOCK prefix invokes a locked (atomic) read-modify-write operation when modi-
fying a memory operand. This mechanism is used to allow reliable communications
between processors in multiprocessor systems, as described below:

® In the Pentium processor and earlier 1A-32 processors, the LOCK prefix causes
the processor to assert the LOCK# signal during the instruction. This always
causes an explicit bus lock to occur.

® In the Pentium 4, Intel Xeon, and P6 family processors, the locking operation is
handled with either a cache lock or bus lock. If a memory access is cacheable and
affects only a single cache line, a cache lock is invoked and the system bus and
the actual memory location in system memory are not locked during the
operation. Here, other Pentium 4, Intel Xeon, or P6 family processors on the bus
write-back any modified data and invalidate their caches as necessary to
maintain system memory coherency. If the memory access is not cacheable
and/or it crosses a cache line boundary, the processor’s LOCK# signal is asserted
and the processor does not respond to requests for bus control during the locked
operation.

The RSM (return from SMM) instruction restores the processor (from a context
dump) to the state it was in prior to an system management mode (SMM) interrupt.

2.7.6 Reading Performance-Monitoring and Time-Stamp Counters

The RDPMC (read performance-monitoring counter) and RDTSC (read time-stamp
counter) instructions allow application programs to read the processor’s perfor-
mance-monitoring and time-stamp counters, respectively. Processors based on Intel
NetBurst microarchitecture have eighteen 40-bit performance-monitoring counters;
P6 family processors have two 40-bit counters. Intel Atom processors and most of
the processors based on the Intel Core microarchitecture support two types of
performance monitoring counters: two programmable performance counters similar
to those available in the P6 family, and three fixed-function performance monitoring
counters.

The programmable performance counters can support counting either the occurrence
or duration of events. Events that can be monitored on programmable counters
generally are model specific (except for architectural performance events enumer-
ated by CPUID leaf OAH); they may include the number of instructions decoded,
interrupts received, or the number of cache loads. Individual counters can be set up
to monitor different events. Use the system instruction WRMSR to set up values in
IA32_PERFEVTSELO/1 (for Intel Atom, Intel Core 2, Intel Core Duo, and Intel
Pentium M processors), in one of the 45 ESCRs and one of the 18 CCCR MSRs (for
Pentium 4 and Intel Xeon processors); or in the PerfEvtSelO or the PerfEvtSell MSR
(for the P6 family processors). The RDPMC instruction loads the current count from
the selected counter into the EDX:EAX registers.

2-32 Vol.3

SYSTEM ARCHITECTURE OVERVIEW

Fixed-function performance counters record only specific events that are defined in
Chapter 19, “Debugging and Performance Monitoring”, and the width/number of
fixed-function counters are enumerated by CPUID leaf OAH.

The time-stamp counter is a model-specific 64-bit counter that is reset to zero each
time the processor is reset. If not reset, the counter will increment —9.5 x 1016
times per year when the processor is operating at a clock rate of 3GHz. At this
clock frequency, it would take over 190 years for the counter to wrap around. The
RDTSC instruction loads the current count of the time-stamp counter into the
EDX:EAX registers.

See Section 19.12, “Performance Monitoring Overview,” and Section 19.11, “Time-
Stamp Counter,” for more information about the performance monitoring and time-
stamp counters.

The RDTSC instruction was introduced into the 1A-32 architecture with the Pentium
processor. The RDPMC instruction was introduced into the 1A-32 architecture with the
Pentium Pro processor and the Pentium processor with MMX technology. Earlier
Pentium processors have two performance-monitoring counters, but they can be
read only with the RDMSR instruction, and only at privilege level 0.

2.7.6.1 Reading Counters in 64-Bit Mode

In 64-bit mode, RDTSC operates the same as in protected mode. The count in the
time-stamp counter is stored in EDX:EAX (or RDX[31:0]:RAX[31:0] with
RDX[63:32]:RAX[63:32] cleared).

RDPMC requires an index to specify the offset of the performance-monitoring
counter. In 64-bit mode for Pentium 4 or Intel Xeon processor families, the index is
specified in ECX[30:0]. The current count of the performance-monitoring counter is
stored in EDX:EAX (or RDX[31:0]:RAX[31:0] with RDX[63:32]:RAX[63:32]
cleared).

2.7.7 Reading and Writing Model-Specific Registers

The RDMSR (read model-specific register) and WRMSR (write model-specific
register) instructions allow a processor’s 64-bit model-specific registers (MSRs) to be
read and written, respectively. The MSR to be read or written is specified by the value
in the ECX register.

RDMSR reads the value from the specified MSR to the EDX:EAX registers; WRMSR
writes the value in the EDX:EAX registers to the specified MSR. RDMSR and WRMSR
were introduced into the 1A-32 architecture with the Pentium processor.

See Section 9.4, “Model-Specific Registers (MSRs),” for more information.

Vol.3 2-33

SYSTEM ARCHITECTURE OVERVIEW

2.7.7.1 Reading and Writing Model-Specific Registers in 64-Bit Mode

RDMSR and WRMSR require an index to specify the address of an MSR. In 64-bit
mode, the index is 32 bits; it is specified using ECX.

2.7.8 Enabling Processor Extended States

The XSETBYV instruction is required to enable OS support of individual processor
extended states in the XFEATURE_ENABLED_MASK register (see Section 2.6).

2-34 Vol.3

CHAPTER 3
PROTECTED-MODE MEMORY MANAGEMENT

This chapter describes the Intel 64 and 1A-32 architecture’s protected-mode memory
management facilities, including the physical memory requirements, segmentation
mechanism, and paging mechanism.

See also: Chapter 5, “Protection” (for a description of the processor’s protection
mechanism) and Chapter 16, “8086 Emulation” (for a description of memory
addressing protection in real-address and virtual-8086 modes).

3.1 MEMORY MANAGEMENT OVERVIEW

The memory management facilities of the 1A-32 architecture are divided into two
parts: segmentation and paging. Segmentation provides a mechanism of isolating
individual code, data, and stack modules so that multiple programs (or tasks) can
run on the same processor without interfering with one another. Paging provides a
mechanism for implementing a conventional demand-paged, virtual-memory system
where sections of a program’s execution environment are mapped into physical
memory as needed. Paging can also be used to provide isolation between multiple
tasks. When operating in protected mode, some form of segmentation must be used.
There is no mode bit to disable segmentation. The use of paging, however, is
optional.

These two mechanisms (segmentation and paging) can be configured to support
simple single-program (or single-task) systems, multitasking systems, or multiple-
processor systems that used shared memory.

As shown in Figure 3-1, segmentation provides a mechanism for dividing the
processor’s addressable memory space (called the linear address space) into
smaller protected address spaces called segments. Segments can be used to hold
the code, data, and stack for a program or to hold system data structures (such as a
TSS or LDT). If more than one program (or task) is running on a processor, each
program can be assigned its own set of segments. The processor then enforces the
boundaries between these segments and insures that one program does not interfere
with the execution of another program by writing into the other program’s segments.
The segmentation mechanism also allows typing of segments so that the operations
that may be performed on a particular type of segment can be restricted.

All the segments in a system are contained in the processor’s linear address space.

To locate a byte in a particular segment, a logical address (also called a far pointer)
must be provided. A logical address consists of a segment selector and an offset. The
segment selector is a unique identifier for a segment. Among other things it provides
an offset into a descriptor table (such as the global descriptor table, GDT) to a data
structure called a segment descriptor. Each segment has a segment descriptor, which
specifies the size of the segment, the access rights and privilege level for the

Vol.3 3-1

PROTECTED-MODE MEMORY MANAGEMENT

segment, the segment type, and the location of the first byte of the segment in the
linear address space (called the base address of the segment). The offset part of the
logical address is added to the base address for the segment to locate a byte within
the segment. The base address plus the offset thus forms a linear address in the
processor’s linear address space.

Logical Address
(or Far Pointer)

Segment l

Selector Offset Linear Address
| | | | Space
. Linear Address
Global Descriptor - .
Table (GDT) Dir | Table | Offset | i%?lecsasl
Space
Segment
Segment Page Table Page
Descripor— | | (|| |1 1| -—="""7
Bl I I N R il Page Directory Phy. Addr.
ﬂ|—> Lin. Addr. Enity S
* Entry >

SegmentJ

Base Address

|~ Page

}7 Segmentation I Paging I

Figure 3-1. Segmentation and Paging

If paging is not used, the linear address space of the processor is mapped directly
into the physical address space of processor. The physical address space is defined as
the range of addresses that the processor can generate on its address bus.

Because multitasking computing systems commonly define a linear address space
much larger than it is economically feasible to contain all at once in physical memory,
some method of “virtualizing” the linear address space is needed. This virtualization
of the linear address space is handled through the processor’s paging mechanism.

Paging supports a “virtual memory” environment where a large linear address space
is simulated with a small amount of physical memory (RAM and ROM) and some disk

3-2 Vol.3

PROTECTED-MODE MEMORY MANAGEMENT

storage. When using paging, each segment is divided into pages (typically 4 KBytes
each in size), which are stored either in physical memory or on the disk. The oper-
ating system or executive maintains a page directory and a set of page tables to keep
track of the pages. When a program (or task) attempts to access an address location
in the linear address space, the processor uses the page directory and page tables to
translate the linear address into a physical address and then performs the requested
operation (read or write) on the memory location.

If the page being accessed is not currently in physical memory, the processor inter-
rupts execution of the program (by generating a page-fault exception). The oper-
ating system or executive then reads the page into physical memory from the disk
and continues executing the program.

When paging is implemented properly in the operating-system or executive, the
swapping of pages between physical memory and the disk is transparent to the
correct execution of a program. Even programs written for 16-bit 1A-32 processors
can be paged (transparently) when they are run in virtual-8086 mode.

3.2 USING SEGMENTS

The segmentation mechanism supported by the 1A-32 architecture can be used to
implement a wide variety of system designs. These designs range from flat models
that make only minimal use of segmentation to protect programs to multi-
segmented models that employ segmentation to create a robust operating environ-
ment in which multiple programs and tasks can be executed reliably.

The following sections give several examples of how segmentation can be employed
in a system to improve memory management performance and reliability.

3.2.1 Basic Flat Model

The simplest memory model for a system is the basic “flat model,” in which the oper-
ating system and application programs have access to a continuous, unsegmented
address space. To the greatest extent possible, this basic flat model hides the
segmentation mechanism of the architecture from both the system designer and the
application programmer.

To implement a basic flat memory model with the 1A-32 architecture, at least two
segment descriptors must be created, one for referencing a code segment and one
for referencing a data segment (see Figure 3-2). Both of these segments, however,
are mapped to the entire linear address space: that is, both segment descriptors
have the same base address value of O and the same segment limit of 4 GBytes. By
setting the segment limit to 4 GBytes, the segmentation mechanism is kept from
generating exceptions for out of limit memory references, even if no physical
memory resides at a particular address. ROM (EPROM) is generally located at the top
of the physical address space, because the processor begins execution at

Vol.3 3-3

PROTECTED-MODE MEMORY MANAGEMENT

FFFF_FFFOH. RAM (DRAM) is placed at the bottom of the address space because the
initial base address for the DS data segment after reset initialization is 0.

3.2.2 Protected Flat Model

The protected flat model is similar to the basic flat model, except the segment limits
are set to include only the range of addresses for which physical memory actually
exists (see Figure 3-3). A general-protection exception (#GP) is then generated on
any attempt to access nonexistent memory. This model provides a minimum level of
hardware protection against some kinds of program bugs.

Linear Address Space
(or Physical Memory)
Segment Code | FFFFFFFFH

Registers

Code- and Data-Segment
Descriptors

Not Present
I I
Access Limit o Data and
Base Address | - Stack 0
Figure 3-2. Flat Model
Segment Linear Address Space
Descriptors (or Physical Memory)
Segment —
Registers Access Limt [——> Code FEFFEFEFH
Base Address >
Not Present
.
Memory 1/O
e T T
Data and
Stack

GS

> 0

Figure 3-3. Protected Flat Model

3-4 Vol.3

PROTECTED-MODE MEMORY MANAGEMENT

More complexity can be added to this protected flat model to provide more protec-
tion. For example, for the paging mechanism to provide isolation between user and
supervisor code and data, four segments need to be defined: code and data
segments at privilege level 3 for the user, and code and data segments at privilege
level O for the supervisor. Usually these segments all overlay each other and start at
address 0 in the linear address space. This flat segmentation model along with a
simple paging structure can protect the operating system from applications, and by
adding a separate paging structure for each task or process, it can also protect appli-
cations from each other. Similar designs are used by several popular multitasking
operating systems.

3.23 Multi-Segment Model

A multi-segment model (such as the one shown in Figure 3-4) uses the full capabili-
ties of the segmentation mechanism to provided hardware enforced protection of
code, data structures, and programs and tasks. Here, each program (or task) is given
its own table of segment descriptors and its own segments. The segments can be
completely private to their assigned programs or shared among programs. Access to
all segments and to the execution environments of individual programs running on
the system is controlled by hardware.

Vol.3 3-5

PROTECTED-MODE MEMORY MANAGEMENT

Segment Segment Linear Address Space
Registers Descriptors (or Physical Memory)
IE - Access \ Limit
Base Address Stack
Access \ Limit

H
n
Y

Base Address

Access \ Limit
Base Address Code

H
0]
\i

Access \ Limit
Base Address

H
n
Y

Data

Access \ Limit
Base Address

H
n
Y

Data

Access \ Limit
Base Address

H
»
Y
Y

— Data
Access \ Limit

Base Address

Access \ Limit
Base Address

— Data
Access \ Limit

Base Address

Access | Limit 4

Base Address ST
Figure 3-4. Multi-Segment Model

Access checks can be used to protect not only against referencing an address outside
the limit of a segment, but also against performing disallowed operations in certain
segments. For example, since code segments are designated as read-only segments,
hardware can be used to prevent writes into code segments. The access rights infor-
mation created for segments can also be used to set up protection rings or levels.
Protection levels can be used to protect operating-system procedures from unautho-
rized access by application programs.

3.24 Segmentation in IA-32e Mode

In 1A-32e mode of Intel 64 architecture, the effects of segmentation depend on
whether the processor is running in compatibility mode or 64-bit mode. In compati-
bility mode, segmentation functions just as it does using legacy 16-bit or 32-bit
protected mode semantics.

3-6 Vol.3

PROTECTED-MODE MEMORY MANAGEMENT

In 64-bit mode, segmentation is generally (but not completely) disabled, creating a
flat 64-bit linear-address space. The processor treats the segment base of CS, DS,
ES, SS as zero, creating a linear address that is equal to the effective address. The FS
and GS segments are exceptions. These segment registers (which hold the segment
base) can be used as an additional base registers in linear address calculations. They
facilitate addressing local data and certain operating system data structures.

Note that the processor does not perform segment limit checks at runtime in 64-bit
mode.

3.25 Paging and Segmentation

Paging can be used with any of the segmentation models described in Figures 3-2,
3-3, and 3-4. The processor’s paging mechanism divides the linear address space
(into which segments are mapped) into pages (as shown in Figure 3-1). These linear-
address-space pages are then mapped to pages in the physical address space. The
paging mechanism offers several page-level protection facilities that can be used
with or instead of the segment-protection facilities. For example, it lets read-write
protection be enforced on a page-by-page basis. The paging mechanism also
provides two-level user-supervisor protection that can also be specified on a page-
by-page basis.

3.3 PHYSICAL ADDRESS SPACE

In protected mode, the 1A-32 architecture provides a normal physical address space
of 4 GBytes (232 bytes). This is the address space that the processor can address on
its address bus. This address space is flat (unsegmented), with addresses ranging
continuously from O to FFFFFFFFH. This physical address space can be mapped to
read-write memory, read-only memory, and memory mapped 1/0. The memory
mapping facilities described in this chapter can be used to divide this physical
memory up into segments and/or pages.

Starting with the Pentium Pro processor, the 1A-32 architecture also supports an
extension of the physical address space to 236 bytes (64 GBytes); with a maximum
physical address of FFFFFFFFFH. This extension is invoked in either of two ways:

® Using the physical address extension (PAE) flag, located in bit 5 of control
register CR4.

® Using the 36-bit page size extension (PSE-36) feature (introduced in the Pentium
Il processors).

Physical address support has since been extended beyond 36 bits. See Chapter 4,
“Paging” for more information about 36-bit physical addressing.

Vol.3 3-7

PROTECTED-MODE MEMORY MANAGEMENT

3.3.1 Intel® 64 Processors and Physical Address Space

On processors that support Intel 64 architecture (CPUID.80000001:EDX[29] = 1),
the size of the physical address range is implementation-specific and indicated by
CPUID.80000008H:EAX[bits 7-0].

For the format of information returned in EAX, see “CPUID—CPU lIdentification” in
Chapter 3 of the Intel® 64 and 1A-32 Architectures Software Developer’s Manual,
Volume 2A. See also: Chapter 4, “Paging.”

3.4 LOGICAL AND LINEAR ADDRESSES

At the system-architecture level in protected mode, the processor uses two stages of
address translation to arrive at a physical address: logical-address translation and
linear address space paging.

Even with the minimum use of segments, every byte in the processor’s address
space is accessed with a logical address. A logical address consists of a 16-bit
segment selector and a 32-bit offset (see Figure 3-5). The segment selector identi-
fies the segment the byte is located in and the offset specifies the location of the byte
in the segment relative to the base address of the segment.

The processor translates every logical address into a linear address. A linear address
is a 32-bit address in the processor’s linear address space. Like the physical address
space, the linear address space is a flat (unsegmented), 232-byte address space,
with addresses ranging from O to FFFFFFFFH. The linear address space contains all
the segments and system tables defined for a system.

To translate a logical address into a linear address, the processor does the following:

1. Uses the offset in the segment selector to locate the segment descriptor for the
segment in the GDT or LDT and reads it into the processor. (This step is needed
only when a new segment selector is loaded into a segment register.)

2. Examines the segment descriptor to check the access rights and range of the
segment to insure that the segment is accessible and that the offset is within the
limits of the segment.

3. Adds the base address of the segment from the segment descriptor to the offset
to form a linear address.

3-8 Vol.3

PROTECTED-MODE MEMORY MANAGEMENT

15 0 31(63) 0
Seg. Selector | Offset (Effective Address) |

Logical
Address

Descriptor Table

Segment

Base Address
M > +
Descriptor .

31(63) 0
| Linear Address |

Figure 3-5. Logical Address to Linear Address Translation

If paging is not used, the processor maps the linear address directly to a physical
address (that is, the linear address goes out on the processor’s address bus). If the
linear address space is paged, a second level of address translation is used to trans-
late the linear address into a physical address.

See also: Chapter 4, “Paging.”

3.4.1 Logical Address Translation in IA-32e Mode

In 1A-32e mode, an Intel 64 processor uses the steps described above to translate a
logical address to a linear address. In 64-bit mode, the offset and base address of the
segment are 64-bits instead of 32 bits. The linear address format is also 64 bits wide
and is subject to the canonical form requirement.

Each code segment descriptor provides an L bit. This bit allows a code segment to
execute 64-bit code or legacy 32-bit code by code segment.

3.4.2 Segment Selectors

A segment selector is a 16-bit identifier for a segment (see Figure 3-6). It does not
point directly to the segment, but instead points to the segment descriptor that
defines the segment. A segment selector contains the following items:

Index (Bits 3 through 15) — Selects one of 8192 descriptors in the GDT or
LDT. The processor multiplies the index value by 8 (the number of
bytes in a segment descriptor) and adds the result to the base address
of the GDT or LDT (from the GDTR or LDTR register, respectively).

Vol.3 3-9

PROTECTED-MODE MEMORY MANAGEMENT

TI1 (table indicator) flag
(Bit 2) — Specifies the descriptor table to use: clearing this flag
selects the GDT; setting this flag selects the current LDT.

15 3210
Index MRPL‘

Table Indicator
0=GDT
1=LDT

Requested Privilege Level (RPL)

Figure 3-6. Segment Selector

Requested Privilege Level (RPL)
(Bits 0 and 1) — Specifies the privilege level of the selector. The priv-
ilege level can range from 0 to 3, with O being the most privileged
level. See Section 5.5, “Privilege Levels”, for a description of the rela-
tionship of the RPL to the CPL of the executing program (or task) and
the descriptor privilege level (DPL) of the descriptor the segment
selector points to.

The first entry of the GDT is not used by the processor. A segment selector that points
to this entry of the GDT (that is, a segment selector with an index of 0 and the Tl flag
set to 0) is used as a “null segment selector.” The processor does not generate an
exception when a segment register (other than the CS or SS registers) is loaded with
a null selector. It does, however, generate an exception when a segment register
holding a null selector is used to access memory. A null selector can be used to
initialize unused segment registers. Loading the CS or SS register with a null
segment selector causes a general-protection exception (#GP) to be generated.

Segment selectors are visible to application programs as part of a pointer variable,
but the values of selectors are usually assigned or modified by link editors or linking
loaders, not application programs.

343 Segment Registers

To reduce address translation time and coding complexity, the processor provides
registers for holding up to 6 segment selectors (see Figure 3-7). Each of these
segment registers support a specific kind of memory reference (code, stack, or
data). For virtually any kind of program execution to take place, at least the code-
segment (CS), data-segment (DS), and stack-segment (SS) registers must be
loaded with valid segment selectors. The processor also provides three additional
data-segment registers (ES, FS, and GS), which can be used to make additional data
segments available to the currently executing program (or task).

3-10 Vol.3

PROTECTED-MODE MEMORY MANAGEMENT

For a program to access a segment, the segment selector for the segment must have
been loaded in one of the segment registers. So, although a system can define thou-
sands of segments, only 6 can be available for immediate use. Other segments can
be made available by loading their segment selectors into these registers during
program execution.

Visible Part Hidden Part
Segment Selector Base Address, Limit, Access Information | CS
SS
DS
ES
FS
GS

Figure 3-7. Segment Registers

Every segment register has a “visible” part and a “hidden” part. (The hidden part is
sometimes referred to as a “descriptor cache” or a “shadow register.”) When a
segment selector is loaded into the visible part of a segment register, the processor
also loads the hidden part of the segment register with the base address, segment
limit, and access control information from the segment descriptor pointed to by the
segment selector. The information cached in the segment register (visible and
hidden) allows the processor to translate addresses without taking extra bus cycles
to read the base address and limit from the segment descriptor. In systems in which
multiple processors have access to the same descriptor tables, it is the responsibility
of software to reload the segment registers when the descriptor tables are modified.
If this is not done, an old segment descriptor cached in a segment register might be
used after its memory-resident version has been modified.

Two kinds of load instructions are provided for loading the segment registers:

1. Direct load instructions such as the MOV, POP, LDS, LES, LSS, LGS, and LFS
instructions. These instructions explicitly reference the segment registers.

2. Implied load instructions such as the far pointer versions of the CALL, JMP, and
RET instructions, the SYSENTER and SYSEXIT instructions, and the IRET, INTn,
INTO and INT3 instructions. These instructions change the contents of the CS
register (and sometimes other segment registers) as an incidental part of their
operation.

The MOV instruction can also be used to store visible part of a segment register in a
general-purpose register.

Vol.3 3-11

PROTECTED-MODE MEMORY MANAGEMENT

344 Segment Loading Instructions in IA-32e Mode

Because ES, DS, and SS segment registers are not used in 64-bit mode, their fields
(base, limit, and attribute) in segment descriptor registers are ignored. Some forms
of segment load instructions are also invalid (for example, LDS, POP ES). Address
calculations that reference the ES, DS, or SS segments are treated as if the segment
base is zero.

The processor checks that all linear-address references are in canonical form instead
of performing limit checks. Mode switching does not change the contents of the

segment registers or the associated descriptor registers. These registers are also not
changed during 64-bit mode execution, unless explicit segment loads are performed.

In order to set up compatibility mode for an application, segment-load instructions
(MQV to Sreg, POP Sreg) work normally in 64-bit mode. An entry is read from the
system descriptor table (GDT or LDT) and is loaded in the hidden portion of the
segment descriptor register. The descriptor-register base, limit, and attribute fields
are all loaded. However, the contents of the data and stack segment selector and the
descriptor registers are ignored.

When FS and GS segment overrides are used in 64-bit mode, their respective base
addresses are used in the linear address calculation: (FS or GS).base + index +
displacement. FS.base and GS.base are then expanded to the full linear-address size
supported by the implementation. The resulting effective address calculation can
wrap across positive and negative addresses; the resulting linear address must be
canonical.

In 64-bit mode, memory accesses using FS-segment and GS-segment overrides are
not checked for a runtime limit nor subjected to attribute-checking. Normal segment
loads (MOV to Sreg and POP Sreg) into FS and GS load a standard 32-bit base value
in the hidden portion of the segment descriptor register. The base address bits above
the standard 32 bits are cleared to O to allow consistency for implementations that
use less than 64 bits.

The hidden descriptor register fields for FS.base and GS.base are physically mapped
to MSRs in order to load all address bits supported by a 64-bit implementation. Soft-
ware with CPL = O (privileged software) can load all supported linear-address bits
into FS.base or GS.base using WRMSR. Addresses written into the 64-bit FS.base and
GS.base registers must be in canonical form. A WRMSR instruction that attempts to
write a non-canonical address to those registers causes a #GP fault.

When in compatibility mode, FS and GS overrides operate as defined by 32-bit mode
behavior regardless of the value loaded into the upper 32 linear-address bits of the
hidden descriptor register base field. Compatibility mode ignores the upper 32 bits
when calculating an effective address.

A new 64-bit mode instruction, SWAPGS, can be used to load GS base. SWAPGS
exchanges the kernel data structure pointer from the 1A32_KernelGSbase MSR with
the GS base register. The kernel can then use the GS prefix on normal memory refer-
ences to access the kernel data structures. An attempt to write a non-canonical value
(using WRMSR) to the I1A32_KernelGSBase MSR causes a #GP fault.

3-12 Vol.3

3.4.5

PROTECTED-MODE MEMORY MANAGEMENT

Segment Descriptors

A segment descriptor is a data structure in a GDT or LDT that provides the processor
with the size and location of a segment, as well as access control and status informa-
tion. Segment descriptors are typically created by compilers, linkers, loaders, or the
operating system or executive, but not application programs. Figure 3-8 illustrates
the general descriptor format for all types of segment descriptors.

31 242322212019 1615141312 11 8 7 0
D| |A| Seg. D
Base 31:24 G|/ |L|v| Limt [Pl p |S| Type Base 23:16 4
B| [L| 19:16 L
31 16 15 0
Base Address 15:00 Segment Limit 15:00 0
L — 64-bit code segment (IA-32e mode only)
AVL — Available for use by system software
BASE — Segment base address
D/B — Default operation size (0 = 16-bit segment; 1 = 32-bit segment)
DPL — Descriptor privilege level
G — Granularity
LIMIT — Segment Limit
P — Segment present
S — Descriptor type (0 = system; 1 = code or data)
TYPE — Segment type

Figure 3-8. Segment Descriptor

The flags and fields in a segment descriptor are as follows:

Segment limit field

Specifies the size of the segment. The processor puts together the
two segment limit fields to form a 20-bit value. The processor inter-
prets the segment limit in one of two ways, depending on the setting
of the G (granularity) flag:

= If the granularity flag is clear, the segment size can range from
1 byte to 1 MByte, in byte increments.

= If the granularity flag is set, the segment size can range from
4 KBytes to 4 GBytes, in 4-KByte increments.

The processor uses the segment limit in two different ways,
depending on whether the segment is an expand-up or an expand-
down segment. See Section 3.4.5.1, “Code- and Data-Segment
Descriptor Types”, for more information about segment types. For
expand-up segments, the offset in a logical address can range from O

Vol.3 3-13

PROTECTED-MODE MEMORY MANAGEMENT

to the segment limit. Offsets greater than the segment limit generate
general-protection exceptions (#GP). For expand-down segments,
the segment limit has the reverse function; the offset can range from
the segment limit to FFFFFFFFH or FFFFH, depending on the setting of
the B flag. Offsets less than the segment limit generate general-
protection exceptions. Decreasing the value in the segment limit field
for an expand-down segment allocates new memory at the bottom of
the segment's address space, rather than at the top. 1A-32 architec-
ture stacks always grow downwards, making this mechanism conve-
nient for expandable stacks.

Base address fields

Type field

Defines the location of byte O of the segment within the 4-GByte
linear address space. The processor puts together the three base
address fields to form a single 32-bit value. Segment base addresses
should be aligned to 16-byte boundaries. Although 16-byte alignment
is not required, this alignment allows programs to maximize perfor-
mance by aligning code and data on 16-byte boundaries.

Indicates the segment or gate type and specifies the kinds of access
that can be made to the segment and the direction of growth. The
interpretation of this field depends on whether the descriptor type flag
specifies an application (code or data) descriptor or a system
descriptor. The encoding of the type field is different for code, data,
and system descriptors (see Figure 5-1). See Section 3.4.5.1, “Code-
and Data-Segment Descriptor Types”, for a description of how this
field is used to specify code and data-segment types.

S (descriptor type) flag

Specifies whether the segment descriptor is for a system segment
(S flag is clear) or a code or data segment (S flag is set).

DPL (descriptor privilege level) field

Specifies the privilege level of the segment. The privilege level can
range from O to 3, with O being the most privileged level. The DPL is
used to control access to the segment. See Section 5.5, “Privilege
Levels”, for a description of the relationship of the DPL to the CPL of
the executing code segment and the RPL of a segment selector.

P (segment-present) flag

3-14 Vol.3

Indicates whether the segment is present in memory (set) or not
present (clear). If this flag is clear, the processor generates a
segment-not-present exception (#NP) when a segment selector that
points to the segment descriptor is loaded into a segment register.
Memory management software can use this flag to control which
segments are actually loaded into physical memory at a given time. It
offers a control in addition to paging for managing virtual memory.

Figure 3-9 shows the format of a segment descriptor when the
segment-present flag is clear. When this flag is clear, the operating
system or executive is free to use the locations marked “Available” to

PROTECTED-MODE MEMORY MANAGEMENT

store its own data, such as information regarding the whereabouts of
the missing segment.

D/B (default operation size/default stack pointer size and/or upper bound)
flag

Performs different functions depending on whether the segment
descriptor is an executable code segment, an expand-down data
segment, or a stack segment. (This flag should always be set to 1 for
32-bit code and data segments and to O for 16-bit code and data
segments.)

Executable code segment. The flag is called the D flag and it
indicates the default length for effective addresses and operands
referenced by instructions in the segment. If the flag is set, 32-bit
addresses and 32-bit or 8-bit operands are assumed; if it is clear,
16-bit addresses and 16-bit or 8-bit operands are assumed.

The instruction prefix 66H can be used to select an operand size
other than the default, and the prefix 67H can be used select an
address size other than the default.

Stack segment (data segment pointed to by the SS
register). The flag is called the B (big) flag and it specifies the
size of the stack pointer used for implicit stack operations (such as
pushes, pops, and calls). If the flag is set, a 32-bit stack pointer is
used, which is stored in the 32-bit ESP register; if the flag is clear,
a 16-bit stack pointer is used, which is stored in the 16-bit SP
register. If the stack segment is set up to be an expand-down data
segment (described in the next paragraph), the B flag also
specifies the upper bound of the stack segment.

Expand-down data segment. The flag is called the B flag and it
specifies the upper bound of the segment. If the flag is set, the
upper bound is FFFFFFFFH (4 GBytes); if the flag is clear, the
upper bound is FFFFH (64 KBytes).

31 16 15 14 1312 11 87 0
Available 0| P [S| Type Available 4
L
31 0
Available 0

Figure 3-9. Segment Descriptor When Segment-Present Flag Is Clear

Vol.3 3-15

PROTECTED-MODE MEMORY MANAGEMENT

G (granularity) flag
Determines the scaling of the segment limit field. When the
granularity flag is clear, the segment limit is interpreted in byte
units; when flag is set, the segment limit is interpreted in
4-KByte units. (This flag does not affect the granularity of the
base address; it is always byte granular.) When the granularity
flag is set, the twelve least significant bits of an offset are not
tested when checking the offset against the segment limit. For
example, when the granularity flag is set, a limit of O results in
valid offsets from O to 4095.

L (64-bit code segment) flag
In 1A-32e mode, bit 21 of the second doubleword of the segment
descriptor indicates whether a code segment contains native 64-bit
code. A value of 1 indicates instructions in this code segment are
executed in 64-bit mode. A value of 0 indicates the instructions in this
code segment are executed in compatibility mode. If L-bit is set, then
D-bit must be cleared. When not in 1A-32e mode or for non-code
segments, bit 21 is reserved and should always be set to 0.

Available and reserved bits
Bit 20 of the second doubleword of the segment descriptor is available
for use by system software.

3.4.5.1 Code- and Data-Segment Descriptor Types

When the S (descriptor type) flag in a segment descriptor is set, the descriptor is for
either a code or a data segment. The highest order bit of the type field (bit 11 of the
second double word of the segment descriptor) then determines whether the
descriptor is for a data segment (clear) or a code segment (set).

For data segments, the three low-order bits of the type field (bits 8, 9, and 10) are
interpreted as accessed (A), write-enable (W), and expansion-direction (E). See
Table 3-1 for a description of the encoding of the bits in the type field for code and
data segments. Data segments can be read-only or read/write segments, depending
on the setting of the write-enable bit.

3-16 Vol.3

PROTECTED-MODE MEMORY MANAGEMENT

Table 3-1. Code- and Data-Segment Types

Type Field Descriptor Description
Decimal | 11 | 10| 9 | 8 Type
€ W A
0 0 0 0 0 Data Read-Only
1 0 0 0 1 Data Read-Only, accessed
2 0 0 1 0 Data Read/Write
3 0 0 1 1 Data Read/Write, accessed
4 0 1 0 0 Data Read-Only, expand-down
5 0 1 0 1 Data Read-Only, expand-down, accessed
6 0 1 1 0 Data Read/Write, expand-down
7 0 1 1 1 Data Read/Write, expand-down, accessed
C R A
8 1 0 0 0 Code Execute-Only
1 0 0 1 Code Execute-Only, accessed

10 1 0 1 0 Code Execute/Read
11 1 0 1 1 Code Execute/Read, accessed
12 1 1 0 0 Code Execute-Only, conforming
13 1 1 0 1 Code Execute-Only, conforming, accessed
14 1 1 1 0 Code Execute/Read, conforming
15 1 1 1 1 Code Execute/Read, conforming, accessed

Stack segments are data segments which must be read/write segments. Loading the
SS register with a segment selector for a nonwritable data segment generates a
general-protection exception (#GP). If the size of a stack segment needs to be
changed dynamically, the stack segment can be an expand-down data segment
(expansion-direction flag set). Here, dynamically changing the segment limit causes
stack space to be added to the bottom of the stack. If the size of a stack segment is
intended to remain static, the stack segment may be either an expand-up or expand-
down type.

The accessed bit indicates whether the segment has been accessed since the last
time the operating-system or executive cleared the bit. The processor sets this bit
whenever it loads a segment selector for the segment into a segment register,
assuming that the type of memory that contains the segment descriptor supports
processor writes. The bit remains set until explicitly cleared. This bit can be used both
for virtual memory management and for debugging.

Vol.3 3-17

PROTECTED-MODE MEMORY MANAGEMENT

For code segments, the three low-order bits of the type field are interpreted as
accessed (A), read enable (R), and conforming (C). Code segments can be execute-
only or execute/read, depending on the setting of the read-enable bit. An
execute/read segment might be used when constants or other static data have been
placed with instruction code in a ROM. Here, data can be read from the code segment
either by using an instruction with a CS override prefix or by loading a segment
selector for the code segment in a data-segment register (the DS, ES, FS, or GS
registers). In protected mode, code segments are not writable.

Code segments can be either conforming or nonconforming. A transfer of execution
into a more-privileged conforming segment allows execution to continue at the
current privilege level. A transfer into a nonconforming segment at a different privi-
lege level results in a general-protection exception (#GP), unless a call gate or task
gate is used (see Section 5.8.1, “Direct Calls or Jumps to Code Segments”, for more
information on conforming and nonconforming code segments). System utilities that
do not access protected facilities and handlers for some types of exceptions (such as,
divide error or overflow) may be loaded in conforming code segments. Utilities that
need to be protected from less privileged programs and procedures should be placed
in nonconforming code segments.

NOTE

Execution cannot be transferred by a call or a jump to a less-
privileged (numerically higher privilege level) code segment,
regardless of whether the target segment is a conforming or noncon-
forming code segment. Attempting such an execution transfer will
result in a general-protection exception.

All data segments are nonconforming, meaning that they cannot be accessed by less
privileged programs or procedures (code executing at numerically high privilege
levels). Unlike code segments, however, data segments can be accessed by more
privileged programs or procedures (code executing at numerically lower privilege
levels) without using a special access gate.

If the segment descriptors in the GDT or an LDT are placed in ROM, the processor can
enter an indefinite loop if software or the processor attempts to update (write to) the
ROM-based segment descriptors. To prevent this problem, set the accessed bits for
all segment descriptors placed in a ROM. Also, remove operating-system or executive
code that attempts to modify segment descriptors located in ROM.

3.5 SYSTEM DESCRIPTOR TYPES

When the S (descriptor type) flag in a segment descriptor is clear, the descriptor type
is a system descriptor. The processor recognizes the following types of system
descriptors:

® Local descriptor-table (LDT) segment descriptor.

3-18 Vol.3

PROTECTED-MODE MEMORY MANAGEMENT

® Task-state segment (TSS) descriptor.

® Call-gate descriptor.
® Interrupt-gate descriptor.
® Trap-gate descriptor.

® Task-gate descriptor.

These descriptor types fall into two categories: system-segment descriptors and gate
descriptors. System-segment descriptors point to system segments (LDT and TSS
segments). Gate descriptors are in themselves “gates,” which hold pointers to proce-
dure entry points in code segments (call, interrupt, and trap gates) or which hold
segment selectors for TSS’s (task gates).

Table 3-2 shows the encoding of the type field for system-segment descriptors and
gate descriptors. Note that system descriptors in 1A-32e mode are 16 bytes instead

of 8 bytes.
Table 3-2. System-Segment and Gate-Descriptor Types
Type Field Description
Decimal 11 |10 | 9 32-Bit Mode IA-32e Mode
0 0 0 0 0 | Reserved Upper 8 byte of an 16-
byte descriptor

1 0 0 0 1 | 16-bit TSS (Available) Reserved

2 0 0 1 0 |LDT LDT

3 0 0 1 1 | 16-bit TSS (Busy) Reserved

4 0 1 0 0 | 16-bit Call Gate Reserved

5 0 1 0 1 | Task Gate Reserved

6 0 1 1 0 | 16-bit Interrupt Gate Reserved

7 0 1 1 1 16-bit Trap Gate Reserved

8 1 0 0 0 | Reserved Reserved

9 1 0 0 1 | 32-bit TSS (Available) 64-bit TSS (Available)
10 1 0 1 0 | Reserved Reserved
11 1 0 1 1 | 32-bit TSS (Busy) 64-bit TSS (Busy)
12 1 1 0 0 | 32-bit Call Gate 64-bit Call Gate
13 1 1 0 1 | Reserved Reserved
14 1 1 1 0 | 32-bit Interrupt Gate 64-bit Interrupt Gate
15 1 1 1 1 | 32-bit Trap Gate 64-bit Trap Gate

Vol.3 3-19

PROTECTED-MODE MEMORY MANAGEMENT

See also: Section 3.5.1, “Segment Descriptor Tables”, and Section 7.2.2, “TSS
Descriptor” (for more information on the system-segment descriptors); see Section
5.8.3, “Call Gates”, Section 6.11, “IDT Descriptors”, and Section 7.2.5, “Task-Gate
Descriptor” (for more information on the gate descriptors).

3.5.1 Segment Descriptor Tables

A segment descriptor table is an array of segment descriptors (see Figure 3-10). A
descriptor table is variable in length and can contain up to 8192 (213) 8-byte descrip-
tors. There are two kinds of descriptor tables:

® The global descriptor table (GDT)
® The local descriptor tables (LDT)

Global Local
Descriptor Descriptor
Table (GDT) Table (LDT)
i ¢ ¢
I TI=0 TI=1
Segment
Selector
56 56
48 48
40 40
32 32
24 24
16 16
8 8
First Descriptor in
GDT is Not Used 0 0
GDTR Register LDTR Register
Limit | Limit
| Base Address Base Address
Seg. Sel.

Figure 3-10. Global and Local Descriptor Tables

3-20 Vol. 3

PROTECTED-MODE MEMORY MANAGEMENT

Each system must have one GDT defined, which may be used for all programs and
tasks in the system. Optionally, one or more LDTs can be defined. For example, an
LDT can be defined for each separate task being run, or some or all tasks can share
the same LDT.

The GDT is not a segment itself; instead, it is a data structure in linear address space.
The base linear address and limit of the GDT must be loaded into the GDTR register
(see Section 2.4, “Memory-Management Registers”). The base addresses of the GDT
should be aligned on an eight-byte boundary to yield the best processor perfor-
mance. The limit value for the GDT is expressed in bytes. As with segments, the limit
value is added to the base address to get the address of the last valid byte. A limit
value of O results in exactly one valid byte. Because segment descriptors are always
8 bytes long, the GDT limit should always be one less than an integral multiple of
eight (that is, 8N — 1).

The first descriptor in the GDT is not used by the processor. A segment selector to
this “null descriptor” does not generate an exception when loaded into a data-
segment register (DS, ES, FS, or GS), but it always generates a general-protection
exception (#GP) when an attempt is made to access memory using the descriptor. By
initializing the segment registers with this segment selector, accidental reference to
unused segment registers can be guaranteed to generate an exception.

The LDT is located in a system segment of the LDT type. The GDT must contain a
segment descriptor for the LDT segment. If the system supports multiple LDTs, each
must have a separate segment selector and segment descriptor in the GDT. The
segment descriptor for an LDT can be located anywhere in the GDT. See Section 3.5,
“System Descriptor Types”, information on the LDT segment-descriptor type.

An LDT is accessed with its segment selector. To eliminate address translations when
accessing the LDT, the segment selector, base linear address, limit, and access rights
of the LDT are stored in the LDTR register (see Section 2.4, “Memory-Management
Registers”).

When the GDTR register is stored (using the SGDT instruction), a 48-bit “pseudo-
descriptor” is stored in memory (see top diagram in Figure 3-11). To avoid alignment
check faults in user mode (privilege level 3), the pseudo-descriptor should be located
at an odd word address (that is, address MOD 4 is equal to 2). This causes the
processor to store an aligned word, followed by an aligned doubleword. User-mode
programs normally do not store pseudo-descriptors, but the possibility of generating
an alignment check fault can be avoided by aligning pseudo-descriptors in this way.
The same alignment should be used when storing the IDTR register using the SIDT
instruction. When storing the LDTR or task register (using the SLTR or STR instruc-
tion, respectively), the pseudo-descriptor should be located at a doubleword address
(that is, address MOD 4 is equal to 0).

Vol.3 3-21

PROTECTED-MODE MEMORY MANAGEMENT

47 16 15 0
| 32-bit Base Address | Limit |

79 16 15 0
| 64-bitBase Address | Limit |

Figure 3-11. Pseudo-Descriptor Formats

3.5.2 Segment Descriptor Tables in IA-32e Mode

In 1A-32e mode, a segment descriptor table can contain up to 8192 (213) 8-byte
descriptors. An entry in the segment descriptor table can be 8 bytes. System descrip-
tors are expanded to 16 bytes (occupying the space of two entries).

GDTR and LDTR registers are expanded to hold 64-bit base address. The corre-
sponding pseudo-descriptor is 80 bits. (see the bottom diagram in Figure 3-11).

The following system descriptors expand to 16 bytes:
— Call gate descriptors (see Section 5.8.3.1, “lA-32e Mode Call Gates”)
— IDT gate descriptors (see Section 6.14.1, “64-Bit Mode IDT”)

— LDT and TSS descriptors (see Section 7.2.3, “TSS Descriptor in 64-bit
mode”).

3-22 Vol. 3

CHAPTER 4
PAGING

Chapter 3 explains how segmentation converts logical addresses to linear addresses.
Paging (or linear-address translation) is the process of translating linear addresses
so that they can be used to access memory or 1/0 devices. Paging translates each
linear address to a physical address and determines, for each translation, what
accesses to the linear address are allowed (the address’s access rights) and the
type of caching used for such accesses (the address’s memory type).

Intel-64 processors support three different paging modes. These modes are identi-
fied and defined in Section 4.1. Section 4.2 gives an overview of the translation
mechanism that is used in all modes. Section 4.3, Section 4.4, and Section 4.5
discuss the three paging modes in detail.

Section 4.6 details how paging determines and uses access rights. Section 4.7
discusses exceptions that may be generated by paging (page-fault exceptions).
Section 4.8 considers data which the processor writes in response to linear-address
accesses (accessed and dirty flags).

Section 4.9 describes how paging determines the memory types used for accesses to
linear addresses. Section 4.10 provides details of how a processor may cache infor-
mation about linear-address translation. Section 4.11 outlines interactions between
paging and certain VMX features. Section 4.12 gives an overview of how paging can
be used to implement virtual memory.

4.1 PAGING MODES AND CONTROL BITS

Paging behavior is controlled by the following control bits:
® The WP and PG flags in control register CRO (bit 16 and bit 31, respectively).

® The PSE, PAE, and PGE flags in control register CR4 (bit 4, bit 5, and bit 7,
respectively).

® The LME and NXE flags in the 1A32_EFER MSR (bit 8 and bit 11, respectively).

Software enables paging by using the MOV to CRO instruction to set CRO.PG. Before
doing so, software should ensure that control register CR3 contains the physical
address of the first paging structure that the processor will use for linear-address
translation (see Section 4.2) and that structure is initialized as desired. See

Table 4-3, Table 4-7, and Table 4-12 for the use of CR3 in the different paging
modes.

Section 4.1.1 describes how the values of CRO.PG, CR4.PAE, and IA32_EFER.LME
determine whether paging is in use and, if so, which of three paging modes is in use.
Section 4.1.2 explains how to manage these bits to establish or make changes in

Vol.3 4-1

PAGING

paging modes. Section 4.1.3 discusses how CRO.WP, CR4.PSE, CR4.PGE, and
1A32_EFER.NXE modify the operation of the different paging modes.

4.1.1 Three Paging Modes

If CRO.PG = 0, paging is not used. The logical processor treats all linear addresses as
if they were physical addresses. CR4.PAE and IA32_EFER.LME are ignored by the
processor, as are CRO.WP, CR4.PSE, and CR4.PGE, and I1A32_EFER.NXE.

Paging is enabled if CRO.PG = 1. Paging can be enabled only if protection is enabled
(CRO.PE =1). If paging is enabled, one of three paging modes is used. The values of
CR4.PAE and IA32_EFER.LME determine which paging mode is used:

® IfCRO.PG =1 and CR4.PAE = 0, 32-bit paging is used. 32-bit paging is detailed
in Section 4.3. 32-bit paging uses CRO.WP, CR4.PSE, and CR4.PGE as described
in Section 4.1.3.

® IfCRO.PG =1, CR4.PAE =1, and IA32_EFER.LME = 0, PAE paging is used. PAE
paging is detailed in Section 4.4. PAE paging uses CRO.WP, CR4.PGE, and
IA32_EFER.NXE as described in Section 4.1.3.

®* |fCRO.PG = 1, CR4.PAE = 1, and IA32_EFER.LME = 1, IA-32e paging is used.t
I1A-32e paging is detailed in Section 4.5. 1A-32e paging uses CRO.WP, CR4.PGE,
and I1A32_EFER.NXE as described in Section 4.1.3. 1A-32e paging is available
only on processors that support the Intel 64 architecture.

The three paging modes differ with regard to the following details:
® Linear-address width. The size of the linear addresses that can be translated.
® Physical-address width. The size of the physical addresses produced by paging.

® Page size. The granularity at which linear addresses are translated. Linear
addresses on the same page are translated to corresponding physical addresses
on the same page.

® Support for execute-disable access rights. In some paging modes, software can
be prevented from fetching instructions from pages that are otherwise readable.

Table 4-1 illustrates the key differences between the three paging modes.

Because they are used only if IA32_EFER.LME = 0, 32-bit paging and PAE paging is
used only in legacy protected mode. Because legacy protected mode cannot produce

1. The LMA flagin the IA32_EFER MSR (bit 10) is a status bit that indicates whether the logical pro-
cessor is in IA-32e mode (and thus using IA-32e paging). The processor always sets
IA32_EFER.LMA to CRO.PG & IA32_EFER.LME. Software cannot directly modify IA32_EFER.LMA;
an execution of WRMSR to the IA32_EFER MSR ignores bit 10 of its source operand.

4-2 Vol.3

PAGING

Table 4-1. Properties of Different Paging Modes

. . Linear- Physical- Supports
Paging || cpopg | cr4.pae | LMEIN Address | Address | Fage Execute-
Mode IA32_EFER | \jigth | width! | 3128(5) | pisable?
None | O N/A N/A 32 32 N/A No

i 2 3 | 4-KByte
32-bit || 1 0 0 32 Upto40® | Leles | No
4-KByte 5
PAE || 1 1 0 32 Upto52 | ymie | Yes
i 4-KByte 5
IA-32e || 1 1 2 48 UptoS2 | ymie | Yes
NOTES:

1. The physical-address width is always bounded by MAXPHYADDR; see Section 4.1.4.
2. The processor ensures that IA32_EFER.LME must be 0 if CRO.PG = 1 and CR4.PAE = 0.

3. 32-bit paging supports physical-address widths of more than 32 bits only for 4-MByte pages and
only if the PSE-36 mechanism is supported; see Section 4.1.4 and Section 4.3.

4. 4-MByte pages are used with 32-bit paging only if CR4.PSE = 1; see Section 4.3.
5. Execute-disable access rights are applied only if IA32_EFER.NXE = 1; see Section 4.6.

linear addresses larger than 32 bits, 32-bit paging and PAE paging translate 32-bit
linear addresses.

Because it is used only if IA32_EFER.LME = 1, 1A-32e paging is used only in 1A-32e
mode. (In fact, it is the use of 1A-32e paging that defines 1A-32e mode.) 1A-32e
mode has two sub-modes:

® Compatibility mode. This mode uses only 32-bit linear addresses. 1A-32e paging
treats bits 47:32 of such an address as all 0.

® 64-bit mode. While this mode produces 64-bit linear addresses, the processor
ensures that bits 63:47 of such an address are identical. 1A-32e paging does not
use bits 63:48 of such addresses.

4.1.2 Paging-Mode Enabling

If CRO.PG = 1, alogical processor is in one of three paging modes, depending on the
values of CR4.PAE and 1A32_EFER.LME. Figure 4-1 illustrates how software can

1. Such an address is called canonical. Use of a non-canonical linear address in 64-bit mode pro-
duces a general-protection exception (#GP(0)); the processor does not attempt to translate non-
canonical linear addresses using IA-32e paging.

Vol.3 4-3

PAGING

enable these modes and make transitions between them. The following items identify
certain limitations and other details:

#GP 4GP

Set LME? Set LVE f

No Paging SetPG 32-hit Paging Set PAE PAE Paging
PG=0 PG=1 PG=1
PAE=0 PAE=0 PAE-=1
LME=0 Clear PG LME=0 Clear PAE IME=0
w
£ o #GP
= | & A
=
m ClearPAE SetPG |
Set PAE Clear PAE ,
!— o Paging —! !— No Paging | 1A-32€ Paging
| PG=0 | PG=0 | PG=1
| PAE=O0 . PAE=1 PAE=1
L IME=1 N L LME=0 N IME=1
T— - et
@ SetPG | o
setpo| = | &8 8
v & Clear PG m
Set PAE v
#GP 4GP
!— No Paging —!
| PG=0 |
| PAE=1
L _ME=L

Figure 4-1. Enabling and Changing Paging Modes

® |A32_EFER.LME cannot be modified while paging is enabled (CRO.PG = 1).
Attempts to do so using WRMSR cause a general-protection exception (#GP(0)).

® Paging cannot be enabled (by setting CRO.PG to 1) while CR4.PAE = 0 and
IA32_EFER.LME = 1. Attempts to do so using MOV to CRO cause a general-
protection exception (#GP(0)).

® CRA4.PAE cannot be cleared while 1A-32e paging is active (CRO.PG = 1 and
IA32_EFER.LME = 1). Attempts to do so using MOV to CR4 cause a general-
protection exception (#GP(0)).

4-4 Vol.3

PAGING

® Software can always disable paging by clearing CRO.PG with MOV to CRO.

® Software can make transitions between 32-bit paging and PAE paging by
changing the value of CR4.PAE with MOV to CRA4.

® Software cannot make transitions directly between 1A-32e paging and either of
the other two paging modes. It must first disable paging (by clearing CRO.PG with
MOV to CRO), then set CR4.PAE and IA32_EFER.LME to the desired values (with
MOV to CR4 and WRMSR), and then re-enable paging (by setting CRO.PG with
MOV to CRO). As noted earlier, an attempt to clear either CR4.PAE or
IA32_EFER.LME cause a general-protection exception (#GP(0)).

® VMX transitions allow transitions between paging modes that are not possible
using MOV to CR or WRMSR. This is because VMX transitions can load CRO, CR4,
and IA32_EFER in one operation. See Section 4.11.1.

4.1.3 Paging-Mode Modifiers

Details of how each paging mode operates are determined by the following control
bits:

® The WP flag in CRO (bit 16).
® The PSE and PGE flags in CR4 (bit 4 and bit 7, respectively).
® The NXE flag in the 1A32_EFER MSR (bit 11).

CRO.WP allows pages to be protected from supervisor-mode writes. If CRO.WP = 0O,
software operating with CPL < 3 (supervisor mode) can write to linear addresses with
read-only access rights; if CRO.WP = 1, it cannot. (Software operating with CPL = 3
— user mode — cannot write to linear addresses with read-only access rights,
regardless of the value of CRO.WP.) Section 4.6 explains how access rights are deter-
mined.

CR4.PSE enables 4-MByte pages for 32-bit paging. If CR4.PSE = 0, 32-bit paging can
use only 4-KByte pages; if CR4.PSE = 1, 32-bit paging can use both 4-KByte pages
and 4-MByte pages. See Section 4.3 for more information. (PAE paging and 1A-32e
paging can use multiple page sizes regardless of the value of CR4.PSE.)

CR4.PGE enables global pages. If CR4.PGE = 0, no translations are shared across
address spaces; if CR4.PGE = 1, specified translations may be shared across address
spaces. See Section 4.10.1.4 for more information.

IA32_EFER.NXE enables execute-disable access rights for PAE paging and 1A-32e
paging. If IA32_EFER.NXE = 0, software may fetch instructions from any linear
address that paging allows the software to read; if IA32_EFER.NXE = 1, instructions
fetches can be prevented from specified linear addresses (even if data reads from the
addresses are allowed). Section 4.6 explains how access rights are determined. (32-
bit paging always allows software to fetch instructions from any linear address that
may be read; IA32_EFER.NXE has no effect with 32-bit paging. Software that wants
to limit instruction fetches from readable pages must use either PAE paging or 1A-32e

paging.)

Vol.3 4-5

PAGING

4.1.4 Enumeration of Paging Features by CPUID

Software can discover support for different paging features using the CPUID instruc-
tion:

® PSE: page-size extensions for 32-bit paging.
If CPUID.O1H:EDX.PSE [bit 3] = 1, CR4.PSE may be set to 1, enabling support
for 4-MByte pages with 32-bit paging (see Section 4.3).

® PAE: physical-address extension.
If CPUID.0O1H:EDX.PAE [bit 6] = 1, CR4.PAE may be set to 1, enabling PAE
paging (this setting is also required for 1A-32e paging).

® PGE: global-page support.
If CPUID.O1H:EDX.PGE [bit 13] = 1, CR4.PGE may be set to 1, enabling the
global-page feature (see Section 4.10.1.4).

® PAT: page-attribute table.
If CPUID.O1H:EDX.PAT [bit 16] = 1, the 8-entry page-attribute table (PAT) is
supported. When the PAT is supported, three bits in certain paging-structure
entries select a memory type (used to determine type of caching used) from the
PAT (see Section 4.9).

® PSE-36: 36-Bit page size extension.
If CPUID.O1H:EDX.PSE-36 [bit 17] = 1, the PSE-36 mechanism is supported,
indicating that translations using 4-MByte pages with 32-bit paging may produce
physical addresses with more than 32 bits (see Section 4.3).

® NX: execute disable.
If CPUID.80000001H:EDX.NX [bit 20] = 1, IA32_EFER.NXE may be set to 1,
allowing PAE paging and 1A-32e paging to disable execute access to selected
pages (see Section 4.6). (Processors that do not support CPUID function
80000001H do not allow 1A32_EFER.NXE to be set to 1.)

® |M: 1A-32e mode support.
If CPUID.80000001H:EDX.LM [bit 29] = 1, IA32_EFER.LME may be set to 1,
enabling 1A-32e paging. (Processors that do not support CPUID function
80000001H do not allow 1A32_EFER.LME to be set to 1.)

® CPUID.80000008H:EAX[7:0] reports the physical-address width supported by
the processor. (For processors that do not support CPUID function 80000008H,
the width is generally 36 if CPUID.01H:EDX.PAE [bit 6] = 1 and 32 otherwise.)
This width is referred to as MAXPHYADDR. MAXPHYADDR is at most 52.

® CPUID.80000008H:EAX[15:8] reports the linear-address width supported by the
processor. Generally, this value is 48 if CPUID.80000001H:EDX.LM [bit 29] = 1
and 32 otherwise. (Processors that do not support CPUID function 80000008H,
support a linear-address width of 32.)

4-6 Vol. 3

PAGING

4.2 HIERARCHICAL PAGING STRUCTURES: AN OVERVIEW

All three paging modes translate linear addresses use hierarchical paging struc-
tures. This section provides an overview of their operation. Section 4.3, Section 4.4,
and Section 4.5 provide details for the three paging modes.

Every paging structure is 4096 Bytes in size and comprises a number of individual
entries. With 32-bit paging, each entry is 32 bits (4 bytes); there are thus 1024
entries in each structure. With PAE paging and 1A-32e paging, each entry is 64 bits
(8 bytes); there are thus 512 entries in each structure. (PAE paging includes one
exception, a paging structure that is 32 bytes in size, containing 4 64-bit entries.)

The processor uses the upper portion of a linear address to identify a series of
paging-structure entries. The last of these entries identifies the physical address of
the region to which the linear address translates (called the page frame). The lower
portion of the linear address (called the page offset) identifies the specific address
within that region to which the linear address translates.

Each paging-structure entry contains a physical address, which is either the address
of another paging structure or the address of a page frame. In the first case, the
entry is said to reference the other paging structure; in the latter, the entry is said
to map a page.

The first paging structure used for any translation is located at the physical address
in CR3. A linear address is translated using the following iterative procedure. A
portion of the linear address (initially the uppermost bits) select an entry in a paging
structure (initially the one located using CR3). If that entry references another
paging structure, the process continues with that paging structure and with the
portion of the linear address immediately below that just used. If instead the entry
maps a page, the process completes: the physical address in the entry is that of the
page frame and the remaining lower portion of the linear address is the page offset.

The following items give an example for each of the three paging modes (each
example locates a 4-KByte page frame):

® With 32-bit paging, each paging structure comprises 1024 = 210 entries. For this
reason, the translation process uses 10 bits at a time from a 32-bit linear
address. Bits 31:22 identify the first paging-structure entry and bits 21:12
identify a second. The latter identifies the page frame. Bits 11:0 of the linear
address are the page offset within the 4-KByte page frame. (See Figure 4-2 for
an illustration.)

® With PAE paging, the first paging structure comprises only 4 = 22 entries.
Translation thus begins by using bits 31:30 from a 32-bit linear address to
identify the first paging-structure entry. Other paging structures comprise
512 =2° entries, so the process continues by using 9 bits at a time. Bits 29:21
identify a second paging-structure entry and bits 20:12 identify a third. This last
identifies the page frame. (See Figure 4-5 for an illustration.)

® With IA-32e paging, each paging structure comprises 512 = 29 entries and
translation uses 9 bits at a time from a 48-bit linear address. Bits 47:39 identify
the first paging-structure entry, bits 38:30 identify a second, bits 29:21 a third,

Vol.3 4-7

PAGING

and bits 20:12 identify a fourth. Again, the last identifies the page frame. (See
Figure 4-8 for an illustration.)

The translation process in each of the examples above completes by identifying a
page frame. However, the paging structures may be configured so that translation
terminates before doing so. This occurs if process encounters a paging-structure
entry that is marked “not present” (because its P flag — bit 0 — is clear) or in which
a reserved bit is set. In this case, there is no translation for the linear address; an
access to that address causes a page-fault exception (see Section 4.7).

In the examples above, a paging-structure entry maps a page with 4-KByte page
frame when only 12 bits remain in the linear address; entries identified earlier always
reference other paging structures. That may not apply in other cases. The following
items identify when an entry maps a page and when it references another paging
structure:

® If more than 12 bits remain in the linear address, bit 7 (PS — page size) of the
current paging-structure entry is consulted. If the bit is O, the entry references
another paging structure; if the bit is 1, the entry maps a page.

® If only 12 bits remain in the linear address, the current paging-structure entry
always maps a page (bit 7 is used for other purposes).

If a paging-structure entry maps a page when more than 12 bits remain in the linear
address, the entry identifies a page frame larger than 4 KBytes. For example, 32-bit
paging uses the upper 10 bits of a linear address to locate the first paging-structure
entry; 22 bits remain. If that entry maps a page, the page frame is 222 Bytes = 4
MBytes. 32-bit paging supports 4-MByte pages if CR4.PSE = 1. PAE paging and
1A-32e paging support 2-MByte pages (regardless of the value of CR4.PSE).

Paging structures are given different names based their uses in the translation
process. Table 4-2 gives the names of the different paging structures. It also
provides, for each structure, the source of the physical address used to locate it (CR3
or a different paging-structure entry); the bits in the linear address used to select an
entry from the structure; and details of about whether and how such an entry can
map a page.

4.3 32-BIT PAGING

A logical processor uses 32-bit paging if CRO.PG = 1 and CR4.PAE = 0. 32-bit paging
translates 32-bit linear addresses to 40-bit physical addresses.! Although 40 bits

1. Bitsin the range 39:32 are 0 in any physical address used by 32-bit paging except those used to
map 4-MByte pages. If the processor does not support the PSE-36 mechanism, this is true also
for physical addresses used to map 4-MByte pages. If the processor does support the PSE-36
mechanism and MAXPHYADDR < 40, bits in the range 39:MAXPHYADDR are 0 in any physical
address used to map a 4-MByte page. (The corresponding bits are reserved in PDEs.) See Section
4.1.4 for how to determine MAXPHYADDR and whether the PSE-36 mechanism is supported.

4-8 Vol. 3

Table 4-2. Paging Structures in the Different Paging Modes

PAGING

. Physical Bits
Paging Entry Paqi : :
ging Mode | Address of | Selecting | Page Mapping
Structure Name Structure Entry
32-bit, PAE N/A
PML4 table PML4E
IA-32e CR3 47:39 N/A (PS must be 0)
32-bit N/A
Page-dectony” | popTE | PAE (R3 3130
pointer table N/A (PS must be 0)
IA-32e PML4€E 38:30
32-bit CR3 31:22 4-MByte page if PS=11
Page directory PDE
PAE, IA-32e PDPTE 29:21 2-MByte page if PS=1
32-bit 21:12 4-KByte page
Page table PTE PDE
PAE, IA-32e 20:12 4-KByte page
NOTES:

1. 32-bit paging ignores the PS flag in a PDE (and uses the entry to reference a page table) unless
CR4.PSE = 1. Not all processors allow CR4.PSE to be 1; see Section 4.1.4 for how to determine

whether 4-MByte pages are supported with 32-bit paging.

corresponds to 1 TByte, linear addresses are limited to 32 bits; at most 4 GBytes of
linear-address space may be accessed at any given time.

32-bit paging uses a hierarchy of paging structures to produce a translation for a
linear address. CR3 is used to locate the first paging-structure, the page directory.
Table 4-3 illustrates how CR3 is used with 32-bit paging.

Table 4-3. Use of CR3 with 32-Bit Paging

Bit Contents

Position(s)

2.0 Ignored

3 (PWT) Page-level write-through; indirectly determines the memory type used to access
the page directory during linear-address translation (see Section 4.9)

4 (PCD) Page-level cache disable; indirectly determines the memory type used to access
the page directory during linear-address translation (see Section 4.9)

11:5 Ignored

Vol.3 4-9

PAGING

Table 4-3. Use of CR3 with 32-Bit Paging (Contd.)

Bit Contents

Position(s)

31:12 Physical address of the 4-KByte aligned page directory used for linear-address
translation

63:32 Ignored (these bits exist only on processors supporting the Intel-64 architecture)

32-bit paging may map linear addresses to either 4-KByte pages or 4-MByte pages.
Figure 4-2 illustrates the translation process when it uses a 4-KByte page; Figure 4-3
covers the case of a 4-MByte page. The following items describe the 32-bit paging
process in more detail as well has how the page size is determined:

Linear Address
31 22 21 1211 0

Directory Table Offset

12 4-KByte Page

10 10 Page Table Physical Address
Page Directory

PTE

Y

20

Y

PDE with PS=0

20

Ny oy

3

CR3

Figure 4-2. Linear-Address Translation to a 4-KByte Page using 32-Bit Paging

® A 4-KByte naturally aligned page directory is located at the physical address
specified in bits 31:12 of CR3 (see Table 4-3). A page directory comprises 1024
32-bit entries (PDESs). A PDE is selected using the physical address defined as
follows:

— Bits 39:32 are all 0.

— Bits 31:12 are from CR3.

— Bits 11:2 are bits 31:22 of the linear address.
— Bits 1:0 are 0.

4-10 Vol.3

PAGING

Linear Address
31 22 21 0

| Directory ‘ Offset

J 22 4-MByte Page

10 Page Directory

Physical Address

PDE with PS=1

Y

18

by
>
>
2

3

CR3

Figure 4-3. Linear-Address Translation to a 4-MByte Page using 32-Bit Paging

Because a PDE is identified using bits 31:22 of the linear address, it controls access
to a 4-Mbyte region of the linear-address space. Use of the PDE depends on CR.PSE
and the PDE’s PS flag (bit 7):

If CR4.PSE = 1 and the PDE’s PS flag is 1, the PDE maps a 4-MByte page (see
Table 4-4). The final physical address is computed as follows:

— Bits 39:32 are bits 20:13 of the PDE.
— Bits 31:22 are bits 31:22 of the PDE.2
— Bits 21:0 are from the original linear address.

If CR4.PSE = 0 or the PDE’s PS flag is 0, a 4-KByte naturally aligned page table is
located at the physical address specified in bits 31:12 of the PDE (see Table 4-5).
A page table comprises 1024 32-bit entries (PTEs). A PTE is selected using the
physical address defined as follows:

— Bits 39:32 are all 0.

— Bits 31:12 are from the PDE.

— Bits 11:2 are bits 21:12 of the linear address.
— Bits 1:0 are 0.

Because a PTE is identified using bits 31:12 of the linear address, every PTE
maps a 4-KByte page (see Table 4-6). The final physical address is computed as
follows:

— Bits 39:32 are all 0.

1.

The upper bits in the final physical address do not all come from corresponding positions in the
PDE; the physical-address bits in the PDE are not all contiguous.

Vol.3 4-11

PAGING

Table 4-4. Format of a 32-Bit Page-Directory Entry that Maps a 4-MByte Page

Bit Contents

Position(s)

0(P) Present; must be 1 to map a 4-MByte page

1 (R/W) Read/write; if O, writes may not be allowed to the 4-MByte page referenced by
this entry (depends on CPL and CRO.WP; see Section 4.6)

2 (U/S) User/supervisor; if O, accesses with CPL=3 are not allowed to the 4-MByte page
referenced by this entry (see Section 4.6)

3 (PWT) Page-level write-through; indirectly determines the memory type used to access
the 4-MByte page referenced by this entry (see Section 4.9)

4 (PCD) Page-level cache disable; indirectly determines the memory type used to access
the 4-MByte page referenced by this entry (see Section 4.9)

5(A) Accessed; indicates whether software has accessed the 4-MByte page referenced
by this entry (see Section 4.8)

6 (D) Dirty; indicates whether software has written to the 4-MByte page referenced by
this entry (see Section 4.8)

7 (PS) Page size; must be 1 (otherwise, this entry references a page table; see Table 4-5)

8(Q) Global; if CR4.PGE = 1, determines whether the translation is global (see Section
4.10); ignored otherwise

11:9 Ignored

12 (PAT) If the PAT is supported, indirectly determines the memory type used to access the
4-MByte page referenced by this entry (see Section 4.9); otherwise, reserved
(must be 0)’

M-20:13 Bits M-1:32 of physical address of the 4-MByte page referenced by this entry?

21:M-19 Reserved (must be 0)

31:22 Bits 31:22 of physical address of the 4-MByte page referenced by this entry

NOTES:

1. See Section 4.1.4 for how to determine whether the PAT is supported.

2. If the PSE-36 mechanism is not supported, M is 32, and this row does not apply. If the PSE-36
mechanism is supported, M is the minimum of 40 and MAXPHYADDR (this row does not apply if
MAXPHYADDR = 32). See Section 4.1.4 for how to determine MAXPHYADDR and whether the
PSE-36 mechanism is supported.

— Bits 31:12 are from the PTE.

4-12 Vol.3

PAGING

Table 4-5. Format of a 32-Bit Page-Directory Entry that References a Page Table

Bit Contents

Position(s)

0(P) Present; must be 1 to reference a page table

1 (R/W) Read/write; if O, writes may not be allowed to the 4-MByte region controlled by
this entry (depends on CPL and CRO.WP; see Section 4.6)

2 (U/S) User/supervisor; if O, accesses with CPL=3 are not allowed to the 4-MByte region
controlled by this entry (see Section 4.6)

3 (PWT) Page-level write-through; indirectly determines the memory type used to access
the page table referenced by this entry (see Section 4.9)

4 (PCD) Page-level cache disable; indirectly determines the memory type used to access
the page table referenced by this entry (see Section 4.9)

5(A) Accessed; indicates whether this entry has been used for linear-address
translation (see Section 4.8)

6 Ignored

7 (PS) If CR4.PSE = 1, must be O (otherwise, this entry maps a 4-MByte page; see
Table 4-4); otherwise, ignored

11:8 Ignored

31:12 Physical address of 4-KByte aligned page table referenced by this entry

— Bits 11:0 are from the original linear address.

If a paging-structure entry’s P flag (bit 0) is O or if the entry sets any reserved bit, the
entry is used neither to reference another paging-structure entry nor to map a page.
A reference using a linear address whose translation would use such a paging-struc-
ture entry causes a page-fault exception (see Section 4.7).

With 32-bit paging, there are reserved bits only if CR4.PSE = 1:

® |If the P flag and the PS flag (bit 7) of a PDE are both 1, the bits reserved depend
on MAXPHYADDR whether the PSE-36 mechanism is supported:1

— If the PSE-36 mechanism is not supported, bits 21:13 are reserved.

— If the PSE-36 mechanism is supported, bits 21:M—19 are reserved, where M
is the minimum of 40 and MAXPHYADDR.

® If the PAT is not supported:?

1. See Section 1.1.5 for how to determine MAXPHYADDR and whether the PSE-36 mechanism is

supported.

2. See Section 4.1.4 for how to determine whether the PAT is supported.

Vol.3 4-13

PAGING

Table 4-6. Format of a 32-Bit Page-Table Entry that Maps a 4-KByte Page

Bit Contents

Position(s)

0(P) Present; must be 1 to map a 4-KByte page

1 (R/W) Read/write; if O, writes may not be allowed to the 4-KByte page referenced by this
entry (depends on CPL and CRO.WP; see Section 4.6)

2 (U/S) User/supervisor; if 0, accesses with CPL=3 are not allowed to the 4-KByte page
referenced by this entry (see Section 4.6)

3 (PWT) Page-level write-through; indirectly determines the memory type used to access
the 4-KByte page referenced by this entry (see Section 4.9)

4 (PCD) Page-level cache disable; indirectly determines the memory type used to access
the 4-KByte page referenced by this entry (see Section 4.9)

5(A) Accessed; indicates whether software has accessed the 4-KByte page referenced
by this entry (see Section 4.8)

6 (D) Dirty; indicates whether software has written to the 4-KByte page referenced by
this entry (see Section 4.8)

7 (PAT) If the PAT is supported, indirectly determines the memory type used to access the
4-KByte page referenced by this entry (see Section 4.9); otherwise, reserved
(must be 0)’

8 (G) Global; if CR4.PGE = 1, determines whether the translation is global (see Section
4.10); ignored otherwise

11:9 Ignored

31:12 Physical address of the 4-KByte page referenced by this entry

NOTES:

1. See Section 4.1.4 for how to determine whether the PAT is supported.

— If the P flag of a PTE is 1, bit 7 is reserved.
— If the P flag and the PS flag of a PDE are both 1, bit 12 is reserved.
(If CR4.PSE = 0, no bits are reserved with 32-bit paging.)

A reference using a linear address that is successfully translated to a physical
address is performed only if allowed by the access rights of the translation; see
Section 4.6.

Figure 4-4 gives a summary of the formats of CR3 and the paging-structure entries
with 32-bit paging. For the paging structure entries, it identifies separately the
format of entries that map pages, those that reference other paging structures, and

4-14 Vol.3

PAGING

those that do neither because they are “not present”; bit O (P) and bit 7 (PS) are
highlighted because they determine how such an entry is used.

31[301292827[26]25[24123[22/21]20[19[18[1 7116/15[14[13[12]1110[9]8 | 7 6 5 2[1]0

Address of page directory’ Ignored Ignored|] CR3

Bits 39:32|P
of A |(Ignored| G
address? | T

PDE:
4MB

page

Bits 31:22 of address Reserved
of 2MB page frame (must be 0)

|—

PDE:

page
table

Address of page table Ignored |0(g|A

—S V| 4= O| A4S 7DO|w
|_\

n-<Cc| n-C

|—

o

>
OMN™© OMN™© wie vl P}
S~ =~=

PDE:
Ignored 0] not
present

PTE:
4KB

page

Address of 4KB page frame Ignored| G

—>7T
[w)
>

OMN T

—S T

wn-<C

S~
—

PTE:
Ignored 0| not
present

Figure 4-4. Formats of CR3 and Paging-Structure Entries with 32-Bit Paging

NOTES:

1. CR3 has 64 bits on processors supporting the Intel-64 architecture. These bits are ignored with
32-bit paging.

2. This example illustrates a processor in which MAXPHYADDR is 36. If this value is larger or smaller,
the number of bits reserved in positions 20:13 of a PDE mapping a 4-MByte will change.

4.4 PAE PAGING

A logical processor uses PAE paging if CRO.PG = 1, CR4.PAE = 1, and

IA32_EFER.LME = 0. PAE paging translates 32-bit linear addresses to 52-bit physical
addresses.t Although 52 bits corresponds to 4 PBytes, linear addresses are limited to
32 bits; at most 4 GBytes of linear-address space may be accessed at any given time.

With PAE paging, a logical processor maintains a set of four (4) PDPTE registers,
which are loaded from an address in CR3. Linear address are translated using 4 hier-
archies of in-memory paging structures, each located using one of the PDPTE regis-

1. If MAXPHYADDR < 52, bits in the range 51:MAXPHYADDR will be 0 in any physical address used
by PAE paging. (The corresponding bits are reserved in the paging-structure entries.) See Section
4.1.4 for how to determine MAXPHYADDR.

Vol.3 4-15

PAGING

ters. (This is different from the other paging modes, in which there is one hierarchy
referenced by CR3.)

Section 4.4.1 discusses the PDPTE registers. Section 4.4.2 describes linear-address
translation with PAE paging.

4.4.1 PDPTE Registers

When PAE paging is used, CR3 references the base of a 32-Byte page-directory-
pointer table. Table 4-7 illustrates how CR3 is used with PAE paging.

Table 4-7. Use of CR3 with PAE Paging

Bit Contents

Position(s)

4.0 Ignored

315 Physical address of the 32-Byte aligned page-directory-pointer table used for

linear-address translation

63:32 Ignored (these bits exist only on processors supporting the Intel-64 architecture)

The page-directory-pointer-table comprises four (4) 64-bit entries called PDPTEs.
Each PDPTE controls access to a 1-GByte region of the linear-address space. Corre-
sponding to the PDPTESs, the logical processor maintains a set of four (4) internal,
non-architectural PDPTE registers, called PDPTEO, PDPTE1, PDPTE2, and PDPTES3.
The logical processor loads these registers from the PDPTEs in memory as part of
certain executions the MOV to CR instruction:

® If an execution MOV to CRO or MOV to CR4 causes the logical processor to
transition from either no paging or 32-bit paging to PAE paging (see Section
4.1.2), the PDPTEs are loaded from the address in CR3.

® If MOV to CR3 is executed while the logical processor is using PAE paging, the
PDPTEs are loaded from the address being loaded into CR3.

® If PAE paging is in use and a task switch changes the value of CR3, the PDPTEs
are loaded from the address in the new CR3 value.

® Certain VMX transitions load the PDPTE registers. See Section 4.11.1.

Unless the caches are disabled, the processor uses the WB memory type to load the
PDPTEs from memory.!

1. Older IA-32 processors used the UC memory type when loading the PDPTEs. This behavior is
model-specific and not architectural.

4-16 Vol.3

PAGING

Table 4-8 gives the format of a PDPTE. If any of the PDPTEs sets both the P flag

Table 4-8. Format of an PAE Page-Directory-Pointer-Table Entry (PDPTE)

Bit Contents

Position(s)

0 (P) Present; must be 1 to reference a page directory

2:1 Reserved (must be 0)

3 (PWT) Page-level write-through; indirectly determines the memory type used to access
the page directory referenced by this entry (see Section 4.9)

4 (PCD) Page-level cache disable; indirectly determines the memory type used to access
the page directory referenced by this entry (see Section 4.9)

85 Reserved (must be 0)

11:9 Ignored

M-1:12 Physical address of 4-KByte aligned page directory referenced by this entry’

63:M Reserved (must be 0)

NOTES:

1. Mis an abbreviation for MAXPHYADDR, which is at most 52; see Section 4.1.4.

(bit 0) and any reserved bit, the MOV to CR instruction causes a general-protection
exception (#GP(0)) and the PDPTEs are not loaded.! As show in Table 4-8, bits 2:1,
8:5, and 63:MAXPHYADDR are reserved in the PDPTEs.

4.4.2 Linear-Address Translation with PAE Paging

PAE paging may map linear addresses to either 4-KByte pages or 2-MByte pages.
Figure 4-5 illustrates the translation process when it produces a 4-KByte page;
Figure 4-6 covers the case of a 2-MByte page. The following items describe the PAE
paging process in more detail as well has how the page size is determined:

® Bits 31:30 of the linear address select a PDPTE register (see Section 4.4.1); this
is PDPTEI, where i is the value of bits 31:30.2 Because a PDPTE register is
identified using bits 31:30 of the linear address, it controls access to a 1-GByte
region of the linear-address space. If the P flag (bit O) of PDPTEi is O, the

1. On some processors, reserved bits are checked even in PDPTEs in which the P flag (bit 0) is O.

2. With PAE paging, the processor does not use CR3 when translating a linear address (as it does
the other paging modes). It does not access the PDPTEs in the page-directory-pointer table dur-
ing linear-address translation.

Vol.3 4-17

PAGING

Linear Address
31 30 29 21 20 12 11 0

Directory Pointer »I ‘ Directory Table Offset

12 4-KByte Page

Page Table Physical Address

Page Directory 9

PTE

°y

Y

» PDE with PS=0

PDPTE Registers

40

— > |PDPTE value

Figure 4-5. Linear-Address Translation to a 4-KByte Page using PAE Paging

Linear Address
3130 29 21 20 0

Directory .
Pointer »| ‘ Directory Offset

21 2-MByte Page

Page Directory Physical Address

PDPTE Registers

Y

“>»| PDE with PS=1

»| PDPTE value >
40

31

Figure 4-6. Linear-Address Translation to a 2-MByte Page using PAE Paging

processor ignores bits 63:1, and there is no mapping for the 1-GByte region
controlled by PDPTEI. A reference using a linear address in this region causes a
page-fault exception (see Section 4.7).

® If the P flag of PDPTEi is 1, 4-KByte naturally aligned page directory is located at
the physical address specified in bits 51:12 of PDPTEi (see Table 4-8 in Section

4-18 Vol.3

PAGING

4.4.1) A page directory comprises 512 64-bit entries (PDEs). A PDE is selected
using the physical address defined as follows:

— Bits 51:12 are from PDPTEi.
— Bits 11:3 are bits 29:21 of the linear address.
— Bits 2:0 are 0.

Because a PDE is identified using bits 31:21 of the linear address, it controls access
to a 2-Mbyte region of the linear-address space. Use of the PDE depends on its PS
flag (bit 7):

® If the PDE’'s PS flag is 1, the PDE maps a 2-MByte page (see Table 4-9). The final
physical address is computed as follows:

— Bits 51:21 are from the PDE.
— Bits 20:0 are from the original linear address.

® If the PDE’s PS flag is 0, a 4-KByte naturally aligned page table is located at the
physical address specified in bits 51:12 of the PDE (see Table 4-10). A page
directory comprises 512 64-bit entries (PTEs). A PTE is selected using the
physical address defined as follows:

— Bits 51:12 are from the PDE.
— Bits 11:3 are bits 20:12 of the linear address.
— Bits 2:0 are 0.

® Because a PTE is identified using bits 31:12 of the linear address, every PTE maps
a 4-KByte page (see Table 4-11). The final physical address is computed as
follows:

— Bits 51:12 are from the PTE.
— Bits 11:0 are from the original linear address.

If the P flag (bit O) of a PDE or a PTE is O or if a PDE or a PTE sets any reserved bit,
the entry is used neither to reference another paging-structure entry nor to map a
page. A reference using a linear address whose translation would use such a paging-
structure entry causes a page-fault exception (see Section 4.7).

The following bits are reserved with PAE paging:
® If the P flag (bit O) of a PDE or a PTE is 1, bits 62:MAXPHYADDR are reserved.
® If the P flag and the PS flag (bit 7) of a PDE are both 1, bits 20:13 are reserved.

® If IA32_EFER.NXE = 0 and the P flag of a PDE or a PTE is 1, the XD flag (bit 63)
is reserved.

® If the PAT is not supported:®
— If the P flag of a PTE is 1, bit 7 is reserved.
— If the P flag and the PS flag of a PDE are both 1, bit 12 is reserved.

1. See Section 4.1.4 for how to determine whether the PAT is supported.

Vol.3 4-19

PAGING

Table 4-9. Format of a PAE Page-Directory Entry that Maps a 2-MByte Page

Bit Contents

Position(s)

0(P) Present; must be 1 to map a 2-MByte page

1 (R/W) Read/write; if O, writes may not be allowed to the 2-MByte page referenced by
this entry (depends on CPL and CRO.WP; see Section 4.6)

2 (U/S) User/supervisor; if O, accesses with CPL=3 are not allowed to the 2-MByte page
referenced by this entry (see Section 4.6)

3 (PWT) Page-level write-through; indirectly determines the memory type used to access
the 2-MByte page referenced by this entry (see Section 4.9)

4 (PCD) Page-level cache disable; indirectly determines the memory type used to access
the 2-MByte page referenced by this entry (see Section 4.9)

5(A) Accessed; indicates whether software has accessed the 2-MByte page referenced
by this entry (see Section 4.8)

6 (D) Dirty; indicates whether software has written to the 2-MByte page referenced by
this entry (see Section 4.8)

7 (PS) Page size; must be 1 (otherwise, this entry references a page table; see
Table 4-10)

8(Q) Global; if CR4.PGE = 1, determines whether the translation is global (see Section
4.10); ignored otherwise

11:9 Ignored

12 (PAT) If the PAT is supported, indirectly determines the memory type used to access the
2-MByte page referenced by this entry (see Section 4.9); otherwise, reserved
(must be 0)

20:13 Reserved (must be 0)

M-1:21 Physical address of the 2-MByte page referenced by this entry

62:M Reserved (must be 0)

63 (XD) If IA32_EFER.NXE = 1, execute-disable (if 1, instruction fetches are not allowed
from the 2-MByte page controlled by this entry; see Section 4.6); otherwise,
reserved (must be 0)

NOTES:

1. See Section 4.1.4 for how to determine whether the PAT is supported.

4-20 Vol.3

PAGING

Table 4-10. Format of a PAE Page-Directory Entry that References a Page Table

Bit Contents

Position(s)

0(P) Present; must be 1 to reference a page table

1 (R/W) Read/write; if O, writes may not be allowed to the 2-MByte region controlled by
this entry (depends on CPL and CRO.WP; see Section 4.6)

2 (U/S) User/supervisor; if O, accesses with CPL=3 are not allowed to the 2-MByte region
controlled by this entry (see Section 4.6)

3 (PWT) Page-level write-through; indirectly determines the memory type used to access
the page table referenced by this entry (see Section 4.9)

4 (PCD) Page-level cache disable; indirectly determines the memory type used to access
the page table referenced by this entry (see Section 4.9)

5(A) Accessed; indicates whether this entry has been used for linear-address
translation (see Section 4.8)

6 Ignored

7 (PS) Page size; must be O (otherwise, this entry maps a 2-MByte page; see Table 4-9)

11:8 Ignored

M-1:12 Physical address of 4-KByte aligned page table referenced by this entry

62:M Reserved (must be 0)

63 (XD) If IA32_EFER.NXE = 1, execute-disable (if 1, instruction fetches are not allowed

from the 2-MByte region controlled by this entry; see Section 4.6); otherwise,
reserved (must be 0)

A reference using a linear address that is successfully translated to a physical
address is performed only if allowed by the access rights of the translation; see

Section 4.6.

Figure 4-7 gives a summary of the formats of CR3 and the paging-structure entries
with PAE paging. For the paging structure entries, it identifies separately the format
of entries that map pages, those that reference other paging structures, and those

Vol. 3 4-21

PAGING

Table 4-11. Format of a PAE Page-Table Entry that Maps a 4-KByte Page

Bit Contents

Position(s)

0(P) Present; must be 1 to map a 4-KByte page

1 (R/W) Read/write; if O, writes may not be allowed to the 4-KByte page referenced by this
entry (depends on CPL and CRO.WP; see Section 4.6)

2 (U/S) User/supervisor; if 0, accesses with CPL=3 are not allowed to the 4-KByte page
referenced by this entry (see Section 4.6)

3 (PWT) Page-level write-through; indirectly determines the memory type used to access
the 4-KByte page referenced by this entry (see Section 4.9)

4 (PCD) Page-level cache disable; indirectly determines the memory type used to access
the 4-KByte page referenced by this entry (see Section 4.9)

5(A) Accessed; indicates whether software has accessed the 4-KByte page referenced
by this entry (see Section 4.8)

6 (D) Dirty; indicates whether software has written to the 4-KByte page referenced by
this entry (see Section 4.8)

7 (PAT) If the PAT is supported, indirectly determines the memory type used to access the
4-KByte page referenced by this entry (see Section 4.9); otherwise, reserved
(must be 0)’

8 (G) Global; if CR4.PGE = 1, determines whether the translation is global (see Section
4.10); ignored otherwise

11:9 Ignored

M-1:12 Physical address of the 4-KByte page referenced by this entry

62:M Reserved (must be 0)

63 (XD) If IA32_EFER.NXE = 1, execute-disable (if 1, instruction fetches are not allowed
from the 4-KByte page controlled by this entry; see Section 4.6); otherwise,
reserved (must be 0)

NOTES:

1. See Section 4.1.4 for how to determine whether the PAT is supported.

4-22 Vol.3

PAGING

that do neither because they are “not present”; bit O (P) and bit 7 (PS) are high-
lighted because they determine how a paging-structure entry is used.

6(6/6|6(5(5/|5|5|5/|5|5(5(5 M! M-1 3|3(3(2(2|2|2[2[2|2|2[2|2|1[1|1|1|1{1|1]|1]1[1
3/2/1/0(9|8|7|6/5|4/3|2|1 2/1/0|9/8(7|6|5/4/3|2|1|0|9/8|7|6|5/4/3|2|1|0|9|8|7|6|5/4/3|2|1|0
Ignored? Address of page-directory-pointer table Ignored | CR3
Reserved? Address of page director: Ign. | Rsvd E\IID\I Rs 1 POPTE:
pag y an. " |5iT| vd [present
PDTPE:
Ignored 0] not
present
P PIP|UIR PDE:
X Ignored Rsvd. ZMQddare;Sf?afme Reserved |A| Ign. |G[1[DJA|ICW|/|/|1] 2MB
D Pag T DIT|sW | page
% Il |P|P|UR PDE:
Ignored Rsvd. Address of page table Ign. [0|g|A|ICW|/|/|1] page
D n| [D[T|SW | table
PDE:
Ignored 0] not
present
% P| | |P|P|UR PTE:
Ignored Rsvd. Address of 4KB page frame Ign. |GIADIA[CWI/{/|1] 4KB
D T | D[T|S page
PTE:
Ignored 0] not
present

Figure 4-7. Formats of CR3 and Paging-Structure Entries with PAE Paging

NOTES:

1. Mis an abbreviation for MAXPHYADDR.

2. CR3 has 64 bits only on processors supporting the Intel-64 architecture. These bits are ignored with
PAE paging.

3. Reserved fields must be 0.

4.5 IA-32€E PAGING

A logical processor uses IA-32e paging if CRO.PG = 1, CR4.PAE = 1, and
IA32_EFER.LME = 1. With 1A-32e paging, linear address are translated using a hier-
archy of in-memory paging structures located using the contents of CR3. 1A-32e
paging translates 48-bit linear addresses to 52-bit physical addresses.t Although 52

Vol. 3 4-23

PAGING

bits corresponds to 4 PBytes, linear addresses are limited to 48 bits; at most 256
TBytes of linear-address space may be accessed at any given time.

1A-32e paging uses a hierarchy of paging structures to produce a translation for a
linear address. CR3 is used to locate the first paging-structure, the PML4 table.
Table 4-12 illustrates how CR3 is used with 1A-32e paging.

Table 4-12. Use of CR3 with IA-32e Paging

Bit Contents

Position(s)

2.0 Ignored

3 (PWT) Page-level write-through; indirectly determines the memory type used to access
the PML4 table during linear-address translation (see Section 4.9)

4 (PCD) Page-level cache disable; indirectly determines the memory type used to access
the PML4 table during linear-address translation (see Section 4.9)

115 Ignored

M-1:12 Physical address of the 4-KByte aligned PML4 table used for linear-address
translation’

63:M Reserved (must be 0)

NOTES:

1. Mis an abbreviation for MAXPHYADDR, which is at most 52; see Section 4.1.4.

1A-32e paging may map linear addresses to either 4-KByte pages or 2-MByte pages.
Figure 4-8 illustrates the translation process when it produces a 4-KByte page;
Figure 4-9 covers the case of a 2-MByte page. The following items describe the
1A-32e paging process in more detail as well has how the page size is determined:

® A 4-KByte naturally aligned PML4 table is located at the physical address
specified in bits 51:12 of CR3 (see Table 4-12). A PML4 table comprises 512 64-
bit entries (PML4Es). A PMLA4E is selected using the physical address defined as
follows:

— Bits 51:12 are from CR3.
— Bits 11:3 are bits 47:39 of the linear address.
— Bits 2:0 are all O.

Because a PML4E is identified using bits 47:39 of the linear address, it controls
access to a 512-GByte region of the linear-address space.

1. If MAXPHYADDR < 52, bits in the range 51:MAXPHYADDR will be O in any physical address used
by IA-32e paging. (The corresponding bits are reserved in the paging-structure entries.) See Sec-
tion 4.1.4 for how to determine MAXPHYADDR.

4-24 \Vol.3

PAGING

Linear Address

47 39 38 30 29 21 20 12 11 0
| PML4 ‘ Directory Ptr Directory Table ‘ Offset |
] | o .
9 12 4-KByte Page
Physical Addr
PTE >
Page-Directory- PDE with PS=0 > 40
Pointer Table 40 Page Table
Page-Directory
L»{PDPTE 40
9
40
» PML4E
40
CR3

Figure 4-8. Linear-Address Translation to a 4-KByte Page using IA-32e Paging

A 4-KByte naturally aligned page-directory-pointer table is located at the
physical address specified in bits 51:12 of the PML4E (see Table 4-13). A page-
directory-pointer table comprises 512 64-bit entries (PDPTEs). A PDPTE is
selected using the physical address defined as follows:

— Bits 51:12 are from the PML4E.
— Bits 11:3 are bits 38:30 of the linear address.
— Bits 2:0 are all 0.

Because a PDPTE is identified using bits 47:30 of the linear address, it controls
access to a 1-GByte region of the linear-address space.

A 4-KByte naturally aligned page directory is located at the physical address
specified in bits 51:12 of the PDPTE (see Table 4-14). A page directory comprises
512 64-bit entries (PDEs). A PDE is selected using the physical address defined as
follows:

— Bits 51:12 are from the PDPTE.
— Bits 11:3 are bits 29:21 of the linear address.
— Bits 2:0 are all 0.

Vol.3 4-25

PAGING

Linear Address

a7 39 38 3029 2120 0
| PML4 ‘ Directory Ptr Directory Offset
‘ 9 21
9
2-MByte Page
Physical Addr
Page-Directory- PDE with PS=1 >
Pointer Table 31
Page-Directory
> PDPTE
40
9
40
»| PML4E
—>
40
CR3

Figure 4-9. Linear-Address Translation to a 2-MByte Page using IA-32e Paging

Because a PDE is identified using bits 47:21 of the linear address, it controls access
to a 2-MByte region of the linear-address space. Use of the PDE depends on its PS
flag (bit 7):

4-26 Vol.3

PAGING

Table 4-13. Format of an IA-32e PML4 Entry (PML4E) that References a Page-

Directory-Pointer Table

Bit Contents

Position(s)

0(P) Present; must be 1 to reference a page-directory-pointer table

1 (R/W) Read/write; if O, writes may not be allowed to the 512-GByte region controlled by
this entry (depends on CPL and CRO.WP; see Section 4.6)

2 (U/S) User/supervisor; if 0, accesses with CPL=3 are not allowed to the 512-GByte
region controlled by this entry (see Section 4.6)

3 (PWT) Page-level write-through; indirectly determines the memory type used to access
the page-directory-pointer table referenced by this entry (see Section 4.9)

4 (PCD) Page-level cache disable; indirectly determines the memory type used to access
the page-directory-pointer table referenced by this entry (see Section 4.9)

5(A) Accessed; indicates whether this entry has been used for linear-address
translation (see Section 4.8)

6 Ignored

7 (PS) Reserved (must be 0)

11:8 Ignored

M-1:12 Physical address of 4-KByte aligned page-directory-pointer table referenced by
this entry

51:M Reserved (must be 0)

62:52 Ignored

63 (XD) If IA32_EFER.NXE = 1, execute-disable (if 1, instruction fetches are not allowed

from the 512-GByte region controlled by this entry; see Section 4.6); otherwise,
reserved (must be 0)

Vol.3 4-27

PAGING

Table 4-14.

Format of an IA-32e Page-Directory-Pointer-Table Entry (PDPTE) that
References a Page Directory

Bit Contents

Position(s)

0(P) Present; must be 1 to reference a page directory

1 (R/W) Read/write; if O, writes may not be allowed to the 1-GByte region controlled by
this entry (depends on CPL and CRO.WP; see Section 4.6)

2 (U/S) User/supervisor; if O, accesses with CPL=3 are not allowed to the 1-GByte region
controlled by this entry (see Section 4.6)

3 (PWT) Page-level write-through; indirectly determines the memory type used to access
the page directory referenced by this entry (see Section 4.9)

4 (PCD) Page-level cache disable; indirectly determines the memory type used to access
the page directory referenced by this entry (see Section 4.9)

5(A) Accessed; indicates whether this entry has been used for linear-address
translation (see Section 4.8)

6 Ignored

7 (PS) Reserved (must be 0)

11:8 Ignored

M-1:12 Physical address of 4-KByte aligned page directory referenced by this entry

51M Reserved (must be 0)

62:52 Ignored

63 (XD) If IA32_EFER.NXE = 1, execute-disable (if 1, instruction fetches are not allowed
from the 1-GByte region controlled by this entry; see Section 4.6); otherwise,
reserved (must be 0)

® |Ifthe PDE'sPS flagis 1, the PDE maps a 2-MByte page (see Table 4-15). The final
physical address is computed as follows:

Table 4-15. Format of an IA-32e Page-Directory Entry that Maps a 2-MByte Page
Bit Contents

Position(s)

0(P) Present; must be 1 to map a 2-MByte page

1 (R/W) Read/write; if O, writes may not be allowed to the 2-MByte page referenced by

this entry (depends on CPL and CRO.WP; see Section 4.6)

4-28 Vol.3

PAGING

Table 4-15. Format of an IA-32e Page-Directory Entry that Maps a 2-MByte Page

Bit Contents

Position(s)

2 (U/S) User/supervisor; if O, accesses with CPL=3 are not allowed to the 2-MByte page
referenced by this entry (see Section 4.6)

3 (PWT) Page-level write-through; indirectly determines the memory type used to access
the 2-MByte page referenced by this entry (see Section 4.9)

4 (PCD) Page-level cache disable; indirectly determines the memory type used to access
the 2-MByte page referenced by this entry (see Section 4.9)

5(A) Accessed; indicates whether software has accessed the 2-MByte page referenced
by this entry (see Section 4.8)

6 (D) Dirty; indicates whether software has written to the 2-MByte page referenced by
this entry (see Section 4.8)

7 (PS) Page size; must be 1 (otherwise, this entry references a page table; see
Table 4-16)

8 (Q) Global; if CR4.PGE = 1, determines whether the translation is global (see Section
4.10); ignored otherwise

11:9 Ignored

12 (PAT) Indirectly determines the memory type used to access the 2-MByte page
referenced by this entry (see Section 4.9)’

20:13 Reserved (must be 0)

M-1:21 Physical address of the 2-MByte page referenced by this entry

51:M Reserved (must be 0)

62:52 Ignored

63 (XD) If IA32_EFER.NXE = 1, execute-disable (if 1, instruction fetches are not allowed
from the 2-MByte page controlled by this entry; see Section 4.6); otherwise,
reserved (must be 0)

NOTES:

1. The PAT is supported on all processors that support IA-32e paging.

— Bits 51:21 are from the PDE.

— Bits 20:0 are from the original linear address.

If the PDE’s PS flag is O, a 4-KByte naturally aligned page table is located at the
physical address specified in bits 51:12 of the PDE (see Table 4-16). A page table

Vol.3 4-29

PAGING

comprises 512 64-bit entries (PTEs). A PTE is selected using the physical address
defined as follows:

Table 4-16. Format of an IA-32e Page-Directory Entry that References a Page Table

Bit Contents

Position(s)

0P Present; must be 1 to reference a page table

1 (R/W) Read/write; if O, writes may not be allowed to the 2-MByte region controlled by
this entry (depends on CPL and CRO.WP; see Section 4.6)

2 (U/S) User/supervisor; if 0, accesses with CPL=3 are not allowed to the 2-MByte region
controlled by this entry (see Section 4.6)

3 (PWT) Page-level write-through; indirectly determines the memory type used to access
the page table referenced by this entry (see Section 4.9)

4 (PCD) Page-level cache disable; indirectly determines the memory type used to access
the page table referenced by this entry (see Section 4.9)

5(A) Accessed; indicates whether this entry has been used for linear-address
translation (see Section 4.8)

6 Ignored

7 (PS) Page size; must be O (otherwise, this entry maps a 2-MByte page; see Table 4-15)

11:.8 Ignored

M-1:12 Physical address of 4-KByte aligned page table referenced by this entry

51M Reserved (must be 0)

62:52 Ignored

63 (XD) If IA32_EFER.NXE = 1, execute-disable (if 1, instruction fetches are not allowed
from the 2-MByte region controlled by this entry; see Section 4.6); otherwise,
reserved (must be 0)

4-30

— Bits 51:12 are from the PDE.
— Bits 11:3 are bits 20:12 of the linear address.
— Bits 2:0 are all O.

Because a PTE is identified using bits 47:12 of the linear address, every PTE
maps a 4-KByte page (see Table 4-17). The final physical address is computed as
follows:

— Bits 51:12 are from the PTE.

Vol. 3

PAGING

Table 4-17. Format of an IA-32e Page-Table Entry that Maps a 4-KByte Page

Bit Contents

Position(s)

0(P) Present; must be 1 to map a 4-KByte page

1 (R/W) Read/write; if O, writes may not be allowed to the 4-KByte page referenced by this
entry (depends on CPL and CRO.WP; see Section 4.6)

2 (U/S) User/supervisor; if 0, accesses with CPL=3 are not allowed to the 4-KByte page
referenced by this entry (see Section 4.6)

3 (PWT) Page-level write-through; indirectly determines the memory type used to access
the 4-KByte page referenced by this entry (see Section 4.9)

4 (PCD) Page-level cache disable; indirectly determines the memory type used to access
the 4-KByte page referenced by this entry (see Section 4.9)

5(A) Accessed; indicates whether software has accessed the 4-KByte page referenced
by this entry (see Section 4.8)

6 (D) Dirty; indicates whether software has written to the 4-KByte page referenced by
this entry (see Section 4.8)

7 (PAT) Indirectly determines the memory type used to access the 2-MByte page
referenced by this entry (see Section 4.9)

8 (Q) Global; if CR4.PGE = 1, determines whether the translation is global (see Section
4.10); ignored otherwise

11:9 Ignored

M-1:12 Physical address of the 4-KByte page referenced by this entry

51:M Reserved (must be 0)

62:52 Ignored

63 (XD) If IA32_EFER.NXE = 1, execute-disable (if 1, instruction fetches are not allowed

from the 4-KByte page controlled by this entry; see Section 4.6); otherwise,
reserved (must be 0)

— Bits 11:0 are from the original linear address.

If a paging-structure entry’s P flag (bit 0) is O or if the entry sets any reserved bit, the
entry is used neither to reference another paging-structure entry nor to map a page.
A reference using a linear address whose translation would use such a paging-struc-
ture entry causes a page-fault exception (see Section 4.7).

The following bits are reserved with 1A-32e paging:

® If the P flag of a paging-structure entry is 1, bits 51:MAXPHYADDR are reserved.

Vol.3 4-31

PAGING

® If the P flag of a PML4E or a PDPTE is 1, the PS flag is reserved.
® If the P flag and the PS flag of a PDE are both 1, bits 20:13 are reserved.

® If IA32_EFER.NXE = 0 and the P flag of a paging-structure entry is 1, the XD flag
(bit 63) is reserved.

A reference using a linear address that is successfully translated to a physical
address is performed only if allowed by the access rights of the translation; see
Section 4.6.

Figure 4-10 gives a summary of the formats of CR3 and the 1A-32e paging-structure
entries. For the paging structure entries, it identifies separately the format of entries
that map pages, those that reference other paging structures, and those that do
neither because they are “not present”; bit O (P) and bit 7 (PS) are highlighted
because they determine how a paging-structure entry is used.

4.6 ACCESS RIGHTS

There is a translation for a linear address if the processes described in Section 4.3,
Section 4.4.2, and Section 4.5 (depending upon the paging mode) completes and
produces a physical address. The accesses permitted by a translation is determined
by the access rights specified by the paging-structure entries controlling the transla-
tion.! The following items detail how paging determines access rights:

® For accesses in supervisor mode (CPL < 3):

— Data reads.
Data may be read from any linear address with a valid translation.

— Data writes.

e If CRO.WP = 0, data may be written to any linear address with a valid
translation.

e |f CRO.WP = 1, data may be written to any linear address with a valid
translation for which the R/W flag (bit 1) is 1 in every paging-structure
entry controlling the translation.

— Instruction fetches.

®* For 32-bit paging or if IA32_EFER.NXE = 0, instructions may be fetched
from any linear address with a valid translation.

®* For PAE paging or 1A-32e paging with 1A32_EFER.NXE = 1, instructions
may be fetched from any linear address with a valid translation for which
the XD flag (bit 63) is O in every paging-structure entry controlling the
translation.

® For accesses in user mode (CPL = 3):

1. With PAE paging, the PDPTEs do not determine access rights.

4-32 Vol.3

PAGING

6/6/66(5(5(5|5|5|5|5|5|5 M! [M-1 3(3(3|12|2/2|2|2|2[2(2[2|2|1|1]|1{1|1{1{1{1{1|1
3(2/1/0|9|8|7|6/5/4(3|2|1 2|1]0/9(8|7|6|5|4|3|2|1|0/9(8|7|6|5|4|3|2|1|0/9(8|7|6|5|4|3|2|1|0
PP
Reserved? Address of PML4 table Ignored |Cj| Ign CR3
D|T
Xl Ignored Rsvd. | Address of page-directory-pointer tabl | EIAE\ZL/“% PMLA4E:
b gnore svd. ress of page-directory-pointer table gn. g g S/ present
PML4E:
Ignored 0] not
present
X S|!] [PPUR' | popre:
D Ignored Rsvd. Address of page directory Ign. v g A IS\IT\’é /11 presen'.c
d
PDTPE:
Ignored 0] not
present
P PIP|UIR PDE:
)D< Ignored Rsvd. ZMgddgeZsf?gme Reserved |A| Ign. [G|1|DJA|ICMW|/|/{1] 2MB
pag T DTS | page
% Il [PIPJUR PDE:
D Ignored Rsvd. Address of page table Ign. |0|g|A|CM/{/|1] page
n| D|T|ISW, table
PDE:
Ignored 0] not
present
% P PIP|UIR PTE:
Ignored Rsvd. Address of 4KB page frame Ign. |GIADIA[CMWI/{/|1] 4KB
D T D|T|S page
PTE:
Ignored 0] not
present

Figure 4-10. Formats of CR3 and Paging-Structure Entries with IA-32e Paging
NOTES:
1. Mis an abbreviation for MAXPHYADDR.
2. Reserved fields must be O.

— Data reads.
Data may be read from any linear address with a valid translation for which
the U/S flag (bit 2) is 1 in every paging-structure entry controlling the trans-
lation.

— Data writes.
Data may be written to any linear address with a valid translation for which

Vol.3 4-33

PAGING

both the R/W flag and the U/S flag are 1 in every paging-structure entry
controlling the translation.

— Instruction fetches.

®* For 32-bit paging or if IA32_EFER.NXE = 0, instructions may be fetched
from any linear address with a valid translation for which the U/S flag is 1
in every paging-structure entry controlling the translation.

® For PAE paging or 1A-32e paging with IA32_EFER.NXE = 1, instructions
may be fetched from any linear address with a valid translation for which
the U/S flag is 1 and the XD flag is O in every paging-structure entry
controlling the translation.

A processor may cache information from the paging-structure entries in TLBs and
paging-structure caches (see Section 4.10). These structures may include informa-
tion about access rights. The processor may enforce access rights based on the TLBs
and paging-structure caches instead of on the paging structures in memory.

This fact implies that, if software modifies a paging-structure entry to change access
rights, the processor might not use that change for a subsequent access to an
affected linear address (see Section 4.10.3.3). See Section 4.10.3.2 for how soft-
ware can ensure that the processor uses the modified access rights.

4.7 PAGE-FAULT EXCEPTIONS

Accesses using linear addresses may cause page-fault exceptions (#PF; exception
14). An access to a linear address may cause page-fault exception for either of two
reasons: (1) there is no valid translation for the linear address; or (2) there is a valid
translation for the linear address, but its access rights do not permit the access.

As noted in Section 4.3, Section 4.4.2, and Section 4.5, there is no valid translation
for a linear address if the translation process for that address would use a paging-
structure entry in which the P flag (bit 0) is O or one that sets a reserved bit. If there
is a valid translation for a linear address, its access rights are determined as specified
in Section 4.6.

Figure 4-11 illustrates the error code that the processor provides on delivery of a
page-fault exception. The following items explain how the bits in the error code
describe the nature of the page-fault exception:

® P flag (bit 0).
This bit is O if there is no valid translation for the linear address because the P flag
was 0 in one of the paging-structure entries used to translate that address.

®* W/R (bit 1).
If the access causing the page-fault exception was a write, this flag is 1;
otherwise, it is 0. This bit describes the access causing the page-fault exception,
not the access rights specified by paging.

® U/S (bit 2).
If a supervisor-mode (CPL < 3) access caused the page-fault exception, this flag

4-34 Vol.3

PAGING

31

an) ~
AASY| w
sin| ~
HIM| —
d o

Reserved

P 0 The fault was caused by a non-present page.
1 The fault was caused by a page-level protection violation.

W/R 0 The access causing the fault was a read.
1 The access causing the fault was a write.

u/s 0 The access causing the fault originated when the processor
was executing in supervisor mode.
1 The access causing the fault originated when the processor
was executing in user mode.
RSVD O The fault was not caused by reserved bit violation.
1 The fault was caused by a reserved bit set to 1 in some
paging-structure entry.

I/ID 0 The fault was not caused by an instruction fetch.
1 The fault was caused by an instruction fetch.

Figure 4-11. Page-Fault Error Code

is 1; it is O if a user-mode (CPL = 3) access did so. This bit describes the access
causing the page-fault exception, not the access rights specified by paging.

® RSVD flag (bit 4).
This bit is 1 if there is no valid translation for the linear address because a
reserved bit was set in one of the paging-structure entries used to translate that
address. (Because reserved bits are not checked in a paging-structure entry
whose P flag is O, bit 4 of the error code can be set only if bit O is also set.)

® 1/D flag (bit 5).
Use of this flag depends on the setting of IA32_EFER.NXE:

— 1A32_EFER.NXE = 0. This flag is O.

— 1A32_EFER.NXE = 1. If the access causing the page-fault exception was an
instruction fetch, this flag is 1; otherwise, it is 0. This bit describes the access
causing the page-fault exception, not the access rights specified by paging.

Bits reserved in the paging-structure entries are reserved for future functionality.
Software developers should be aware that such settings may be used in the future
and that a paging-structure entry that causes a page-fault exception on one
processor might not do so in the future.

Page-fault exceptions occur only due to an attempt to use a linear address. Failures
to load the PDPTE registers with PAE paging (see Section 4.4.1) cause general-
protection exceptions (#GP(0)) and not page-fault exceptions.

Vol.3 4-35

PAGING

4.8 ACCESSED AND DIRTY FLAGS

For any paging-structure entry that is used during linear-address translation, bit 5 is
the accessed flag.! For paging-structure entries that map a page (as opposed to
referencing another paging structure), bit 6 is the dirty flag. These flags are
provided for use by memory-management software to manage the transfer of pages
and paging structures into and out of physical memory.

Whenever the processor uses a paging-structure entry as part of linear-address
translation, it sets the accessed flag in that entry (if it is not already set).

Whenever there is a write to a linear address, the processor sets the dirty flag (if it is
not already set) in the paging-structure entry that identifies the final physical
address for the linear address (either a PTE or a PDE in which the PS flag is 1).

Memory-management software may clear these flags when a page or a paging struc-
ture is initially loaded into physical memory. These flags are “sticky,” meaning that,
once set, the processor does not clear them; only software can clear them.

A processor may cache information from the paging-structure entries in TLBs and
paging-structure caches (see Section 4.10). This fact implies that, if software
changes an accessed flag or a dirty flag from 1 to 0, the processor might not set the
corresponding bit in memory on a subsequent access using an affected linear
address (see Section 4.10.3.3). See Section 4.10.3.2 for how software can ensure
that these bits are updated as desired.

NOTE

The accesses used by the processor to set these flags may or may not
be exposed to the processor’s self-modifying code detection logic. If
the processor is executing code from the same memory area that is
being used for the paging structures, the setting of these flags may
or may not result in an immediate change to the executing code
stream.

4.9 PAGING AND MEMORY TYPING

The memory type of a memory access refers to the type of caching used for that
access. Chapter 11, “Memory Cache Control” provides many details regarding
memory typing in the Intel-64 and 1A-32 architectures. This section describes how
paging contributes to the determination of memory typing.

The way in which paging contributes to memory typing depends on whether the
processor supports the Page Attribute Table (PAT; see Section 11.12).2 Section

1. With PAE paging, the PDPTEs are not used during linear-address translation but only to load the
PDPTE registers for some executions of the MOV CR instruction (see Section 4.4.1). For this rea-
son, the PDPTEs do not contain accessed flags with PAE paging.

4-36 Vol.3

PAGING

4.9.1 and Section 4.9.2 explain how paging contributes to memory typing depending
on whether the PAT is supported.

4.9.1 Paging and Memory Typing When the PAT is Not Supported
(Pentium Pro and Pentium Il Processors)

NOTE

The PAT is supported on all processors that support 1A-32e paging.
Thus, this section applies only to 32-bit paging and PAE paging.

If the PAT is not supported, paging contributes to memory typing in conjunction with
the memory-type range registers (MTRRs) as specified in Table 11-6 in Section
11.5.2.1.

For any access to a physical address, the table combines the memory type specified
for that physical address by the MTRRs with a PCD value and a PWT value. The latter
two values are determined as follows:

® For an access to a PDE with 32-bit paging, the PCD and PWT values come from
CR3.

® For an access to a PDE with PAE paging, the PCD and PWT values come from the
relevant PDPTE register.

® For an access to a PTE, the PCD and PWT values come from the relevant PDE.

® For an access to the physical address that is the translation of a linear address,
the PCD and PWT values come from the relevant PTE (if the translation uses a 4-
KByte page) or the relevant PDE (otherwise).

49.2 Paging and Memory Typing When the PAT is Supported
(Pentium Il and More Recent Processor Families)

If the PAT is supported, paging contributes to memory typing in conjunction with the
PAT and the memory-type range registers (MTRRS) as specified in Table 11-7 in
Section 11.5.2.2.

The PAT is a 64-bit MSR (IA32_PAT; MSR index 277H) comprising eight (8) 8-bit
entries (entry i comprises bits 8i+7:8i of the MSR).

For any access to a physical address, the table combines the memory type specified
for that physical address by the MTRRs with a memory type selected from the PAT.
Table 11-11 in Section 11.12.3 specifies how a memory type is selected from the PAT.
Specifically, it comes from entry i of the PAT, where i is defined as follows:

2. The PAT is supported on Pentium Ill and more recent processor families. See Section 4.1.4 for
how to determine whether the PAT is supported.

Vol.3 4-37

PAGING

® For an access to an entry in a paging structure whose address is in CR3 (e.g., the
PML4 table with IA-32e paging), i = 2*PCD+PWT, where the PCD and PWT values
come from CR3.

® For an access to a PDE with PAE paging, i = 2*PCD+PWT, where the PCD and PWT
values come from the relevant PDPTE register.

® For an access to a paging-structure entry X whose address is in another paging-
structure entry Y, i = 2*PCD+PWT, where the PCD and PWT values come from Y.

® For an access to the physical address that is the translation of a linear address,
i = 4*PAT+2*PCD+PWT, where the PAT, PCD, and PWT values come from the
relevant PTE (if the translation uses a 4-KByte page) or the relevant PDE (if the
translation uses a 2-MByte page or a 4-MByte page).

4.9.3 Caching Paging-Related Information about Memory Typing

A processor may cache information from the paging-structure entries in TLBs and

paging-structure caches (see Section 4.10). These structures may include informa-
tion about memory typing. The processor may memory-typing information from the
TLBs and paging-structure caches instead of from the paging structures in memory.

This fact implies that, if software modifies a paging-structure entry to change the
memory-typing bits, the processor might not use that change for a subsequent
translation using that entry or for access to an affected linear address. See Section
4.10.3.2 for how software can ensure that the processor uses the modified memory

typing.

410 CACHING TRANSLATION INFORMATION

The Intel-64 and 1A-32 architectures may accelerate the address-translation process
by caching data from the paging structures on the processor. Because the processor
does not ensure that the data that it caches are always consistent with the structures
in memory, it is important for software developers to understand how and when the
processor may cache such data. They should also understand what actions software
can take to remove cached data that may be inconsistent and when it should do so.
This section provides software developers information about the relevant processor
operation.

Section 4.10.1 and Section 4.10.2 describe how the processor may cache informa-
tion in translation lookaside buffers (TLBs) and paging-structure caches, respec-
tively. Section 4.10.3 explains how software can remove inconsistent cached
information by invalidating portions of the TLBs and paging-structure caches. Section
4.10.4 describes special considerations for multiprocessor systems.

4-38 Vol.3

PAGING

4.10.1 Translation Lookaside Buffers (TLBs)

A processor may cache information about the translation of linear addresses in trans-
lation lookaside buffers (TLBs). In general, TLBs contain entries that map page
numbers to page frames; these terms are defined in Section 4.10.1.1. Section
4.10.1.2 describes how information may be cached in TLBs, and Section 4.10.1.3
gives details of TLB usage. Section 4.10.1.4 explains the global-page feature, which
allows software to indicate that certain translations should receive special treatment
when cached in the TLBs.

4.10.1.1 Page Numbers, Page Frames, and Page Offsets

Section 4.3, Section 4.4.2, and Section 4.5 give details of how the different paging
modes translate linear addresses to physical addresses. Specifically, the upper bits of
a linear address (called the page number) determine the upper bits of the physical
address (called the page frame); the lower bits of the linear address (called the
page offset) determine the lower bits of the physical address. The boundary
between the page number and the page offset is determined by the page size.
Specifically:

® 32-bit paging:

— If the translation does not use a PTE (because CR4.PSE = 1 and the PS flag is
1 in the PDE used), the page size is 4 MBytes and the page number comprises
bits 31:22 of the linear address.

— If the translation does use a PTE, the page size is 4 KBytes and the page
number comprises bits 31:12 of the linear address.

® PAE paging:

— If the translation does not use a PTE (because the PS flag is 1 in the PDE
used), the page size is 2 MBytes and the page number comprises bits 31:21
of the linear address.

— If the translation does uses a PTE, the page size is 4 KBytes and the page
number comprises bits 31:12 of the linear address.

®]A-32e paging:

— If the translation does not uses a PTE (because the PS flag is 1 in the PDE
used), the page size is 2 MBytes and the page number comprises bits 47:21
of the linear address.

— If the translation does use a PTE, the page size is 4 KBytes and the page
number comprises bits 47:12 of the linear address.

4.10.1.2 Caching Translations in TLBs

The processor may accelerate the paging process by caching individual translations
in translation lookaside buffers (TLBs). Each entry in a TLB is an individual trans-
lation. Each translation is referenced by a page number. It contains the following

Vol.3 4-39

PAGING

information from the paging-structure entries used to translate linear addresses with
the page number:

® The physical address corresponding to the page number (the page frame).

® The access rights from the paging-structure entries used to translate linear
addresses with the page number (see Section 4.6):

— The logical-AND of the R/W flags.
— The logical-AND of the U/S flags.
— The logical-OR of the XD flags (necessary only if IA32_EFER.NXE = 1).

® Attributes from a paging-structure entry that identifies the final page frame for
the page number (either a PTE or a PDE in which the PS flag is 1):

— The dirty flag (see Section 4.8).
— The memory type (see Section 4.9).

(TLB entries may contain other information as well. A processor may implement
multiple TLBs, and some of these may be for special purposes, e.g., only for instruc-
tion fetches. Such special-purpose TLBs may not contain some of this information if
it is not necessary. For example, a TLB used only for instruction fetches need not
contain information about the R/W and dirty flags.)

Processors need not implement any TLBs. Processors that do implement TLBs may
invalidate any TLB entry at any time. Software should not rely on the existence of
TLBs or on the retention of TLB entries.

4.10.1.3 Details of TLB Use

Because the TLBs cache only valid translations, there can be a TLB entry for a page
number only if the P flag is 1 and the reserved bits are 0 in each of the paging-struc-
ture entries used to translate that page number. In addition, the processor does not
cache a translation for a page number unless the accessed flag is 1 in each of the
paging-structure entries used during translation; before caching a translation, the
processor sets any of these accessed flags that is not already 1.

The processor may cache translations required for prefetches and for accesses that
are a result of speculative execution that would never actually occur in the executed
code path.

If the page number of a linear address corresponds to a TLB entry, the processor may
use that TLB entry to determine the page frame, access rights, and other attributes
for accesses to that linear address. In this case, the processor may not actually
consult the paging structures in memory. The processor may retain a TLB entry
unmodified even if software subsequently modifies the relevant paging-structure
entries in memory. See Section 4.10.3.2 for how software can ensure that the
processor uses the modified paging-structure entries.

If the paging structures specify a translation using a page larger than 4 KBytes, some
processors may choose to cache multiple smaller-page TLB entries for that transla-

4-40 Vol.3

PAGING

tion. Each such TLB entry would be associated with a page number corresponding to
the smaller page size (e.g., bits 47:12 of a linear address with 1A-32e paging), even
though part of that page number (e.g., bits 20:12) are part of the offset with respect
to the page specified by the paging structures. The upper bits of the physical address
in such a TLB entry are derived from the physical address in the PDE used to create
the translation, while the lower bits come from the linear address of the access for
which the translation is created. There is no way for software to be aware that
multiple translations for smaller pages have been used for a large page.

If software modifies the paging structures so that the page size used for a 4-KByte
range of linear addresses changes, the TLBs may subsequently contain multiple
translations for the address range (one for each page size). A reference to a linear
address in the address range may use either translation. Which translation is used
may vary from one execution to another, and the choice may be implementation-
specific.

4.10.1.4 Global Pages

The Intel-64 and I1A-32 architectures also allow for global pages when the PGE flag
(bit 7) is 1 in CRA4. If the G flag (bit 8) is 1 in a paging-structure entry that maps a
page (either a PTE or a PDE in which the PS flag is 1), any TLB entry cached for a
linear address using that paging-structure entry is considered to be global. Because
the G flag is used only in paging-structure entries that map a page, and because
information from such entries are not cached in the paging-structure caches, the
global-page feature does not affect the behavior of the paging-structure caches.

4.10.2 Paging-Structure Caches

In addition to the TLBs, a processor may cache other information about the paging
structures in memory.

4.10.2.1 Caches for Paging Structures

A processor may support any or of all the following paging-structure caches:

® PML4 cache (I1A-32e paging only). Each PML4-cache entry is referenced by a 9-
bit value and is used for linear addresses for which bits 47:39 have that value.
The entry contains information from the PML4E used to translate such linear
addresses:

— The physical address from the PML4E (the address of the page-directory-
pointer table).

— The value of the R/W flag of the PML4E.

— The value of the U/S flag of the PML4E.

— The value of the XD flag of the PML4E.

— The values of the PCD and PWT flags of the PML4E.

Vol.3 4-41

PAGING

The following items detail how a processor may use the PML4 cache:

If the processor has a PML4-cache entry for a linear address, it may use that
entry when translating the linear address (instead of the PML4E in memory).

The processor does not create a PML4-cache entry unless the P flag is 1 and
all reserved bits are O in the PML4E in memory.

The processor does not create a PML4-cache entry unless the accessed flag is
1 in the PML4E in memory; before caching a translation, the processor sets
the accessed flag if it is not already 1.

The processor may create a PML4-cache entry even if there are no transla-
tions for any linear address that might use that entry (e.g., because the P
flags are O in all entries in the referenced page-directory-pointer table).

If the processor creates a PML4-cache entry, the processor may retain it
unmodified even if software subsequently modifies the corresponding PML4E
in memory.

®* PDPTE cache (IA-32e paging only).! Each PDPTE-cache entry is referenced by
an 18-bit value and is used for linear addresses for which bits 47:30 have that
value. The entry contains information from the PML4E and PDPTE used to
translate such linear addresses:

The physical address from the PDPTE (the address of the page directory).
The logical-AND of the R/W flags in the PML4E and the PDPTE.

The logical-AND of the U/S flags in the PML4E and the PDPTE.

The logical-OR of the XD flags in the PML4E and the PDPTE.

The values of the PCD and PWT flags of the PDPTE.

The following items detail how a processor may use the PDPTE cache:

If the processor has a PDPTE-cache entry for a linear address, it may use that
entry when translating the linear address (instead of the PML4E and the
PDPTE in memory).

The processor does not create a PDPTE-cache entry unless the P flag is 1 and
the reserved bits are 0 in the PML4E and the PDPTE in memory.

The processor does not create a PDPTE-cache entry unless the accessed flags
are 1 in the PML4E and the PDPTE in memory; before caching a translation,
the processor sets any accessed flags that are not already 1.

The processor may create a PDPTE-cache entry even if there are no transla-
tions for any linear address that might use that entry.

1. With PAE paging, the PDPTEs are stored in internal, non-architectural registers. The operation of
these registers is described in Section 4.4.1 and differs from that described here.

4-42 \Vol.3

PAGING

If the processor creates a PDPTE-cache entry, the processor may retain it
unmodified even if software subsequently modifies the corresponding PML4E
or PDPTE in memory.

® PDE cache. The use of the PDE cache depends on the paging mode:

For 32-bit paging, each PDE-cache entry is referenced by a 10-bit value and
is used for linear addresses for which bits 31:22 have that value.

For PAE paging, each PDE-cache entry is referenced by an 11-bit value and is
used for linear addresses for which bits 31:21 have that value.

For 1A-32e paging, each PDE-cache entry is referenced by a 27-bit value and
is used for linear addresses for which bits 47:21 have that value.

A PDE-cache entry contains information from the PML4E, PDPTE, and PDE used to
translate the relevant linear addresses (for 32-bit paging and PAE paging, only
the PDE applies):

The physical address from the PDE (the address of the page table). (No PDE-
cache entry is created for a PDE that maps a page.)

The logical-AND of the R/W flags in the PML4E, PDPTE, and PDE.
The logical-AND of the U/S flags in the PML4E, PDPTE, and PDE.
The logical-OR of the XD flags in the PML4E, PDPTE, and PDE.
The values of the PCD and PWT flags of the PDE.

The following items detail how a processor may use the PDE cache (references
below to PML4Es and PDPTEs apply on to 1A-32e paging):

If the processor has a PDE-cache entry for a linear address, it may use that
entry when translating the linear address (instead of the PML4E, the PDPTE,
and the PDE in memory).

The processor does not create a PDE-cache entry unless the P flag is 1, the PS
flag is O, and the reserved bits are O in the PML4E, the PDPTE, and the PDE in
memory.

The processor does not create a PDE-cache entry unless the accessed flag is
1 in the PML4E, the PDPTE, and the PDE in memory; before caching a trans-
lation, the processor sets any accessed flags that are not already 1.

The processor may create a PDE-cache entry even if there are no translations
for any linear address that might use that entry.

If the processor creates a PDE-cache entry, the processor may retain it
unmodified even if software subsequently modifies the corresponding PMLA4E,
the PDPTE, or the PDE in memory.

Information from a paging-structure entry can be included in entries in the paging-
structure caches for other paging-structure entries referenced by the original entry.
For example, if the R/W flag is O in a PML4E, then the R/W flag will be O in any PDPTE-
cache entry for a PDPTE from the page-directory-pointer table referenced by that

Vol.3 4-43

PAGING

PMLA4E. This is because the R/W flag of each such PDPTE-cache entry is the logical-
AND of the R/W flags in the appropriate PML4E and PDPTE.

The paging-structure caches contain information only from paging-structure entries
that reference other paging structures (and not those that map pages). Because the
G flag is not used in such paging-structure entries, the global-page feature does not
affect the behavior of the paging-structure caches.

The processor may create entries in paging-structure caches for translations
required for prefetches and for accesses that are a result of speculative execution
that would never actually occur in the executed code path.

A processor may or may not implement any of the paging-structure caches. Software
should rely on neither their presence nor their absence. The processor may invalidate
entries in these caches at any time. Because the processor may create the cache
entries at the time of translation and not update them following subsequent modifi-
cations to the paging structures in memory, software should take care to invalidate
the cache entries appropriately when causing such modifications. The invalidation of
TLBs and the paging-structure caches is described in Section 4.10.3.

4.10.2.2 Using the Paging-Structure Caches to Translate Linear Addresses

When a linear address is accessed, the processor uses a procedure such as the
following to determine the physical address to which it translates and whether the
access should be allowed:

® If the processor finds a TLB entry for the page number of the linear address, it
may use the physical address, access rights, and other attributes from that entry.

® If the processor does not find a TLB entry, it may use the upper bits of the linear
address to select an entry from the PDE cache (Section 4.10.2.1 indicates which
bits are used in each paging mode). It can then use that entry to complete the
translation process (locating a PTE, etc.) as if it had traversed the PDE (and, for
IA-32e paging, the PDPTE and PML4) corresponding to the PDE-cache entry.

® The following items apply when 1A-32e paging is used:

— If the processor does not find a TLB entry or a PDE-cache entry, it may use
bits 47:30 of the linear address to select an entry from the PDPTE cache. It
can then use that entry to complete the translation process (locating a PDE,
etc.) as if it had traversed the PDPTE and the PML4 corresponding to the
PDPTE-cache entry.

— If the processor does not find a TLB entry, a PDE-cache entry, or a PDPTE-
cache entry, it may use bits 47:39 of the linear address to select an entry
from the PML4 cache. It can then use that entry to complete the translation
process (locating a PDPTE, etc.) as if it had traversed the corresponding
PML4.

(Any of the above steps would be skipped if the processor does not support the cache
in question.)

4-44 \ol.3

PAGING

If the processor does not find a TLB or paging-structure-cache entry for the linear
address, it uses the linear address to traverse the entire paging-structure hierarchy,
as described in Section 4.3, Section 4.4.2, and Section 4.5.

4.10.2.3 Multiple Cached Entries for a Single Paging-Structure Entry

Note that multiple cached entries (in the paging-structure caches or TLBs) may
contain information derived from a single paging-structure entry. The following items
give some examples for 1A-32e paging:

® Suppose that two PML4Es contain the same physical address and thus reference
the same page-directory-pointer table. Any PDPTE in that table may result in two
PDPTE-cache entries, each associated with a different set of linear addresses.
Specifically, suppose that the nlth and nzth entries in the PML4 table contain the
same physical address. This implies that the physical address in the mt™ PDPTE in
the page-directory-pointer table would appear in the PDPTE-cache entries
associated with both p; and p,, where (p1 » 9) = nq, (P2 » 9) = n,, and (p1 &
1FFH) = (p, & 1FFH) = m. This is because both PDPTE-cache entries use the
same PDPTE, one resulting from a reference from the nlth PML4E and one from
the n,™" PMLA4E.

® Suppose that the first PML4E (i.e., the one in position 0) contains the physical
address X in CR3 (the physical address of the PML4 table). This implies the
following:

— Any PML4-cache entry associated with linear addresses with O in bits 47:39
contains address X.

— Any PDPTE-cache entry associated with linear addresses with 0 in bits 47:30
contains address X. This is because the translation for a linear address for
which the value of bits 47:30 is O uses the value of bits 47:39 (0) to locate a
page-directory-pointer table at address X (the address of the PML4 table). It
then uses the value of bits 38:30 (also 0) to find address X again and to store
that address in the PDPTE-cache entry.

— Any PDE-cache entry associated with linear addresses with 0 in bits 47:21
contains address X for similar reasons.

— Any TLB entry for page number O (associated with linear addresses with O in
bits 47:12) translates to page frame X » 12 for similar reasons.

The same PML4E contributes its address X to all these cache entries because the
self-referencing nature of the entry causes it to be used as a PML4E, a PDPTE, a
PDE, and a PTE.

4.10.3 Invalidation of TLBs and Paging-Structure Caches

As noted in Section 4.10.1 and Section 4.10.2, the processor may create entries in
the TLBs and the paging-structure caches when linear addresses are translated, and
it may retain these entries even after the paging structures used to create them have

Vol.3 4-45

PAGING

been modified. To ensure that linear-address translation uses the modified paging
structures, software should take action to invalidate any cached entries that may
contain information that has since been modified.

4.10.3.1 Operations that Invalidate TLBs and Paging-Structure Caches

It is recommended that software use the following instructions to invalidate entries in
the TLBs and the paging-structure caches:

® INVLPG. This instruction takes a single operand, which is a linear address. The
instruction invalidates any TLB entries with a page number corresponding to the
linear address, including those for global pages (see Section 4.10.1.4).1 INVLPG
also invalidates all entries in all paging-structure caches regardless of the linear
addresses to which they correspond.

® MOV to CR3. This instruction invalidates all TLB entries except those for global
pages. It also invalidates all entries in all paging-structure caches.

® MOV to CRA4. If this instruction changes value of the PGE flag (bit 7) of CR4, it
invalidates all TLB entries and all entries in all paging-structure caches. This
includes global TLB entries because (1) if CR4.PGE is changing from O to 1, there
were no global TLB entries before the execution; and (2) if CR4.PGE is changing
from 1 to O, there will be no global TLB entries after the execution.

® Task switch. If a task switch changes the value of CR3, it invalidates all TLB
entries except those for global pages. It also invalidates all entries in all paging-
structure caches.

® VMX transitions. See Section 4.11.1.

The processor is always free to invalidate additional entries in the TLBs and paging-
structure caches. The following are some examples:

® INVLPG may invalidate TLB entries for pages other than the one corresponding to
its linear-address operand.

® MOV to CR3 may invalidate TLB entries for global pages.

® On a processor supporting Hyper-Threading Technology, invalidations performed
on one logical processor may invalidate entries in the TLBs and paging-structure
caches used by other logical processors.

(Other instructions and operations may invalidate entries in the TLBs and the paging-
structure caches, but the instructions identified above are recommended.)

In addition to the instructions identified above, page faults invalidate entries in the
TLBs and paging-structure caches. In particular, a page-fault exception resulting
from an attempt to use a linear address will invalidate any PML4-cache, PDPTE-
cache, and PDE-cache entries that would be used for that linear address as well as
any TLB entry for that address's page number.2 These invalidations ensure that the

1. Evenif the paging structures map the linear address using a page larger than 4 KBytes and there
are multiple TLB entries for that page (see Section 4.10.1), the instruction invalidates all of them.

4-46 Vol.3

PAGING

page-fault exception will not recur (if the faulting instruction is re-executed) if it
would not be caused by the contents of the paging structures in memory (and if,
therefore, it resulted from cached entries that were not invalidated after the paging
structures were modified in memory).

As noted in Section 4.10.1, some processors may choose to cache multiple smaller-
page TLB entries for a translation specified by the paging structures to use a page
larger than 4 KBytes. There is no way for software to be aware that multiple transla-
tions for smaller pages have been used for a large page. The INVLPG instruction and
page faults provide the same assurances that they provide when a single TLB entry is
used: they invalidate all TLB entries corresponding to the translation specified by the
paging structures.

4.10.3.2 Recommended Invalidation

The following items provide some recommendations regarding when software should
perform invalidations:

® If software modifies a paging-structure entry that identifies the final page frame
for a page number (either a PTE or a PDE in which the PS flag is 1), it should
execute INVLPG for any linear address with a page number whose translation
uses that PTE.1 (If the paging-structure entry may be used in the translation of
different page numbers — see Section 4.10.2.3 — software should execute
INVLPG for linear addresses with each of those page numbers; alternatively, it
could use MOV to CR3 or MOV to CR4.)

¢ If software modifies a paging-structure entry that references another paging
structure, it may use one of the following approaches depending upon the types
and number of translations controlled by the modified entry:

— Execute INVLPG for linear addresses with each of the page numbers with
translations that would use the entry. However, if no page numbers that
would use the entry have translations (e.g., because the P flags are O in all
entries in the paging structure referenced by the modified entry), it remains
necessary to execute INVLPG at least once.

— Execute MOV to CR3 if the modified entry controls no global pages.

— Execute MOV to CR4 to modify CR4.PGE.

® If software using PAE paging modifies a PDPTE, it should reload CR3 with the
register’s current value to ensure that the modified PDPTE is loaded into the
corresponding PDPTE register (see Section 4.4.1).

® If the nature of the paging structures is such that a single entry may be used for
multiple purposes (see Section 4.10.2.3), software should perform invalidations
for all of these purposes. For example, if a single entry might serve as both a PDE

2. Unlike INVLPG, page faults need not invalidate all entries in the paging-structure caches, only
those that would be used to translate the faulting linear address.

1. One execution of INVLPG is sufficient even for a page with size greater than 4 KBytes.

Vol.3 4-47

PAGING

and PTE, it may be necessary to execute INVLPG with two (or more) linear
addresses, one that uses the entry as a PDE and one that uses it as a PTE. (Alter-
natively, software could use MOV to CR3 or MOV to CR4.)

As noted in Section 4.10.1, the TLBs may subsequently contain multiple transla-
tions for the address range if software modifies the paging structures so that the
page size used for a 4-KByte range of linear addresses changes. A reference to a
linear address in the address range may use either translation.

Software wishing to prevent this uncertainty should not write to a paging-
structure entry in a way that would change, for any linear address, both the page
size and either the page frame, access rights, or other attributes. It can instead
use the following algorithm: first clear the P flag in the relevant paging-structure
entry (e.g., PDE); then invalidate any translations for the affected linear
addresses (see Section 4.10.3.2); and then modify the relevant paging-structure
entry to set the P flag and establish modified translation(s) for the new page size.

4.10.3.3 Optional Invalidation

The following items describe cases in which software may choose not to invalidate
and the potential consequences of that choice:

If a paging-structure entry is modified to change the P flag from 0 to 1, no inval-
idation is necessary. This is because no TLB entry or paging-structure cache entry
is created with information from a paging-structure entry in which the P flag is 0.1

If a paging-structure entry is modified to change the accessed flag from O to 1,
no invalidation is necessary (assuming that an invalidation was performed the
last time the accessed flag was changed from 1 to 0). This is because no TLB
entry or paging-structure cache entry is created with information from a paging-
structure entry in which the accessed flag is 0.

If a paging-structure entry is modified to change the R/W flag from O to 1, failure
to perform an invalidation may result in a “spurious” page-fault exception (e.g.,
in response to an attempted write access) but no other adverse behavior. Such
an exception will occur at most once for each affected linear address (see Section
4.10.3.1).

If a paging-structure entry is modified to change the U/S flag from O to 1, failure
to perform an invalidation may result in a “spurious” page-fault exception (e.g.,
in response to an attempted user-mode access) but no other adverse behavior.

Such an exception will occur at most once for each affected linear address (see

Section 4.10.3.1).

If a paging-structure entry is modified to change the XD flag from 1 to O, failure

to perform an invalidation may result in a “spurious” page-fault exception (e.g.,
in response to an attempted instruction fetch) but no other adverse behavior.

If it is also the case that no invalidation was performed the last time the P flag was changed
from 1 to O, the processor may use a TLB entry or paging-structure cache entry that was cre-
ated when the P flag had earlier been 1.

4-48 Vol.3

PAGING

Such an exception will occur at most once for each affected linear address (see
Section 4.10.3.1).

® If a paging-structure entry is modified to change the accessed flag from 1 to O,
failure to perform an invalidation may result in the processor not setting that bit
in response to a subsequent access to a linear address whose translation uses the
entry. Software cannot interpret the bit being clear as an indication that such an
access has not occurred.

® If software modifies a paging-structure entry that identifies the final physical
address for a linear address (either a PTE or a PDE in which the PS flag is 1) to
change the dirty flag from 1 to 0, failure to perform an invalidation may result in
the processor not setting that bit in response to a subsequent write to a linear
address whose translation uses the entry. Software cannot interpret the bit being
clear as an indication that such a write has not occurred.

® The read of a paging-structure entry in translating an address being used to fetch
an instruction may appear to execute before an earlier write to that paging-
structure entry if there is no serializing instruction between the write and the
instruction fetch. Note that the invalidating instructions identified in Section
4.10.3.1 are all serializing instructions.

® Section 4.10.2.3 describes situations in which a single paging-structure entry
may contain information cached in multiple entries in the paging-structure
caches. Because all entries in these caches are invalidated by any execution of
INVLPG, it is not necessary to follow the modification of such a paging-structure
entry by executing INVLPG multiple times solely for the purpose of invalidating
these multiple cached entries. (It may be necessary to do so to invalidate
multiple TLB entries.)

4.10.4 Propagation of Paging-Structure Changes to Multiple
Processors

As noted in Section 4.10.3, software that modifies a paging-structure entry may
need to invalidate entries in the TLBs and paging-structure caches that were derived
from the modified entry before it was modified. In a system containing more than
one logical processor, software must account for the fact that there may be entries in
the TLBs and paging-structure caches of logical processors other than the one used
to modify the paging-structure entry. The process of propagating the changes to a
paging-structure entry is commonly referred to as “TLB shootdown.”

TLB shootdown can be done using memory-based semaphores and/or interprocessor
interrupts (IP1). The following items describe a simple but inefficient example of a
TLB shootdown algorithm for processors supporting the Intel-64 and 1A-32 architec-
tures:

1. Begin barrier: Stop all but one logical processor; that is, cause all but one to
execute the HLT instruction or to enter a spin loop.

Vol.3 4-49

PAGING

2. Allow the active logical processor to change the necessary paging-structure
entries.

3. Allow all logical processors to perform invalidations appropriate to the modifica-
tions to the paging-structure entries.

4. Allow all logical processors to resume normal operation.

Alternative, performance-optimized, TLB shootdown algorithms may be developed;
however, software developers must take care to ensure that the following conditions
are met:

® All logical processors that are using the paging structures that are being modified
must participate and perform appropriate invalidations after the modifications
are made.

® If the modifications to the paging-structure entries are made before the barrier
or if there is no barrier, the operating system must ensure one of the following:
(1) that the affected linear-address range is not used between the time of modifi-
cation and the time of invalidation; or (2) that it is prepared to deal with the
consequences of the affected linear-address range being used during that period.
For example, if the operating system does not allow pages being freed to be
reallocated for another purpose until after the required invalidations, writes to
those pages by errant software will not unexpectedly modify memory that is in
use.

® Software must be prepared to deal with reads, instruction fetches, and prefetch
requests to the affected linear-address range that are a result of speculative
execution that would never actually occur in the executed code path.

When multiple logical processors are using the same linear-address space at the
same time, they must coordinate before any request to modify the paging-structure
entries that control that linear-address space. In these cases, the barrier in the TLB
shootdown routine may not be required. For example, when freeing a range of linear
addresses, some other mechanism can assure no logical processor is using that
range before the request to free it is made. In this case, a logical processor freeing
the range can clear the P flags in the PTEs associated with the range, free the phys-
ical page frames associated with the range, and then signal the other logical proces-
sors using that linear-address space to perform the necessary invalidations. All the
affected logical processors must complete their invalidations before the linear-
address range and the physical page frames previously associated with that range
can be reallocated.

4.11 INTERACTIONS WITH VIRTUAL-MACHINE
EXTENSIONS (VMX)

The architecture for virtual-machine extensions (VMX) includes features that interact
with paging. Section 4.11.1 discusses ways in which VMX-specific control transfers,

4-50 Vol.3

PAGING

called VMX transitions specially affect paging. Section 4.11.2 gives an overview of
VMX features specifically designed to support address translation.

4.11.1 VMX Transitions

The VMX architecture defines two control transfers called VM entries and VM exits;
collectively, these are called VMX transitions. VM entries and VM exits are
described in detail in Chapter 23 and Chapter 24, respectively, in the Intel® 64 and
I1A-32 Architectures Software Developer’s Manual, Volume 3B. The following items
identify paging-related details:

® VMX transitions modify the CRO and CR4 registers and the 1A32_EFER MSR
concurrently. For this reason, they allow transitions between paging modes that
would not otherwise be possible:

— VM entries allow transitions from 1A-32e paging directly to either 32-bit
paging or PAE paging.

— VM exits allow transitions from either 32-bit paging or PAE paging directly to
1A-32e paging.

® VMX transitions that result in PAE paging load the PDPTE registers (see Section
4.4.1) as follows:

— VM entries load the PDPTE registers either from the physical address being
loaded into CR3 or from the virtual-machine control structure (VMCS); see
Section 23.3.2.4.

— VM exits load the PDPTE registers from the physical address being loaded into
CR3; see Section 24.5.4.

® VMX transitions invalidate the TLBs and paging-structure caches based on certain
control settings. See Section 23.3.2.5 and Section 24.5.5.

4.11.2 VMX Support for Address Translation

Chapter 25, “VMX Support for Address Translation,” in the Intel® 64 and 1A-32 Archi-
tectures Software Developer’s Manual, Volume 3B describe two features of the
virtual-machine extensions (VMX) that interact directly with paging. These are
virtual-processor identifiers (VPIDs) and the extended page table mechanism
(EPT).

VPIDs provide a way for software to identify to the processor the address spaces for
different “virtual processors.” The processor may use this identification to maintain
concurrently information for multiple address spaces in its TLBs and paging-structure
caches. See Section 25.1 for details.

When EPT is in use, the addresses in the paging-structures are not used as physical
addresses to access memory and memory-mapped 1/0. Instead, they are treated as
guest-physical addresses and are translated through a set of EPT paging structures
to produce physical addresses. EPT can also specify its own access rights and

Vol.3 4-51

PAGING

memory typing; these are used on conjunction with those specified in this chapter.
See Section 25.2 for more information.

Both VPIDs and EPT may change the way that a processor maintains information in
TLBs and paging structure caches and the ways in which software can manage that
information. Some of the behaviors documented in Section 4.10 may change. See
Section 25.3 for details.

412 USING PAGING FOR VIRTUAL MEMORY

With paging, portions of the linear-address space need not be mapped to the phys-
ical-address space; data for the unmapped addresses can be stored externally (e.g.,
on disk). This method of mapping the linear-address space is referred to as virtual
memory or demand-paged virtual memory.

Paging divides the linear address space into fixed-size pages that can be mapped into
the physical-address space and/or external storage. When a program (or task) refer-
ences a linear address, the processor uses paging to translate the linear address into
a corresponding physical address if such an address is defined.

If the page containing the linear address is not currently mapped into the physical-
address space, the processor generates a page-fault exception as described in
Section 4.7. The handler for page-fault exceptions typically directs the operating
system or executive to load data for the unmapped page from external storage into
physical memory (perhaps writing a different page from physical memory out to
external storage in the process) and to map it using paging (by updating the paging
structures). When the page has been loaded into physical memory, a return from the
exception handler causes the instruction that generated the exception to be
restarted.

Paging differs from segmentation through its use of fixed-size pages. Unlike
segments, which usually are the same size as the code or data structures they hold,
pages have a fixed size. If segmentation is the only form of address translation used,
a data structure present in physical memory will have all of its parts in memory. If
paging is used, a data structure can be partly in memory and partly in disk storage.

413 MAPPING SEGMENTS TO PAGES

The segmentation and paging mechanisms provide in the support a wide variety of
approaches to memory management. When segmentation and paging are combined,
segments can be mapped to pages in several ways. To implement a flat (unseg-
mented) addressing environment, for example, all the code, data, and stack modules
can be mapped to one or more large segments (up to 4-GBytes) that share same
range of linear addresses (see Figure 3-2 in Section 3.2.2). Here, segments are
essentially invisible to applications and the operating-system or executive. If paging
is used, the paging mechanism can map a single linear-address space (contained in

4-52 Vol.3

PAGING

a single segment) into virtual memory. Alternatively, each program (or task) can
have its own large linear-address space (contained in its own segment), which is
mapped into virtual memory through its own paging structures.

Segments can be smaller than the size of a page. If one of these segments is placed
in a page which is not shared with another segment, the extra memory is wasted. For
example, a small data structure, such as a 1-Byte semaphore, occupies 4 KBytes if it
is placed in a page by itself. If many semaphores are used, it is more efficient to pack
them into a single page.

The Intel-64 and 1A-32 architectures do not enforce correspondence between the
boundaries of pages and segments. A page can contain the end of one segment and
the beginning of another. Similarly, a segment can contain the end of one page and
the beginning of another.

Memory-management software may be simpler and more efficient if it enforces some
alignment between page and segment boundaries. For example, if a segment which
can fit in one page is placed in two pages, there may be twice as much paging over-
head to support access to that segment.

One approach to combining paging and segmentation that simplifies memory-
management software is to give each segment its own page table, as shown in
Figure 4-12. This convention gives the segment a single entry in the page directory,
and this entry provides the access control information for paging the entire segment.

Page Frames

LDT Page Directory Page Tables >
PTE —
PTE >
PTE
Seg. Descript.—>» PDE —’_>
Seg. Descript.—>» PDE >
PTE T

PTE —‘

Figure 4-12. Memory Management Convention That Assigns a Page Table
to Each Segment

Vol.3 4-53

PAGING

4-54 Vol.3

CHAPTER 5
PROTECTION

In protected mode, the Intel 64 and 1A-32 architectures provide a protection mecha-
nism that operates at both the segment level and the page level. This protection
mechanism provides the ability to limit access to certain segments or pages based on
privilege levels (four privilege levels for segments and two privilege levels for pages).
For example, critical operating-system code and data can be protected by placing
them in more privileged segments than those that contain applications code. The
processor’s protection mechanism will then prevent application code from accessing
the operating-system code and data in any but a controlled, defined manner.

Segment and page protection can be used at all stages of software development to
assist in localizing and detecting design problems and bugs. It can also be incorpo-
rated into end-products to offer added robustness to operating systems, utilities soft-
ware, and applications software.

When the protection mechanism is used, each memory reference is checked to verify
that it satisfies various protection checks. All checks are made before the memory
cycle is started; any violation results in an exception. Because checks are performed
in parallel with address translation, there is no performance penalty. The protection
checks that are performed fall into the following categories:

® Limit checks.

® Type checks.

® Privilege level checks.

® Restriction of addressable domain.

® Restriction of procedure entry-points.
® Restriction of instruction set.

All protection violation results in an exception being generated. See Chapter 6,
“Interrupt and Exception Handling,” for an explanation of the exception mechanism.
This chapter describes the protection mechanism and the violations which lead to
exceptions.

The following sections describe the protection mechanism available in protected
mode. See Chapter 16, “8086 Emulation,” for information on protection in real-
address and virtual-8086 mode.

5.1 ENABLING AND DISABLING SEGMENT AND PAGE
PROTECTION

Setting the PE flag in register CRO causes the processor to switch to protected mode,
which in turn enables the segment-protection mechanism. Once in protected mode,

Vol.3 5-1

PROTECTION

there is no control bit for turning the protection mechanism on or off. The part of the
segment-protection mechanism that is based on privilege levels can essentially be
disabled while still in protected mode by assigning a privilege level of 0 (most privi-
leged) to all segment selectors and segment descriptors. This action disables the
privilege level protection barriers between segments, but other protection checks
such as limit checking and type checking are still carried out.

Page-level protection is automatically enabled when paging is enabled (by setting the
PG flag in register CR0). Here again there is no mode bit for turning off page-level
protection once paging is enabled. However, page-level protection can be disabled by
performing the following operations:

® Clear the WP flag in control register CRO.

® Set the read/write (R/W) and user/supervisor (U/S) flags for each page-directory
and page-table entry.

This action makes each page a writable, user page, which in effect disables page-
level protection.

5.2 FIELDS AND FLAGS USED FOR SEGMENT-LEVEL AND
PAGE-LEVEL PROTECTION

The processor’s protection mechanism uses the following fields and flags in the
system data structures to control access to segments and pages:

® Descriptor type (S) flag — (Bit 12 in the second doubleword of a segment
descriptor.) Determines if the segment descriptor is for a system segment or a
code or data segment.

® Type field — (Bits 8 through 11 in the second doubleword of a segment
descriptor.) Determines the type of code, data, or system segment.

® Limit field — (Bits O through 15 of the first doubleword and bits 16 through 19
of the second doubleword of a segment descriptor.) Determines the size of the
segment, along with the G flag and E flag (for data segments).

® G flag — (Bit 23 in the second doubleword of a segment descriptor.) Determines
the size of the segment, along with the limit field and E flag (for data segments).

¢ E flag — (Bit 10 in the second doubleword of a data-segment descriptor.)
Determines the size of the segment, along with the limit field and G flag.

® Descriptor privilege level (DPL) field — (Bits 13 and 14 in the second
doubleword of a segment descriptor.) Determines the privilege level of the
segment.

® Requested privilege level (RPL) field — (Bits 0 and 1 of any segment
selector.) Specifies the requested privilege level of a segment selector.

® Current privilege level (CPL) field — (Bits 0 and 1 of the CS segment
register.) Indicates the privilege level of the currently executing program or

5-2 Vol.3

PROTECTION

procedure. The term current privilege level (CPL) refers to the setting of this
field.

® User/supervisor (U/S) flag — (Bit 2 of paging-structure entries.) Determines
the type of page: user or supervisor.

® Read/write (R/W) flag — (Bit 1 of paging-structure entries.) Determines the
type of access allowed to a page: read-only or read/write.

¢ Execute-disable (XD) flag — (Bit 63 of certain paging-structure entries.)
Determines the type of access allowed to a page: executable or not-executable.

Figure 5-1 shows the location of the various fields and flags in the data, code, and
system- segment descriptors; Figure 3-6 shows the location of the RPL (or CPL) field
in a segment selector (or the CS register); and Chapter 4 identifies the locations of
the U/S, R/W, and XD flags in the paging-structure entries.

Vol.3 5-3

PROTECTION

Data-Segment Descriptor

31 242322212019 16 1514 1312 11 8 7 0
A [D Type
Base 31:24 G|B|0O|V JI_‘g'nl'é Pl P P Base 23:16 4
L : 1]0 ‘ E ‘W‘ A
31 16 15 0
Base Address 15:00 Segment Limit 15:00 0

Code-Segment Descriptor

31 242322 212019 1615141312 11 8 7 0
A i D Type
Base31:24 |G|pjo|v| LML |p| p P Base 23:16 4
L : L |11 ‘ c ‘ R ‘ A
31 16 15 0
Base Address 15:00 Segment Limit 15:00 0

System-Segment Descriptor

31 242322212019 1615141312 11 8 7 0
Base 31:24 G| |o Limit | B 0| Type Base 23:16 4
’ 19:16 L :
31 16 15 0
Base Address 15:00 Segment Limit 15:00 0
A Accessed E Expansion Direction
AVL Available to Sys. Programmer's G Granularity
B Big R Readable
C Conforming LIMIT Segment Limit
D Default w Writable
DPL Descriptor Privilege Level P Present

I:l Reserved

Figure 5-1. Descriptor Fields Used for Protection

Many different styles of protection schemes can be implemented with these fields
and flags. When the operating system creates a descriptor, it places values in these
fields and flags in keeping with the particular protection style chosen for an operating
system or executive. Application program do not generally access or modify these
fields and flags.

5-4 Vol.3

PROTECTION

The following sections describe how the processor uses these fields and flags to
perform the various categories of checks described in the introduction to this chapter.

5.2.1 Code Segment Descriptor in 64-bit Mode

Code segments continue to exist in 64-bit mode even though, for address calcula-
tions, the segment base is treated as zero. Some code-segment (CS) descriptor
content (the base address and limit fields) is ignored; the remaining fields function
normally (except for the readable bit in the type field).

Code segment descriptors and selectors are needed in 1A-32e mode to establish the
processor’s operating mode and execution privilege-level. The usage is as follows:

® 1A-32e mode uses a previously unused bit in the CS descriptor. Bit 53 is defined
as the 64-bit (L) flag and is used to select between 64-bit mode and compatibility
mode when IA-32e mode is active (IA32_EFER.LMA = 1). See Figure 5-2.

— If CS.L = 0 and IA-32e mode is active, the processor is running in compati-
bility mode. In this case, CS.D selects the default size for data and addresses.
If CS.D = 0, the default data and address size is 16 bits. If CS.D = 1, the
default data and address size is 32 bits.

— If CS.L =1 and IA-32e mode is active, the only valid setting is CS.D = 0. This
setting indicates a default operand size of 32 bits and a default address size
of 64 bits. The CS.L =1 and CS.D = 1 bit combination is reserved for future
use and a #GP fault will be generated on an attempt to use a code segment
with these bits set in 1A-32e mode.

® In IA-32e mode, the CS descriptor’s DPL is used for execution privilege checks
(as in legacy 32-bit mode).

Vol.3 5-5

PROTECTION

Code-Segment Descriptor

31 242322212019 1615141312 11 8 7 0

alo|Ll¥ °l P Type 4
L L l‘C‘R‘A

N

31 0

A Accessed

AVL Available to Sys. Programmer's G Granularity
C Conforming R Readable
D Default P Present

DPL Descriptor Privilege Level
L 64-Bit Flag

Figure 5-2. Descriptor Fields with Flags used in IA-32e Mode

5.3 LIMIT CHECKING

The limit field of a segment descriptor prevents programs or procedures from
addressing memory locations outside the segment. The effective value of the limit
depends on the setting of the G (granularity) flag (see Figure 5-1). For data
segments, the limit also depends on the E (expansion direction) flag and the B
(default stack pointer size and/or upper bound) flag. The E flag is one of the bits in
the type field when the segment descriptor is for a data-segment type.

When the G flag is clear (byte granularity), the effective limit is the value of the
20-bit limit field in the segment descriptor. Here, the limit ranges from O to FFFFFH
(1 MByte). When the G flag is set (4-KByte page granularity), the processor scales
the value in the limit field by a factor of 212 (4 KBytes). In this case, the effective
limit ranges from FFFH (4 KBytes) to FFFFFFFFH (4 GBytes). Note that when scaling
is used (G flag is set), the lower 12 bits of a segment offset (address) are not checked
against the limit; for example, note that if the segment limit is O, offsets O through
FFFH are still valid.

For all types of segments except expand-down data segments, the effective limit is
the last address that is allowed to be accessed in the segment, which is one less than
the size, in bytes, of the segment. The processor causes a general-protection excep-
tion any time an attempt is made to access the following addresses in a segment:

® A byte at an offset greater than the effective limit
® A word at an offset greater than the (effective-limit — 1)

5-6 Vol.3

PROTECTION

® A doubleword at an offset greater than the (effective-limit — 3)
® A quadword at an offset greater than the (effective-limit — 7)

For expand-down data segments, the segment limit has the same function but is
interpreted differently. Here, the effective limit specifies the last address that is not
allowed to be accessed within the segment; the range of valid offsets is from (effec-
tive-limit + 1) to FFFFFFFFH if the B flag is set and from (effective-limit + 1) to FFFFH
if the B flag is clear. An expand-down segment has maximum size when the segment
limit is O.

Limit checking catches programming errors such as runaway code, runaway
subscripts, and invalid pointer calculations. These errors are detected when they
occur, so identification of the cause is easier. Without limit checking, these errors
could overwrite code or data in another segment.

In addition to checking segment limits, the processor also checks descriptor table
limits. The GDTR and IDTR registers contain 16-bit limit values that the processor
uses to prevent programs from selecting a segment descriptors outside the respec-
tive descriptor tables. The LDTR and task registers contain 32-bit segment limit value
(read from the segment descriptors for the current LDT and TSS, respectively). The
processor uses these segment limits to prevent accesses beyond the bounds of the
current LDT and TSS. See Section 3.5.1, “Segment Descriptor Tables,” for more infor-
mation on the GDT and LDT limit fields; see Section 6.10, “Interrupt Descriptor Table
(IDT),” for more information on the IDT limit field; and see Section 7.2.4, “Task
Register,” for more information on the TSS segment limit field.

5.3.1 Limit Checking in 64-bit Mode

In 64-bit mode, the processor does not perform runtime limit checking on code or
data segments. However, the processor does check descriptor-table limits.

54 TYPE CHECKING

Segment descriptors contain type information in two places:
® The S (descriptor type) flag.
® The type field.

The processor uses this information to detect programming errors that result in an
attempt to use a segment or gate in an incorrect or unintended manner.

The S flag indicates whether a descriptor is a system type or a code or data type. The
type field provides 4 additional bits for use in defining various types of code, data,
and system descriptors. Table 3-1 shows the encoding of the type field for code and
data descriptors; Table 3-2 shows the encoding of the field for system descriptors.

Vol.3 5-7

PROTECTION

The processor examines type information at various times while operating on
segment selectors and segment descriptors. The following list gives examples of
typical operations where type checking is performed (this list is not exhaustive):

When a segment selector is loaded into a segment register — Certain
segment registers can contain only certain descriptor types, for example:

— The CS register only can be loaded with a selector for a code segment.

— Segment selectors for code segments that are not readable or for system
segments cannot be loaded into data-segment registers (DS, ES, FS, and
GS).

— Only segment selectors of writable data segments can be loaded into the SS
register.

When a segment selector is loaded into the LDTR or task register — For example:
— The LDTR can only be loaded with a selector for an LDT.
— The task register can only be loaded with a segment selector for a TSS.

When instructions access segments whose descriptors are already
loaded into segment registers — Certain segments can be used by instruc-
tions only in certain predefined ways, for example:

— No instruction may write into an executable segment.
— No instruction may write into a data segment if it is not writable.

— No instruction may read an executable segment unless the readable flag is
set.

When an instruction operand contains a segment selector — Certain
instructions can access segments or gates of only a particular type, for example:

— A far CALL or far JMP instruction can only access a segment descriptor for a
conforming code segment, nonconforming code segment, call gate, task
gate, or TSS.

— The LLDT instruction must reference a segment descriptor for an LDT.
— The LTR instruction must reference a segment descriptor for a TSS.

— The LAR instruction must reference a segment or gate descriptor for an LDT,
TSS, call gate, task gate, code segment, or data segment.

— The LSL instruction must reference a segment descriptor for a LDT, TSS, code
segment, or data segment.

— IDT entries must be interrupt, trap, or task gates.
During certain internal operations — For example:

— On afar call or far jump (executed with a far CALL or far JMP instruction), the
processor determines the type of control transfer to be carried out (call or
jump to another code segment, a call or jump through a gate, or a task
switch) by checking the type field in the segment (or gate) descriptor pointed
to by the segment (or gate) selector given as an operand in the CALL or JMP

5-8 Vol.3

PROTECTION

instruction. If the descriptor type is for a code segment or call gate, a call or
jump to another code segment is indicated; if the descriptor type is for a TSS
or task gate, a task switch is indicated.

— On acall or jump through a call gate (or on an interrupt- or exception-handler
call through a trap or interrupt gate), the processor automatically checks that
the segment descriptor being pointed to by the gate is for a code segment.

— On acall or jump to a new task through a task gate (or on an interrupt- or
exception-handler call to a new task through a task gate), the processor
automatically checks that the segment descriptor being pointed to by the
task gate is for a TSS.

— On acall or jump to a new task by a direct reference to a TSS, the processor
automatically checks that the segment descriptor being pointed to by the
CALL or JMP instruction is for a TSS.

— On return from a nested task (initiated by an IRET instruction), the processor
checks that the previous task link field in the current TSS points to a TSS.

5.4.1 Null Segment Selector Checking

Attempting to load a null segment selector (see Section 3.4.2, “Segment Selectors”)
into the CS or SS segment register generates a general-protection exception (#GP).
A null segment selector can be loaded into the DS, ES, FS, or GS register, but any
attempt to access a segment through one of these registers when it is loaded with a
null segment selector results in a #GP exception being generated. Loading unused
data-segment registers with a null segment selector is a useful method of detecting
accesses to unused segment registers and/or preventing unwanted accesses to data
segments.

5.4.1.1 NULL Segment Checking in 64-bit Mode

In 64-bit mode, the processor does not perform runtime checking on NULL segment
selectors. The processor does not cause a #GP fault when an attempt is made to
access memory where the referenced segment register has a NULL segment selector.

5.5 PRIVILEGE LEVELS

The processor’s segment-protection mechanism recognizes 4 privilege levels,
numbered from O to 3. The greater numbers mean lesser privileges. Figure 5-3
shows how these levels of privilege can be interpreted as rings of protection.

The center (reserved for the most privileged code, data, and stacks) is used for the
segments containing the critical software, usually the kernel of an operating system.
Quter rings are used for less critical software. (Systems that use only 2 of the 4
possible privilege levels should use levels 0 and 3.)

Vol.3 5-9

PROTECTION

Protection Rings

Operating

System

Kernel

Operating System
Services “

Applications

Figure 5-3. Protection Rings

The processor uses privilege levels to prevent a program or task operating at a lesser
privilege level from accessing a segment with a greater privilege, except under
controlled situations. When the processor detects a privilege level violation, it gener-
ates a general-protection exception (#GP).

To carry out privilege-level checks between code segments and data segments, the
processor recognizes the following three types of privilege levels:

® Current privilege level (CPL) — The CPL is the privilege level of the currently
executing program or task. It is stored in bits O and 1 of the CS and SS segment
registers. Normally, the CPL is equal to the privilege level of the code segment
from which instructions are being fetched. The processor changes the CPL when
program control is transferred to a code segment with a different privilege level.
The CPL is treated slightly differently when accessing conforming code segments.
Conforming code segments can be accessed from any privilege level that is equal
to or numerically greater (less privileged) than the DPL of the conforming code
segment. Also, the CPL is not changed when the processor accesses a conforming
code segment that has a different privilege level than the CPL.

® Descriptor privilege level (DPL) — The DPL is the privilege level of a segment
or gate. It is stored in the DPL field of the segment or gate descriptor for the
segment or gate. When the currently executing code segment attempts to access
a segment or gate, the DPL of the segment or gate is compared to the CPL and
RPL of the segment or gate selector (as described later in this section). The DPL
is interpreted differently, depending on the type of segment or gate being
accessed:

— Data segment — The DPL indicates the numerically highest privilege level
that a program or task can have to be allowed to access the segment. For

5-10 Vol. 3

PROTECTION

example, if the DPL of a data segment is 1, only programs running at a CPL of
0 or 1 can access the segment.

— Nonconforming code segment (without using a call gate) — The DPL
indicates the privilege level that a program or task must be at to access the
segment. For example, if the DPL of a nonconforming code segment is O, only
programs running at a CPL of O can access the segment.

— Call gate — The DPL indicates the numerically highest privilege level that the
currently executing program or task can be at and still be able to access the
call gate. (This is the same access rule as for a data segment.)

— Conforming code segment and nonconforming code segment
accessed through a call gate — The DPL indicates the numerically lowest
privilege level that a program or task can have to be allowed to access the
segment. For example, if the DPL of a conforming code segment is 2,
programs running at a CPL of O or 1 cannot access the segment.

— TSS — The DPL indicates the numerically highest privilege level that the
currently executing program or task can be at and still be able to access the
TSS. (This is the same access rule as for a data segment.)

® Requested privilege level (RPL) — The RPL is an override privilege level that
is assigned to segment selectors. It is stored in bits O and 1 of the segment
selector. The processor checks the RPL along with the CPL to determine if access
to a segment is allowed. Even if the program or task requesting access to a
segment has sufficient privilege to access the segment, access is denied if the
RPL is not of sufficient privilege level. That is, if the RPL of a segment selector is
numerically greater than the CPL, the RPL overrides the CPL, and vice versa. The
RPL can be used to insure that privileged code does not access a segment on
behalf of an application program unless the program itself has access privileges
for that segment. See Section 5.10.4, “Checking Caller Access Privileges (ARPL
Instruction),” for a detailed description of the purpose and typical use of the RPL.

Privilege levels are checked when the segment selector of a segment descriptor is
loaded into a segment register. The checks used for data access differ from those
used for transfers of program control among code segments; therefore, the two
kinds of accesses are considered separately in the following sections.

5.6 PRIVILEGE LEVEL CHECKING WHEN ACCESSING DATA
SEGMENTS

To access operands in a data segment, the segment selector for the data segment
must be loaded into the data-segment registers (DS, ES, FS, or GS) or into the stack-
segment register (SS). (Segment registers can be loaded with the MOV, POP, LDS,
LES, LFS, LGS, and LSS instructions.) Before the processor loads a segment selector
into a segment register, it performs a privilege check (see Figure 5-4) by comparing
the privilege levels of the currently running program or task (the CPL), the RPL of the
segment selector, and the DPL of the segment’s segment descriptor. The processor

Vol.3 5-11

PROTECTION

loads the segment selector into the segment register if the DPL is numerically greater
than or equal to both the CPL and the RPL. Otherwise, a general-protection fault is
generated and the segment register is not loaded.

CS Register

CPL

Segment Selector
For Data Segment

RPL

Y

Privilege

Data-Segment Descriptor
Check

Y Yy

DPL

Figure 5-4. Privilege Check for Data Access

Figure 5-5 shows four procedures (located in codes segments A, B, C, and D), each
running at different privilege levels and each attempting to access the same data
segment.

1.

The procedure in code segment A is able to access data segment E using segment
selector E1, because the CPL of code segment A and the RPL of segment selector
E1l are equal to the DPL of data segment E.

The procedure in code segment B is able to access data segment E using segment
selector E2, because the CPL of code segment B and the RPL of segment selector
E2 are both numerically lower than (more privileged) than the DPL of data
segment E. A code segment B procedure can also access data segment E using
segment selector E1.

The procedure in code segment C is not able to access data segment E using
segment selector E3 (dotted line), because the CPL of code segment C and the
RPL of segment selector E3 are both numerically greater than (less privileged)
than the DPL of data segment E. Even if a code segment C procedure were to use
segment selector E1 or E2, such that the RPL would be acceptable, it still could
not access data segment E because its CPL is not privileged enough.

The procedure in code segment D should be able to access data segment E
because code segment D’s CPL is numerically less than the DPL of data segment
E. However, the RPL of segment selector E3 (which the code segment D
procedure is using to access data segment E) is numerically greater than the DPL
of data segment E, so access is not allowed. If the code segment D procedure
were to use segment selector E1 or E2 to access the data segment, access would
be allowed.

5-12 Vol.3

PROTECTION

segmontc| 5 tSel. E3 !
egmentC|__| SegmentSel. E3 [_ _ _ _ . |
CPL=3 RPL=3 | |
Lowest Privilege S :
I
Code I
Segment Sel. E1 > Data
(S;}SﬁTzem Al RPL=2 Segment E :
= > DPL=2 |
I
I
Code I
Segment Sel. E2
Segment B|— I
RPL=1
CPL=1 |
I
I
Code
Segment D
CPL=0

m Highest Privilege

Figure 5-5. Examples of Accessing Data Segments From Various Privilege Levels

As demonstrated in the previous examples, the addressable domain of a program or
task varies as its CPL changes. When the CPL is O, data segments at all privilege
levels are accessible; when the CPL is 1, only data segments at privilege levels 1
through 3 are accessible; when the CPL is 3, only data segments at privilege level 3
are accessible.

The RPL of a segment selector can always override the addressable domain of a
program or task. When properly used, RPLs can prevent problems caused by acci-
dental (or intensional) use of segment selectors for privileged data segments by less
privileged programs or procedures.

It is important to note that the RPL of a segment selector for a data segment is under
software control. For example, an application program running at a CPL of 3 can set
the RPL for a data- segment selector to 0. With the RPL set to O, only the CPL checks,
not the RPL checks, will provide protection against deliberate, direct attempts to
violate privilege-level security for the data segment. To prevent these types of privi-
lege-level-check violations, a program or procedure can check access privileges
whenever it receives a data-segment selector from another procedure (see Section
5.10.4, “Checking Caller Access Privileges (ARPL Instruction)”).

5.6.1 Accessing Data in Code Segments

In some instances it may be desirable to access data structures that are contained in
a code segment. The following methods of accessing data in code segments are
possible:

Vol.3 5-13

PROTECTION

® Load a data-segment register with a segment selector for a nonconforming,
readable, code segment.

® Load a data-segment register with a segment selector for a conforming,
readable, code segment.

® Use a code-segment override prefix (CS) to read a readable, code segment
whose selector is already loaded in the CS register.

The same rules for accessing data segments apply to method 1. Method 2 is always
valid because the privilege level of a conforming code segment is effectively the
same as the CPL, regardless of its DPL. Method 3 is always valid because the DPL of
the code segment selected by the CS register is the same as the CPL.

5.7 PRIVILEGE LEVEL CHECKING WHEN LOADING THE SS
REGISTER

Privilege level checking also occurs when the SS register is loaded with the segment
selector for a stack segment. Here all privilege levels related to the stack segment
must match the CPL; that is, the CPL, the RPL of the stack-segment selector, and the
DPL of the stack-segment descriptor must be the same. If the RPL and DPL are not
equal to the CPL, a general-protection exception (#GP) is generated.

5.8 PRIVILEGE LEVEL CHECKING WHEN TRANSFERRING
PROGRAM CONTROL BETWEEN CODE SEGMENTS

To transfer program control from one code segment to another, the segment selector
for the destination code segment must be loaded into the code-segment register
(CS). As part of this loading process, the processor examines the segment descriptor
for the destination code segment and performs various limit, type, and privilege
checks. If these checks are successful, the CS register is loaded, program control is
transferred to the new code segment, and program execution begins at the instruc-
tion pointed to by the EIP register.

Program control transfers are carried out with the JMP, CALL, RET, SYSENTER,
SYSEXIT, INT n, and IRET instructions, as well as by the exception and interrupt
mechanisms. Exceptions, interrupts, and the IRET instruction are special cases
discussed in Chapter 6, “Interrupt and Exception Handling.” This chapter discusses
only the JMP, CALL, RET, SYSENTER, and SYSEXIT instructions.

A JMP or CALL instruction can reference another code segment in any of four ways:
® The target operand contains the segment selector for the target code segment.

® The target operand points to a call-gate descriptor, which contains the segment
selector for the target code segment.

5-14 Vol.3

PROTECTION

® The target operand points to a TSS, which contains the segment selector for the
target code segment.

® The target operand points to a task gate, which points to a TSS, which in turn
contains the segment selector for the target code segment.

The following sections describe first two types of references. See Section 7.3, “Task
Switching,” for information on transferring program control through a task gate
and/or TSS.

The SYSENTER and SYSEXIT instructions are special instructions for making fast calls
to and returns from operating system or executive procedures. These instructions
are discussed briefly in Section 5.8.7, “Performing Fast Calls to System Procedures
with the SYSENTER and SYSEXIT Instructions.”

5.8.1 Direct Calls or Jumps to Code Segments

The near forms of the JMP, CALL, and RET instructions transfer program control
within the current code segment, so privilege-level checks are not performed. The far
forms of the JMP, CALL, and RET instructions transfer control to other code segments,
so the processor does perform privilege-level checks.

When transferring program control to another code segment without going through a

call gate, the processor examines four kinds of privilege level and type information

(see Figure 5-6):

® The CPL. (Here, the CPL is the privilege level of the calling code segment; that is,
the code segment that contains the procedure that is making the call or jump.)

CS Register

CPL

Segment Selector
For Code Segment

RPL
Destination Co_de > Privilege
Segment Descriptor > Check

DPL| |C

Figure 5-6. Privilege Check for Control Transfer Without Using a Gate

® The DPL of the segment descriptor for the destination code segment that
contains the called procedure.

Vol.3 5-15

PROTECTION

The RPL of the segment selector of the destination code segment.

The conforming (C) flag in the segment descriptor for the destination code
segment, which determines whether the segment is a conforming (C flag is set)
or nonconforming (C flag is clear) code segment. See Section 3.4.5.1, “Code-
and Data-Segment Descriptor Types,” for more information about this flag.

The rules that the processor uses to check the CPL, RPL, and DPL depends on the
setting of the C flag, as described in the following sections.

5.8.1.1 Accessing Nonconforming Code Segments

When accessing nonconforming code segments, the CPL of the calling procedure
must be equal to the DPL of the destination code segment; otherwise, the processor
generates a general-protection exception (#GP). For example in Figure 5-7:

Code segment C is a nonconforming code segment. A procedure in code segment
A can call a procedure in code segment C (using segment selector C1) because
they are at the same privilege level (CPL of code segment A is equal to the DPL of
code segment C).

A procedure in code segment B cannot call a procedure in code segment C (using
segment selector C2 or C1) because the two code segments are at different
privilege levels.

5-16 Vol.3

PROTECTION

Code Segment Sel. D2
Segment B RPL=3
_ || SegmentSel.C2 |- ---- -
CPL=3 RPL=3

Lowest Privilege

Segment Sel. C1 —» Code
Code [RPL=2 Segment C

Segment A
CPL=2 || Segment Sel. D1 DPL=2

[RPL=2 Nonconforming

Code Segment
Y
Code
Segment D
DPL=1
Conforming
Code Segment

m Highest Privilege

Figure 5-7. Examples of Accessing Conforming and Nonconforming Code Segments
From Various Privilege Levels

The RPL of the segment selector that points to a nonconforming code segment has a
limited effect on the privilege check. The RPL must be numerically less than or equal
to the CPL of the calling procedure for a successful control transfer to occur. So, in the
example in Figure 5-7, the RPLs of segment selectors C1 and C2 could legally be set
to O, 1, or 2, but not to 3.

When the segment selector of a nonconforming code segment is loaded into the CS
register, the privilege level field is not changed; that is, it remains at the CPL (which
is the privilege level of the calling procedure). This is true, even if the RPL of the
segment selector is different from the CPL.

5.8.1.2 Accessing Conforming Code Segments

When accessing conforming code segments, the CPL of the calling procedure may be
numerically equal to or greater than (less privileged) the DPL of the destination code
segment; the processor generates a general-protection exception (#GP) only if the

CPL is less than the DPL. (The segment selector RPL for the destination code segment
is not checked if the segment is a conforming code segment.)

Vol.3 5-17

PROTECTION

In the example in Figure 5-7, code segment D is a conforming code segment. There-
fore, calling procedures in both code segment A and B can access code segment D
(using either segment selector D1 or D2, respectively), because they both have CPLs
that are greater than or equal to the DPL of the conforming code segment. For
conforming code segments, the DPL represents the numerically lowest priv-
ilege level that a calling procedure may be at to successfully make a call to
the code segment.

(Note that segments selectors D1 and D2 are identical except for their respective
RPLs. But since RPLs are not checked when accessing conforming code segments,
the two segment selectors are essentially interchangeable.)

When program control is transferred to a conforming code segment, the CPL does not
change, even if the DPL of the destination code segment is less than the CPL. This
situation is the only one where the CPL may be different from the DPL of the current
code segment. Also, since the CPL does not change, no stack switch occurs.

Conforming segments are used for code modules such as math libraries and excep-
tion handlers, which support applications but do not require access to protected
system facilities. These modules are part of the operating system or executive soft-
ware, but they can be executed at numerically higher privilege levels (less privileged
levels). Keeping the CPL at the level of a calling code segment when switching to a
conforming code segment prevents an application program from accessing noncon-
forming code segments while at the privilege level (DPL) of a conforming code
segment and thus prevents it from accessing more privileged data.

Most code segments are nonconforming. For these segments, program control can
be transferred only to code segments at the same level of privilege, unless the
transfer is carried out through a call gate, as described in the following sections.

5.8.2 Gate Descriptors

To provide controlled access to code segments with different privilege levels, the
processor provides special set of descriptors called gate descriptors. There are four
kinds of gate descriptors:

® Call gates
® Trap gates
® Interrupt gates
® Task gates

Task gates are used for task switching and are discussed in Chapter 7, “Task Manage-
ment”. Trap and interrupt gates are special kinds of call gates used for calling excep-
tion and interrupt handlers. The are described in Chapter 6, “Interrupt and Exception
Handling.” This chapter is concerned only with call gates.

5-18 Vol.3

PROTECTION

5.8.3 Call Gates

Call gates facilitate controlled transfers of program control between different privi-

lege levels. They are typically used only in operating systems or executives that use
the privilege-level protection mechanism. Call gates are also useful for transferring
program control between 16-bit and 32-bit code segments, as described in Section
17.4, “Transferring Control Among Mixed-Size Code Segments.”

Figure 5-8 shows the format of a call-gate descriptor. A call-gate descriptor may
reside in the GDT or in an LDT, but not in the interrupt descriptor table (IDT). It
performs six functions:

® It specifies the code segment to be accessed.
® It defines an entry point for a procedure in the specified code segment.
® It specifies the privilege level required for a caller trying to access the procedure.

31 161514 1312 11 87 6 54 0
D Type
Offset in Segment 31:16 P| P wp 000 Fé%rgrr]?' 4
L |o 1|1‘0|0
31 16 15 0
Segment Selector Offset in Segment 15:00 0

DPL Descriptor Privilege Level
P Gate Valid

Figure 5-8. Call-Gate Descriptor

® If a stack switch occurs, it specifies the number of optional parameters to be
copied between stacks.

® It defines the size of values to be pushed onto the target stack: 16-bit gates force
16-bit pushes and 32-bit gates force 32-bit pushes.

® It specifies whether the call-gate descriptor is valid.

The segment selector field in a call gate specifies the code segment to be accessed.
The offset field specifies the entry point in the code segment. This entry point is
generally to the first instruction of a specific procedure. The DPL field indicates the
privilege level of the call gate, which in turn is the privilege level required to access
the selected procedure through the gate. The P flag indicates whether the call-gate
descriptor is valid. (The presence of the code segment to which the gate points is
indicated by the P flag in the code segment’s descriptor.) The parameter count field
indicates the number of parameters to copy from the calling procedures stack to the
new stack if a stack switch occurs (see Section 5.8.5, “Stack Switching”). The param-
eter count specifies the number of words for 16-bit call gates and doublewords for
32-bit call gates.

Vol.3 5-19

PROTECTION

Note that the P flag in a gate descriptor is normally always set to 1. If itis setto O, a
not present (#NP) exception is generated when a program attempts to access the
descriptor. The operating system can use the P flag for special purposes. For
example, it could be used to track the number of times the gate is used. Here, the P
flag is initially set to O causing a trap to the not-present exception handler. The
exception handler then increments a counter and sets the P flag to 1, so that on
returning from the handler, the gate descriptor will be valid.

5.8.3.1 IA-32e Mode Call Gates

Call-gate descriptors in 32-bit mode provide a 32-bit offset for the instruction pointer
(EIP); 64-bit extensions double the size of 32-bit mode call gates in order to store
64-bit instruction pointers (RIP). See Figure 5-9:

® The first eight bytes (bytes 7:0) of a 64-bit mode call gate are similar but not
identical to legacy 32-bit mode call gates. The parameter-copy-count field has
been removed.

® Bytes 11:8 hold the upper 32 bits of the target-segment offset in canonical form.
A general-protection exception (#GP) is generated if software attempts to use a
call gate with a target offset that is not in canonical form.

® 16-byte descriptors may reside in the same descriptor table with 16-bit and
32-bit descriptors. A type field, used for consistency checking, is defined in bits
12:8 of the 64-bit descriptor’s highest dword (cleared to zero). A general-
protection exception (#GP) results if an attempt is made to access the upper half
of a 64-bit mode descriptor as a 32-bit mode descriptor.

5-20 Vol. 3

PROTECTION

31 131211109 8 7 0
Type
Reserved Reserved 16
0 ‘ 0’ o‘ 0 ‘ 0
31 0
Offset in Segment 63:31 8
31 1615141312 11 8 7 0
D Type
Offset in Segment 31:16 Pl P P 0 4
L |of1 ‘ 1 ‘ 0 ‘ 0
31 16 15 0
Segment Selector Offset in Segment 15:00 0
DPL Descriptor Privilege Level
P Gate Valid

Figure 5-9. Call-Gate Descriptor in IA-32e Mode

® Target code segments referenced by a 64-bit call gate must be 64-bit code
segments (CS.L = 1, CS.D = 0). If not, the reference generates a general-
protection exception, #GP (CS selector).

® Only 64-bit mode call gates can be referenced in 1A-32e mode (64-bit mode and
compatibility mode). The legacy 32-bit mode call gate type (OCH) is redefined in
IA-32e mode as a 64-bit call-gate type; no 32-bit call-gate type exists in 1A-32e
mode.

® If a far call references a 16-bit call gate type (04H) in 1A-32e mode, a general-
protection exception (#GP) is generated.

When a call references a 64-bit mode call gate, actions taken are identical to those
taken in 32-bit mode, with the following exceptions:

® Stack pushes are made in eight-byte increments.
® A 64-bit RIP is pushed onto the stack.
® Parameter copying is not performed.

Use a matching far-return instruction size for correct operation (returns from 64-bit
calls must be performed with a 64-bit operand-size return to process the stack
correctly).

Vol.3 5-21

PROTECTION

5.84 Accessing a Code Segment Through a Call Gate

To access a call gate, a far pointer to the gate is provided as a target operand in a
CALL or JMP instruction. The segment selector from this pointer identifies the call

gate (see Figure 5-10); the offset from the pointer is required, but not used or

checked by the processor. (The offset can be set to any value.)

When the processor has accessed the call gate, it uses the segment selector from the
call gate to locate the segment descriptor for the destination code segment. (This

segment descriptor can be in the GDT or the LDT.) It then combines the base address
from the code-segment descriptor with the offset from the call gate to form the linear

address of the procedure entry point in the code segment.

As shown in Figure 5-11, four different privilege levels are used to check the validity
of a program control transfer through a call gate:

® The CPL (current privilege level).

® The RPL (requestor's privilege level) of the call gate’s selector.

® The DPL (descriptor privilege level) of the call gate descriptor.

® The DPL of the segment descriptor of the destination code segment.

The C flag (conforming) in the segment descriptor for the destination code segment

is also checked.

Far Pointer to Call Gate

Segment Selector | | Offset

Required but not used by processor

Descriptor Table

> Offset
Segment Selector Offset
»| Base Base
+)< Base

Procedure

Entry Point

Call-Gate
Descriptor

Code-Segment
Descriptor

Figure 5-10. Call-Gate Mechanism

5-22 Vol.3

PROTECTION

CS Register

CPL

Call-Gate Selector

RPL

Yy

Call Gate (Descriptor)

Privilege
Check

DPL

Yy

Destination Code-
Segment Descriptor

DPL

Figure 5-11. Privilege Check for Control Transfer with Call Gate

The privilege checking rules are different depending on whether the control transfer
was initiated with a CALL or a JMP instruction, as shown in Table 5-1.

Table 5-1. Privilege Check Rules for Call Gates

Instruction

Privilege Check Rules

CALL

CPL < call gate DPL; RPL < call gate DPL
Destination conforming code segment DPL < CPL

Destination nonconforming code segment DPL < CPL

IMP

CPL < call gate DPL; RPL < call gate DPL

Destination conforming code segment DPL < CPL

Destination nonconforming code segment DPL = CPL

The DPL field of the call-gate descriptor specifies the numerically highest privilege

level from which a calling procedure can access the call gate; that is, to access a call
gate, the CPL of a calling procedure must be equal to or less than the DPL of the call
gate. For example, in Figure 5-15, call gate A has a DPL of 3. So calling procedures at

all CPLs (O

through 3) can access this call gate, which includes calling procedures in

code segments A, B, and C. Call gate B has a DPL of 2, so only calling procedures at

a CPL or O,

1, or 2 can access call gate B, which includes calling procedures in code

Vol.3 5-23

PROTECTION

segments B and C. The dotted line shows that a calling procedure in code segment A
cannot access call gate B.

The RPL of the segment selector to a call gate must satisfy the same test as the CPL
of the calling procedure; that is, the RPL must be less than or equal to the DPL of the
call gate. In the example in Figure 5-15, a calling procedure in code segment C can
access call gate B using gate selector B2 or B1, but it could not use gate selector B3
to access call gate B.

If the privilege checks between the calling procedure and call gate are successful, the
processor then checks the DPL of the code-segment descriptor against the CPL of the
calling procedure. Here, the privilege check rules vary between CALL and JMP
instructions. Only CALL instructions can use call gates to transfer program control to
more privileged (numerically lower privilege level) nonconforming code segments;
that is, to nonconforming code segments with a DPL less than the CPL. A JMP instruc-
tion can use a call gate only to transfer program control to a nonconforming code
segment with a DPL equal to the CPL. CALL and JMP instruction can both transfer
program control to a more privileged conforming code segment; that is, to a
conforming code segment with a DPL less than or equal to the CPL.

If a call is made to a more privileged (numerically lower privilege level) noncon-
forming destination code segment, the CPL is lowered to the DPL of the destination
code segment and a stack switch occurs (see Section 5.8.5, “Stack Switching”). If a
call or jump is made to a more privileged conforming destination code segment, the
CPL is not changed and no stack switch occurs.

5-24 Vol.3

PROTECTION

Code || Gate Selector A > call
Segment A RPL=3 Gate A
CPL=3 — Gate SelectorB3 | — — — — L DPL=3
RPL=3 I
Lowest Privilege \f/
Code Call
Segment B Gate Selector B1
| 9 RPL=2 s Gate B
CPL=2 »|DPL=2
Code
Segment C|— Gate Selector B2
CPL=1 RPL=1]
No Stack Stack Switch
Switch Occurs Occurs
Y Y
Code Code
Segment D Segment E
DPL=0 DPL=0
Conforming Nonconforming
m Highest Privilege Code Segment Code Segment

Figure 5-12. Example of Accessing Call Gates At Various Privilege Levels

Call gates allow a single code segment to have procedures that can be accessed at
different privilege levels. For example, an operating system located in a code
segment may have some services which are intended to be used by both the oper-
ating system and application software (such as procedures for handling character
1/0). Call gates for these procedures can be set up that allow access at all privilege
levels (O through 3). More privileged call gates (with DPLs of O or 1) can then be set
up for other operating system services that are intended to be used only by the oper-
ating system (such as procedures that initialize device drivers).

5.8.5 Stack Switching

Whenever a call gate is used to transfer program control to a more privileged
nonconforming code segment (that is, when the DPL of the nonconforming destina-
tion code segment is less than the CPL), the processor automatically switches to the
stack for the destination code segment’s privilege level. This stack switching is
carried out to prevent more privileged procedures from crashing due to insufficient
stack space. It also prevents less privileged procedures from interfering (by accident
or intent) with more privileged procedures through a shared stack.

Vol.3 5-25

PROTECTION

Each task must define up to 4 stacks: one for applications code (running at privilege
level 3) and one for each of the privilege levels 2, 1, and 0 that are used. (If only two
privilege levels are used [3 and 0], then only two stacks must be defined.) Each of
these stacks is located in a separate segment and is identified with a segment
selector and an offset into the stack segment (a stack pointer).

The segment selector and stack pointer for the privilege level 3 stack is located in the
SS and ESP registers, respectively, when privilege-level-3 code is being executed and
is automatically stored on the called procedure’s stack when a stack switch occurs.

Pointers to the privilege level 0, 1, and 2 stacks are stored in the TSS for the currently
running task (see Figure 7-2). Each of these pointers consists of a segment selector
and a stack pointer (loaded into the ESP register). These initial pointers are strictly
read-only values. The processor does not change them while the task is running.
They are used only to create new stacks when calls are made to more privileged
levels (numerically lower privilege levels). These stacks are disposed of when a
return is made from the called procedure. The next time the procedure is called, a
new stack is created using the initial stack pointer. (The TSS does not specify a stack
for privilege level 3 because the processor does not allow a transfer of program
control from a procedure running at a CPL of O, 1, or 2 to a procedure running at a
CPL of 3, except on a return.)

The operating system is responsible for creating stacks and stack-segment descrip-
tors for all the privilege levels to be used and for loading initial pointers for these
stacks into the TSS. Each stack must be read/write accessible (as specified in the
type field of its segment descriptor) and must contain enough space (as specified in
the limit field) to hold the following items:

® The contents of the SS, ESP, CS, and EIP registers for the calling procedure.
® The parameters and temporary variables required by the called procedure.

® The EFLAGS register and error code, when implicit calls are made to an exception
or interrupt handler.

The stack will need to require enough space to contain many frames of these items,
because procedures often call other procedures, and an operating system may
support nesting of multiple interrupts. Each stack should be large enough to allow for
the worst case nesting scenario at its privilege level.

(If the operating system does not use the processor’s multitasking mechanism, it still
must create at least one TSS for this stack-related purpose.)

When a procedure call through a call gate results in a change in privilege level, the
processor performs the following steps to switch stacks and begin execution of the
called procedure at a new privilege level:

1. Uses the DPL of the destination code segment (the new CPL) to select a pointer
to the new stack (segment selector and stack pointer) from the TSS.

2. Reads the segment selector and stack pointer for the stack to be switched to from
the current TSS. Any limit violations detected while reading the stack-segment
selector, stack pointer, or stack-segment descriptor cause an invalid TSS (#TS)
exception to be generated.

5-26 Vol.3

PROTECTION

3. Checks the stack-segment descriptor for the proper privileges and type and
generates an invalid TSS (#TS) exception if violations are detected.

4. Temporarily saves the current values of the SS and ESP registers.

5. Loads the segment selector and stack pointer for the new stack in the SS and ESP
registers.

6. Pushes the temporarily saved values for the SS and ESP registers (for the calling
procedure) onto the new stack (see Figure 5-13).

7. Copies the number of parameter specified in the parameter count field of the call
gate from the calling procedure’s stack to the new stack. If the count is O, no
parameters are copied.

8. Pushes the return instruction pointer (the current contents of the CS and EIP
registers) onto the new stack.

9. Loads the segment selector for the new code segment and the new instruction
pointer from the call gate into the CS and EIP registers, respectively, and begins
execution of the called procedure.

See the description of the CALL instruction in Chapter 3, Instruction Set Reference, in
the 1A-32 Intel Architecture Software Developer’'s Manual, Volume 2, for a detailed
description of the privilege level checks and other protection checks that the
processor performs on a far call through a call gate.

Calling Procedure’s Stack Called Procedure’s Stack
Calling SS
Parameter 1 Calling ESP
Parameter 2 Parameter 1
Parameter3 |[<— ESP Parameter 2
Parameter 3

Calling CS

Calling EIP <— ESP

Figure 5-13. Stack Switching During an Interprivilege-Level Call

The parameter count field in a call gate specifies the number of data items (up to 31)
that the processor should copy from the calling procedure’s stack to the stack of the
called procedure. If more than 31 data items need to be passed to the called proce-

Vol.3 5-27

PROTECTION

dure, one of the parameters can be a pointer to a data structure, or the saved
contents of the SS and ESP registers may be used to access parameters in the old
stack space. The size of the data items passed to the called procedure depends on
the call gate size, as described in Section 5.8.3, “Call Gates.”

5.8.5.1 Stack Switching in 64-bit Mode

Although protection-check rules for call gates are unchanged from 32-bit mode,
stack-switch changes in 64-bit mode are different.

When stacks are switched as part of a 64-bit mode privilege-level change through a
call gate, a new SS (stack segment) descriptor is not loaded; 64-bit mode only loads
an inner-level RSP from the TSS. The new SS is forced to NULL and the SS selector’s
RPL field is forced to the new CPL. The new SS is set to NULL in order to handle
nested far transfers (CALLF, INTn, interrupts and exceptions). The old SS and RSP
are saved on the new stack.

On a subsequent RETF, the old SS is popped from the stack and loaded into the SS
register. See Table 5-2.

Table 5-2. 64-Bit-Mode Stack Layout After CALLF with CPL Change

32-bit Mode IA-32e mode
0ld SS Selector +12 +24 | OId SS Selector
Old ESP +8 +16 | Old RSP
CS Selector +4 +8 0Old CS Selector
EIP 0 ESP RSP 0 RIP
< 4 Bytes > < 8 Bytes >

In 64-bit mode, stack operations resulting from a privilege-level-changing far call or
far return are eight-bytes wide and change the RSP by eight. The mode does not
support the automatic parameter-copy feature found in 32-bit mode. The call-gate
count field is ignored. Software can access the old stack, if necessary, by referencing
the old stack-segment selector and stack pointer saved on the new process stack.

In 64-bit mode, RETF is allowed to load a NULL SS under certain conditions. If the
target mode is 64-bit mode and the target CPL< >3, IRET allows SS to be loaded with
a NULL selector. If the called procedure itself is interrupted, the NULL SS is pushed on
the stack frame. On the subsequent RETF, the NULL SS on the stack acts as a flag to
tell the processor not to load a new SS descriptor.

5.8.6 Returning from a Called Procedure

The RET instruction can be used to perform a near return, a far return at the same
privilege level, and a far return to a different privilege level. This instruction is

5-28 Vol.3

PROTECTION

intended to execute returns from procedures that were called with a CALL instruc-
tion. It does not support returns from a JMP instruction, because the JMP instruction
does not save a return instruction pointer on the stack.

A near return only transfers program control within the current code segment; there-
fore, the processor performs only a limit check. When the processor pops the return
instruction pointer from the stack into the EIP register, it checks that the pointer does
not exceed the limit of the current code segment.

On a far return at the same privilege level, the processor pops both a segment
selector for the code segment being returned to and a return instruction pointer from
the stack. Under normal conditions, these pointers should be valid, because they
were pushed on the stack by the CALL instruction. However, the processor performs
privilege checks to detect situations where the current procedure might have altered
the pointer or failed to maintain the stack properly.

A far return that requires a privilege-level change is only allowed when returning to a
less privileged level (that is, the DPL of the return code segment is numerically
greater than the CPL). The processor uses the RPL field from the CS register value
saved for the calling procedure (see Figure 5-13) to determine if a return to a numer-
ically higher privilege level is required. If the RPL is numerically greater (less privi-
leged) than the CPL, a return across privilege levels occurs.

The processor performs the following steps when performing a far return to a calling
procedure (see Figures 6-2 and 6-4 in the Intel® 64 and 1A-32 Architectures Soft-
ware Developer’s Manual, Volume 1, for an illustration of the stack contents prior to
and after a return):

1. Checks the RPL field of the saved CS register value to determine if a privilege
level change is required on the return.

2. Loads the CS and EIP registers with the values on the called procedure’s stack.
(Type and privilege level checks are performed on the code-segment descriptor
and RPL of the code- segment selector.)

3. (If the RET instruction includes a parameter count operand and the return
requires a privilege level change.) Adds the parameter count (in bytes obtained
from the RET instruction) to the current ESP register value (after popping the CS
and EIP values), to step past the parameters on the called procedure’s stack. The
resulting value in the ESP register points to the saved SS and ESP values for the
calling procedure’s stack. (Note that the byte count in the RET instruction must
be chosen to match the parameter count in the call gate that the calling
procedure referenced when it made the original call multiplied by the size of the
parameters.)

4. (If the return requires a privilege level change.) Loads the SS and ESP registers
with the saved SS and ESP values and switches back to the calling procedure’s
stack. The SS and ESP values for the called procedure’s stack are discarded. Any
limit violations detected while loading the stack-segment selector or stack
pointer cause a general-protection exception (#GP) to be generated. The new
stack-segment descriptor is also checked for type and privilege violations.

Vol.3 5-29

PROTECTION

5. (If the RET instruction includes a parameter count operand.) Adds the parameter
count (in bytes obtained from the RET instruction) to the current ESP register
value, to step past the parameters on the calling procedure’s stack. The resulting
ESP value is not checked against the limit of the stack segment. If the ESP value
is beyond the limit, that fact is not recognized until the next stack operation.

6. (If the return requires a privilege level change.) Checks the contents of the DS,
ES, FS, and GS segment registers. If any of these registers refer to segments
whose DPL is less than the new CPL (excluding conforming code segments), the
segment register is loaded with a null segment selector.

See the description of the RET instruction in Chapter 4 of the Intel® 64 and 1A-32
Architectures Software Developer’s Manual, Volume 2B, for a detailed description of
the privilege level checks and other protection checks that the processor performs on
a far return.

5.8.7 Performing Fast Calls to System Procedures with the
SYSENTER and SYSEXIT Instructions

The SYSENTER and SYSEXIT instructions were introduced into the 1A-32 architecture
in the Pentium Il processors for the purpose of providing a fast (low overhead) mech-
anism for calling operating system or executive procedures. SYSENTER is intended
for use by user code running at privilege level 3 to access operating system or exec-
utive procedures running at privilege level 0. SYSEXIT is intended for use by privilege
level O operating system or executive procedures for fast returns to privilege level 3

user code. SYSENTER can be executed from privilege levels 3, 2, 1, or 0; SYSEXIT
can only be executed from privilege level 0.

The SYSENTER and SYSEXIT instructions are companion instructions, but they do not
constitute a call/return pair. This is because SYSENTER does not save any state infor-
mation for use by SYSEXIT on a return.

The target instruction and stack pointer for these instructions are not specified
through instruction operands. Instead, they are specified through parameters
entered in MSRs and general-purpose registers.

For SYSENTER, target fields are generated using the following sources:

® Target code segment — Reads this from IA32_SYSENTER_CS.

® Target instruction — Reads this from 1A32_SYSENTER_EIP.

® Stack segment — Computed by adding 8 to the value in IA32_SYSENTER_CS.
® Stack pointer — Reads this from the 1A32_SYSENTER_ESP.

For SYSEXIT, target fields are generated using the following sources:

® Target code segment — Computed by adding 16 to the value in the
IA32_SYSENTER_CS.

® Target instruction — Reads this from EDX.

5-30 Vol.3

PROTECTION

® Stack segment — Computed by adding 24 to the value in IA32_SYSENTER_CS.
® Stack pointer — Reads this from ECX.

The SYSENTER and SYSEXIT instructions preform “fast” calls and returns because
they force the processor into a predefined privilege level O state when SYSENTER is
executed and into a predefined privilege level 3 state when SYSEXIT is executed. By
forcing predefined and consistent processor states, the number of privilege checks
ordinarily required to perform a far call to another privilege levels are greatly
reduced. Also, by predefining the target context state in MSRs and general-purpose
registers eliminates all memory accesses except when fetching the target code.

Any additional state that needs to be saved to allow a return to the calling procedure
must be saved explicitly by the calling procedure or be predefined through program-
ming conventions.

5.8.7.1 SYSENTER and SYSEXIT Instructions in IA-32e Mode

For Intel 64 processors, the SYSENTER and SYSEXIT instructions are enhanced to
allow fast system calls from user code running at privilege level 3 (in compatibility
mode or 64-bit mode) to 64-bit executive procedures running at privilege level 0.
IA32_SYSENTER_EIP MSR and I1A32_SYSENTER_ESP MSR are expanded to hold
64-bit addresses. If IA-32e mode is inactive, only the lower 32-bit addresses stored
in these MSRs are used. If 64-bit mode is active, addresses stored in
IA32_SYSENTER_EIP and IA32_SYSENTER_ESP must be canonical. Note that, in
64-bit mode, 1A32_SYSENTER_CS must not contain a NULL selector.

When SYSENTER transfers control, the following fields are generated and bits set:
® Target code segment — Reads non-NULL selector from IA32_SYSENTER_CS.
® New CS attributes — CS base = 0, CS limit = FFFFFFFFH.

® Target instruction — Reads 64-bit canonical address from
IA32_SYSENTER_EIP.

® Stack segment — Computed by adding 8 to the value from
IA32_SYSENTER_CS.

® Stack pointer — Reads 64-bit canonical address from I1A32_SYSENTER_ESP.
® New SS attributes — SS base = 0, SS limit = FFFFFFFFH.

When the SYSEXIT instruction transfers control to 64-bit mode user code using
REX.W, the following fields are generated and bits set:

® Target code segment — Computed by adding 32 to the value in
IA32_SYSENTER_CS.

® New CS attributes — L-bit = 1 (go to 64-bit mode).

® Target instruction — Reads 64-bit canonical address in RDX.

® Stack segment — Computed by adding 40 to the value of IA32_SYSENTER_CS.
® Stack pointer — Update RSP using 64-bit canonical address in RCX.

Vol.3 5-31

PROTECTION

When SYSEXIT transfers control to compatibility mode user code when the operand
size attribute is 32 bits, the following fields are generated and bits set:

® Target code segment — Computed by adding 16 to the value in
IA32_SYSENTER_CS.

® New CS attributes — L-bit = 0 (go to compatibility mode).

® Target instruction — Fetch the target instruction from 32-bit address in EDX.
® Stack segment — Computed by adding 24 to the value in IA32_SYSENTER_CS.
® Stack pointer — Update ESP from 32-bit address in ECX.

5.8.8 Fast System Calls in 64-bit Mode

The SYSCALL and SYSRET instructions are designed for operating systems that use a
flat memory model (segmentation is not used). The instructions, along with
SYSENTER and SYSEXIT, are suited for 1A-32e mode operation. SYSCALL and
SYSRET, however, are not supported in compatibility mode. Use CPUID to check if
SYSCALL and SYSRET are available (CPUID.80000001H.EDX[bit 11] = 1).

SYSCALL is intended for use by user code running at privilege level 3 to access oper-
ating system or executive procedures running at privilege level 0. SYSRET is
intended for use by privilege level O operating system or executive procedures for
fast returns to privilege level 3 user code.

Stack pointers for SYSCALL/SYSRET are not specified through model specific regis-
ters. The clearing of bits in RFLAGS is programmable rather than fixed.
SYSCALL/SYSRET save and restore the RFLAGS register.

For SYSCALL, the processor saves the RIP of the instruction in RCX and gets the priv-
ilege level O target instruction and stack pointer from:

® Target code segment — Reads a non-NULL selector from I1A32_STAR[47:32].
® Target instruction — Reads a 64-bit canonical address from 1A32_LSTAR.
® Stack segment — Computed by adding 8 to the value in 1A32_STAR[47:32].

® System flags — The processor uses a mask derived from 1A32_FMASK to
perform a logical-AND operation with the lower 32-bits of RFLAGS. The result is
saved into R11. The mask is the complement of the value supplied by privileged
executives using the 1A32_FMASK MSR.

When SYSRET transfers control to 64-bit mode user code using REX.W, the processor
gets the privilege level 3 target instruction and stack pointer from:

® Target code segment — Reads a non-NULL selector from 1IA32_STAR[63:48] +
16.

® Target instruction — Copies the value in RCX into RIP.
® Stack segment — IA32_STAR[63:48] + 8.
® EFLAGS — Loaded from R11.

5-32 Vol. 3

PROTECTION

When SYSRET transfers control to 32-bit mode user code using a 32-bit operand size,
the processor gets the privilege level 3 target instruction and stack pointer from:

® Target code segment — Reads a non-NULL selector from 1A32_STAR[63:48].
® Target instruction — Copies the value in ECX into EIP.

¢ Stack segment — IA32_STAR[63:48] + 8.

® EFLAGS — Loaded from R11.

It is the responsibility of the OS to ensure the descriptors in the GDT/LDT correspond
to the selectors loaded by SYSCALL/SYSRET (consistent with the base, limit, and
attribute values forced by the instructions).

Any address written to 1A32_LSTAR is first checked by WRMSR to ensure canonical
form. If an address is not canonical, an exception is generated (#GP).

See Figure 5-14 for the layout of IA32_STAR, IA32_LSTAR and 1A32_FMASK.

63 3231 0

Reserved SYSCALL EFLAGS Mask

IA32_FMASK
63 0

Target RIP for 64-bit Mode Calling Program

IA32_LSTAR
63 48 47 3231 0
SYSRET CS and SS | SYSCALL CS and SS Reserved
IA32_STAR

Figure 5-14. MSRs Used by SYSCALL and SYSRET

5.9 PRIVILEGED INSTRUCTIONS

Some of the system instructions (called “privileged instructions”) are protected from
use by application programs. The privileged instructions control system functions

(such as the loading of system registers). They can be executed only when the CPL is
0 (most privileged). If one of these instructions is executed when the CPL is not 0, a

Vol.3 5-33

PROTECTION

general-protection exception (#GP) is generated. The following system instructions
are privileged instructions:

® LGDT — Load GDT register.

® LLDT — Load LDT register.

® LTR — Load task register.

® LIDT — Load IDT register.

® MOV (control registers) — Load and store control registers.
® LMSW — Load machine status word.

® CLTS — Clear task-switched flag in register CRO.

® MOV (debug registers) — Load and store debug registers.
® |INVD — Invalidate cache, without writeback.

® WBINVD — Invalidate cache, with writeback.

® INVLPG —Invalidate TLB entry.

® HLT— Halt processor.

® RDMSR — Read Model-Specific Registers.

® WRMSR —Write Model-Specific Registers.

® RDPMC — Read Performance-Monitoring Counter.

® RDTSC — Read Time-Stamp Counter.

Some of the privileged instructions are available only in the more recent families of
Intel 64 and 1A-32 processors (see Section 18.13, “New Instructions In the Pentium
and Later 1A-32 Processors”).

The PCE and TSD flags in register CR4 (bits 4 and 2, respectively) enable the RDPMC
and RDTSC instructions, respectively, to be executed at any CPL.

5.10 POINTER VALIDATION

When operating in protected mode, the processor validates all pointers to enforce
protection between segments and maintain isolation between privilege levels.
Pointer validation consists of the following checks:

1. Checking access rights to determine if the segment type is compatible with its
use.

Checking read/write rights.
Checking if the pointer offset exceeds the segment limit.

Checking if the supplier of the pointer is allowed to access the segment.

a ke

Checking the offset alignment.

5-34 Vol.3

PROTECTION

The processor automatically performs first, second, and third checks during instruc-
tion execution. Software must explicitly request the fourth check by issuing an ARPL
instruction. The fifth check (offset alignment) is performed automatically at privilege
level 3 if alignment checking is turned on. Offset alignment does not affect isolation
of privilege levels.

5.10.1 Checking Access Rights (LAR Instruction)

When the processor accesses a segment using a far pointer, it performs an access
rights check on the segment descriptor pointed to by the far pointer. This check is
performed to determine if type and privilege level (DPL) of the segment descriptor
are compatible with the operation to be performed. For example, when making a far
call in protected mode, the segment-descriptor type must be for a conforming or
nonconforming code segment, a call gate, a task gate, or a TSS. Then, if the call is to
a nonconforming code segment, the DPL of the code segment must be equal to the
CPL, and the RPL of the code segment’s segment selector must be less than or equal
to the DPL. If type or privilege level are found to be incompatible, the appropriate
exception is generated.

To prevent type incompatibility exceptions from being generated, software can check
the access rights of a segment descriptor using the LAR (load access rights) instruc-
tion. The LAR instruction specifies the segment selector for the segment descriptor
whose access rights are to be checked and a destination register. The instruction then
performs the following operations:

1. Check that the segment selector is not null.

2. Checks that the segment selector points to a segment descriptor that is within
the descriptor table limit (GDT or LDT).

3. Checks that the segment descriptor is a code, data, LDT, call gate, task gate, or
TSS segment-descriptor type.

4. If the segment is not a conforming code segment, checks if the segment
descriptor is visible at the CPL (that is, if the CPL and the RPL of the segment
selector are less than or equal to the DPL).

5. If the privilege level and type checks pass, loads the second doubleword of the
segment descriptor into the destination register (masked by the value
OOFXFFOOH, where X indicates that the corresponding 4 bits are undefined) and
sets the ZF flag in the EFLAGS register. If the segment selector is not visible at
the current privilege level or is an invalid type for the LAR instruction, the
instruction does not modify the destination register and clears the ZF flag.

Once loaded in the destination register, software can preform additional checks on
the access rights information.

Vol.3 5-35

PROTECTION

5.10.2 Checking Read/Write Rights (VERR and VERW Instructions)

When the processor accesses any code or data segment it checks the read/write priv-
ileges assigned to the segment to verify that the intended read or write operation is
allowed. Software can check read/write rights using the VERR (verify for reading)
and VERW (verify for writing) instructions. Both these instructions specify the
segment selector for the segment being checked. The instructions then perform the
following operations:

1. Check that the segment selector is not null.

2. Checks that the segment selector points to a segment descriptor that is within
the descriptor table limit (GDT or LDT).

3. Checks that the segment descriptor is a code or data-segment descriptor type.

If the segment is not a conforming code segment, checks if the segment
descriptor is visible at the CPL (that is, if the CPL and the RPL of the segment
selector are less than or equal to the DPL).

5. Checks that the segment is readable (for the VERR instruction) or writable (for
the VERW) instruction.

The VERR instruction sets the ZF flag in the EFLAGS register if the segment is visible
at the CPL and readable; the VERW sets the ZF flag if the segment is visible and writ-
able. (Code segments are never writable.) The ZF flag is cleared if any of these
checks fail.

5.10.3 Checking That the Pointer Offset Is Within Limits (LSL
Instruction)

When the processor accesses any segment it performs a limit check to insure that the
offset is within the limit of the segment. Software can perform this limit check using
the LSL (load segment limit) instruction. Like the LAR instruction, the LSL instruction
specifies the segment selector for the segment descriptor whose limit is to be
checked and a destination register. The instruction then performs the following oper-
ations:

1. Check that the segment selector is not null.

2. Checks that the segment selector points to a segment descriptor that is within
the descriptor table limit (GDT or LDT).

3. Checks that the segment descriptor is a code, data, LDT, or TSS segment-
descriptor type.

4. If the segment is not a conforming code segment, checks if the segment
descriptor is visible at the CPL (that is, if the CPL and the RPL of the segment
selector less than or equal to the DPL).

5. If the privilege level and type checks pass, loads the unscrambled limit (the limit
scaled according to the setting of the G flag in the segment descriptor) into the

5-36 Vol.3

PROTECTION

destination register and sets the ZF flag in the EFLAGS register. If the segment
selector is not visible at the current privilege level or is an invalid type for the LSL
instruction, the instruction does not modify the destination register and clears
the ZF flag.

Once loaded in the destination register, software can compare the segment limit with
the offset of a pointer.

5.10.4 Checking Caller Access Privileges (ARPL Instruction)

The requestor’s privilege level (RPL) field of a segment selector is intended to carry
the privilege level of a calling procedure (the calling procedure’s CPL) to a called
procedure. The called procedure then uses the RPL to determine if access to a
segment is allowed. The RPL is said to “weaken” the privilege level of the called
procedure to that of the RPL.

Operating-system procedures typically use the RPL to prevent less privileged appli-
cation programs from accessing data located in more privileged segments. When an
operating-system procedure (the called procedure) receives a segment selector from
an application program (the calling procedure), it sets the segment selector’s RPL to
the privilege level of the calling procedure. Then, when the operating system uses
the segment selector to access its associated segment, the processor performs priv-
ilege checks using the calling procedure’s privilege level (stored in the RPL) rather
than the numerically lower privilege level (the CPL) of the operating-system proce-
dure. The RPL thus insures that the operating system does not access a segment on
behalf of an application program unless that program itself has access to the
segment.

Figure 5-15 shows an example of how the processor uses the RPL field. In this
example, an application program (located in code segment A) possesses a segment
selector (segment selector D1) that points to a privileged data structure (that is, a
data structure located in a data segment D at privilege level 0).

The application program cannot access data segment D, because it does not have
sufficient privilege, but the operating system (located in code segment C) can. So, in
an attempt to access data segment D, the application program executes a call to the
operating system and passes segment selector D1 to the operating system as a
parameter on the stack. Before passing the segment selector, the (well behaved)
application program sets the RPL of the segment selector to its current privilege level
(which in this example is 3). If the operating system attempts to access data
segment D using segment selector D1, the processor compares the CPL (which is
now O following the call), the RPL of segment selector D1, and the DPL of data
segment D (which is 0). Since the RPL is greater than the DPL, access to data
segment D is denied. The processor’s protection mechanism thus protects data
segment D from access by the operating system, because application program’s priv-
ilege level (represented by the RPL of segment selector B) is greater than the DPL of
data segment D.

Vol.3 5-37

PROTECTION

Passed as a
parameter on
the stack.
Application Program \
Code Call

Segment A Gate Selector B || G _| Segment Sel. D1
ate B r -
RPL=3]

m‘ RPL=3 m

Lowest Privilege

|
|
|
|
|
Access I
| not |
| allowed ’
| |
| AN
Code [— — Data

Operating | Segment C Se t Sel. D2
| gment Sel. | »| Segment D
System RPL=0
DPL=0 =
Access DPL=0
m Highest Privilege allowed

Figure 5-15. Use of RPL to Weaken Privilege Level of Called Procedure

Now assume that instead of setting the RPL of the segment selector to 3, the appli-
cation program sets the RPL to O (segment selector D2). The operating system can

now access data segment D, because its CPL and the RPL of segment selector D2 are
both equal to the DPL of data segment D.

Because the application program is able to change the RPL of a segment selector to
any value, it can potentially use a procedure operating at a numerically lower privi-
lege level to access a protected data structure. This ability to lower the RPL of a
segment selector breaches the processor’s protection mechanism.

Because a called procedure cannot rely on the calling procedure to set the RPL
correctly, operating-system procedures (executing at numerically lower privilege-
levels) that receive segment selectors from numerically higher privilege-level proce-
dures need to test the RPL of the segment selector to determine if it is at the appro-
priate level. The ARPL (adjust requested privilege level) instruction is provided for
this purpose. This instruction adjusts the RPL of one segment selector to match that
of another segment selector.

5-38 Vol. 3

PROTECTION

The example in Figure 5-15 demonstrates how the ARPL instruction is intended to be
used. When the operating-system receives segment selector D2 from the application
program, it uses the ARPL instruction to compare the RPL of the segment selector
with the privilege level of the application program (represented by the code-segment
selector pushed onto the stack). If the RPL is less than application program’s privi-
lege level, the ARPL instruction changes the RPL of the segment selector to match the
privilege level of the application program (segment selector D1). Using this instruc-
tion thus prevents a procedure running at a numerically higher privilege level from
accessing numerically lower privilege-level (more privileged) segments by lowering
the RPL of a segment selector.

Note that the privilege level of the application program can be determined by reading
the RPL field of the segment selector for the application-program’s code segment.
This segment selector is stored on the stack as part of the call to the operating
system. The operating system can copy the segment selector from the stack into a
register for use as an operand for the ARPL instruction.

5.10.5 Checking Alignment

When the CPL is 3, alignment of memory references can be checked by setting the
AM flag in the CRO register and the AC flag in the EFLAGS register. Unaligned memory
references generate alignment exceptions (#AC). The processor does not generate
alignment exceptions when operating at privilege level O, 1, or 2. See Table 6-7 for a
description of the alignment requirements when alignment checking is enabled.

5.11 PAGE-LEVEL PROTECTION

Page-level protection can be used alone or applied to segments. When page-level
protection is used with the flat memory model, it allows supervisor code and data
(the operating system or executive) to be protected from user code and data (appli-
cation programs). It also allows pages containing code to be write protected. When
the segment- and page-level protection are combined, page-level read/write protec-
tion allows more protection granularity within segments.

With page-level protection (as with segment-level protection) each memory refer-
ence is checked to verify that protection checks are satisfied. All checks are made
before the memory cycle is started, and any violation prevents the cycle from
starting and results in a page-fault exception being generated. Because checks are
performed in parallel with address translation, there is no performance penalty.

The processor performs two page-level protection checks:
® Restriction of addressable domain (supervisor and user modes).
® Page type (read only or read/write).

Violations of either of these checks results in a page-fault exception being generated.
See Chapter 6, “Interrupt 14—Page-Fault Exception (#PF),” for an explanation of the

Vol.3 5-39

PROTECTION

page-fault exception mechanism. This chapter describes the protection violations
which lead to page-fault exceptions.

5.11.1 Page-Protection Flags

Protection information for pages is contained in two flags in a paging-structure entry
(see Chapter 4): the read/write flag (bit 1) and the user/supervisor flag (bit 2). The
protection checks use the flags in all paging structures.

5.11.2 Restricting Addressable Domain

The page-level protection mechanism allows restricting access to pages based on
two privilege levels:

® Supervisor mode (U/S flag is 0)—(Most privileged) For the operating system or
executive, other system software (such as device drivers), and protected system
data (such as page tables).

® User mode (U/S flag is 1)—(Least privileged) For application code and data.

The segment privilege levels map to the page privilege levels as follows. If the
processor is currently operating at a CPL of O, 1, or 2, it is in supervisor mode; if it is
operating at a CPL of 3, it is in user mode. When the processor is in supervisor mode,
it can access all pages; when in user mode, it can access only user-level pages. (Note
that the WP flag in control register CRO modifies the supervisor permissions, as
described in Section 5.11.3, “Page Type.”)

Note that to use the page-level protection mechanism, code and data segments must
be set up for at least two segment-based privilege levels: level O for supervisor code
and data segments and level 3 for user code and data segments. (In this model, the
stacks are placed in the data segments.) To minimize the use of segments, a flat
memory model can be used (see Section 3.2.1, “Basic Flat Model”).

Here, the user and supervisor code and data segments all begin at address zero in
the linear address space and overlay each other. With this arrangement, operating-
system code (running at the supervisor level) and application code (running at the
user level) can execute as if there are no segments. Protection between operating-
system and application code and data is provided by the processor’s page-level
protection mechanism.

5.11.3 Page Type

The page-level protection mechanism recognizes two page types:
® Read-only access (R/W flag is 0).
® Read/write access (R/W flag is 1).

5-40 Vol.3

PROTECTION

When the processor is in supervisor mode and the WP flag in register CRO is clear (its
state following reset initialization), all pages are both readable and writable (write-
protection is ignored). When the processor is in user mode, it can write only to user-
mode pages that are read/write accessible. User-mode pages which are read/write or
read-only are readable; supervisor-mode pages are neither readable nor writable
from user mode. A page-fault exception is generated on any attempt to violate the
protection rules.

Starting with the P6 family, Intel processors allow user-mode pages to be write-
protected against supervisor-mode access. Setting CRO.WP = 1 enables supervisor-
mode sensitivity to user-mode, write protected pages. Supervisor pages which are
read-only are not writable from any privilege level (if CRO.WP = 1). This supervisor
write-protect feature is useful for implementing a “copy-on-write” strategy used by
some operating systems, such as UNIX*, for task creation (also called forking or
spawning). When a new task is created, it is possible to copy the entire address space
of the parent task. This gives the child task a complete, duplicate set of the parent's
segments and pages. An alternative copy-on-write strategy saves memory space and
time by mapping the child's segments and pages to the same segments and pages
used by the parent task. A private copy of a page gets created only when one of the
tasks writes to the page. By using the WP flag and marking the shared pages as read-
only, the supervisor can detect an attempt to write to a user-level page, and can copy
the page at that time.

5.11.4 Combining Protection of Both Levels of Page Tables

For any one page, the protection attributes of its page-directory entry (first-level
page table) may differ from those of its page-table entry (second-level page table).
The processor checks the protection for a page in both its page-directory and the
page-table entries. Table 5-3 shows the protection provided by the possible combina-
tions of protection attributes when the WP flag is clear.

5.11.5 Overrides to Page Protection

The following types of memory accesses are checked as if they are privilege-level O
accesses, regardless of the CPL at which the processor is currently operating:

® Access to segment descriptors in the GDT, LDT, or IDT.

® Access to an inner-privilege-level stack during an inter-privilege-level call or a
call to in exception or interrupt handler, when a change of privilege level occurs.

5.12 COMBINING PAGE AND SEGMENT PROTECTION

When paging is enabled, the processor evaluates segment protection first, then
evaluates page protection. If the processor detects a protection violation at either
the segment level or the page level, the memory access is not carried out and an

Vol.3 5-41

PROTECTION

exception is generated. If an exception is generated by segmentation, no paging
exception is generated.

Page-level protections cannot be used to override segment-level protection. For
example, a code segment is by definition not writable. If a code segment is paged,
setting the R/W flag for the pages to read-write does not make the pages writable.
Attempts to write into the pages will be blocked by segment-level protection checks.

Page-level protection can be used to enhance segment-level protection. For
example, if a large read-write data segment is paged, the page-protection mecha-
nism can be used to write-protect individual pages.

Table 5-3. Combined Page-Directory and Page-Table Protection

Page-Directory Entry Page-Table Entry Combined Effect

Privilege Access Type | Privilege Access Type | Privilege Access Type
User Read-Only User Read-Only User Read-Only
User Read-Only User Read-Write User Read-Only
User Read-Write User Read-Only User Read-Only
User Read-Write User Read-Write User Read/Write
User Read-Only Supervisor Read-Only Supervisor Read/Write*
User Read-Only Supervisor Read-Write Supervisor Read/Write*
User Read-Write Supervisor Read-Only Supervisor Read/Write*
User Read-Write Supervisor Read-Write Supervisor Read/Write
Supervisor Read-Only User Read-Only Supervisor Read/Write*
Supervisor Read-Only User Read-Write Supervisor Read/Write*
Supervisor Read-Write User Read-Only Supervisor Read/Write*
Supervisor Read-Write User Read-Write Supervisor Read/Write
Supervisor Read-Only Supervisor Read-Only Supervisor Read/Write*
Supervisor Read-Only Supervisor Read-Write Supervisor Read/Write*
Supervisor Read-Write Supervisor Read-Only Supervisor Read/Write*
Supervisor Read-Write Supervisor Read-Write Supervisor Read/Write
NOTE:

* If CRO.WP = 1, access type is determined by the R/W flags of the page-directory and page-table
entries. IF CRO.WP = 0, supervisor privilege permits read-write access.

5-42 Vol.3

PROTECTION

5.13 PAGE-LEVEL PROTECTION AND EXECUTE-DISABLE
BIT

In addition to page-level protection offered by the U/S and R/W flags, paging struc-
tures used with PAE paging and 1A-32e paging (see Chapter 4) provide the execute-
disable bit. This bit offers additional protection for data pages.

An Intel 64 or 1A-32 processor with the execute-disable bit capability can prevent
data pages from being used by malicious software to execute code. This capability is
provided in:

® 32-bit protected mode with PAE enabled.
®]A-32e mode.

While the execute-disable bit capability does not introduce new instructions, it does
require operating systems to use a PAE-enabled environment and establish a page-
granular protection policy for memory pages.

If the execute-disable bit of a memory page is set, that page can be used only as
data. An attempt to execute code from a memory page with the execute-disable bit
set causes a page-fault exception.

The execute-disable capability is supported only with PAE paging and 1A-32e paging.
It is not supported with 32-bit paging. Existing page-level protection mechanisms
(see Section 5.11, “Page-Level Protection™) continue to apply to memory pages inde-
pendent of the execute-disable setting.

5.13.1 Detecting and Enabling the Execute-Disable Capability

Software can detect the presence of the execute-disable capability using the CPUID
instruction. CPUID.80000001H:EDX.NX [bit 20] = 1 indicates the capability is avail-
able.

If the capability is available, software can enable it by setting IA32_EFER.NXE[bit 11]
to 1. IA32_EFER is available if CPUID.80000001H.EDX[bit 20 or 29] = 1.

If the execute-disable capability is not available, a write to set IA32_EFER.NXE
produces a #GP exception. See Table 5-4.

Table 5-4. Extended Feature Enable MSR (IA32_EFER)

63:12 11 10 9 8 7:1 0

Reserved | Execute- IA-32e mode | Reserve |IA-32e mode | Reserve | SysCallenable
disable bit active (LMA) |d enable (LME) |d (SCE)
enable (NXE)

Vol.3 5-43

PROTECTION

5.13.2

Execute-Disable Page Protection

The execute-disable bit in the paging structures enhances page protection for data
pages. Instructions cannot be fetched from a memory page if IA32_EFER.NXE =1
and the execute-disable bit is set in any of the paging-structure entries used to map
the page. Table 5-5 lists the valid usage of a page in relation to the value of execute-
disable bit (bit 63) of the corresponding entry in each level of the paging structures.
Execute-disable protection can be activated using the execute-disable bit at any level
of the paging structure, irrespective of the corresponding entry in other levels. When
execute-disable protection is not activated, the page can be used as code or data.

Table 5-5. IA-32e Mode Page Level Protection Matrix
with Execute-Disable Bit Capability

Execute Disable Bit Value (Bit 63) Valid Usage
PML4 PDP PDE PTE

Bit63=1 |* * * Data

* Bit63=1 |* * Data

* * Bit63=1 * Data

* * * Bit63=1 Data
Bit63=0 |Bit63=0 |Bit63=0 Bit63=0 |Data/Code
NOTES:

* Value not checked.

In legacy PAE-enabled mode, Table 5-6 and Table 5-7 show the effect of setting the

execute-disable bit for code and data pages.

5-44 Vol.3

PROTECTION

Table 5-6. Legacy PAE-Enabled 4-KByte Page Level Protection Matrix
with Execute-Disable Bit Capability

Execute Disable Bit Value (Bit 63) | Valid Usage
PDE PTE

Bit63=1 * Data

* Bit63=1 Data
Bit63=0 Bit63=0 Data/Code
NOTE:

* Value not checked.

Table 5-7. Legacy PAE-Enabled 2-MByte Page Level Protection
with Execute-Disable Bit Capability

Execute Disable Bit Value (Bit 63) | Valid Usage
PDE

Bit63=1 Data
Bit63=0 Data/Code

5.13.3 Reserved Bit Checking

The processor enforces reserved bit checking in paging data structure entries. The
bits being checked varies with paging mode and may vary with the size of physical
address space.

Table 5-8 shows the reserved bits that are checked when the execute disable bit
capability is enabled (CR4.PAE = 1 and IA32_EFER.NXE = 1). Table 5-8 and Table
show the following paging modes:

® Non-PAE 4-KByte paging: 4-KByte-page only paging (CR4.PAE = 0,
CR4.PSE = 0).

® PSE36: 4-KByte and 4-MByte pages (CR4.PAE = 0, CR4.PSE = 1).

® PAE: 4-KByte and 2-MByte pages (CR4.PAE = 1, CR4.PSE = X).

The reserved bit checking depends on the physical address size supported by the
implementation, which is reported in CPUID.80000008H. See the table note.

Vol.3 5-45

PROTECTION

Table 5-8. IA-32e Mode Page Level Protection Matrix with Execute-Disable Bit
Capability Enabled

Mode Paging Mode Check Bits

32-bit 4-KByte paging (non-PAE) No reserved bits checked
PSE36 - PDE, 4-MByte page Bit [21]
PSE36 - PDE, 4-KByte page No reserved bits checked
PSE36 - PTE No reserved bits checked
PAE - PDP table entry Bits [63:MAXPHYADDR] & [8:5] & [2:1] *
PAE - PDE, 2-MByte page Bits [62:MAXPHYADDR] & [20:13] *
PAE - PDE, 4-KByte page Bits [62:MAXPHYADDR] *
PAE - PTE Bits [62:MAXPHYADDR] *

64-bit PML4€E Bits [51:MAXPHYADDR] *
PDPTE Bits [51:MAXPHYADDR] *
PDE, 2-MByte page Bits [51:MAXPHYADDR] & [20:13] *
PDE, 4-KByte page Bits [51:MAXPHYADDR] *
PTE Bits [51:MAXPHYADDR] *

NOTES:

* MAXPHYADDR is the maximum physical address size and is indicated by
CPUID.B0000008H:EAX[bits 7-0.

If execute disable bit capability is not enabled or not available, reserved bit checking
in 64-bit mode includes bit 63 and additional bits. This and reserved bit checking for
legacy 32-bit paging modes are shown in Table 5-10.

5-46 Vol.3

PROTECTION

Table 5-9. Reserved Bit Checking WIth Execute-Disable Bit Capability Not Enabled

Mode Paging Mode Check Bits
32-bit KByte paging (non-PAE) No reserved bits checked
PSE36 - PDE, 4-MByte page Bit [21]
PSE36 - PDE, 4-KByte page No reserved bits checked
PSE36 - PTE No reserved bits checked
PAE - PDP table entry Bits [63:MAXPHYADDR] & [8:5] & [2:1]*
PAE - PDE, 2-MByte page Bits [63:MAXPHYADDR] & [20:13]*
PAE - PDE, 4-KByte page Bits [63:MAXPHYADDR]*
PAE - PTE Bits [63:MAXPHYADDR]*
64-bit PML4E Bit [63], bits [51:MAXPHYADDR]*
PDPTE Bit [63], bits [51:MAXPHYADDR]*
PDE, 2-MByte page Bit [63], bits [51:MAXPHYADDR] & [20:13]*
PDE, 4-KByte page Bit [63], bits [51:MAXPHYADDR]*
PTE Bit [63], bits [51:MAXPHYADDR]*
NOTES:

* MAXPHYADDR is the maximum physical address size and is indicated by
CPUID.B0000008H:EAX[bits 7-0.

5.13.4 Exception Handling

When execute disable bit capability is enabled (1IA32_EFER.NXE = 1), conditions for
a page fault to occur include the same conditions that apply to an Intel 64 or 1A-32

processor without execute disable bit capability plus the following new condition: an
instruction fetch to a linear address that translates to physical address in a memory
page that has the execute-disable bit set.

An Execute Disable Bit page fault can occur at all privilege levels. It can occur on any
instruction fetch, including (but not limited to): near branches, far branches,
CALL/RET/INT/IRET execution, sequential instruction fetches, and task switches. The
execute-disable bit in the page translation mechanism is checked only when:

® |A32_EFER.NXE = 1.

® The instruction translation look-aside buffer (ITLB) is loaded with a page that is
not already present in the ITLB.

Vol.3 5-47

PROTECTION

5-48 Vol.3

CHAPTER 6
INTERRUPT AND EXCEPTION HANDLING

This chapter describes the interrupt and exception-handling mechanism when oper-
ating in protected mode on an Intel 64 or 1A-32 processor. Most of the information
provided here also applies to interrupt and exception mechanisms used in real-
address, virtual-8086 mode, and 64-bit mode.

Chapter 16, “8086 Emulation,” describes information specific to interrupt and excep-
tion mechanisms in real-address and virtual-8086 mode. Section 6.14, “Exception
and Interrupt Handling in 64-bit Mode,” describes information specific to interrupt
and exception mechanisms in 1A-32e mode and 64-bit sub-mode.

6.1 INTERRUPT AND EXCEPTION OVERVIEW

Interrupts and exceptions are events that indicate that a condition exists somewhere
in the system, the processor, or within the currently executing program or task that
requires the attention of a processor. They typically result in a forced transfer of
execution from the currently running program or task to a special software routine or
task called an interrupt handler or an exception handler. The action taken by a
processor in response to an interrupt or exception is referred to as servicing or
handling the interrupt or exception.

Interrupts occur at random times during the execution of a program, in response to
signals from hardware. System hardware uses interrupts to handle events external
to the processor, such as requests to service peripheral devices. Software can also
generate interrupts by executing the INT n instruction.

Exceptions occur when the processor detects an error condition while executing an
instruction, such as division by zero. The processor detects a variety of error condi-
tions including protection violations, page faults, and internal machine faults. The
machine-check architecture of the Pentium 4, Intel Xeon, P6 family, and Pentium
processors also permits a machine-check exception to be generated when internal
hardware errors and bus errors are detected.

When an interrupt is received or an exception is detected, the currently running
procedure or task is suspended while the processor executes an interrupt or excep-
tion handler. When execution of the handler is complete, the processor resumes
execution of the interrupted procedure or task. The resumption of the interrupted
procedure or task happens without loss of program continuity, unless recovery from
an exception was not possible or an interrupt caused the currently running program
to be terminated.

This chapter describes the processor’s interrupt and exception-handling mechanism,
when operating in protected mode. A description of the exceptions and the conditions
that cause them to be generated is given at the end of this chapter.

Vol.3 6-1

INTERRUPT AND EXCEPTION HANDLING

6.2 EXCEPTION AND INTERRUPT VECTORS

To aid in handling exceptions and interrupts, each architecturally defined exception
and each interrupt condition requiring special handling by the processor is assigned
a unique identification number, called a vector. The processor uses the vector
assigned to an exception or interrupt as an index into the interrupt descriptor table
(IDT). The table provides the entry point to an exception or interrupt handler (see
Section 6.10, “Interrupt Descriptor Table (IDT)”).

The allowable range for vector numbers is 0 to 255. Vectors in the range 0 through
31 are reserved by the Intel 64 and 1A-32 architectures for architecture-defined
exceptions and interrupts. Not all of the vectors in this range have a currently defined
function. The unassigned vectors in this range are reserved. Do not use the reserved
vectors.

Vectors in the range 32 to 255 are designated as user-defined interrupts and are not
reserved by the Intel 64 and I1A-32 architecture. These interrupts are generally
assigned to external 1/0 devices to enable those devices to send interrupts to the
processor through one of the external hardware interrupt mechanisms (see Section
6.3, “Sources of Interrupts”).

Table 6-1 shows vector assignments for architecturally defined exceptions and for the
NMI interrupt. This table gives the exception type (see Section 6.5, “Exception Clas-
sifications”) and indicates whether an error code is saved on the stack for the excep-
tion. The source of each predefined exception and the NMI interrupt is also given.

6.3 SOURCES OF INTERRUPTS

The processor receives interrupts from two sources:
® External (hardware generated) interrupts.
® Software-generated interrupts.

6.3.1 External Interrupts

External interrupts are received through pins on the processor or through the local
APIC. The primary interrupt pins on Pentium 4, Intel Xeon, P6 family, and Pentium
processors are the LINT[1:0] pins, which are connected to the local APIC (see
Chapter 10, “Advanced Programmable Interrupt Controller (APIC)”). When the local
APIC is enabled, the LINT[1:0] pins can be programmed through the APIC’s local
vector table (LVT) to be associated with any of the processor’s exception or interrupt
vectors.

When the local APIC is global/hardware disabled, these pins are configured as INTR
and NMI pins, respectively. Asserting the INTR pin signals the processor that an
external interrupt has occurred. The processor reads from the system bus the inter-
rupt vector number provided by an external interrupt controller, such as an 8259A

6-2 Vol.3

INTERRUPT AND EXCEPTION HANDLING

(see Section 6.2, “Exception and Interrupt Vectors”). Asserting the NMI pin signals a
non-maskable interrupt (NMI), which is assigned to interrupt vector 2.

Table 6-1. Protected-Mode Exceptions and Interrupts

Vector | Mne- | Description Type Error | Source
No. monic Code
0 #DE | Divide Error Fault No DIV and IDIV instructions.
1 #DB | RESERVED Fault/ No For Intel use only.
Trap
2 — NMI Interrupt Interrupt | No Nonmaskable external
interrupt.
3 #BP Breakpoint Trap No INT 3 instruction.
4 #0OF | Overflow Trap No INTO instruction.
5 #BR | BOUND Range Exceeded | Fault No BOUND instruction.
6 #UD | Invalid Opcode (Undefined | Fault No UDZ2 instruction or reserved
Opcode) opcode.
7 #NM | Device Not Available (No Fault No Floating-point or WAIT/FWAIT
Math Coprocessor) instruction.
8 #DF Double Fault Abort Yes Any instruction that can
(zero) | generate an exception, an NMI,
or an INTR.
9 Coprocessor Segment Fault No Floating-point instruction.?
Overrun (reserved)
10 #TS Invalid TSS Fault Yes Task switch or TSS access.
11 #NP | Segment Not Present Fault Yes Loading segment registers or
accessing system segments.
12 #SS Stack-Segment Fault Fault Yes Stack operations and SS
register loads.
13 #GP | General Protection Fault Yes Any memory reference and
other protection checks.
14 #PF Page Fault Fault Yes Any memory reference.
15 — (Intel reserved. Do not No
use.)
16 #MF | x87 FPU Floating-Point Fault No x87 FPU floating-point or
Error (Math Fault) WAIT/FWAIT instruction.
17 #AC | Alignment Check Fault Yes Any data reference in
(Zero) | memory.3

Vol.3 6-3

INTERRUPT AND EXCEPTION HANDLING

Table 6-1. Protected-Mode Exceptions and Interrupts (Contd.)

18 #MC | Machine Check Abort No Error codes (if any) and source
are model dependent.?

19 #XM | SIMD Floating-Point Fault No SSE/SSEZ2/SSE3 floating-point
Exception instructions®

20-31 | — Intel reserved. Do not use.

32- - User Defined (Non- Interrupt External interrupt or INT n

255 reserved) Interrupts instruction.

NOTES:

1. The UD2 instruction was introduced in the Pentium Pro processor.
2. Processors after the Intel386 processor do not generate this exception.
3. This exception was introduced in the Intel486 processor.

4, This exception was introduced in the Pentium processor and enhanced in the P6 family proces-
Sors.

5. This exception was introduced in the Pentium Il processor.

The processor’s local APIC is normally connected to a system-based 1/0 APIC. Here,
external interrupts received at the 1/0 APIC’s pins can be directed to the local APIC
through the system bus (Pentium 4, Intel Core Duo, Intel Core 2, Intel Atom, and
Intel Xeon processors) or the APIC serial bus (P6 family and Pentium processors).
The 1/0 APIC determines the vector number of the interrupt and sends this number
to the local APIC. When a system contains multiple processors, processors can also
send interrupts to one another by means of the system bus (Pentium 4, Intel Core
Duo, Intel Core 2, Intel Atom, and Intel Xeon processors) or the APIC serial bus (P6
family and Pentium processors).

The LINT[1:0] pins are not available on the Intel486 processor and earlier Pentium
processors that do not contain an on-chip local APIC. These processors have dedi-
cated NMI and INTR pins. With these processors, external interrupts are typically
generated by a system-based interrupt controller (8259A), with the interrupts being
signaled through the INTR pin.

Note that several other pins on the processor can cause a processor interrupt to
occur. However, these interrupts are not handled by the interrupt and exception
mechanism described in this chapter. These pins include the RESET#, FLUSH#,
STPCLK#, SMI#, R/S#, and INIT# pins. Whether they are included on a particular
processor is implementation dependent. Pin functions are described in the data
books for the individual processors. The SMI# pin is described in Chapter 26,
“System Management.”

6.3.2 Maskable Hardware Interrupts

Any external interrupt that is delivered to the processor by means of the INTR pin or
through the local APIC is called a maskable hardware interrupt. Maskable hardware
interrupts that can be delivered through the INTR pin include all IA-32 architecture

6-4 Vol.3

INTERRUPT AND EXCEPTION HANDLING

defined interrupt vectors from O through 255; those that can be delivered through
the local APIC include interrupt vectors 16 through 255.

The IF flag in the EFLAGS register permits all maskable hardware interrupts to be
masked as a group (see Section 6.8.1, “Masking Maskable Hardware Interrupts”).
Note that when interrupts O through 15 are delivered through the local APIC, the

APIC indicates the receipt of an illegal vector.

6.3.3 Software-Generated Interrupts

The INT n instruction permits interrupts to be generated from within software by
supplying an interrupt vector number as an operand. For example, the INT 35
instruction forces an implicit call to the interrupt handler for interrupt 35.

Any of the interrupt vectors from O to 255 can be used as a parameter in this instruc-
tion. If the processor’s predefined NMI vector is used, however, the response of the
processor will not be the same as it would be from an NMI interrupt generated in the
normal manner. If vector number 2 (the NMI vector) is used in this instruction, the
NMI interrupt handler is called, but the processor’'s NMI-handling hardware is not
activated.

Interrupts generated in software with the INT n instruction cannot be masked by the
IF flag in the EFLAGS reqgister.

6.4 SOURCES OF EXCEPTIONS

The processor receives exceptions from three sources:
® Processor-detected program-error exceptions.

® Software-generated exceptions.

® Machine-check exceptions.

6.4.1 Program-Error Exceptions

The processor generates one or more exceptions when it detects program errors
during the execution in an application program or the operating system or executive.
Intel 64 and 1A-32 architectures define a vector number for each processor-detect-
able exception. Exceptions are classified as faults, traps, and aborts (see Section
6.5, “Exception Classifications”).

Vol.3 6-5

INTERRUPT AND EXCEPTION HANDLING

6.4.2 Software-Generated Exceptions

The INTO, INT 3, and BOUND instructions permit exceptions to be generated in soft-
ware. These instructions allow checks for exception conditions to be performed at
points in the instruction stream. For example, INT 3 causes a breakpoint exception to
be generated.

The INT n instruction can be used to emulate exceptions in software; but there is a
limitation. If INT n provides a vector for one of the architecturally-defined excep-
tions, the processor generates an interrupt to the correct vector (to access the
exception handler) but does not push an error code on the stack. This is true even if
the associated hardware-generated exception normally produces an error code. The
exception handler will still attempt to pop an error code from the stack while handling
the exception. Because no error code was pushed, the handler will pop off and
discard the EIP instead (in place of the missing error code). This sends the return to
the wrong location.

6.4.3 Machine-Check Exceptions

The P6 family and Pentium processors provide both internal and external machine-

check mechanisms for checking the operation of the internal chip hardware and bus
transactions. These mechanisms are implementation dependent. When a machine-

check error is detected, the processor signals a machine-check exception (vector 18)
and returns an error code.

See Chapter 6, “Interrupt 18—Machine-Check Exception (#MC)” and Chapter 15,
“Machine-Check Architecture,” for more information about the machine-check
mechanism.

6.5 EXCEPTION CLASSIFICATIONS

Exceptions are classified as faults, traps, or aborts depending on the way they are
reported and whether the instruction that caused the exception can be restarted
without loss of program or task continuity.

® Faults — A fault is an exception that can generally be corrected and that, once
corrected, allows the program to be restarted with no loss of continuity. When a
fault is reported, the processor restores the machine state to the state prior to
the beginning of execution of the faulting instruction. The return address (saved
contents of the CS and EIP registers) for the fault handler points to the faulting
instruction, rather than to the instruction following the faulting instruction.

® Traps — A trap is an exception that is reported immediately following the
execution of the trapping instruction. Traps allow execution of a program or task
to be continued without loss of program continuity. The return address for the
trap handler points to the instruction to be executed after the trapping
instruction.

6-6 Vol.3

INTERRUPT AND EXCEPTION HANDLING

® Aborts — An abort is an exception that does not always report the precise
location of the instruction causing the exception and does not allow a restart of
the program or task that caused the exception. Aborts are used to report severe
errors, such as hardware errors and inconsistent or illegal values in system
tables.

NOTE

One exception subset normally reported as a fault is not restartable.
Such exceptions result in loss of some processor state. For example,
executing a POPAD instruction where the stack frame crosses over
the end of the stack segment causes a fault to be reported. In this
situation, the exception handler sees that the instruction pointer
(CS:EIP) has been restored as if the POPAD instruction had not been
executed. However, internal processor state (the general-purpose
registers) will have been modified. Such cases are considered
programming errors. An application causing this class of exceptions
should be terminated by the operating system.

6.6 PROGRAM OR TASK RESTART

To allow the restarting of program or task following the handling of an exception or
an interrupt, all exceptions (except aborts) are guaranteed to report exceptions on
an instruction boundary. All interrupts are guaranteed to be taken on an instruction
boundary.

For fault-class exceptions, the return instruction pointer (saved when the processor
generates an exception) points to the faulting instruction. So, when a program or task
is restarted following the handling of a fault, the faulting instruction is restarted (re-
executed). Restarting the faulting instruction is commonly used to handle exceptions
that are generated when access to an operand is blocked. The most common example
of this type of fault is a page-fault exception (#PF) that occurs when a program or
task references an operand located on a page that is not in memory. When a page-
fault exception occurs, the exception handler can load the page into memory and
resume execution of the program or task by restarting the faulting instruction. To
insure that the restart is handled transparently to the currently executing program or
task, the processor saves the necessary registers and stack pointers to allow a restart
to the state prior to the execution of the faulting instruction.

For trap-class exceptions, the return instruction pointer points to the instruction
following the trapping instruction. If a trap is detected during an instruction which
transfers execution, the return instruction pointer reflects the transfer. For example,
if a trap is detected while executing a JMP instruction, the return instruction pointer
points to the destination of the JMP instruction, not to the next address past the JMP
instruction. All trap exceptions allow program or task restart with no loss of conti-
nuity. For example, the overflow exception is a trap exception. Here, the return
instruction pointer points to the instruction following the INTO instruction that tested

Vol.3 6-7

INTERRUPT AND EXCEPTION HANDLING

EFLAGS.OF (overflow) flag. The trap handler for this exception resolves the overflow
condition. Upon return from the trap handler, program or task execution continues at
the instruction following the INTO instruction.

The abort-class exceptions do not support reliable restarting of the program or task.
Abort handlers are designed to collect diagnostic information about the state of the
processor when the abort exception occurred and then shut down the application and
system as gracefully as possible.

Interrupts rigorously support restarting of interrupted programs and tasks without
loss of continuity. The return instruction pointer saved for an interrupt points to the
next instruction to be executed at the instruction boundary where the processor took
the interrupt. If the instruction just executed has a repeat prefix, the interrupt is
taken at the end of the current iteration with the registers set to execute the next
iteration.

The ability of a P6 family processor to speculatively execute instructions does not
affect the taking of interrupts by the processor. Interrupts are taken at instruction
boundaries located during the retirement phase of instruction execution; so they are
always taken in the “in-order” instruction stream. See Chapter 2, “Intel® 64 and IA-
32 Architectures,” in the Intel® 64 and 1A-32 Architectures Software Developer’s
Manual, Volume 1, for more information about the P6 family processors’ microarchi-
tecture and its support for out-of-order instruction execution.

Note that the Pentium processor and earlier 1A-32 processors also perform varying
amounts of prefetching and preliminary decoding. With these processors as well,
exceptions and interrupts are not signaled until actual “in-order” execution of the
instructions. For a given code sample, the signaling of exceptions occurs uniformly
when the code is executed on any family of 1A-32 processors (except where new
exceptions or new opcodes have been defined).

6.7 NONMASKABLE INTERRUPT (NMI)

The nonmaskable interrupt (NMI) can be generated in either of two ways:
® External hardware asserts the NMI pin.

® The processor receives a message on the system bus (Pentium 4, Intel Core Duo,
Intel Core 2, Intel Atom, and Intel Xeon processors) or the APIC serial bus (P6
family and Pentium processors) with a delivery mode NMI.

When the processor receives a NMI from either of these sources, the processor
handles it immediately by calling the NMI handler pointed to by interrupt vector
number 2. The processor also invokes certain hardware conditions to insure that no
other interrupts, including NMI interrupts, are received until the NMI handler has
completed executing (see Section 6.7.1, “Handling Multiple NMIs”).

Also, when an NMI is received from either of the above sources, it cannot be masked
by the IF flag in the EFLAGS register.

6-8 Vol.3

INTERRUPT AND EXCEPTION HANDLING

It is possible to issue a maskable hardware interrupt (through the INTR pin) to vector
2 to invoke the NMI interrupt handler; however, this interrupt will not truly be an NMI
interrupt. A true NMI interrupt that activates the processor’s NMI-handling hardware
can only be delivered through one of the mechanisms listed above.

6.7.1 Handling Multiple NMIs

While an NMI interrupt handler is executing, the processor disables additional calls to
the NMI handler until the next IRET instruction is executed. This blocking of subse-
quent NMIs prevents stacking up calls to the NMI handler. It is recommended that the
NMI interrupt handler be accessed through an interrupt gate to disable maskable
hardware interrupts (see Section 6.8.1, “Masking Maskable Hardware Interrupts”). If
the NMI handler is a virtual-8086 task with an IOPL of less than 3, an IRET instruction
issued from the handler generates a general-protection exception (see Section
16.2.7, “Sensitive Instructions”). In this case, the NMI is unmasked before the
general-protection exception handler is invoked.

6.8 ENABLING AND DISABLING INTERRUPTS

The processor inhibits the generation of some interrupts, depending on the state of
the processor and of the IF and RF flags in the EFLAGS register, as described in the
following sections.

6.8.1 Masking Maskable Hardware Interrupts

The IF flag can disable the servicing of maskable hardware interrupts received on the
processor’s INTR pin or through the local APIC (see Section 6.3.2, “Maskable Hard-
ware Interrupts”). When the IF flag is clear, the processor inhibits interrupts deliv-
ered to the INTR pin or through the local APIC from generating an internal interrupt
request; when the IF flag is set, interrupts delivered to the INTR or through the local
APIC pin are processed as normal external interrupts.

The IF flag does not affect non-maskable interrupts (NMIs) delivered to the NMI pin
or delivery mode NMI messages delivered through the local APIC, nor does it affect
processor generated exceptions. As with the other flags in the EFLAGS register, the
processor clears the IF flag in response to a hardware reset.

The fact that the group of maskable hardware interrupts includes the reserved inter-
rupt and exception vectors 0 through 32 can potentially cause confusion. Architectur-
ally, when the IF flag is set, an interrupt for any of the vectors from 0 through 32 can
be delivered to the processor through the INTR pin and any of the vectors from 16
through 32 can be delivered through the local APIC. The processor will then generate
an interrupt and call the interrupt or exception handler pointed to by the vector
number. So for example, it is possible to invoke the page-fault handler through the
INTR pin (by means of vector 14); however, this is not a true page-fault exception. It

Vol.3 6-9

INTERRUPT AND EXCEPTION HANDLING

is an interrupt. As with the INT n instruction (see Section 6.4.2, “Software-Generated
Exceptions™), when an interrupt is generated through the INTR pin to an exception
vector, the processor does not push an error code on the stack, so the exception
handler may not operate correctly.

The IF flag can be set or cleared with the STI (set interrupt-enable flag) and CLI
(clear interrupt-enable flag) instructions, respectively. These instructions may be
executed only if the CPL is equal to or less than the IOPL. A general-protection excep-
tion (#GP) is generated if they are executed when the CPL is greater than the 10OPL.
(The effect of the IOPL on these instructions is modified slightly when the virtual
mode extension is enabled by setting the VME flag in control register CR4: see
Section 16.3, “Interrupt and Exception Handling in Virtual-8086 Mode.” Behavior is
also impacted by the PVI flag: see Section 16.4, “Protected-Mode Virtual Interrupts.”

The IF flag is also affected by the following operations:

® The PUSHEF instruction stores all flags on the stack, where they can be examined
and modified. The POPF instruction can be used to load the modified flags back
into the EFLAGS register.

® Task switches and the POPF and IRET instructions load the EFLAGS register;
therefore, they can be used to modify the setting of the IF flag.

® When an interrupt is handled through an interrupt gate, the IF flag is automati-
cally cleared, which disables maskable hardware interrupts. (If an interrupt is
handled through a trap gate, the IF flag is not cleared.)

See the descriptions of the CLI, STI, PUSHF, POPF, and IRET instructions in Chapter
3, “Instruction Set Reference, A-M,” in the Intel® 64 and 1A-32 Architectures Soft-
ware Developer’s Manual, Volume 2A, for a detailed description of the operations
these instructions are allowed to perform on the IF flag.

6.8.2 Masking Instruction Breakpoints

The RF (resume) flag in the EFLAGS register controls the response of the processor
to instruction-breakpoint conditions (see the description of the RF flag in Section 2.3,
“System Flags and Fields in the EFLAGS Register”).

When set, it prevents an instruction breakpoint from generating a debug exception
(#DB); when clear, instruction breakpoints will generate debug exceptions. The
primary function of the RF flag is to prevent the processor from going into a debug
exception loop on an instruction-breakpoint. See Section 19.3.1.1, “Instruction-
Breakpoint Exception Condition,” for more information on the use of this flag.

6-10 Vol.3

INTERRUPT AND EXCEPTION HANDLING

6.8.3 Masking Exceptions and Interrupts When Switching Stacks

To switch to a different stack segment, software often uses a pair of instructions, for
example:

MOV SS, AX
MOV ESP, StackTop

If an interrupt or exception occurs after the segment selector has been loaded into
the SS register but before the ESP register has been loaded, these two parts of the
logical address into the stack space are inconsistent for the duration of the interrupt
or exception handler.

To prevent this situation, the processor inhibits interrupts, debug exceptions, and
single-step trap exceptions after either a MOV to SS instruction or a POP to SS
instruction, until the instruction boundary following the next instruction is reached.
All other faults may still be generated. If the LSS instruction is used to modify the
contents of the SS register (which is the recommended method of modifying this
register), this problem does not occur.

6.9 PRIORITY AMONG SIMULTANEOUS EXCEPTIONS AND
INTERRUPTS

If more than one exception or interrupt is pending at an instruction boundary, the
processor services them in a predictable order. Table 6-2 shows the priority among
classes of exception and interrupt sources.

Table 6-2. Priority Among Simultaneous Exceptions and Interrupts

Priority Description

1 (Highest) Hardware Reset and Machine Checks
- RESET
- Machine Check

2 Trap on Task Switch
- Tflagin TSS is set

3 External Hardware Interventions
- FLUSH

- STOPCLK

-SMI

- INIT

4 Traps on the Previous Instruction
- Breakpoints
- Debug Trap Exceptions (TF flag set or data/I-O breakpoint)

Vol.3 6-11

INTERRUPT AND EXCEPTION HANDLING

Table 6-2. Priority Among Simultaneous Exceptions and Interrupts (Contd.)

Nonmaskable Interrupts (NMI)

Maskable Hardware Interrupts *

Code Breakpoint Fault

V|IN|O| W,

Faults from Fetching Next Instruction
- Code-Segment Limit Violation
- Code Page Fault

9 Faults from Decoding the Next Instruction
- Instruction length > 15 bytes

- Invalid Opcode

- Coprocessor Not Available

10 (Lowest) | Faults on Executing an Instruction
- Overflow

- Bound error

- Invalid TSS

- Segment Not Present

- Stack fault

- General Protection

- Data Page Fault

- Alignment Check

- x87 FPU Floating-point exception
- SIMD floating-point exception

NOTE:

1. The Intel486™ processor and earlier processors group nonmaskable and maskable interrupts in
the same priority class.

While priority among these classes listed in Table 6-2 is consistent throughout the
architecture, exceptions within each class are implementation-dependent and may
vary from processor to processor. The processor first services a pending exception or
interrupt from the class which has the highest priority, transferring execution to the
first instruction of the handler. Lower priority exceptions are discarded; lower priority
interrupts are held pending. Discarded exceptions are re-generated when the inter-
rupt handler returns execution to the point in the program or task where the excep-
tions and/or interrupts occurred.

6.10 INTERRUPT DESCRIPTOR TABLE (IDT)

The interrupt descriptor table (IDT) associates each exception or interrupt vector
with a gate descriptor for the procedure or task used to service the associated excep-
tion or interrupt. Like the GDT and LDTs, the IDT is an array of 8-byte descriptors (in

6-12 Vol. 3

INTERRUPT AND EXCEPTION HANDLING

protected mode). Unlike the GDT, the first entry of the IDT may contain a descriptor.
To form an index into the IDT, the processor scales the exception or interrupt vector
by eight (the number of bytes in a gate descriptor). Because there are only 256 inter-
rupt or exception vectors, the IDT need not contain more than 256 descriptors. It can
contain fewer than 256 descriptors, because descriptors are required only for the
interrupt and exception vectors that may occur. All empty descriptor slots in the IDT
should have the present flag for the descriptor set to O.

The base addresses of the IDT should be aligned on an 8-byte boundary to maximize
performance of cache line fills. The limit value is expressed in bytes and is added to
the base address to get the address of the last valid byte. A limit value of O results in
exactly 1 valid byte. Because IDT entries are always eight bytes long, the limit should
always be one less than an integral multiple of eight (that is, 8N — 1).

The IDT may reside anywhere in the linear address space. As shown in Figure 6-1,
the processor locates the IDT using the IDTR register. This register holds both a
32-bit base address and 16-bit limit for the IDT.

The LIDT (load IDT register) and SIDT (store IDT register) instructions load and store
the contents of the IDTR register, respectively. The LIDT instruction loads the IDTR
register with the base address and limit held in a memory operand. This instruction
can be executed only when the CPL is 0. It normally is used by the initialization code
of an operating system when creating an IDT. An operating system also may use it to
change from one IDT to another. The SIDT instruction copies the base and limit value
stored in IDTR to memory. This instruction can be executed at any privilege level.

If a vector references a descriptor beyond the limit of the IDT, a general-protection
exception (#GP) is generated.

NOTE

Because interrupts are delivered to the processor core only once, an
incorrectly configured IDT could result in incomplete interrupt
handling and/or the blocking of interrupt delivery.

1A-32 architecture rules need to be followed for setting up IDTR
base/limit/access fields and each field in the gate descriptors. The
same apply for the Intel 64 architecture. This includes implicit
referencing of the destination code segment through the GDT or LDT
and accessing the stack.

Vol.3 6-13

INTERRUPT AND EXCEPTION HANDLING

IDTR Register
a7 16 15 0

IDT Base Address | IDT Limit

i Interrupt

Descriptor Table (IDT)
-F)—>

Gate for

Interrupt #n (n-1)*8
Gate for

Interrupt #3 16
Gate for

Interrupt #2 8
Gate for

> Interrupt #1 0
31 0

Figure 6-1. Relationship of the IDTR and IDT

6.11 IDT DESCRIPTORS

The IDT may contain any of three kinds of gate descriptors:
® Task-gate descriptor

® Interrupt-gate descriptor

® Trap-gate descriptor

Figure 6-2 shows the formats for the task-gate, interrupt-gate, and trap-gate
descriptors. The format of a task gate used in an IDT is the same as that of a task
gate used in the GDT or an LDT (see Section 7.2.5, “Task-Gate Descriptor”). The task
gate contains the segment selector for a TSS for an exception and/or interrupt
handler task.

Interrupt and trap gates are very similar to call gates (see Section 5.8.3, “Call
Gates”). They contain a far pointer (segment selector and offset) that the processor
uses to transfer program execution to a handler procedure in an exception- or inter-
rupt-handler code segment. These gates differ in the way the processor handles the
IF flag in the EFLAGS register (see Section 6.12.1.2, “Flag Usage By Exception- or
Interrupt-Handler Procedure”).

6-14 Vol.3

INTERRUPT AND EXCEPTION HANDLING

Task Gate
31 16 15 14 13 12 8 7 0
D
PlP|00101 4
L
31 16 15 0
TSS Segment Selector 0
Interrupt Gate
31 16 15 14 13 12 8 7 5 4 0
D
Offset 31..16 PP |0OD110[0O0O0 4
L
31 16 15 0
Segment Selector Offset 15..0 0
Trap Gate
31 16 15 14 13 12 8 7 5 4 0
D
Offset 31..16 PlP|OD111|0 00 4
L
31 16 15 0
Segment Selector Offset 15..0 0
DPL Descriptor Privilege Level
Offset Offset to procedure entry point
P Segment Present flag

Selector Segment Selector for destination code segment
Size of gate: 1 = 32 bits; 0 = 16 bits

D
D Reserved

Figure 6-2. IDT Gate Descriptors

6.12 EXCEPTION AND INTERRUPT HANDLING

The processor handles calls to exception- and interrupt-handlers similar to the way it
handles calls with a CALL instruction to a procedure or a task. When responding to an
exception or interrupt, the processor uses the exception or interrupt vector as an
index to a descriptor in the IDT. If the index points to an interrupt gate or trap gate,
the processor calls the exception or interrupt handler in a manner similar to a CALL
to a call gate (see Section 5.8.2, “Gate Descriptors,” through Section 5.8.6,

Vol.3 6-15

INTERRUPT AND EXCEPTION HANDLING

“Returning from a Called Procedure”). If index points to a task gate, the processor
executes a task switch to the exception- or interrupt-handler task in a manner similar
to a CALL to a task gate (see Section 7.3, “Task Switching”).

6.12.1 Exception- or Interrupt-Handler Procedures

An interrupt gate or trap gate references an exception- or interrupt-handler proce-
dure that runs in the context of the currently executing task (see Figure 6-3). The
segment selector for the gate points to a segment descriptor for an executable code
segment in either the GDT or the current LDT. The offset field of the gate descriptor
points to the beginning of the exception- or interrupt-handling procedure.

Destination
IDT Code Segment
Interrupt
Offset Procedure
Interrupt Interrupt or 4’@ >

Vector Trap Gate

|

Segment Selector

GDT or LDT
Base
Address
- Segment
- Descriptor

Figure 6-3. Interrupt Procedure Call

6-16 Vol. 3

INTERRUPT AND EXCEPTION HANDLING

When the processor performs a call to the exception- or interrupt-handler procedure:

If the handler procedure is going to be executed at a numerically lower privilege

level, a stack switch occurs. When the stack switch occurs:

a. The segment selector and stack pointer for the stack to be used by the

handler are obtained from the TSS for the currently executing task. On this
new stack, the processor pushes the stack segment selector and stack
pointer of the interrupted procedure.

The processor then saves the current state of the EFLAGS, CS, and EIP
registers on the new stack (see Figures 6-4).

If an exception causes an error code to be saved, it is pushed on the new
stack after the EIP value.

If the handler procedure is going to be executed at the same privilege level as the

interrupted procedure:

a.

The processor saves the current state of the EFLAGS, CS, and EIP registers
on the current stack (see Figures 6-4).

If an exception causes an error code to be saved, it is pushed on the current
stack after the EIP value.

Vol.3 6-17

INTERRUPT AND EXCEPTION HANDLING

Stack Usage with No
Privilege-Level Change

Interrupted Procedure’s
and Handler’s Stack

~— ESP Before

EFLAGS

Transfer to Handler

CS

EIP

Error Code

«——ESP After

Transfer to Handler

Stack Usage with
Privilege-Level Change

Interrupted Procedure’s

Stack

<«—— ESP Before

Transfer to Handler

ESP After——>

Transfer to Handler

Handler’s Stack

SS

ESP

EFLAGS

CS

EIP

Error Code

Figure 6-4. Stack Usage on Transfers to Interrupt and Exception-Handling Routines

To return from an exception- or interrupt-handler procedure, the handler must use
the IRET (or IRETD) instruction. The IRET instruction is similar to the RET instruction
except that it restores the saved flags into the EFLAGS register. The IOPL field of the
EFLAGS register is restored only if the CPL is O. The IF flag is changed only if the CPL
is less than or equal to the IOPL. See Chapter 3, “Instruction Set Reference, A-M,” of
the Intel® 64 and 1A-32 Architectures Software Developer’s Manual, Volume 2A, for
a description of the complete operation performed by the IRET instruction.

If a stack switch occurred when calling the handler procedure, the IRET instruction

switches back to the interrupted procedure’s stack on the return.

6.12.1.1

The privilege-level protection for exception- and interrupt-handler procedures is
similar to that used for ordinary procedure calls when called through a call gate (see
Section 5.8.4, “Accessing a Code Segment Through a Call Gate”). The processor does

6-18 Vol.3

Protection of Exception- and Interrupt-Handler Procedures

INTERRUPT AND EXCEPTION HANDLING

not permit transfer of execution to an exception- or interrupt-handler procedure in a
less privileged code segment (numerically greater privilege level) than the CPL.

An attempt to violate this rule results in a general-protection exception (#GP). The
protection mechanism for exception- and interrupt-handler procedures is different in
the following ways:

® Because interrupt and exception vectors have no RPL, the RPL is not checked on
implicit calls to exception and interrupt handlers.

® The processor checks the DPL of the interrupt or trap gate only if an exception or
interrupt is generated with an INT n, INT 3, or INTO instruction. Here, the CPL
must be less than or equal to the DPL of the gate. This restriction prevents
application programs or procedures running at privilege level 3 from using a
software interrupt to access critical exception handlers, such as the page-fault
handler, providing that those handlers are placed in more privileged code
segments (numerically lower privilege level). For hardware-generated interrupts
and processor-detected exceptions, the processor ignores the DPL of interrupt
and trap gates.

Because exceptions and interrupts generally do not occur at predictable times, these
privilege rules effectively impose restrictions on the privilege levels at which excep-
tion and interrupt- handling procedures can run. Either of the following techniques
can be used to avoid privilege-level violations.

® The exception or interrupt handler can be placed in a conforming code segment.
This technique can be used for handlers that only need to access data available
on the stack (for example, divide error exceptions). If the handler needs data
from a data segment, the data segment needs to be accessible from privilege
level 3, which would make it unprotected.

® The handler can be placed in a nonconforming code segment with privilege level
0. This handler would always run, regardless of the CPL that the interrupted
program or task is running at.

6.12.1.2 Flag Usage By Exception- or Interrupt-Handler Procedure

When accessing an exception or interrupt handler through either an interrupt gate or
a trap gate, the processor clears the TF flag in the EFLAGS register after it saves the
contents of the EFLAGS register on the stack. (On calls to exception and interrupt
handlers, the processor also clears the VM, RF, and NT flags in the EFLAGS register,
after they are saved on the stack.) Clearing the TF flag prevents instruction tracing
from affecting interrupt response. A subsequent IRET instruction restores the TF
(and VM, RF, and NT) flags to the values in the saved contents of the EFLAGS register
on the stack.

The only difference between an interrupt gate and a trap gate is the way the

processor handles the IF flag in the EFLAGS register. When accessing an exception-
or interrupt-handling procedure through an interrupt gate, the processor clears the
IF flag to prevent other interrupts from interfering with the current interrupt handler.
A subsequent IRET instruction restores the IF flag to its value in the saved contents

Vol.3 6-19

INTERRUPT AND EXCEPTION HANDLING

of the EFLAGS register on the stack. Accessing a handler procedure through a trap
gate does not affect the IF flag.

6.12.2 Interrupt Tasks

When an exception or interrupt handler is accessed through a task gate in the IDT, a
task switch results. Handling an exception or interrupt with a separate task offers
several advantages:

® The entire context of the interrupted program or task is saved automatically.

® Anew TSS permits the handler to use a new privilege level 0 stack when handling
the exception or interrupt. If an exception or interrupt occurs when the current
privilege level O stack is corrupted, accessing the handler through a task gate can
prevent a system crash by providing the handler with a new privilege level O
stack.

® The handler can be further isolated from other tasks by giving it a separate
address space. This is done by giving it a separate LDT.

The disadvantage of handling an interrupt with a separate task is that the amount of
machine state that must be saved on a task switch makes it slower than using an
interrupt gate, resulting in increased interrupt latency.

A task gate in the IDT references a TSS descriptor in the GDT (see Figure 6-5). A
switch to the handler task is handled in the same manner as an ordinary task switch
(see Section 7.3, “Task Switching™). The link back to the interrupted task is stored in
the previous task link field of the handler task’s TSS. If an exception caused an error
code to be generated, this error code is copied to the stack of the new task.

When exception- or interrupt-handler tasks are used in an operating system, there
are actually two mechanisms that can be used to dispatch tasks: the software sched-
uler (part of the operating system) and the hardware scheduler (part of the
processor's interrupt mechanism). The software scheduler needs to accommodate
interrupt tasks that may be dispatched when interrupts are enabled.

NOTE

Because 1A-32 architecture tasks are not re-entrant, an interrupt-
handler task must disable interrupts between the time it completes
handling the interrupt and the time it executes the IRET instruction.
This action prevents another interrupt from occurring while the
interrupt task’s TSS is still marked busy, which would cause a
general-protection (#GP) exception.

6-20 Vol.3

INTERRUPT AND EXCEPTION HANDLING

TSS for Interrupt-

IDT Handling Task
Interrupt
Vector Task Gate
TSS Selector 1SS
Base
GDT Address

— TSS Descriptor

Figure 6-5. Interrupt Task Switch

6.13 ERROR CODE

When an exception condition is related to a specific segment, the processor pushes
an error code onto the stack of the exception handler (whether it is a procedure or
task). The error code has the format shown in Figure 6-6. The error code resembles
a segment selector; however, instead of a Tl flag and RPL field, the error code
contains 3 flags:

EXT External event (bit O) — When set, indicates that an event external
to the program, such as a hardware interrupt, caused the exception.

IDT Descriptor location (bit 1) — When set, indicates that the index
portion of the error code refers to a gate descriptor in the IDT; when

Vol.3 6-21

INTERRUPT AND EXCEPTION HANDLING

clear, indicates that the index refers to a descriptor in the GDT or the
current LDT.

Tl GDT/LDT (bit 2) — Only used when the IDT flag is clear. When set,
the TI flag indicates that the index portion of the error code refers to
a segment or gate descriptor in the LDT; when clear, it indicates that
the index refers to a descriptor in the current GDT.

31 3

Reserved Segment Selector Index

—XxXm| o

—O— |+

Figure 6-6. Error Code

The segment selector index field provides an index into the IDT, GDT, or current LDT
to the segment or gate selector being referenced by the error code. In some cases
the error code is null (that is, all bits in the lower word are clear). A null error code
indicates that the error was not caused by a reference to a specific segment or that a
null segment descriptor was referenced in an operation.

The format of the error code is different for page-fault exceptions (#PF). See the
“Interrupt 14—Page-Fault Exception (#PF)” section in this chapter.

The error code is pushed on the stack as a doubleword or word (depending on the
default interrupt, trap, or task gate size). To keep the stack aligned for doubleword
pushes, the upper half of the error code is reserved. Note that the error code is not
popped when the IRET instruction is executed to return from an exception handler, so
the handler must remove the error code before executing a return.

Error codes are not pushed on the stack for exceptions that are generated externally
(with the INTR or LINT[1:0] pins) or the INT n instruction, even if an error code is
normally produced for those exceptions.

6.14 EXCEPTION AND INTERRUPT HANDLING IN 64-BIT
MODE

In 64-bit mode, interrupt and exception handling is similar to what has been
described for non-64-bit modes. The following are the exceptions:

® Allinterrupt handlers pointed by the IDT are in 64-bit code (this does not apply to
the SMI handler).

® The size of interrupt-stack pushes is fixed at 64 bits; and the processor uses
8-byte, zero extended stores.

6-22 Vol.3

INTERRUPT AND EXCEPTION HANDLING

® The stack pointer (SS:RSP) is pushed unconditionally on interrupts. In legacy
modes, this push is conditional and based on a change in current privilege level
(CPL).

® The new SS is set to NULL if there is a change in CPL.
® IRET behavior changes.

® There is a new interrupt stack-switch mechanism.

® The alignment of interrupt stack frame is different.

6.14.1 64-Bit Mode IDT

Interrupt and trap gates are 16 bytes in length to provide a 64-bit offset for the
instruction pointer (RIP). The 64-bit RIP referenced by interrupt-gate descriptors
allows an interrupt service routine to be located anywhere in the linear-address
space. See Figure 6-7.

Interrupt/Trap Gate

31 0
Reserved 12
31 0
Offset 63..32 8
31 16 1514 1312 11 8 7 54 2 0
Offset 31..16 P E o| TYPE 0 0 Olo|O]| IST |4
L
31 16 15 0
Segment Selector Offset 15..0 0
DPL Descriptor Privilege Level
Offset Offset to procedure entry point
P Segment Present flag
Selector Segment Selector for destination code segment
IST Interrupt Stack Table

Figure 6-7. 64-Bit IDT Gate Descriptors

In 64-bit mode, the IDT index is formed by scaling the interrupt vector by 16. The
first eight bytes (bytes 7:0) of a 64-bit mode interrupt gate are similar but not iden-
tical to legacy 32-bit interrupt gates. The type field (bits 11:8 in bytes 7:4) is
described in Table 3-2. The Interrupt Stack Table (IST) field (bits 4:0 in bytes 7:4) is
used by the stack switching mechanisms described in Section 6.14.5, “Interrupt
Stack Table.” Bytes 11:8 hold the upper 32 bits of the target RIP (interrupt segment
offset) in canonical form. A general-protection exception (#GP) is generated if soft-

Vol.3 6-23

INTERRUPT AND EXCEPTION HANDLING

ware attempts to reference an interrupt gate with a target RIP that is not in canonical
form.

The target code segment referenced by the interrupt gate must be a 64-bit code
segment (CS.L = 1, CS.D = 0). If the target is not a 64-bit code segment, a general-
protection exception (#GP) is generated with the IDT vector number reported as the
error code.

Only 64-bit interrupt and trap gates can be referenced in 1A-32e mode (64-bit mode
and compatibility mode). Legacy 32-bit interrupt or trap gate types (OEH or OFH) are
redefined in 1A-32e mode as 64-bit interrupt and trap gate types. No 32-bit interrupt
or trap gate type exists in 1A-32e mode. If a reference is made to a 16-bit interrupt
or trap gate (O6H or O7H), a general-protection exception (#GP(0)) is generated.

6.14.2 64-Bit Mode Stack Frame

In legacy mode, the size of an IDT entry (16 bits or 32 bits) determines the size of
interrupt-stack-frame pushes. SS:ESP is pushed only on a CPL change. In 64-bit
mode, the size of interrupt stack-frame pushes is fixed at eight bytes. This is because
only 64-bit mode gates can be referenced. 64-bit mode also pushes SS:RSP uncon-
ditionally, rather than only on a CPL change.

Aside from error codes, pushing SS:RSP unconditionally presents operating systems
with a consistent interrupt-stackframe size across all interrupts. Interrupt service-
routine entry points that handle interrupts generated by the INTn instruction or
external INTR# signal can push an additional error code place-holder to maintain
consistency.

In legacy mode, the stack pointer may be at any alignment when an interrupt or
exception causes a stack frame to be pushed. This causes the stack frame and
succeeding pushes done by an interrupt handler to be at arbitrary alignments. In
IA-32e mode, the RSP is aligned to a 16-byte boundary before pushing the stack
frame. The stack frame itself is aligned on a 16-byte boundary when the interrupt
handler is called. The processor can arbitrarily realign the new RSP on interrupts
because the previous (possibly unaligned) RSP is unconditionally saved on the newly
aligned stack. The previous RSP will be automatically restored by a subsequent IRET.

Aligning the stack permits exception and interrupt frames to be aligned on a 16-byte
boundary before interrupts are re-enabled. This allows the stack to be formatted for
optimal storage of 16-byte XMM registers, which enables the interrupt handler to use
faster 16-byte aligned loads and stores (MOVAPS rather than MOVUPS) to save and
restore XMM registers.

Although the RSP alignment is always performed when LMA = 1, it is only of conse-
quence for the kernel-mode case where there is no stack switch or IST used. For a
stack switch or IST, the OS would have presumably put suitably aligned RSP values in
the TSS.

6-24 Vol.3

INTERRUPT AND EXCEPTION HANDLING

6.14.3 IRET in IA-32e Mode

In 1A-32e mode, IRET executes with an 8-byte operand size. There is nothing that
forces this requirement. The stack is formatted in such a way that for actions where
IRET is required, the 8-byte IRET operand size works correctly.

Because interrupt stack-frame pushes are always eight bytes in 1A-32e mode, an
IRET must pop eight byte items off the stack. This is accomplished by preceding the
IRET with a 64-bit operand-size prefix. The size of the pop is determined by the
address size of the instruction. The SS/ESP/RSP size adjustment is determined by
the stack size.

IRET pops SS:RSP unconditionally off the interrupt stack frame only when it is
executed in 64-bit mode. In compatibility mode, IRET pops SS:RSP off the stack only
if there is a CPL change. This allows legacy applications to execute properly in
compatibility mode when using the IRET instruction. 64-bit interrupt service routines
that exit with an IRET unconditionally pop SS:RSP off of the interrupt stack frame,
even if the target code segment is running in 64-bit mode or at CPL = 0. This is
because the original interrupt always pushes SS:RSP.

In 1A-32e mode, IRET is allowed to load a NULL SS under certain conditions. If the
target mode is 64-bit mode and the target CPL <> 3, IRET allows SS to be loaded
with a NULL selector. As part of the stack switch mechanism, an interrupt or excep-
tion sets the new SS to NULL, instead of fetching a new SS selector from the TSS and
loading the corresponding descriptor from the GDT or LDT. The new SS selector is set
to NULL in order to properly handle returns from subsequent nested far transfers. If
the called procedure itself is interrupted, the NULL SS is pushed on the stack frame.
On the subsequent IRET, the NULL SS on the stack acts as a flag to tell the processor
not to load a new SS descriptor.

6.14.4 Stack Switching in IA-32e Mode

The 1A-32 architecture provides a mechanism to automatically switch stack frames in
response to an interrupt. The 64-bit extensions of Intel 64 architecture implement a
modified version of the legacy stack-switching mechanism and an alternative stack-
switching mechanism called the interrupt stack table (IST).

In 1A-32 modes, the legacy IA-32 stack-switch mechanism is unchanged. In 1A-32e
mode, the legacy stack-switch mechanism is modified. When stacks are switched as
part of a 64-bit mode privilege-level change (resulting from an interrupt), a new SS
descriptor is not loaded. 1A-32e mode loads only an inner-level RSP from the TSS.
The new SS selector is forced to NULL and the SS selector’s RPL field is set to the new
CPL. The new SS is set to NULL in order to handle nested far transfers (CALLF, INT,
interrupts and exceptions). The old SS and RSP are saved on the new stack

(Figure 6-8). On the subsequent IRET, the old SS is popped from the stack and
loaded into the SS register.

Vol.3 6-25

INTERRUPT AND EXCEPTION HANDLING

In summary, a stack switch in 1A-32e mode works like the legacy stack switch,
except that a new SS selector is not loaded from the TSS. Instead, the new SS is
forced to NULL.

Legacy Mode Stack Usage with 1A-32e Mode

Handler’s Stack

Privilege-Level Change

Handler’s Stack

+20 SS Ss +40
+16 ESP RSP +32
+12| EFLAGS RFLAGS +24
+8 cS cS +16
+4 EIP RIP +8
0 Error Code -«— Stack Pointer After —>»| Error Code 0

Transfer to Handler

Figure 6-8. IA-32e Mode Stack Usage After Privilege Level Change

6.14.5 Interrupt Stack Table

In 1A-32e mode, a new interrupt stack table (IST) mechanism is available as an alter-
native to the modified legacy stack-switching mechanism described above. This
mechanism unconditionally switches stacks when it is enabled. It can be enabled on
an individual interrupt-vector basis using a field in the IDT entry. This means that
some interrupt vectors can use the modified legacy mechanism and others can use
the IST mechanism.

The IST mechanism is only available in 1A-32e mode. It is part of the 64-bit mode
TSS. The motivation for the IST mechanism is to provide a method for specific inter-
rupts (such as NMI, double-fault, and machine-check) to always execute on a known
good stack. In legacy mode, interrupts can use the task-switch mechanism to set up
a known-good stack by accessing the interrupt service routine through a task gate
located in the IDT. However, the legacy task-switch mechanism is not supported in
1A-32e mode.

The IST mechanism provides up to seven IST pointers in the TSS. The pointers are
referenced by an interrupt-gate descriptor in the interrupt-descriptor table (IDT);
see Figure 6-7. The gate descriptor contains a 3-bit IST index field that provides an
offset into the IST section of the TSS. Using the IST mechanism, the processor loads
the value pointed by an IST pointer into the RSP.

When an interrupt occurs, the new SS selector is forced to NULL and the SS selector’s
RPL field is set to the new CPL. The old SS, RSP, RFLAGS, CS, and RIP are pushed
onto the new stack. Interrupt processing then proceeds as normal. If the IST index is
zero, the modified legacy stack-switching mechanism described above is used.

6-26 Vol.3

INTERRUPT AND EXCEPTION HANDLING

6.15 EXCEPTION AND INTERRUPT REFERENCE

The following sections describe conditions which generate exceptions and interrupts.
They are arranged in the order of vector numbers. The information contained in
these sections are as follows:

Exception Class — Indicates whether the exception class is a fault, trap, or
abort type. Some exceptions can be either a fault or trap type, depending on
when the error condition is detected. (This section is not applicable to interrupts.)

Description — Gives a general description of the purpose of the exception or
interrupt type. It also describes how the processor handles the exception or
interrupt.

Exception Error Code — Indicates whether an error code is saved for the
exception. If one is saved, the contents of the error code are described. (This
section is not applicable to interrupts.)

Saved Instruction Pointer — Describes which instruction the saved (or return)
instruction pointer points to. It also indicates whether the pointer can be used to
restart a faulting instruction.

Program State Change — Describes the effects of the exception or interrupt on
the state of the currently running program or task and the possibilities of
restarting the program or task without loss of continuity.

Vol.3 6-27

INTERRUPT AND EXCEPTION HANDLING

Interrupt 0—Divide Error Exception (#DE)

Exception Class Fault.

Description

Indicates the divisor operand for a DIV or IDIV instruction is O or that the result
cannot be represented in the number of bits specified for the destination operand.

Exception Error Code

None.

Saved Instruction Pointer

Saved contents of CS and EIP registers point to the instruction that generated the
exception.

Program State Change

A program-state change does not accompany the divide error, because the exception
occurs before the faulting instruction is executed.

6-28 Vol.3

INTERRUPT AND EXCEPTION HANDLING

Interrupt 1—Debug Exception (#DB)

Exception Class Trap or Fault. The exception handler can distinguish
between traps or faults by examining the contents of DR6
and the other debug registers.

Description

Indicates that one or more of several debug-exception conditions has been detected.
Whether the exception is a fault or a trap depends on the condition (see Table 6-3).
See Chapter 19, “Debugging and Performance Monitoring,” for detailed information
about the debug exceptions.

Table 6-3. Debug Exception Conditions and Corresponding Exception Classes

Exception Condition Exception Class
Instruction fetch breakpoint Fault
Data read or write breakpoint Trap
I/0 read or write breakpoint Trap

General detect condition (in conjunction with in-circuit emulation) Fault

Single-step Trap

Task-switch Trap

Exception Error Code

None. An exception handler can examine the debug registers to determine which
condition caused the exception.

Saved Instruction Pointer

Fault — Saved contents of CS and EIP registers point to the instruction that gener-
ated the exception.

Trap — Saved contents of CS and EIP registers point to the instruction following the
instruction that generated the exception.

Program State Change

Fault — A program-state change does not accompany the debug exception, because
the exception occurs before the faulting instruction is executed. The program can
resume normal execution upon returning from the debug exception handler.

Trap — A program-state change does accompany the debug exception, because the
instruction or task switch being executed is allowed to complete before the exception
is generated. However, the new state of the program is not corrupted and execution
of the program can continue reliably.

Vol.3 6-29

INTERRUPT AND EXCEPTION HANDLING

Interrupt 2—NMI Interrupt

Exception Class Not applicable.

Description

The nonmaskable interrupt (NMI) is generated externally by asserting the
processor’s NMI pin or through an NMI request set by the 1/0 APIC to the local APIC.
This interrupt causes the NMI interrupt handler to be called.

Exception Error Code
Not applicable.

Saved Instruction Pointer

The processor always takes an NMI interrupt on an instruction boundary. The saved
contents of CS and EIP registers point to the next instruction to be executed at the
point the interrupt is taken. See Section 6.5, “Exception Classifications,” for more
information about when the processor takes NMI interrupts.

Program State Change

The instruction executing when an NMI interrupt is received is completed before the
NMI is generated. A program or task can thus be restarted upon returning from an
interrupt handler without loss of continuity, provided the interrupt handler saves the
state of the processor before handling the interrupt and restores the processor’s
state prior to a return.

6-30 Vol.3

INTERRUPT AND EXCEPTION HANDLING

Interrupt 3—Breakpoint Exception (#BP)

Exception Class Trap.

Description

Indicates that a breakpoint instruction (INT 3) was executed, causing a breakpoint
trap to be generated. Typically, a debugger sets a breakpoint by replacing the first
opcode byte of an instruction with the opcode for the INT 3 instruction. (The INT 3
instruction is one byte long, which makes it easy to replace an opcode in a code
segment in RAM with the breakpoint opcode.) The operating system or a debugging
tool can use a data segment mapped to the same physical address space as the code
segment to place an INT 3 instruction in places where it is desired to call the
debugger.

With the P6 family, Pentium, Intel486, and Intel386 processors, it is more convenient
to set breakpoints with the debug registers. (See Section 19.3.2, “Breakpoint Excep-
tion (#BP)—Interrupt Vector 3,” for information about the breakpoint exception.) If
more breakpoints are needed beyond what the debug registers allow, the INT 3
instruction can be used.

The breakpoint (#BP) exception can also be generated by executing the INT n
instruction with an operand of 3. The action of this instruction (INT 3) is slightly
different than that of the INT 3 instruction (see “INTn/INTO/INT3—Call to Interrupt
Procedure” in Chapter 3 of the Intel® 64 and 1A-32 Architectures Software Devel-
oper’s Manual, Volume 2A).

Exception Error Code

None.

Saved Instruction Pointer

Saved contents of CS and EIP registers point to the instruction following the INT 3
instruction.

Program State Change

Even though the EIP points to the instruction following the breakpoint instruction, the
state of the program is essentially unchanged because the INT 3 instruction does not
affect any register or memory locations. The debugger can thus resume the
suspended program by replacing the INT 3 instruction that caused the breakpoint
with the original opcode and decrementing the saved contents of the EIP register.
Upon returning from the debugger, program execution resumes with the replaced
instruction.

Vol.3 6-31

INTERRUPT AND EXCEPTION HANDLING

Interrupt 4—Overflow Exception (#0F)

Exception Class Trap.

Description

Indicates that an overflow trap occurred when an INTO instruction was executed. The
INTO instruction checks the state of the OF flag in the EFLAGS register. If the OF flag
is set, an overflow trap is generated.

Some arithmetic instructions (such as the ADD and SUB) perform both signed and
unsigned arithmetic. These instructions set the OF and CF flags in the EFLAGS
register to indicate signed overflow and unsigned overflow, respectively. When
performing arithmetic on signed operands, the OF flag can be tested directly or the
INTO instruction can be used. The benefit of using the INTO instruction is that if the
overflow exception is detected, an exception handler can be called automatically to
handle the overflow condition.

Exception Error Code

None.

Saved Instruction Pointer

The saved contents of CS and EIP registers point to the instruction following the INTO
instruction.

Program State Change

Even though the EIP points to the instruction following the INTO instruction, the state
of the program is essentially unchanged because the INTO instruction does not affect
any register or memory locations. The program can thus resume normal execution
upon returning from the overflow exception handler.

6-32 Vol.3

INTERRUPT AND EXCEPTION HANDLING

Interrupt 5—BOUND Range Exceeded Exception (#BR)

Exception Class Fault.

Description

Indicates that a BOUND-range-exceeded fault occurred when a BOUND instruction
was executed. The BOUND instruction checks that a signed array index is within the
upper and lower bounds of an array located in memory. If the array index is not
within the bounds of the array, a BOUND-range-exceeded fault is generated.

Exception Error Code

None.

Saved Instruction Pointer

The saved contents of CS and EIP registers point to the BOUND instruction that
generated the exception.

Program State Change

A program-state change does not accompany the bounds-check fault, because the
operands for the BOUND instruction are not modified. Returning from the BOUND-
range-exceeded exception handler causes the BOUND instruction to be restarted.

Vol.3 6-33

INTERRUPT AND EXCEPTION HANDLING

Interrupt 6—Invalid Opcode Exception (#UD)

Exception Class Fault.

Description

Indicates that the processor did one of the following things:

Attempted to execute an invalid or reserved opcode.

Attempted to execute an instruction with an operand type that is invalid for its
accompanying opcode; for example, the source operand for a LES instruction is
not a memory location.

Attempted to execute an MMX or SSE/SSE2/SSE3 instruction on an Intel 64 or
1A-32 processor that does not support the MMX technology or
SSE/SSE2/SSE3/SSSE3 extensions, respectively. CPUID feature flags MMX (bit
23), SSE (bit 25), SSE2 (bit 26), SSE3 (ECX, bit 0), SSSE3 (ECX, bit 9) indicate
support for these extensions.

Attempted to execute an MMX instruction or SSE/SSE2/SSE3/SSSE3 SIMD
instruction (with the exception of the MOVNTI, PAUSE, PREFETCHh, SFENCE,
LFENCE, MFENCE, CLFLUSH, MONITOR, and MWAIT instructions) when the EM
flag in control register CRO is set (1).

Attempted to execute an SSE/SE2/SSE3/SSSE3 instruction when the OSFXSR bit
in control register CR4 is clear (0). Note this does not include the following
SSE/SSE2/SSE3 instructions: MASKMOVQ, MOVNTQ, MOVNTI, PREFETCHh,
SFENCE, LFENCE, MFENCE, and CLFLUSH; or the 64-bit versions of the PAVGB,
PAVGW, PEXTRW, PINSRW, PMAXSW, PMAXUB, PMINSW, PMINUB, PMOVMSKB,
PMULHUW, PSADBW, PSHUFW, PADDQ, PSUBQ, PALIGNR, PABSB, PABSD,
PABSW, PHADDD, PHADDSW, PHADDW, PHSUBD, PHSUBSW, PHSUBW,
PMADDUBSM, PMULHRSW, PSHUFB, PSIGNB, PSIGND, and PSIGNW.

Attempted to execute an SSE/SSE2/SSE3/SSSE3 instruction on an Intel 64 or
1A-32 processor that caused a SIMD floating-point exception when the
OSXMMEXCPT bit in control register CR4 is clear (0).

Executed a UD2 instruction. Note that even though it is the execution of the UD2
instruction that causes the invalid opcode exception, the saved instruction
pointer will still points at the UD2 instruction.

Detected a LOCK prefix that precedes an instruction that may not be locked or
one that may be locked but the destination operand is not a memory location.

Attempted to execute an LLDT, SLDT, LTR, STR, LSL, LAR, VERR, VERW, or ARPL
instruction while in real-address or virtual-8086 mode.

Attempted to execute the RSM instruction when not in SMM mode.

In Intel 64 and 1A-32 processors that implement out-of-order execution microarchi-
tectures, this exception is not generated until an attempt is made to retire the result
of executing an invalid instruction; that is, decoding and speculatively attempting to
execute an invalid opcode does not generate this exception. Likewise, in the Pentium

6-34 Vol.3

INTERRUPT AND EXCEPTION HANDLING

processor and earlier 1A-32 processors, this exception is not generated as the result
of prefetching and preliminary decoding of an invalid instruction. (See Section 6.5,
“Exception Classifications,” for general rules for taking of interrupts and exceptions.)

The opcodes D6 and F1 are undefined opcodes reserved by the Intel 64 and 1A-32
architectures. These opcodes, even though undefined, do not generate an invalid
opcode exception.

The UD2 instruction is guaranteed to generate an invalid opcode exception.

Exception Error Code

None.

Saved Instruction Pointer

The saved contents of CS and EIP registers point to the instruction that generated the
exception.

Program State Change

A program-state change does not accompany an invalid-opcode fault, because the
invalid instruction is not executed.

Vol.3 6-35

INTERRUPT AND EXCEPTION HANDLING

Interrupt 7—Device Not Available Exception (#NM)

Exception Class Fault.

Description
Indicates one of the following things:

The device-not-available exception is generated by either of three conditions:

® The processor executed an x87 FPU floating-point instruction while the EM flag in
control register CRO was set (1). See the paragraph below for the special case of
the WAIT/FWAIT instruction.

® The processor executed a WAIT/FWAIT instruction while the MP and TS flags of
register CRO were set, regardless of the setting of the EM flag.

® The processor executed an x87 FPU, MMX, or SSE/SSE2/SSE3 instruction (with
the exception of MOVNTI, PAUSE, PREFETCHh, SFENCE, LFENCE, MFENCE, and
CLFLUSH) while the TS flag in control register CRO was set and the EM flag is
clear.

The EM flag is set when the processor does not have an internal x87 FPU floating-
point unit. A device-not-available exception is then generated each time an x87 FPU
floating-point instruction is encountered, allowing an exception handler to call
floating-point instruction emulation routines.

The TS flag indicates that a context switch (task switch) has occurred since the last
time an x87 floating-point, MMX, or SSE/SSE2/SSE3 instruction was executed; but
that the context of the x87 FPU, XMM, and MXCSR registers were not saved. When
the TS flag is set and the EM flag is clear, the processor generates a device-not-avail-
able exception each time an x87 floating-point, MMX, or SSE/SSE2/SSE3 instruction
is encountered (with the exception of the instructions listed above). The exception
handler can then save the context of the x87 FPU, XMM, and MXCSR registers before
it executes the instruction. See Section 2.5, “Control Registers,” for more information
about the TS flag.

The MP flag in control register CRO is used along with the TS flag to determine if WAIT
or FWAIT instructions should generate a device-not-available exception. It extends
the function of the TS flag to the WAIT and FWAIT instructions, giving the exception
handler an opportunity to save the context of the x87 FPU before the WAIT or FWAIT
instruction is executed. The MP flag is provided primarily for use with the Intel 286
and Intel386 DX processors. For programs running on the Pentium 4, Intel Xeon, P6
family, Pentium, or Intel486 DX processors, or the Intel 487 SX coprocessors, the MP
flag should always be set; for programs running on the Intel486 SX processor, the MP
flag should be clear.

Exception Error Code

None.

6-36 Vol.3

INTERRUPT AND EXCEPTION HANDLING

Saved Instruction Pointer

The saved contents of CS and EIP registers point to the floating-point instruction or
the WAIT/FWAIT instruction that generated the exception.

Program State Change

A program-state change does not accompany a device-not-available fault, because
the instruction that generated the exception is not executed.

If the EM flag is set, the exception handler can then read the floating-point instruc-
tion pointed to by the EIP and call the appropriate emulation routine.

If the MP and TS flags are set or the TS flag alone is set, the exception handler can
save the context of the x87 FPU, clear the TS flag, and continue execution at the
interrupted floating-point or WAIT/FWAIT instruction.

Vol.3 6-37

INTERRUPT AND EXCEPTION HANDLING

Interrupt 8—Double Fault Exception (#DF)

Exception Class Abort.

Description

Indicates that the processor detected a second exception while calling an exception
handler for a prior exception. Normally, when the processor detects another excep-
tion while trying to call an exception handler, the two exceptions can be handled seri-
ally. If, however, the processor cannot handle them serially, it signals the double-fault
exception. To determine when two faults need to be signalled as a double fault, the
processor divides the exceptions into three classes: benign exceptions, contributory
exceptions, and page faults (see Table 6-4).

Table 6-4. Interrupt and Exception Classes

Class Vector Number Description
Benign Exceptions and 1 Debug
Interrupts 2 NMI Interrupt
3 Breakpoint
4 Overflow
5 BOUND Range Exceeded
6 Invalid Opcode
7 Device Not Available
9 Coprocessor Segment Overrun
16 Floating-Point Error
17 Alignment Check
18 Machine Check
19 SIMD floating-point
All INT n
All INTR
Contributory Exceptions 0 Divide Error
10 Invalid TSS
11 Segment Not Present
12 Stack Fault
13 General Protection
Page Faults 14 Page Fault

Table 6-5 shows the various combinations of exception classes that cause a double
fault to be generated. A double-fault exception falls in the abort class of exceptions.
The program or task cannot be restarted or resumed. The double-fault handler can
be used to collect diagnostic information about the state of the machine and/or, when
possible, to shut the application and/or system down gracefully or restart the
system.

6-38 Vol.3

INTERRUPT AND EXCEPTION HANDLING

A segment or page fault may be encountered while prefetching instructions;
however, this behavior is outside the domain of Table 6-5. Any further faults gener-
ated while the processor is attempting to transfer control to the appropriate fault
handler could still lead to a double-fault sequence.

Table 6-5. Conditions for Generating a Double Fault

First Exception

Second Exception

Benign

Contributory

Page Fault

Benign

Contributory

Page Fault

Handle Exceptions
Serially

Handle Exceptions
Serially

Handle Exceptions
Serially

Handle Exceptions
Serially

Generate a Double
Fault

Generate a Double
Fault

Handle Exceptions
Serially

Handle Exceptions
Serially

Generate a Double Fault

If another exception occurs while attempting to call the double-fault handler, the
processor enters shutdown mode. This mode is similar to the state following execu-
tion of an HLT instruction. In this mode, the processor stops executing instructions
until an NMI interrupt, SMI interrupt, hardware reset, or INIT# is received. The
processor generates a special bus cycle to indicate that it has entered shutdown
mode. Software designers may need to be aware of the response of hardware when
it goes into shutdown mode. For example, hardware may turn on an indicator light on
the front panel, generate an NMI interrupt to record diagnostic information, invoke
reset initialization, generate an INIT initialization, or generate an SMI. If any events
are pending during shutdown, they will be handled after an wake event from shut-
down is processed (for example, A20M# interrupts).

If a shutdown occurs while the processor is executing an NMI interrupt handler, then
only a hardware reset can restart the processor. Likewise, if the shutdown occurs
while executing in SMM, a hardware reset must be used to restart the processor.

Exception Error Code

Zero. The processor always pushes an error code of O onto the stack of the double-
fault handler.

Saved Instruction Pointer

The saved contents of CS and EIP registers are undefined.

Program State Change

A program-state following a double-fault exception is undefined. The program or task
cannot be resumed or restarted. The only available action of the double-fault excep-
tion handler is to collect all possible context information for use in diagnostics and
then close the application and/or shut down or reset the processor.

Vol.3 6-39

INTERRUPT AND EXCEPTION HANDLING

If the double fault occurs when any portion of the exception handling machine state
is corrupted, the handler cannot be invoked and the processor must be reset.

6-40 Vol.3

INTERRUPT AND EXCEPTION HANDLING

Interrupt 9—Coprocessor Segment Overrun

Exception Class Abort. (Intel reserved; do not use. Recent IA-32 processors
do not generate this exception.)

Description

Indicates that an Intel386 CPU-based systems with an Intel 387 math coprocessor
detected a page or segment violation while transferring the middle portion of an
Intel 387 math coprocessor operand. The P6 family, Pentium, and Intel486 proces-
sors do not generate this exception; instead, this condition is detected with a general
protection exception (#GP), interrupt 13.

Exception Error Code

None.

Saved Instruction Pointer

The saved contents of CS and EIP registers point to the instruction that generated the
exception.

Program State Change

A program-state following a coprocessor segment-overrun exception is unde-
fined. The program or task cannot be resumed or restarted. The only available action
of the exception handler is to save the instruction pointer and reinitialize the x87 FPU
using the FNINIT instruction.

Vol.3 6-41

INTERRUPT AND EXCEPTION HANDLING

Interrupt 10—Invalid TSS Exception (#TS)

Exception Class

Description

Fault.

Indicates that there was an error related to a TSS. Such an error might be detected
during a task switch or during the execution of instructions that use information from
a TSS. Table 6-6 shows the conditions that cause an invalid TSS exception to be

generated.

Table 6-6. Invalid TSS Conditions

Error Code Index

Invalid Condition

TSS segment selector index

The TSS segment limit is less than 67H for 32-bit TSS or less than
2CH for 16-bit TSS.

TSS segment selector index

During an IRET task switch, the Tl flag in the TSS segment selector
indicates the LDT.

TSS segment selector index

During an IRET task switch, the TSS segment selector exceeds
descriptor table limit.

TSS segment selector index

During an IRET task switch, the busy flag in the TSS descriptor
indicates an inactive task.

TSS segment selector index

During an IRET task switch, an attempt to load the backlink limit
faults.

TSS segment selector index

During an IRET task switch, the backlink is a NULL selector.

TSS segment selector index

During an IRET task switch, the backlink points to a descriptor
which is not a busy TSS.

TSS segment selector index

The new TSS descriptor is beyond the GDT limit.

TSS segment selector index

The new TSS descriptor is not writable.

TSS segment selector index

Stores to the old TSS encounter a fault condition.

TSS segment selector index

The old TSS descriptor is not writable for a jump or IRET task
switch.

TSS segment selector index

The new TSS backlink is not writable for a call or exception task
switch.

TSS segment selector index

The new TSS selector is null on an attempt to lock the new TSS.

TSS segment selector index

The new TSS selector has the Tl bit set on an attempt to lock the
new TSS.

TSS segment selector index

The new TSS descriptor is not an available TSS descriptor on an
attempt to lock the new TSS.

LDT segment selector index

LDT or LDT not present.

6-42 Vol.3

INTERRUPT AND EXCEPTION HANDLING

Table 6-6. Invalid TSS Conditions (Contd.)

Error Code Index

Invalid Condition

Stack segment selector
index

The stack segment selector exceeds descriptor table limit.

Stack segment selector
index

The stack segment selector is NULL.

Stack segment selector
index

The stack segment descriptor is a non-data segment.

Stack segment selector
index

The stack segment is not writable.

Stack segment selector
index

The stack segment DPL != CPL.

Stack segment selector
index

The stack segment selector RPL != CPL.

Code segment selector
index

The code segment selector exceeds descriptor table limit.

Code segment selector
index

The code segment selector is NULL.

Code segment selector
index

The code segment descriptor is not a code segment type.

Code segment selector
index

The nonconforming code segment DPL != CPL.

Code segment selector
index

The conforming code segment DPL is greater than CPL.

Data segment selector index

The data segment selector exceeds the descriptor table limit.

Data segment selector index

The data segment descriptor is not a readable code or data type.

Data segment selector index

The data segment descriptor is a nonconforming code type and RPL
> DPL.

Data segment selector index

The data segment descriptor is a nonconforming code type and CPL
> DPL.

TSS segment selector index

The TSS segment selector is NULL for LTR.

TSS segment selector index

The TSS segment selector has the Tl bit set for LTR.

TSS segment selector index

The TSS segment descriptor/upper descriptor is beyond the GDT
segment limit.

TSS segment selector index

The TSS segment descriptor is not an available TSS type.

TSS segment selector index

The TSS segment descriptor is an available 286 TSS type in 1A-32e
mode.

Vol.3 6-43

INTERRUPT AND EXCEPTION HANDLING

Table 6-6. Invalid TSS Conditions (Contd.)
€Error Code Index Invalid Condition

TSS segment selector index | The TSS segment upper descriptor is not the correct type.

TSS segment selector index | The TSS segment descriptor contains a non-canonical base.

TSS segment selector index | There is a limit violation in attempting to load SS selector or ESP
from a TSS on a call or exception which changes privilege levels in
legacy mode.

TSS segment selector index | There is a limit violation or canonical fault in attempting to load RSP
or IST from a TSS on a call or exception which changes privilege
levels in |IA-32e mode.

This exception can generated either in the context of the original task or in the
context of the new task (see Section 7.3, “Task Switching”). Until the processor has
completely verified the presence of the new TSS, the exception is generated in the
context of the original task. Once the existence of the new TSS is verified, the task
switch is considered complete. Any invalid-TSS conditions detected after this point
are handled in the context of the new task. (A task switch is considered complete
when the task register is loaded with the segment selector for the new TSS and, if the
switch is due to a procedure call or interrupt, the previous task link field of the new
TSS references the old TSS.)

The invalid-TSS handler must be a task called using a task gate. Handling this excep-
tion inside the faulting TSS context is not recommended because the processor state
may not be consistent.

Exception Error Code

An error code containing the segment selector index for the segment descriptor that
caused the violation is pushed onto the stack of the exception handler. If the EXT flag
is set, it indicates that the exception was caused by an event external to the currently
running program (for example, if an external interrupt handler using a task gate
attempted a task switch to an invalid TSS).

Saved Instruction Pointer

If the exception condition was detected before the task switch was carried out, the
saved contents of CS and EIP registers point to the instruction that invoked the task
switch. If the exception condition was detected after the task switch was carried out,
the saved contents of CS and EIP registers point to the first instruction of the new
task.

Program State Change

The ability of the invalid-TSS handler to recover from the fault depends on the error
condition than causes the fault. See Section 7.3, “Task Switching,” for more informa-
tion on the task switch process and the possible recovery actions that can be taken.

6-44 Vol.3

INTERRUPT AND EXCEPTION HANDLING

If an invalid TSS exception occurs during a task switch, it can occur before or after
the commit-to-new-task point. If it occurs before the commit point, no program state
change occurs. If it occurs after the commit point (when the segment descriptor
information for the new segment selectors have been loaded in the segment regis-
ters), the processor will load all the state information from the new TSS before it
generates the exception. During a task switch, the processor first loads all the
segment registers with segment selectors from the TSS, then checks their contents
for validity. If an invalid TSS exception is discovered, the remaining segment regis-
ters are loaded but not checked for validity and therefore may not be usable for refer-
encing memory. The invalid TSS handler should not rely on being able to use the
segment selectors found in the CS, SS, DS, ES, FS, and GS registers without causing
another exception. The exception handler should load all segment registers before
trying to resume the new task; otherwise, general-protection exceptions (#GP) may
result later under conditions that make diagnosis more difficult. The Intel recom-
mended way of dealing situation is to use a task for the invalid TSS exception
handler. The task switch back to the interrupted task from the invalid-TSS exception-
handler task will then cause the processor to check the registers as it loads them
from the TSS.

Vol. 3 6-45

INTERRUPT AND EXCEPTION HANDLING

Interrupt 11—Segment Not Present (#NP)

Exception Class Fault.

Description

Indicates that the present flag of a segment or gate descriptor is clear. The processor
can generate this exception during any of the following operations:

® While attempting to load CS, DS, ES, FS, or GS registers. [Detection of a not-
present segment while loading the SS register causes a stack fault exception
(#SS) to be generated.] This situation can occur while performing a task switch.

® While attempting to load the LDTR using an LLDT instruction. Detection of a not-
present LDT while loading the LDTR during a task switch operation causes an
invalid-TSS exception (#TS) to be generated.

® When executing the LTR instruction and the TSS is marked not present.

® While attempting to use a gate descriptor or TSS that is marked segment-not-
present, but is otherwise valid.

An operating system typically uses the segment-not-present exception to implement
virtual memory at the segment level. If the exception handler loads the segment and
returns, the interrupted program or task resumes execution.

A not-present indication in a gate descriptor, however, does not indicate that a
segment is not present (because gates do not correspond to segments). The oper-
ating system may use the present flag for gate descriptors to trigger exceptions of
special significance to the operating system.

A contributory exception or page fault that subsequently referenced a not-present
segment would cause a double fault (#DF) to be generated instead of #NP.

Exception Error Code

An error code containing the segment selector index for the segment descriptor that
caused the violation is pushed onto the stack of the exception handler. If the EXT flag
is set, it indicates that the exception resulted from either:

® an external event (NMI or INTR) that caused an interrupt, which subsequently
referenced a not-present segment

® a benign exception that subsequently referenced a not-present segment

The IDT flag is set if the error code refers to an IDT entry. This occurs when the IDT
entry for an interrupt being serviced references a not-present gate. Such an event
could be generated by an INT instruction or a hardware interrupt.

Saved Instruction Pointer

The saved contents of CS and EIP registers normally point to the instruction that
generated the exception. If the exception occurred while loading segment descrip-

6-46 Vol.3

INTERRUPT AND EXCEPTION HANDLING

tors for the segment selectors in a new TSS, the CS and EIP registers point to the first
instruction in the new task. If the exception occurred while accessing a gate
descriptor, the CS and EIP registers point to the instruction that invoked the access
(for example a CALL instruction that references a call gate).

Program State Change

If the segment-not-present exception occurs as the result of loading a register (CS,
DS, SS, ES, FS, GS, or LDTR), a program-state change does accompany the excep-
tion because the register is not loaded. Recovery from this exception is possible by

simply loading the missing segment into memory and setting the present flag in the
segment descriptor.

If the segment-not-present exception occurs while accessing a gate descriptor, a
program-state change does not accompany the exception. Recovery from this excep-
tion is possible merely by setting the present flag in the gate descriptor.

If a segment-not-present exception occurs during a task switch, it can occur before
or after the commit-to-new-task point (see Section 7.3, “Task Switching”). If it
occurs before the commit point, no program state change occurs. If it occurs after
the commit point, the processor will load all the state information from the new TSS
(without performing any additional limit, present, or type checks) before it generates
the exception. The segment-not-present exception handler should not rely on being
able to use the segment selectors found in the CS, SS, DS, ES, FS, and GS registers
without causing another exception. (See the Program State Change description for
“Interrupt 10—Invalid TSS Exception (#TS)” in this chapter for additional information
on how to handle this situation.)

Vol.3 6-47

INTERRUPT AND EXCEPTION HANDLING

Interrupt 12—Stack Fault Exception (#SS)

Exception Class Fault.

Description
Indicates that one of the following stack related conditions was detected:

® Alimit violation is detected during an operation that refers to the SS register.
Operations that can cause a limit violation include stack-oriented instructions
such as POP, PUSH, CALL, RET, IRET, ENTER, and LEAVE, as well as other memory
references which implicitly or explicitly use the SS register (for example, MOV
AX, [BP+6] or MOV AX, SS:[EAX+6]). The ENTER instruction generates this
exception when there is not enough stack space for allocating local variables.

® A not-present stack segment is detected when attempting to load the SS register.
This violation can occur during the execution of a task switch, a CALL instruction
to a different privilege level, a return to a different privilege level, an LSS
instruction, or a MOV or POP instruction to the SS register.

® A canonical violation is detected in 64-bit mode during an operation that
reference memory using the stack pointer register containing a non-canonical
memory address.

Recovery from this fault is possible by either extending the limit of the stack segment
(in the case of a limit violation) or loading the missing stack segment into memory (in
the case of a not-present violation.

In the case of a canonical violation that was caused intentionally by software,
recovery is possible by loading the correct canonical value into RSP. Otherwise, a
canonical violation of the address in RSP likely reflects some register corruption in
the software.

Exception Error Code

If the exception is caused by a not-present stack segment or by overflow of the new
stack during an inter-privilege-level call, the error code contains a segment selector
for the segment that caused the exception. Here, the exception handler can test the
present flag in the segment descriptor pointed to by the segment selector to deter-
mine the cause of the exception. For a normal limit violation (on a stack segment
already in use) the error code is set to 0.

Saved Instruction Pointer

The saved contents of CS and EIP registers generally point to the instruction that
generated the exception. However, when the exception results from attempting to
load a not-present stack segment during a task switch, the CS and EIP registers point
to the first instruction of the new task.

6-48 Vol.3

INTERRUPT AND EXCEPTION HANDLING

Program State Change

A program-state change does not generally accompany a stack-fault exception,
because the instruction that generated the fault is not executed. Here, the instruction
can be restarted after the exception handler has corrected the stack fault condition.

If a stack fault occurs during a task switch, it occurs after the commit-to-new-task
point (see Section 7.3, “Task Switching”). Here, the processor loads all the state
information from the new TSS (without performing any additional limit, present, or
type checks) before it generates the exception. The stack fault handler should thus
not rely on being able to use the segment selectors found in the CS, SS, DS, ES, FS,
and GS registers without causing another exception. The exception handler should
check all segment registers before trying to resume the new task; otherwise, general
protection faults may result later under conditions that are more difficult to diagnose.
(See the Program State Change description for “Interrupt 10—Invalid TSS Exception
(#TS)” in this chapter for additional information on how to handle this situation.)

Vol.3 6-49

INTERRUPT AND EXCEPTION HANDLING

Interrupt 13—General Protection Exception (#GP)

Exception Class Fault.

Description

Indicates that the processor detected one of a class of protection violations called
“general-protection violations.” The conditions that cause this exception to be gener-
ated comprise all the protection violations that do not cause other exceptions to be
generated (such as, invalid-TSS, segment-not-present, stack-fault, or page-fault
exceptions). The following conditions cause general-protection exceptions to be
generated:

Exceeding the segment limit when accessing the CS, DS, ES, FS, or GS
segments.

Exceeding the segment limit when referencing a descriptor table (except during a
task switch or a stack switch).

Transferring execution to a segment that is not executable.
Writing to a code segment or a read-only data segment.
Reading from an execute-only code segment.

Loading the SS register with a segment selector for a read-only segment (unless
the selector comes from a TSS during a task switch, in which case an invalid-TSS
exception occurs).

Loading the SS, DS, ES, FS, or GS register with a segment selector for a system
segment.

Loading the DS, ES, FS, or GS register with a segment selector for an execute-
only code segment.

Loading the SS register with the segment selector of an executable segment or a
null segment selector.

Loading the CS register with a segment selector for a data segment or a null
segment selector.

Accessing memory using the DS, ES, FS, or GS register when it contains a null
segment selector.

Switching to a busy task during a call or jump to a TSS.

Using a segment selector on a non-IRET task switch that points to a TSS
descriptor in the current LDT. TSS descriptors can only reside in the GDT. This
condition causes a #TS exception during an IRET task switch.

Violating any of the privilege rules described in Chapter 5, “Protection.”

Exceeding the instruction length limit of 15 bytes (this only can occur when
redundant prefixes are placed before an instruction).

Loading the CRO register with a set PG flag (paging enabled) and a clear PE flag
(protection disabled).

6-50 Vol.3

INTERRUPT AND EXCEPTION HANDLING

Loading the CRO register with a set NW flag and a clear CD flag.

Referencing an entry in the IDT (following an interrupt or exception) that is not
an interrupt, trap, or task gate.

Attempting to access an interrupt or exception handler through an interrupt or
trap gate from virtual-8086 mode when the handler’s code segment DPL is
greater than 0.

Attempting to write a 1 into a reserved bit of CR4.

Attempting to execute a privileged instruction when the CPL is not equal to O (see
Section 5.9, “Privileged Instructions,” for a list of privileged instructions).

Writing to a reserved bit in an MSR.
Accessing a gate that contains a null segment selector.

Executing the INT n instruction when the CPL is greater than the DPL of the
referenced interrupt, trap, or task gate.

The segment selector in a call, interrupt, or trap gate does not point to a code
segment.

The segment selector operand in the LLDT instruction is a local type (Tl flag is
set) or does not point to a segment descriptor of the LDT type.

The segment selector operand in the LTR instruction is local or points to a TSS
that is not available.

The target code-segment selector for a call, jump, or return is null.

If the PAE and/or PSE flag in control register CR4 is set and the processor detects
any reserved bits in a page-directory-pointer-table entry set to 1. These bits are
checked during a write to control registers CRO, CR3, or CR4 that causes a
reloading of the page-directory-pointer-table entry.

Attempting to write a non-zero value into the reserved bits of the MXCSR register.

Executing an SSE/SSE2/SSE3 instruction that attempts to access a 128-bit
memory location that is not aligned on a 16-byte boundary when the instruction
requires 16-byte alignment. This condition also applies to the stack segment.

A program or task can be restarted following any general-protection exception. If the
exception occurs while attempting to call an interrupt handler, the interrupted
program can be restartable, but the interrupt may be lost.

Exception Error Code

The processor pushes an error code onto the exception handler's stack. If the fault
condition was detected while loading a segment descriptor, the error code contains a
segment selector to or IDT vector number for the descriptor; otherwise, the error
code is 0. The source of the selector in an error code may be any of the following:

An operand of the instruction.
A selector from a gate which is the operand of the instruction.

Vol.3 6-51

INTERRUPT AND EXCEPTION HANDLING

® A selector from a TSS involved in a task switch.

® IDT vector number.

Saved Instruction Pointer

The saved contents of CS and EIP registers point to the instruction that generated the
exception.

Program State Change

In general, a program-state change does not accompany a general-protection excep-
tion, because the invalid instruction or operation is not executed. An exception
handler can be designed to correct all of the conditions that cause general-protection
exceptions and restart the program or task without any loss of program continuity.

If a general-protection exception occurs during a task switch, it can occur before or
after the commit-to-new-task point (see Section 7.3, “Task Switching”). If it occurs
before the commit point, no program state change occurs. If it occurs after the
commit point, the processor will load all the state information from the new TSS
(without performing any additional limit, present, or type checks) before it generates
the exception. The general-protection exception handler should thus not rely on
being able to use the segment selectors found in the CS, SS, DS, ES, FS, and GS
registers without causing another exception. (See the Program State Change
description for “Interrupt 10—Invalid TSS Exception (#TS)” in this chapter for addi-
tional information on how to handle this situation.)

General Protection Exception in 64-bit Mode

The following conditions cause general-protection exceptions in 64-bit mode:
® If the memory address is in a non-canonical form.

® If a segment descriptor memory address is in non-canonical form.

® If the target offset in a destination operand of a call or jmp is in a non-canonical
form.

® If a code segment or 64-bit call gate overlaps non-canonical space.

® If the code segment descriptor pointed to by the selector in the 64-bit gate
doesn't have the L-bit set and the D-bit clear.

® |f the EFLAGS.NT bit is set in IRET.

® If the stack segment selector of IRET is null when going back to compatibility
mode.

® If the stack segment selector of IRET is null going back to CPL3 and 64-bit mode.

® If anull stack segment selector RPL of IRET is not equal to CPL going back to non-
CPL3 and 64-bit mode.

® If the proposed new code segment descriptor of IRET has both the D-bit and the
L-bit set.

6-52 Vol.3

INTERRUPT AND EXCEPTION HANDLING

If the segment descriptor pointed to by the segment selector in the destination
operand is a code segment and it has both the D-bit and the L-bit set.

If the segment descriptor from a 64-bit call gate is in hon-canonical space.

If the DPL from a 64-bit call-gate is less than the CPL or than the RPL of the 64-bit
call-gate.

If the upper type field of a 64-bit call gate is not 0x0.

If an attempt is made to load a null selector in the SS register in compatibility
mode.

If an attempt is made to load null selector in the SS register in CPL3 and 64-bit
mode.

If an attempt is made to load a null selector in the SS register in non-CPL3 and
64-bit mode where RPL is not equal to CPL.

If an attempt is made to clear CRO.PG while 1A-32e mode is enabled.
If an attempt is made to set a reserved bit in CR3, CR4 or CRS8.

Vol.3 6-53

INTERRUPT AND EXCEPTION HANDLING

Interrupt 14—Page-Fault Exception (#PF)

Exception Class Fault.

Description

Indicates that, with paging enabled (the PG flag in the CRO register is set), the
processor detected one of the following conditions while using the page-translation
mechanism to translate a linear address to a physical address:

The P (present) flag in a page-directory or page-table entry needed for the
address translation is clear, indicating that a page table or the page containing
the operand is not present in physical memory.

The procedure does not have sufficient privilege to access the indicated page
(that is, a procedure running in user mode attempts to access a supervisor-mode
page).

Code running in user mode attempts to write to a read-only page. In the Intel486
and later processors, if the WP flag is set in CRO, the page fault will also be
triggered by code running in supervisor mode that tries to write to a read-only
user-mode page.

An instruction fetch to a linear address that translates to a physical address in a
memory page with the execute-disable bit set (for information about the
execute-disable bit, see Chapter 4, “Paging”).

One or more reserved bits in page directory entry are set to 1. See description
below of RSVD error code flag.

The exception handler can recover from page-not-present conditions and restart the
program or task without any loss of program continuity. It can also restart the
program or task after a privilege violation, but the problem that caused the privilege
violation may be uncorrectable.

See also: Section 4.7, “Page-Fault Exceptions.”

Exception Error Code

Yes (special format). The processor provides the page-fault handler with two items of
information to aid in diagnosing the exception and recovering from it:

An error code on the stack. The error code for a page fault has a format different
from that for other exceptions (see Figure 6-9). The error code tells the
exception handler four things:

— The P flag indicates whether the exception was due to a not-present page (0)
or to either an access rights violation or the use of a reserved bit (1).

— The W/R flag indicates whether the memory access that caused the exception
was a read (0) or write (1).

6-54 Vol.3

INTERRUPT AND EXCEPTION HANDLING

— The U/S flag indicates whether the processor was executing at user mode (1)
or supervisor mode (0) at the time of the exception.

— The RSVD flag indicates that the processor detected 1s in reserved bits of the
page directory, when the PSE or PAE flags in control register CR4 are setto 1.
Note:

®* The PSE flag is only available in recent Intel 64 and 1A-32 processors
including the Pentium 4, Intel Xeon, P6 family, and Pentium processors.

®* The PAE flag is only available on recent Intel 64 and 1A-32 processors
including the Pentium 4, Intel Xeon, and P6 family processors.

* In earlier 1A-32 processor, the bit position of the RSVD flag is reserved.

— The I/D flag indicates whether the exception was caused by an instruction
fetch. This flag is reserved if the processor does not support execute-disable
bit or execute-disable bit feature is not enabled (see Section 4.7).

31 43210
SEIEEN
Reserved e
P 0 The fault was caused by a non-present page.
1 The fault was caused by a page-level protection violation.
WIR 0 The access causing the fault was a read.
1 The access causing the fault was a write.
u/s 0 The access causing the fault originated when the processor

was executing in supervisor mode.

1 The access causing the fault originated when the processor
was executing in user mode.

RSVD O The fault was not caused by reserved bit violation.

1 The fault was caused by reserved bits set to 1 in a page directory.
I/D 0 The fault was not caused by an instruction fetch.

1 The fault was caused by an instruction fetch.

Figure 6-9. Page-Fault Error Code

The contents of the CR2 register. The processor loads the CR2 register with the
32-bit linear address that generated the exception. The page-fault handler can
use this address to locate the corresponding page directory and page-table
entries. Another page fault can potentially occur during execution of the page-
fault handler; the handler should save the contents of the CR2 register before a
second page fault can occur.! If a page fault is caused by a page-level protection
violation, the access flag in the page-directory entry is set when the fault occurs.

Vol. 3 6-55

INTERRUPT AND EXCEPTION HANDLING

The behavior of 1A-32 processors regarding the access flag in the corresponding
page-table entry is model specific and not architecturally defined.

Saved Instruction Pointer

The saved contents of CS and EIP registers generally point to the instruction that
generated the exception. If the page-fault exception occurred during a task switch,
the CS and EIP registers may point to the first instruction of the new task (as
described in the following “Program State Change” section).

Program State Change

A program-state change does not normally accompany a page-fault exception,
because the instruction that causes the exception to be generated is not executed.
After the page-fault exception handler has corrected the violation (for example,
loaded the missing page into memory), execution of the program or task can be
resumed.

When a page-fault exception is generated during a task switch, the program-state
may change, as follows. During a task switch, a page-fault exception can occur
during any of following operations:

® While writing the state of the original task into the TSS of that task.
® While reading the GDT to locate the TSS descriptor of the new task.
® While reading the TSS of the new task.

® While reading segment descriptors associated with segment selectors from the
new task.

® While reading the LDT of the new task to verify the segment registers stored in
the new TSS.

In the last two cases the exception occurs in the context of the new task. The instruc-
tion pointer refers to the first instruction of the new task, not to the instruction which
caused the task switch (or the last instruction to be executed, in the case of an inter-
rupt). If the design of the operating system permits page faults to occur during task-
switches, the page-fault handler should be called through a task gate.

If a page fault occurs during a task switch, the processor will load all the state infor-
mation from the new TSS (without performing any additional limit, present, or type
checks) before it generates the exception. The page-fault handler should thus not
rely on being able to use the segment selectors found in the CS, SS, DS, ES, FS, and
GS registers without causing another exception. (See the Program State Change
description for “Interrupt 10—Invalid TSS Exception (#TS)” in this chapter for addi-
tional information on how to handle this situation.)

1. Processors update CR2 whenever a page fault is detected. If a second page fault occurs while an
earlier page fault is being delivered, the faulting linear address of the second fault will overwrite
the contents of CR2 (replacing the previous address). These updates to CR2 occur even if the
page fault results in a double fault or occurs during the delivery of a double fault.

6-56 Vol.3

INTERRUPT AND EXCEPTION HANDLING

Additional Exception-Handling Information

Special care should be taken to ensure that an exception that occurs during an
explicit stack switch does not cause the processor to use an invalid stack pointer
(SS:ESP). Software written for 16-bit IA-32 processors often use a pair of instruc-
tions to change to a new stack, for example:

MOV SS, AX
MOV SP, StackTop

When executing this code on one of the 32-bit 1A-32 processors, it is possible to get
a page fault, general-protection fault (#GP), or alignment check fault (#AC) after the
segment selector has been loaded into the SS register but before the ESP register
has been loaded. At this point, the two parts of the stack pointer (SS and ESP) are
inconsistent. The new stack segment is being used with the old stack pointer.

The processor does not use the inconsistent stack pointer if the exception handler
switches to a well defined stack (that is, the handler is a task or a more privileged
procedure). However, if the exception handler is called at the same privilege level
and from the same task, the processor will attempt to use the inconsistent stack
pointer.

In systems that handle page-fault, general-protection, or alignment check excep-
tions within the faulting task (with trap or interrupt gates), software executing at the
same privilege level as the exception handler should initialize a new stack by using
the LSS instruction rather than a pair of MOV instructions, as described earlier in this
note. When the exception handler is running at privilege level O (the normal case),
the problem is limited to procedures or tasks that run at privilege level 0, typically
the kernel of the operating system.

Vol.3 6-57

INTERRUPT AND EXCEPTION HANDLING

Interrupt 16—x87 FPU Floating-Point Error (#MF)

Exception Class Fault.

Description

Indicates that the x87 FPU has detected a floating-point error. The NE flag in the
register CRO must be set for an interrupt 16 (floating-point error exception) to be
generated. (See Section 2.5, “Control Registers,” for a detailed description of the NE

flag.)

NOTE

SIMD floating-point exceptions (#XM) are signaled through interrupt
19.

While executing x87 FPU instructions, the x87 FPU detects and reports six types of
floating-point error conditions:

® Invalid operation (#1)
— Stack overflow or underflow (#1S)
— Invalid arithmetic operation (#1A)

® Divide-by-zero (#2)

® Denormalized operand (#D)

® Numeric overflow (#0)

® Numeric underflow (#U)

® Inexact result (precision) (#P)

Each of these error conditions represents an x87 FPU exception type, and for each of
exception type, the x87 FPU provides a flag in the x87 FPU status register and a mask
bit in the x87 FPU control register. If the x87 FPU detects a floating-point error and
the mask bit for the exception type is set, the x87 FPU handles the exception auto-
matically by generating a predefined (default) response and continuing program
execution. The default responses have been designed to provide a reasonable result
for most floating-point applications.

If the mask for the exception is clear and the NE flag in register CRO is set, the x87
FPU does the following:

1. Sets the necessary flag in the FPU status register.

2. Waits until the next “waiting” x87 FPU instruction or WAIT/FWAIT instruction is
encountered in the program’s instruction stream.

3. Generates an internal error signal that cause the processor to generate a
floating-point exception (#MF).

6-58 Vol.3

INTERRUPT AND EXCEPTION HANDLING

Prior to executing a waiting x87 FPU instruction or the WAIT/FWAIT instruction, the
x87 FPU checks for pending x87 FPU floating-point exceptions (as described in step 2
above). Pending x87 FPU floating-point exceptions are ignored for “non-waiting” x87
FPU instructions, which include the FNINIT, FNCLEX, FNSTSW, FNSTSW AX, FNSTCW,
FNSTENV, and FNSAVE instructions. Pending x87 FPU exceptions are also ignored
when executing the state management instructions FXSAVE and FXRSTOR.

All of the x87 FPU floating-point error conditions can be recovered from. The x87 FPU
floating-point-error exception handler can determine the error condition that caused
the exception from the settings of the flags in the x87 FPU status word. See “Soft-
ware Exception Handling” in Chapter 8 of the Intel® 64 and 1A-32 Architectures Soft-
ware Developer’s Manual, Volume 1, for more information on handling x87 FPU
floating-point exceptions.

Exception Error Code

None. The x87 FPU provides its own error information.

Saved Instruction Pointer

The saved contents of CS and EIP registers point to the floating-point or WAIT/FWAIT
instruction that was about to be executed when the floating-point-error exception
was generated. This is not the faulting instruction in which the error condition was
detected. The address of the faulting instruction is contained in the x87 FPU instruc-
tion pointer register. See “x87 FPU Instruction and Operand (Data) Pointers” in
Chapter 8 of the Intel® 64 and IA-32 Architectures Software Developer’s Manual,
Volume 1, for more information about information the FPU saves for use in handling
floating-point-error exceptions.

Program State Change

A program-state change generally accompanies an x87 FPU floating-point exception
because the handling of the exception is delayed until the next waiting x87 FPU
floating-point or WAIT/FWAIT instruction following the faulting instruction. The x87
FPU, however, saves sufficient information about the error condition to allow
recovery from the error and re-execution of the faulting instruction if needed.

In situations where non- x87 FPU floating-point instructions depend on the results of
an x87 FPU floating-point instruction, a WAIT or FWAIT instruction can be inserted in
front of a dependent instruction to force a pending x87 FPU floating-point exception
to be handled before the dependent instruction is executed. See “x87 FPU Exception
Synchronization” in Chapter 8 of the Intel® 64 and 1A-32 Architectures Software
Developer’s Manual, Volume 1, for more information about synchronization of x87
floating-point-error exceptions.

Vol.3 6-59

INTERRUPT AND EXCEPTION HANDLING

Interrupt 17—Alignment Check Exception (#AC)

Exception Class Fault.

Description

Indicates that the processor detected an unaligned memory operand when alignment
checking was enabled. Alignment checks are only carried out in data (or stack)
accesses (not in code fetches or system segment accesses). An example of an align-
ment-check violation is a word stored at an odd byte address, or a doubleword stored
at an address that is not an integer multiple of 4. Table 6-7 lists the alignment
requirements various data types recognized by the processor.

Table 6-7. Alignment Requirements by Data Type

Data Type Address Must Be Divisible By

Word 2
Doubleword

4
Single-precision floating-point (32-bits) 4
Double-precision floating-point (64-bits) 8

8

Double extended-precision floating-point (80-
bits)

Quadword 8
Double quadword 1
Segment Selector 2
32-bit Far Pointer 2
48-bit Far Pointer 4
32-bit Pointer 4
GDTR, IDTR, LDTR, or Task Register Contents 4

FSTENV/FLDENV Save Area 4 or 2, depending on operand size
FSAVE/FRSTOR Save Area 4 or 2, depending on operand size
Bit String 2 or 4 depending on the operand-size attribute.

Note that the alignment check exception (#AC) is generated only for data types that
must be aligned on word, doubleword, and quadword boundaries. A general-protec-
tion exception (#GP) is generated 128-bit data types that are not aligned on a
16-byte boundary.

To enable alignment checking, the following conditions must be true:
® AM flag in CRO register is set.

6-60 Vol.3

INTERRUPT AND EXCEPTION HANDLING

® AC flag in the EFLAGS register is set.
® The CPL is 3 (protected mode or virtual-8086 mode).

Alignment-check exceptions (#AC) are generated only when operating at privilege
level 3 (user mode). Memory references that default to privilege level O, such as
segment descriptor loads, do not generate alignment-check exceptions, even when
caused by a memory reference made from privilege level 3.

Storing the contents of the GDTR, IDTR, LDTR, or task register in memory while at
privilege level 3 can generate an alignment-check exception. Although application
programs do not normally store these registers, the fault can be avoided by aligning
the information stored on an even word-address.

The FXSAVE and FXRSTOR instructions save and restore a 512-byte data structure,
the first byte of which must be aligned on a 16-byte boundary. If the alignment-check
exception (#AC) is enabled when executing these instructions (and CPL is 3), a
misaligned memory operand can cause either an alignment-check exception or a
general-protection exception (#GP) depending on the processor implementation
(see “FXSAVE-Save x87 FPU, MMX, SSE, and SSE2 State” and “FXRSTOR-Restore
x87 FPU, MMX, SSE, and SSE2 State” in Chapter 3 of the Intel® 64 and 1A-32 Archi-
tectures Software Developer’s Manual, Volume 2A).

The MOVUPS and MOVUPD instructions perform 128-bit unaligned loads or stores.
The LDDQU instructions loads 128-bit unaligned data.They do not generate general-
protection exceptions (#GP) when operands are not aligned on a 16-byte boundary.
If alignment checking is enabled, alignment-check exceptions (#AC) may or may not
be generated depending on processor implementation when data addresses are not
aligned on an 8-byte boundary.

FSAVE and FRSTOR instructions can generate unaligned references, which can cause
alignment-check faults. These instructions are rarely needed by application
programs.

Exception Error Code

Yes (always zero).

Saved Instruction Pointer

The saved contents of CS and EIP registers point to the instruction that generated the
exception.

Program State Change

A program-state change does not accompany an alignment-check fault, because the
instruction is not executed.

Vol.3 6-61

INTERRUPT AND EXCEPTION HANDLING

Interrupt 18—Machine-Check Exception (#MC)

Exception Class Abort.

Description

Indicates that the processor detected an internal machine error or a bus error, or that
an external agent detected a bus error. The machine-check exception is model-
specific, available on the Pentium and later generations of processors. The imple-
mentation of the machine-check exception is different between different processor
families, and these implementations may not be compatible with future Intel 64 or
I1A-32 processors. (Use the CPUID instruction to determine whether this feature is
present.)

Bus errors detected by external agents are signaled to the processor on dedicated
pins: the BINIT# and MCERR# pins on the Pentium 4, Intel Xeon, and P6 family
processors and the BUSCHK# pin on the Pentium processor. When one of these pins
is enabled, asserting the pin causes error information to be loaded into machine-
check registers and a machine-check exception is generated.

The machine-check exception and machine-check architecture are discussed in detail
in Chapter 15, “Machine-Check Architecture.” Also, see the data books for the indi-
vidual processors for processor-specific hardware information.

Exception Error Code

None. Error information is provide by machine-check MSRs.

Saved Instruction Pointer

For the Pentium 4 and Intel Xeon processors, the saved contents of extended
machine-check state registers are directly associated with the error that caused the
machine-check exception to be generated (see Section 15.3.1.2,
“lA32_MCG_STATUS MSR,” and Section 15.3.2.6, “IA32_MCG Extended Machine
Check State MSRs”).

For the P6 family processors, if the EIPV flag in the MCG_STATUS MSR is set, the
saved contents of CS and EIP registers are directly associated with the error that
caused the machine-check exception to be generated; if the flag is clear, the saved
instruction pointer may not be associated with the error (see Section 15.3.1.2,
“l1A32_MCG_STATUS MSR”).

For the Pentium processor, contents of the CS and EIP registers may not be associ-
ated with the error.

Program State Change

The machine-check mechanism is enabled by setting the MCE flag in control register
CRA4.

6-62 Vol.3

INTERRUPT AND EXCEPTION HANDLING

For the Pentium 4, Intel Xeon, P6 family, and Pentium processors, a program-state
change always accompanies a machine-check exception, and an abort class excep-
tion is generated. For abort exceptions, information about the exception can be
collected from the machine-check MSRs, but the program cannot generally be
restarted.

If the machine-check mechanism is not enabled (the MCE flag in control register CR4

is clear), a machine-check exception causes the processor to enter the shutdown
state.

Vol.3 6-63

INTERRUPT AND EXCEPTION HANDLING

Interrupt 19—SIMD Floating-Point Exception (#XM)

Exception Class Fault.

Description

Indicates the processor has detected an SSE/SSE2/SSE3 SIMD floating-point excep-
tion. The appropriate status flag in the MXCSR register must be set and the particular
exception unmasked for this interrupt to be generated.

There are six classes of numeric exception conditions that can occur while executing
an SSE/ SSE2/SSE3 SIMD floating-point instruction:

® Invalid operation (#1)

® Divide-by-zero (#2)

¢ Denormal operand (#D)

® Numeric overflow (#0)

® Numeric underflow (#U)

® Inexact result (Precision) (#P)

The invalid operation, divide-by-zero, and denormal-operand exceptions are pre-
computation exceptions; that is, they are detected before any arithmetic operation
occurs. The numeric underflow, numeric overflow, and inexact result exceptions are
post-computational exceptions.

See "SIMD Floating-Point Exceptions" in Chapter 11 of the Intel® 64 and 1A-32 Archi-
tectures Software Developer’s Manual, Volume 1, for additional information about
the SIMD floating-point exception classes.

When a SIMD floating-point exception occurs, the processor does either of the
following things:

® It handles the exception automatically by producing the most reasonable result
and allowing program execution to continue undisturbed. This is the response to
masked exceptions.

® It generates a SIMD floating-point exception, which in turn invokes a software
exception handler. This is the response to unmasked exceptions.

Each of the six SIMD floating-point exception conditions has a corresponding flag bit
and mask bit in the MXCSR register. If an exception is masked (the corresponding
mask bit in the MXCSR register is set), the processor takes an appropriate automatic
default action and continues with the computation. If the exception is unmasked (the
corresponding mask bit is clear) and the operating system supports SIMD floating-
point exceptions (the OSXMMEXCPT flag in control register CR4 is set), a software
exception handler is invoked through a SIMD floating-point exception. If the excep-
tion is unmasked and the OSXMMEXCPT bit is clear (indicating that the operating
system does not support unmasked SIMD floating-point exceptions), an invalid
opcode exception (#UD) is signaled instead of a SIMD floating-point exception.

6-64 Vol.3

INTERRUPT AND EXCEPTION HANDLING

Note that because SIMD floating-point exceptions are precise and occur immediately,
the situation does not arise where an x87 FPU instruction, a WAIT/FWAIT instruction,
or another SSE/SSE2/SSE3 instruction will catch a pending unmasked SIMD floating-
point exception.

In situations where a SIMD floating-point exception occurred while the SIMD
floating-point exceptions were masked (causing the corresponding exception flag to
be set) and the SIMD floating-point exception was subsequently unmasked, then no
exception is generated when the exception is unmasked.

When SSE/SSE2/SSE3 SIMD floating-point instructions operate on packed operands
(made up of two or four sub-operands), multiple SIMD floating-point exception
conditions may be detected. If no more than one exception condition is detected for
one or more sets of sub-operands, the exception flags are set for each exception
condition detected. For example, an invalid exception detected for one sub-operand
will not prevent the reporting of a divide-by-zero exception for another sub-operand.
However, when two or more exceptions conditions are generated for one sub-
operand, only one exception condition is reported, according to the precedences
shown in Table 6-8. This exception precedence sometimes results in the higher
priority exception condition being reported and the lower priority exception condi-
tions being ignored.

Table 6-8. SIMD Floating-Point Exceptions Priority
Priority Description

1 (Highest) Invalid operation exception due to SNaN operand (or any NaN operand for
maximum, minimum, or certain compare and convert operations).

2 QNaN operand’.
Any other invalid operation exception not mentioned above or a divide-by-zero
exception?.

4 Denormal operand exceptionz.

Numeric overflow and underflow exceptions possibly in conjunction with the
inexact result exception?.

6 (Lowest) Inexact result exception.

NOTES:

1. Though a QNaN this is not an exception, the handling of a QNaN operand has precedence over
lower priority exceptions. For example, @ QNaN divided by zero results in a QNaN, not a divide-
by-zero- exception.

2. If masked, then instruction execution continues, and a lower priority exception can occur as
well.

Exception Error Code

None.

Vol. 3 6-65

INTERRUPT AND EXCEPTION HANDLING

Saved Instruction Pointer

The saved contents of CS and EIP registers point to the SSE/SSE2/SSE3 instruction
that was executed when the SIMD floating-point exception was generated. This is the
faulting instruction in which the error condition was detected.

Program State Change

A program-state change does not accompany a SIMD floating-point exception
because the handling of the exception is immediate unless the particular exception is
masked. The available state information is often sufficient to allow recovery from the
error and re-execution of the faulting instruction if needed.

6-66 Vol.3

INTERRUPT AND EXCEPTION HANDLING

Interrupts 32 to 255—User Defined Interrupts

Exception Class Not applicable.

Description

Indicates that the processor did one of the following things:

® Executed an INT n instruction where the instruction operand is one of the vector
numbers from 32 through 255.

® Responded to an interrupt request at the INTR pin or from the local APIC when
the interrupt vector number associated with the request is from 32 through 255.

Exception Error Code
Not applicable.

Saved Instruction Pointer

The saved contents of CS and EIP registers point to the instruction that follows the
INT n instruction or instruction following the instruction on which the INTR signal
occurred.

Program State Change

A program-state change does not accompany interrupts generated by the INT n
instruction or the INTR signal. The INT n instruction generates the interrupt within
the instruction stream. When the processor receives an INTR signal, it commits all
state changes for all previous instructions before it responds to the interrupt; so,
program execution can resume upon returning from the interrupt handler.

Vol.3 6-67

INTERRUPT AND EXCEPTION HANDLING

6-68 Vol.3

CHAPTER 7
TASK MANAGEMENT

This chapter describes the 1A-32 architecture’s task management facilities. These
facilities are only available when the processor is running in protected mode.

This chapter focuses on 32-bit tasks and the 32-bit TSS structure. For information on
16-bit tasks and the 16-bit TSS structure, see Section 7.6, “16-Bit Task-State
Segment (TSS).” For information specific to task management in 64-bit mode, see
Section 7.7, “Task Management in 64-bit Mode.”

7.1 TASK MANAGEMENT OVERVIEW

A task is a unit of work that a processor can dispatch, execute, and suspend. It can
be used to execute a program, a task or process, an operating-system service utility,
an interrupt or exception handler, or a kernel or executive utility.

The 1A-32 architecture provides a mechanism for saving the state of a task, for
dispatching tasks for execution, and for switching from one task to another. When
operating in protected mode, all processor execution takes place from within a task.
Even simple systems must define at least one task. More complex systems can use
the processor’s task management facilities to support multitasking applications.

7.1.1 Task Structure

A task is made up of two parts: a task execution space and a task-state segment
(TSS). The task execution space consists of a code segment, a stack segment, and
one or more data segments (see Figure 7-1). If an operating system or executive
uses the processor’s privilege-level protection mechanism, the task execution space
also provides a separate stack for each privilege level.

The TSS specifies the segments that make up the task execution space and provides
a storage place for task state information. In multitasking systems, the TSS also
provides a mechanism for linking tasks.

A task is identified by the segment selector for its TSS. When a task is loaded into the
processor for execution, the segment selector, base address, limit, and segment
descriptor attributes for the TSS are loaded into the task register (see Section 2.4.4,
“Task Register (TR)").

If paging is implemented for the task, the base address of the page directory used by
the task is loaded into control register CR3.

Vol.3 7-1

TASK MANAGEMENT

Code
4,_; Segment
Task-State Data
Segment [] L »| Segment
(TSS) Stack
« | Segment
| (Current Priv.
Level)
Stack Seg.
»| Priv. Level 0
Stack Seg.
_:| > Priv. Level 1
Task Register Stack
— = pSeament
CR3 (Priv. Level 2)

Figure 7-1. Structure of a Task

7.1.2 Task State

The following items define the state of the currently executing task:

The task’s current execution space, defined by the segment selectors in the
segment registers (CS, DS, SS, ES, FS, and GS).

The state of the general-purpose registers.

The state of the EFLAGS register.

The state of the EIP register.

The state of control register CR3.

The state of the task register.

The state of the LDTR register.

The 1I/0 map base address and 1/0 map (contained in the TSS).

Stack pointers to the privilege 0, 1, and 2 stacks (contained in the TSS).
Link to previously executed task (contained in the TSS).

Prior to dispatching a task, all of these items are contained in the task’s TSS, except
the state of the task register. Also, the complete contents of the LDTR register are not
contained in the TSS, only the segment selector for the LDT.

7-2 Vol.3

TASK MANAGEMENT

7.1.3 Executing a Task

Software or the processor can dispatch a task for execution in one of the following
ways:

® A explicit call to a task with the CALL instruction.

® A explicit jump to a task with the JMP instruction.

® An implicit call (by the processor) to an interrupt-handler task.
¢ An implicit call to an exception-handler task.

® Areturn (initiated with an IRET instruction) when the NT flag in the EFLAGS
register is set.

All of these methods for dispatching a task identify the task to be dispatched with a
segment selector that points to a task gate or the TSS for the task. When dispatching
a task with a CALL or JMP instruction, the selector in the instruction may select the
TSS directly or a task gate that holds the selector for the TSS. When dispatching a
task to handle an interrupt or exception, the IDT entry for the interrupt or exception
must contain a task gate that holds the selector for the interrupt- or exception-
handler TSS.

When a task is dispatched for execution, a task switch occurs between the currently
running task and the dispatched task. During a task switch, the execution environ-
ment of the currently executing task (called the task’s state or context) is saved in
its TSS and execution of the task is suspended. The context for the dispatched task is
then loaded into the processor and execution of that task begins with the instruction
pointed to by the newly loaded EIP register. If the task has not been run since the
system was last initialized, the EIP will point to the first instruction of the task’s code;
otherwise, it will point to the next instruction after the last instruction that the task
executed when it was last active.

If the currently executing task (the calling task) called the task being dispatched (the
called task), the TSS segment selector for the calling task is stored in the TSS of the
called task to provide a link back to the calling task.

For all IA-32 processors, tasks are not recursive. A task cannot call or jump to itself.

Interrupts and exceptions can be handled with a task switch to a handler task. Here,
the processor performs a task switch to handle the interrupt or exception and auto-
matically switches back to the interrupted task upon returning from the interrupt-
handler task or exception-handler task. This mechanism can also handle interrupts
that occur during interrupt tasks.

As part of a task switch, the processor can also switch to another LDT, allowing each
task to have a different logical-to-physical address mapping for LDT-based segments.
The page-directory base register (CR3) also is reloaded on a task switch, allowing
each task to have its own set of page tables. These protection facilities help isolate
tasks and prevent them from interfering with one another.

If protection mechanisms are not used, the processor provides no protection
between tasks. This is true even with operating systems that use multiple privilege
levels for protection. A task running at privilege level 3 that uses the same LDT and

Vol.3 7-3

TASK MANAGEMENT

page tables as other privilege-level-3 tasks can access code and corrupt data and the
stack of other tasks.

Use of task management facilities for handling multitasking applications is optional.
Multitasking can be handled in software, with each software defined task executed in
the context of a single 1A-32 architecture task.

7.2 TASK MANAGEMENT DATA STRUCTURES

The processor defines five data structures for handling task-related activities:
® Task-state segment (TSS).

® Task-gate descriptor.

® TSS descriptor.

® Task register.

® NT flag in the EFLAGS register.

When operating in protected mode, a TSS and TSS descriptor must be created for at
least one task, and the segment selector for the TSS must be loaded into the task
register (using the LTR instruction).

7.2.1 Task-State Segment (TSS)

The processor state information needed to restore a task is saved in a system
segment called the task-state segment (TSS). Figure 7-2 shows the format of a TSS
for tasks designed for 32-bit CPUs. The fields of a TSS are divided into two main cate-
gories: dynamic fields and static fields.

For information about 16-bit Intel 286 processor task structures, see Section 7.6,
“16-Bit Task-State Segment (TSS).” For information about 64-bit mode task struc-
tures, see Section 7.7, “Task Management in 64-bit Mode.”

7-4 Vol.3

TASK MANAGEMENT

31 15
I/0 Map Base Address Reserved T| 100
Reserved LDT Segment Selector 96
Reserved GS 92
Reserved FS 88
Reserved DS 84
Reserved ss 80
Reserved cs 76
Reserved ES 72
EDI 68
ESI 64
EBP 60
ESP 56
EBX 52
EDX 48
ECX 44
EAX 40
EFLAGS 36
EIP 32
CR3 (PDBR) 28
Reserved ‘ SS2 24
ESP2 20
Reserved ‘ SS1 16
ESP1 12
Reserved ‘ SSo0
ESPO
Reserved ‘ Previous Task Link

l:l Reserved bits. Set to 0.

Figure 7-2. 32-Bit Task-State Segment (TSS)

The processor updates dynamic fields when a task is suspended during a task switch.
The following are dynamic fields:

® General-purpose register fields — State of the EAX, ECX, EDX, EBX, ESP, EBP,
ESI, and EDI registers prior to the task switch.

¢ Segment selector fields — Segment selectors stored in the ES, CS, SS, DS, FS,
and GS registers prior to the task switch.

® EFLAGS register field — State of the EFAGS register prior to the task switch.

Vol.3 7-5

TASK MANAGEMENT

EIP (instruction pointer) field — State of the EIP register prior to the task
switch.

Previous task link field — Contains the segment selector for the TSS of the
previous task (updated on a task switch that was initiated by a call, interrupt, or
exception). This field (which is sometimes called the back link field) permits a
task switch back to the previous task by using the IRET instruction.

The processor reads the static fields, but does not normally change them. These
fields are set up when a task is created. The following are static fields:

LDT segment selector field — Contains the segment selector for the task's
LDT.

CR3 control register field — Contains the base physical address of the page
directory to be used by the task. Control register CR3 is also known as the page-
directory base register (PDBR).

Privilege level-0, -1, and -2 stack pointer fields — These stack pointers
consist of a logical address made up of the segment selector for the stack
segment (SSO, SS1, and SS2) and an offset into the stack (ESPO, ESP1, and
ESP2). Note that the values in these fields are static for a particular task;
whereas, the SS and ESP values will change if stack switching occurs within the
task.

T (debug trap) flag (byte 100, bit O) — When set, the T flag causes the
processor to raise a debug exception when a task switch to this task occurs (see
Section 19.3.1.5, “Task-Switch Exception Condition™).

1/0 map base address field — Contains a 16-bit offset from the base of the
TSS to the 1/0 permission bit map and interrupt redirection bitmap. When
present, these maps are stored in the TSS at higher addresses. The 1/0 map base
address points to the beginning of the 1/0 permission bit map and the end of the
interrupt redirection bit map. See Chapter 13, “Input/Output,” in the Intel® 64
and 1A-32 Architectures Software Developer’s Manual, Volume 1, for more
information about the 1/0 permission bit map. See Section 16.3, “Interrupt and
Exception Handling in Virtual-8086 Mode,” for a detailed description of the
interrupt redirection bit map.

If paging is used:

Avoid placing a page boundary in the part of the TSS that the processor reads
during a task switch (the first 104 bytes). The processor may not correctly
perform address translations if a boundary occurs in this area. During a task
switch, the processor reads and writes into the first 104 bytes of each TSS (using
contiguous physical addresses beginning with the physical address of the first
byte of the TSS). So, after TSS access begins, if part of the 104 bytes is not
physically contiguous, the processor will access incorrect information without
generating a page-fault exception.

Pages corresponding to the previous task’s TSS, the current task’s TSS, and the
descriptor table entries for each all should be marked as read/write.

7-6 Vol.3

TASK MANAGEMENT

® Task switches are carried out faster if the pages containing these structures are
present in memory before the task switch is initiated.

7.2.2 TSS Descriptor

The TSS, like all other segments, is defined by a segment descriptor. Figure 7-3
shows the format of a TSS descriptor. TSS descriptors may only be placed in the GDT;
they cannot be placed in an LDT or the IDT.

An attempt to access a TSS using a segment selector with its Tl flag set (which indi-
cates the current LDT) causes a general-protection exception (#GP) to be generated
during CALLs and JMPs; it causes an invalid TSS exception (#TS) during IRETs. A
general-protection exception is also generated if an attempt is made to load a
segment selector for a TSS into a segment register.

The busy flag (B) in the type field indicates whether the task is busy. A busy task is
currently running or suspended. A type field with a value of 1001B indicates an inac-
tive task; a value of 1011B indicates a busy task. Tasks are not recursive. The
processor uses the busy flag to detect an attempt to call a task whose execution has
been interrupted. To insure that there is only one busy flag is associated with a task,
each TSS should have only one TSS descriptor that points to it.

TSS Descriptor

31 242322212019 1615 14 1312 11 8 7 0
A imi D Type
Base 31:24 Glo|o|v fs‘;nll(t; Pl P P Base 23:16 4
L : L |o 1| 0 ‘ B| 1
31 1615 0
Base Address 15:00 Segment Limit 15:00 0

AVL Available for use by system software
B Busy flag

BASE Segment Base Address

DPL Descriptor Privilege Level

G Granularity
LIMIT Segment Limit
P Segment Present

TYPE Segment Type

Figure 7-3. TSS Descriptor

The base, limit, and DPL fields and the granularity and present flags have functions
similar to their use in data-segment descriptors (see Section 3.4.5, “Segment

Descriptors™). When the G flag is O in a TSS descriptor for a 32-bit TSS, the limit field
must have a value equal to or greater than 67H, one byte less than the minimum size

Vol.3 7-7

TASK MANAGEMENT

of a TSS. Attempting to switch to a task whose TSS descriptor has a limit less than
67H generates an invalid-TSS exception (#TS). A larger limit is required if an 1/0
permission bit map is included or if the operating system stores additional data. The
processor does not check for a limit greater than 67H on a task switch; however, it
does check when accessing the 1/0 permission bit map or interrupt redirection bit
map.

Any program or procedure with access to a TSS descriptor (that is, whose CPL is
numerically equal to or less than the DPL of the TSS descriptor) can dispatch the task
with a call or a jump.

In most systems, the DPLs of TSS descriptors are set to values less than 3, so that
only privileged software can perform task switching. However, in multitasking appli-
cations, DPLs for some TSS descriptors may be set to 3 to allow task switching at the
application (or user) privilege level.

7.2.3 TSS Descriptor in 64-bit mode

In 64-bit mode, task switching is not supported, but TSS descriptors still exist. The
format of a 64-bit TSS is described in Section 7.7.

In 64-bit mode, the TSS descriptor is expanded to 16 bytes (see Figure 7-4). This
expansion also applies to an LDT descriptor in 64-bit mode. Table 3-2 provides the
encoding information for the segment type field.

7-8 Vol.3

TASK MANAGEMENT

TSS (or LDT) Descriptor

31 1312 8 7 0
Reserved 0 Reserved 12
31 0
Base Address 63:32 8
31 242322 212019 16151413 12 11 8 7 0
A imi D Type
Base 31:24 Glofo|y| Hmit e p » Base 23:16 4
19:16
L L |o
31 16 15 0
Base Address 15:00 Segment Limit 15:00 0

AVL Available for use by system software
B Busy flag

BASE Segment Base Address

DPL Descriptor Privilege Level

G Granularity
LIMIT Segment Limit
P Segment Present

TYPE Segment Type

Figure 7-4. Format of TSS and LDT Descriptors in 64-bit Mode

7.2.4 Task Register

The task register holds the 16-bit segment selector and the entire segment
descriptor (32-bit base address, 16-bit segment limit, and descriptor attributes) for
the TSS of the current task (see Figure 2-5). This information is copied from the TSS
descriptor in the GDT for the current task. Figure 7-5 shows the path the processor
uses to access the TSS (using the information in the task register).

The task register has a visible part (that can be read and changed by software) and
an invisible part (maintained by the processor and is inaccessible by software). The
segment selector in the visible portion points to a TSS descriptor in the GDT. The
processor uses the invisible portion of the task register to cache the segment
descriptor for the TSS. Caching these values in a register makes execution of the task
more efficient. The LTR (load task register) and STR (store task register) instructions
load and read the visible portion of the task register:

Vol.3 7-9

TASK MANAGEMENT

The LTR instruction loads a segment selector (source operand) into the task register
that points to a TSS descriptor in the GDT. It then loads the invisible portion of the
task register with information from the TSS descriptor. LTR is a privileged instruction
that may be executed only when the CPL is O. It’s used during system initialization to
put an initial value in the task register. Afterwards, the contents of the task register
are changed implicitly when a task switch occurs.

The STR (store task register) instruction stores the visible portion of the task register
in a general-purpose register or memory. This instruction can be executed by code
running at any privilege level in order to identify the currently running task. However,
it is normally used only by operating system software.

On power up or reset of the processor, segment selector and base address are set to
the default value of O; the limit is set to FFFFH.

TSS
« @

L
>

A

Visible Part Invisible Part

Task —
Regigfer Selector Base Address Segment Limit

A

GDT

> TSS Descriptor

0

Figure 7-5. Task Register

7-10 Vol.3

TASK MANAGEMENT

7.2.5 Task-Gate Descriptor

A task-gate descriptor provides an indirect, protected reference to a task (see
Figure 7-6). It can be placed in the GDT, an LDT, or the IDT. The TSS segment
selector field in a task-gate descriptor points to a TSS descriptor in the GDT. The RPL
in this segment selector is not used.

The DPL of a task-gate descriptor controls access to the TSS descriptor during a task
switch. When a program or procedure makes a call or jump to a task through a task
gate, the CPL and the RPL field of the gate selector pointing to the task gate must be
less than or equal to the DPL of the task-gate descriptor. Note that when a task gate
is used, the DPL of the destination TSS descriptor is not used.

31 1615141312 11 8 7 0
D Type
Reserved Pl p P Reserved 4
L |o|o ‘ 1 |o ‘ 1
31 16 15 0
TSS Segment Selector Reserved 0

DPL Descriptor Privilege Level
P Segment Present
TYPE Segment Type

Figure 7-6. Task-Gate Descriptor

A task can be accessed either through a task-gate descriptor or a TSS descriptor.
Both of these structures satisfy the following needs:

Need for a task to have only one busy flag — Because the busy flag for a task
is stored in the TSS descriptor, each task should have only one TSS descriptor.
There may, however, be several task gates that reference the same TSS
descriptor.

Need to provide selective access to tasks — Task gates fill this need, because
they can reside in an LDT and can have a DPL that is different from the TSS
descriptor's DPL. A program or procedure that does not have sufficient privilege
to access the TSS descriptor for a task in the GDT (which usually has a DPL of 0)
may be allowed access to the task through a task gate with a higher DPL. Task
gates give the operating system greater latitude for limiting access to specific
tasks.

Need for an interrupt or exception to be handled by an independent task
— Task gates may also reside in the IDT, which allows interrupts and exceptions

Vol.3 7-11

TASK MANAGEMENT

to be handled by handler tasks. When an interrupt or exception vector points to
a task gate, the processor switches to the specified task.

Figure 7-7 illustrates how a task gate in an LDT, a task gate in the GDT, and a task
gate in the IDT can all point to the same task.

LDT GDT TSS
Task Gate
Task Gate ; TSS Descriptor

Y

IDT

Task Gate

Figure 7-7. Task Gates Referencing the Same Task

7.3 TASK SWITCHING

The processor transfers execution to another task in one of four cases:

® The current program, task, or procedure executes a JMP or CALL instruction to a
TSS descriptor in the GDT.

® The current program, task, or procedure executes a JMP or CALL instruction to a
task-gate descriptor in the GDT or the current LDT.

7-12 Vol.3

TASK MANAGEMENT

® An interrupt or exception vector points to a task-gate descriptor in the IDT.
® The current task executes an IRET when the NT flag in the EFLAGS register is set.

JMP, CALL, and IRET instructions, as well as interrupts and exceptions, are all mech-
anisms for redirecting a program. The referencing of a TSS descriptor or a task gate
(when calling or jumping to a task) or the state of the NT flag (when executing an
IRET instruction) determines whether a task switch occurs.

The processor performs the following operations when switching to a new task:

1. Obtains the TSS segment selector for the new task as the operand of the JMP or
CALL instruction, from a task gate, or from the previous task link field (for a task
switch initiated with an IRET instruction).

2. Checks that the current (old) task is allowed to switch to the new task. Data-
access privilege rules apply to JMP and CALL instructions. The CPL of the current
(old) task and the RPL of the segment selector for the new task must be less than
or equal to the DPL of the TSS descriptor or task gate being referenced.
Exceptions, interrupts (except for interrupts generated by the INT n instruction),
and the IRET instruction are permitted to switch tasks regardless of the DPL of
the destination task-gate or TSS descriptor. For interrupts generated by the INT n
instruction, the DPL is checked.

3. Checks that the TSS descriptor of the new task is marked present and has a valid
limit (greater than or equal to 67H).

4. Checks that the new task is available (call, jump, exception, or interrupt) or busy
(IRET return).

5. Checks that the current (old) TSS, new TSS, and all segment descriptors used in
the task switch are paged into system memory.

6. If the task switch was initiated with a JMP or IRET instruction, the processor
clears the busy (B) flag in the current (old) task’s TSS descriptor; if initiated with
a CALL instruction, an exception, or an interrupt: the busy (B) flag is left set.
(See Table 7-2.)

7. If the task switch was initiated with an IRET instruction, the processor clears the
NT flag in a temporarily saved image of the EFLAGS register; if initiated with a
CALL or JMP instruction, an exception, or an interrupt, the NT flag is left
unchanged in the saved EFLAGS image.

8. Saves the state of the current (old) task in the current task’s TSS. The processor
finds the base address of the current TSS in the task register and then copies the
states of the following registers into the current TSS: all the general-purpose
registers, segment selectors from the segment registers, the temporarily saved
image of the EFLAGS register, and the instruction pointer register (EIP).

9. If the task switch was initiated with a CALL instruction, an exception, or an
interrupt, the processor will set the NT flag in the EFLAGS loaded from the new
task. If initiated with an IRET instruction or JMP instruction, the NT flag will reflect
the state of NT in the EFLAGS loaded from the new task (see Table 7-2).

Vol.3 7-13

TASK MANAGEMENT

10. If the task switch was initiated with a CALL instruction, JMP instruction, an
exception, or an interrupt, the processor sets the busy (B) flag in the new task’s
TSS descriptor; if initiated with an IRET instruction, the busy (B) flag is left set.

11. Loads the task register with the segment selector and descriptor for the new
task’s TSS.

12. The TSS state is loaded into the processor. This includes the LDTR register, the
PDBR (control register CR3), the EFLAGS registers, the EIP register, the general-
purpose registers, and the segment selectors. Note that a fault during the load of
this state may corrupt architectural state.

13. The descriptors associated with the segment selectors are loaded and qualified.
Any errors associated with this loading and qualification occur in the context of
the new task.

NOTES

If all checks and saves have been carried out successfully, the
processor commits to the task switch. If an unrecoverable error
occurs in steps 1 through 11, the processor does not complete the
task switch and insures that the processor is returned to its state
prior to the execution of the instruction that initiated the task switch.

If an unrecoverable error occurs in step 12, architectural state may
be corrupted, but an attempt will be made to handle the error in the
prior execution environment. If an unrecoverable error occurs after
the commit point (in step 13), the processor completes the task
switch (without performing additional access and segment avail-
ability checks) and generates the appropriate exception prior to
beginning execution of the new task.

If exceptions occur after the commit point, the exception handler
must finish the task switch itself before allowing the processor to
begin executing the new task. See Chapter 6, “Interrupt 10—Invalid
TSS Exception (#TS),” for more information about the affect of
exceptions on a task when they occur after the commit point of a task
switch.

14. Begins executing the new task. (To an exception handler, the first instruction of
the new task appears not to have been executed.)

The state of the currently executing task is always saved when a successful task
switch occurs. If the task is resumed, execution starts with the instruction pointed to
by the saved EIP value, and the registers are restored to the values they held when
the task was suspended.

When switching tasks, the privilege level of the new task does not inherit its privilege
level from the suspended task. The new task begins executing at the privilege level
specified in the CPL field of the CS register, which is loaded from the TSS. Because

tasks are isolated by their separate address spaces and TSSs and because privilege

7-14 Vol.3

TASK MANAGEMENT

rules control access to a TSS, software does not need to perform explicit privilege
checks on a task switch.

Table 7-1 shows the exception conditions that the processor checks for when
switching tasks. It also shows the exception that is generated for each check if an
error is detected and the segment that the error code references. (The order of the
checks in the table is the order used in the P6 family processors. The exact order is
model specific and may be different for other 1A-32 processors.) Exception handlers
designed to handle these exceptions may be subject to recursive calls if they attempt
to reload the segment selector that generated the exception. The cause of the excep-
tion (or the first of multiple causes) should be fixed before reloading the selector.

Table 7-1. Exception Conditions Checked During a Task Switch

Condition Checked Exception’ Error Code
Reference?

Segment selector for a TSS descriptor references #GP New Task’s TSS
the GDT and is within the limits of the table. #TS (for IRET)
TSS descriptor is present in memory. #NP New Task’s TSS
TSS descriptor is not busy (for task switch initiated | #GP (for JMP, CALL, Task’s back-link TSS
by a call, interrupt, or exception). INT)
TSS descriptor is not busy (for task switch initiated | #TS (for IRET) New Task’s TSS
by an IRET instruction).
TSS segment limit greater than or equal to 108 (for | #TS New Task’s TSS

32-bit TSS) or 44 (for 16-bit TSS).

Registers are loaded from the values in the TSS.

LDT segment selector of new task is valid 3. #TS New Task's LDT

Code segment DPL matches segment selector RPL. | #TS New Code Segment
SS segment selector is valid 2. #TS New Stack Segment
Stack segment is present in memory. #SS New Stack Segment
Stack segment DPL matches CPL. #TS New stack segment
LDT of new task is present in memory. #TS New Task's LDT

CS segment selector is valid 3. #TS New Code Segment
Code segment is present in memory. #NP New Code Segment
Stack segment DPL matches selector RPL. #TS New Stack Segment
DS, ES, FS, and GS segment selectors are valid 3. #TS New Data Segment
DS, €S, FS, and GS segments are readable. #TS New Data Segment

Vol.3 7-15

TASK MANAGEMENT

Table 7-1. Exception Conditions Checked During a Task Switch (Contd.)

Condition Checked Exception’ Error Code
Reference?
DS, €S, FS, and GS segments are present in memory. | #NP New Data Segment
DS, €S, FS, and GS segment DPL greater than or #TS New Data Segment
equal to CPL (unless these are
conforming segments).

NOTES:

1. #NP is segment-not-present exception, #GP is general-protection exception, #TS is invalid-TSS
exception, and #SS is stack-fault exception.

2. The error code contains an index to the segment descriptor referenced in this column.

3. A segment selector is valid if it is in a compatible type of table (GDT or LDT), occupies an address
within the table’s segment limit, and refers to a compatible type of descriptor (for example, a seg-
ment selector in the CS register only is valid when it points to a code-segment descriptor).

The TS (task switched) flag in the control register CRO is set every time a task switch
occurs. System software uses the TS flag to coordinate the actions of floating-point
unit when generating floating-point exceptions with the rest of the processor. The TS
flag indicates that the context of the floating-point unit may be different from that of
the current task. See Section 2.5, “Control Registers”, for a detailed description of
the function and use of the TS flag.

7.4 TASK LINKING

The previous task link field of the TSS (sometimes called the “backlink™) and the NT
flag in the EFLAGS register are used to return execution to the previous task.
EFLAGS.NT = 1 indicates that the currently executing task is nested within the
execution of another task.

When a CALL instruction, an interrupt, or an exception causes a task switch: the
processor copies the segment selector for the current TSS to the previous task link
field of the TSS for the new task; it then sets EFLAGS.NT = 1. If software uses an
IRET instruction to suspend the new task, the processor checks for EFLAGS.NT = 1;
it then uses the value in the previous task link field to return to the previous task. See
Figures 7-8.

When a JMP instruction causes a task switch, the new task is not nested. The
previous task link field is not used and EFLAGS.NT = 0. Use a JMP instruction to
dispatch a new task when nesting is not desired.

7-16 Vol.3

TASK MANAGEMENT

Top Level Nested More Deeply Currently Executing
Task Task Nested Task Task
TSS TSS TSS EFLAGS
NT=1
NT=0 NT=1 NT=1
Previous Previous Previous
Task Link Task Link Task Link Task Register

Figure 7-8. Nested Tasks

Table 7-2 shows the busy flag (in the TSS segment descriptor), the NT flag, the
previous task link field, and TS flag (in control register CRO) during a task switch.

The NT flag may be modified by software executing at any privilege level. It is
possible for a program to set the NT flag and execute an IRET instruction. This might
randomly invoke the task specified in the previous link field of the current task's TSS.
To keep such spurious task switches from succeeding, the operating system should
initialize the previous task link field in every TSS that it creates to O.

Table 7-2. Effect of a Task Switch on Busy Flag, NT Flag,
Previous Task Link Field, and TS Flag

Flag or Field Effect of JMP Effect of CALL Effect of IRET
instruction Instruction or Instruction
Interrupt
Busy (B) flag of new Flag is set. Must have | Flag is set. Must have | No change. Must have
task. been clear before. been clear before. been set.
Busy flag of old task. Flag is cleared. No change. Flag is Flag is cleared.
currently set.
NT flag of new task. Set to value from TSS | Flag is set. Set to value from TSS
of new task. of new task.
NT flag of old task. No change. No change. Flag is cleared.
Previous task link field | No change. Loaded with selector | No change.
of new task. for old task's TSS.
Previous task link field | No change. No change. No change.
of old task.
TS flag in control Flag is set. Flag is set. Flag is set.
register CRO.

Vol.3 7-17

TASK MANAGEMENT

7.4.1 Use of Busy Flag To Prevent Recursive Task Switching

A TSS allows only one context to be saved for a task; therefore, once a task is called
(dispatched), a recursive (or re-entrant) call to the task would cause the current
state of the task to be lost. The busy flag in the TSS segment descriptor is provided
to prevent re-entrant task switching and a subsequent loss of task state information.
The processor manages the busy flag as follows:

1. When dispatching a task, the processor sets the busy flag of the new task.

2. If during a task switch, the current task is placed in a nested chain (the task
switch is being generated by a CALL instruction, an interrupt, or an exception),
the busy flag for the current task remains set.

3. When switching to the new task (initiated by a CALL instruction, interrupt, or
exception), the processor generates a general-protection exception (#GP) if the
busy flag of the new task is already set. If the task switch is initiated with an IRET
instruction, the exception is not raised because the processor expects the busy
flag to be set.

4. When a task is terminated by a jump to a new task (initiated with a JMP
instruction in the task code) or by an IRET instruction in the task code, the
processor clears the busy flag, returning the task to the “not busy” state.

The processor prevents recursive task switching by preventing a task from switching
to itself or to any task in a nested chain of tasks. The chain of nested suspended tasks
may grow to any length, due to multiple calls, interrupts, or exceptions. The busy
flag prevents a task from being invoked if it is in this chain.

The busy flag may be used in multiprocessor configurations, because the processor
follows a LOCK protocol (on the bus or in the cache) when it sets or clears the busy
flag. This lock keeps two processors from invoking the same task at the same time.
See Section 8.1.2.1, “Automatic Locking,” for more information about setting the
busy flag in a multiprocessor applications.

7.4.2 Modifying Task Linkages

In a uniprocessor system, in situations where it is necessary to remove a task from a
chain of linked tasks, use the following procedure to remove the task:

1. Disable interrupts.

2. Change the previous task link field in the TSS of the pre-empting task (the task
that suspended the task to be removed). It is assumed that the pre-empting task
is the next task (newer task) in the chain from the task to be removed. Change
the previous task link field to point to the TSS of the next oldest task in the chain
or to an even older task in the chain.

3. Clear the busy (B) flag in the TSS segment descriptor for the task being removed
from the chain. If more than one task is being removed from the chain, the busy
flag for each task being remove must be cleared.

4. Enable interrupts.

7-18 Vol.3

TASK MANAGEMENT

In a multiprocessing system, additional synchronization and serialization operations
must be added to this procedure to insure that the TSS and its segment descriptor
are both locked when the previous task link field is changed and the busy flag is
cleared.

7.5 TASK ADDRESS SPACE

The address space for a task consists of the segments that the task can access.
These segments include the code, data, stack, and system segments referenced in
the TSS and any other segments accessed by the task code. The segments are
mapped into the processor’s linear address space, which is in turn mapped into the
processor’s physical address space (either directly or through paging).

The LDT segment field in the TSS can be used to give each task its own LDT. Giving a
task its own LDT allows the task address space to be isolated from other tasks by
placing the segment descriptors for all the segments associated with the task in the
task’s LDT.

It also is possible for several tasks to use the same LDT. This is a memory-efficient
way to allow specific tasks to communicate with or control each other, without drop-
ping the protection barriers for the entire system.

Because all tasks have access to the GDT, it also is possible to create shared
segments accessed through segment descriptors in this table.

If paging is enabled, the CR3 register (PDBR) field in the TSS allows each task to
have its own set of page tables for mapping linear addresses to physical addresses.
Or, several tasks can share the same set of page tables.

7.5.1 Mapping Tasks to the Linear and Physical Address Spaces

Tasks can be mapped to the linear address space and physical address space in one
of two ways:

® Onelinear-to-physical address space mapping is shared among all tasks.
— When paging is not enabled, this is the only choice. Without paging, all linear
addresses map to the same physical addresses. When paging is enabled, this
form of linear-to-physical address space mapping is obtained by using one page
directory for all tasks. The linear address space may exceed the available
physical space if demand-paged virtual memory is supported.

® Each task has its own linear address space that is mapped to the physical
address space. — This form of mapping is accomplished by using a different
page directory for each task. Because the PDBR (control register CR3) is loaded
on task switches, each task may have a different page directory.

The linear address spaces of different tasks may map to completely distinct physical
addresses. If the entries of different page directories point to different page tables

Vol.3 7-19

TASK MANAGEMENT

and the page tables point to different pages of physical memory, then the tasks do
not share physical addresses.

With either method of mapping task linear address spaces, the TSSs for all tasks
must lie in a shared area of the physical space, which is accessible to all tasks. This
mapping is required so that the mapping of TSS addresses does not change while the
processor is reading and updating the TSSs during a task switch. The linear address
space mapped by the GDT also should be mapped to a shared area of the physical
space; otherwise, the purpose of the GDT is defeated. Figure 7-9 shows how the
linear address spaces of two tasks can overlap in the physical space by sharing page
tables.

TSS Page Directories Page Tables Page Frames
Task A
Task A TSS >
PTE N Task A
PTE >
PDBR > PDE > PTE — Task A
PDE —
Shared PT >
Shared
PTE |- =
- PTE Shared
Task B TSS T
Task B
PDBR > PDE__ |- PTE |~
PDE > PTE T Task B

L
>

Figure 7-9. Overlapping Linear-to-Physical Mappings

7.5.2 Task Logical Address Space

To allow the sharing of data among tasks, use the following techniques to create
shared logical-to-physical address-space mappings for data segments:

® Through the segment descriptors in the GDT — All tasks must have access
to the segment descriptors in the GDT. If some segment descriptors in the GDT
point to segments in the linear-address space that are mapped into an area of the
physical-address space common to all tasks, then all tasks can share the data
and code in those segments.

® Through a shared LDT — Two or more tasks can use the same LDT if the LDT
fields in their TSSs point to the same LDT. If some segment descriptors in a

7-20 Vol.3

TASK MANAGEMENT

shared LDT point to segments that are mapped to a common area of the physical
address space, the data and code in those segments can be shared among the
tasks that share the LDT. This method of sharing is more selective than sharing
through the GDT, because the sharing can be limited to specific tasks. Other
tasks in the system may have different LDTs that do not give them access to the
shared segments.

Through segment descriptors in distinct LDTs that are mapped to
common addresses in linear address space — If this common area of the
linear address space is mapped to the same area of the physical address space
for each task, these segment descriptors permit the tasks to share segments.
Such segment descriptors are commonly called aliases. This method of sharing is
even more selective than those listed above, because, other segment descriptors
in the LDTs may point to independent linear addresses which are not shared.

7.6 16-BIT TASK-STATE SEGMENT (TSS)

The 32-bit 1A-32 processors also recognize a 16-bit TSS format like the one used in
Intel 286 processors (see Figure 7-10). This format is supported for compatibility
with software written to run on earlier 1A-32 processors.

The following information is important to know about the 16-bit TSS.

Do not use a 16-bit TSS to implement a virtual-8086 task.
The valid segment limit for a 16-bit TSS is 2CH.

The 16-bit TSS does not contain a field for the base address of the page directory,
which is loaded into control register CR3. A separate set of page tables for each
task is not supported for 16-bit tasks. If a 16-bit task is dispatched, the page-
table structure for the previous task is used.

The 1/0 base address is not included in the 16-bit TSS. None of the functions of
the 1/0 map are supported.

When task state is saved in a 16-bit TSS, the upper 16 bits of the EFLAGS register
and the EIP register are lost.

When the general-purpose registers are loaded or saved from a 16-bit TSS, the
upper 16 bits of the registers are modified and not maintained.

Vol.3 7-21

TASK MANAGEMENT

15 0
Task LDT Selector 42
DS Selector 40
SS Selector 38
CS Selector 36
ES Selector 34
DI 32
Sl 30
BP 28
SP 26
BX 24
DX 22
CX 20
AX 18
FLAG Word 16
IP (Entry Point) 14
SS2 12
SP2 10
SS1 8
SP1 6
SSO 4
SPO 2
Previous Task Link 0

Figure 7-10. 16-Bit TSS Format

7.7 TASK MANAGEMENT IN 64-BIT MODE

In 64-bit mode, task structure and task state are similar to those in protected mode.
However, the task switching mechanism available in protected mode is not supported
in 64-bit mode. Task management and switching must be performed by software.
The processor issues a general-protection exception (#GP) if the following is
attempted in 64-bit mode:

® Control transfer to a TSS or a task gate using JMP, CALL, INTn, or interrupt.
® An IRET with EFLAGS.NT (nested task) set to 1.

7-22 Vol.3

TASK MANAGEMENT

Although hardware task-switching is not supported in 64-bit mode, a 64-bit task
state segment (TSS) must exist. Figure 7-11 shows the format of a 64-bit TSS. The
TSS holds information important to 64-bit mode and that is not directly related to the
task-switch mechanism. This information includes:

[]

RSPn — The full 64-bit canonical forms of the stack pointers (RSP) for privilege
levels 0-2.

1STn — The full 64-bit canonical forms of the interrupt stack table (IST) pointers.

® 1/0 map base address — The 16-bit offset to the 1/0 permission bit map from
the 64-bit TSS base.

The operating system must create at least one 64-bit TSS after activating 1A-32e
mode. It must execute the LTR instruction (in 64-bit mode) to load the TR register
with a pointer to the 64-bit TSS responsible for both 64-bit-mode programs and
compatibility-mode programs.

Vol.3 7-23

TASK MANAGEMENT

31 15 0
I/0 Map Base Address Reserved 100

Reserved 96
Reserved 92
IST7 (upper 32 bits) 88
IST7 (lower 32 bits) 84
IST6 (upper 32 hits) 80
IST6 (lower 32 bits) 76
IST5 (upper 32 hits) 72
IST5 (lower 32 bits) 68
IST4 (upper 32 hits) 64
IST4 (lower 32 bits) 60
IST3 (upper 32 bits) 56
IST3 (lower 32 bits) 52
IST2 (upper 32 bits) 48
IST2 (lower 32 bits) 44
IST1 (upper 32 hits) 40
IST1 (lower 32 bits) 36
Reserved 32
Reserved 28
RSP2 (upper 32 hits) 24
RSP2 (lower 32 bits) 20
RSP1 (upper 32 hits) 16
RSP1 (lower 32 bits) 12
RSPO (upper 32 bits)

RSPO (lower 32 bits)

Reserved

:’ Reserved bits. Set to 0.

Figure 7-11. 64-Bit TSS Format

7-24 Vol.3

CHAPTER 8
MULTIPLE-PROCESSOR MANAGEMENT

The Intel 64 and I1A-32 architectures provide mechanisms for managing and
improving the performance of multiple processors connected to the same system
bus. These include:

Bus locking and/or cache coherency management for performing atomic
operations on system memory.

Serializing instructions. These instructions apply only to the Pentium 4, Intel
Xeon, P6 family, and Pentium processors.

An advance programmable interrupt controller (APIC) located on the processor
chip (see Chapter 10, “Advanced Programmable Interrupt Controller (APIC)”).
This feature was introduced by the Pentium processor.

A second-level cache (level 2, L2). For the Pentium 4, Intel Xeon, and P6 family
processors, the L2 cache is included in the processor package and is tightly
coupled to the processor. For the Pentium and Intel486 processors, pins are
provided to support an external L2 cache.

A third-level cache (level 3, L3). For Intel Xeon processors, the L3 cache is
included in the processor package and is tightly coupled to the processor.

Intel Hyper-Threading Technology. This extension to the Intel 64 and 1A-32 archi-
tectures enables a single processor core to execute two or more threads concur-
rently (see Section 8.5, “Intel® Hyper-Threading Technology and Intel® Multi-
Core Technology™).

These mechanisms are particularly useful in symmetric-multiprocessing (SMP)
systems. However, they can also be used when an Intel 64 or 1A-32 processor and a
special-purpose processor (such as a communications, graphics, or video processor)
share the system bus.

These multiprocessing mechanisms have the following characteristics:

To maintain system memory coherency — When two or more processors are
attempting simultaneously to access the same address in system memory, some
communication mechanism or memory access protocol must be available to
promote data coherency and, in some instances, to allow one processor to
temporarily lock a memory location.

To maintain cache consistency — When one processor accesses data cached on
another processor, it must not receive incorrect data. If it modifies data, all other
processors that access that data must receive the modified data.

To allow predictable ordering of writes to memory — In some circumstances, it is
important that memory writes be observed externally in precisely the same order
as programmed.

Vol.3 8-1

MULTIPLE-PROCESSOR MANAGEMENT

® To distribute interrupt handling among a group of processors — When several
processors are operating in a system in parallel, it is useful to have a centralized
mechanism for receiving interrupts and distributing them to available processors
for servicing.

® To increase system performance by exploiting the multi-threaded and multi-
process nature of contemporary operating systems and applications.

The caching mechanism and cache consistency of Intel 64 and I1A-32 processors are
discussed in Chapter 11. The APIC architecture is described in Chapter 10. Bus and
memory locking, serializing instructions, memory ordering, and Intel Hyper-
Threading Technology are discussed in the following sections.

8.1 LOCKED ATOMIC OPERATIONS

The 32-bit IA-32 processors support locked atomic operations on locations in system
memory. These operations are typically used to manage shared data structures (such
as semaphores, segment descriptors, system segments, or page tables) in which two
or more processors may try simultaneously to modify the same field or flag. The
processor uses three interdependent mechanisms for carrying out locked atomic
operations:

® Guaranteed atomic operations
® Bus locking, using the LOCK# signal and the LOCK instruction prefix

® Cache coherency protocols that insure that atomic operations can be carried out
on cached data structures (cache lock); this mechanism is present in the
Pentium 4, Intel Xeon, and P6 family processors

These mechanisms are interdependent in the following ways. Certain basic memory
transactions (such as reading or writing a byte in system memory) are always guar-
anteed to be handled atomically. That is, once started, the processor guarantees that
the operation will be completed before another processor or bus agent is allowed
access to the memory location. The processor also supports bus locking for
performing selected memory operations (such as a read-modify-write operation in a
shared area of memory) that typically need to be handled atomically, but are not
automatically handled this way. Because frequently used memory locations are often
cached in a processor’s L1 or L2 caches, atomic operations can often be carried out
inside a processor’s caches without asserting the bus lock. Here the processor’s
cache coherency protocols insure that other processors that are caching the same
memory locations are managed properly while atomic operations are performed on
cached memory locations.

NOTE

Where there are contested lock accesses, software may need to
implement algorithms that ensure fair access to resources in order to
prevent lock starvation. The hardware provides no resource that
guarantees fairness to participating agents. It is the responsibility of

8-2 Vol.3

MULTIPLE-PROCESSOR MANAGEMENT

software to manage the fairness of semaphores and exclusive locking
functions.

The mechanisms for handling locked atomic operations have evolved with the
complexity of 1A-32 processors. More recent 1A-32 processors (such as the
Pentium 4, Intel Xeon, and P6 family processors) and Intel 64 provide a more refined
locking mechanism than earlier processors. These mechanisms are described in the
following sections.

8.1.1 Guaranteed Atomic Operations

The Intel486 processor (and newer processors since) guarantees that the following
basic memory operations will always be carried out atomically:

® Reading or writing a byte
® Reading or writing a word aligned on a 16-bit boundary
® Reading or writing a doubleword aligned on a 32-bit boundary

The Pentium processor (and newer processors since) guarantees that the following
additional memory operations will always be carried out atomically:

® Reading or writing a quadword aligned on a 64-bit boundary
® 16-bit accesses to uncached memory locations that fit within a 32-bit data bus

The P6 family processors (and newer processors since) guarantee that the following
additional memory operation will always be carried out atomically:

® Unaligned 16-, 32-, and 64-bit accesses to cached memory that fit within a cache
line

Accesses to cacheable memory that are split across bus widths, cache lines, and
page boundaries are not guaranteed to be atomic by the Intel Core 2 Duo, Intel
Atom, Intel Core Duo, Pentium M, Pentium 4, Intel Xeon, P6 family, Pentium, and
Intel486 processors. The Intel Core 2 Duo, Intel Atom, Intel Core Duo, Pentium M,
Pentium 4, Intel Xeon, and P6 family processors provide bus control signals that
permit external memory subsystems to make split accesses atomic; however,
nonaligned data accesses will seriously impact the performance of the processor and
should be avoided.

8.1.2 Bus Locking

Intel 64 and 1A-32 processors provide a LOCK# signal that is asserted automatically
during certain critical memory operations to lock the system bus or equivalent link.
While this output signal is asserted, requests from other processors or bus agents for
control of the bus are blocked. Software can specify other occasions when the LOCK
semantics are to be followed by prepending the LOCK prefix to an instruction.

In the case of the Intel386, Intel486, and Pentium processors, explicitly locked
instructions will result in the assertion of the LOCK# signal. It is the responsibility of

Vol.3 8-3

MULTIPLE-PROCESSOR MANAGEMENT

the hardware designer to make the LOCK# signal available in system hardware to
control memory accesses among processors.

For the P6 and more recent processor families, if the memory area being accessed is
cached internally in the processor, the LOCK# signal is generally not asserted;
instead, locking is only applied to the processor’s caches (see Section 8.1.4, “Effects
of a LOCK Operation on Internal Processor Caches”).

8.1.2.1 Automatic Locking

The operations on which the processor automatically follows the LOCK semantics are
as follows:

When executing an XCHG instruction that references memory.

When setting the B (busy) flag of a TSS descriptor — The processor tests
and sets the busy flag in the type field of the TSS descriptor when switching to a
task. To insure that two processors do not switch to the same task simulta-
neously, the processor follows the LOCK semantics while testing and setting this
flag.

When updating segment descriptors — When loading a segment descriptor,
the processor will set the accessed flag in the segment descriptor if the flag is
clear. During this operation, the processor follows the LOCK semantics so that the
descriptor will not be modified by another processor while it is being updated. For
this action to be effective, operating-system procedures that update descriptors
should use the following steps:

— Use a locked operation to modify the access-rights byte to indicate that the
segment descriptor is not-present, and specify a value for the type field that
indicates that the descriptor is being updated.

— Update the fields of the segment descriptor. (This operation may require
several memory accesses; therefore, locked operations cannot be used.)

— Use a locked operation to modify the access-rights byte to indicate that the
segment descriptor is valid and present.

The Intel386 processor always updates the accessed flag in the segment
descriptor, whether it is clear or not. The Pentium 4, Intel Xeon, P6 family,
Pentium, and Intel486 processors only update this flag if it is not already set.

When updating page-directory and page-table entries — When updating
page-directory and page-table entries, the processor uses locked cycles to set
the accessed and dirty flag in the page-directory and page-table entries.

Acknowledging interrupts — After an interrupt request, an interrupt controller
may use the data bus to send the interrupt vector for the interrupt to the
processor. The processor follows the LOCK semantics during this time to ensure
that no other data appears on the data bus when the interrupt vector is being
transmitted.

8-4 Vol.3

MULTIPLE-PROCESSOR MANAGEMENT

8.1.2.2 Software Controlled Bus Locking

To explicitly force the LOCK semantics, software can use the LOCK prefix with the
following instructions when they are used to modify a memory location. An invalid-
opcode exception (#UD) is generated when the LOCK prefix is used with any other
instruction or when no write operation is made to memory (that is, when the destina-
tion operand is in a register).

® The bit test and modify instructions (BTS, BTR, and BTC).
® The exchange instructions (XADD, CMPXCHG, and CMPXCHGS8B).
® The LOCK prefix is automatically assumed for XCHG instruction.

® The following single-operand arithmetic and logical instructions: INC, DEC, NOT,
and NEG.

® The following two-operand arithmetic and logical instructions: ADD, ADC, SUB,
SBB, AND, OR, and XOR.

A locked instruction is guaranteed to lock only the area of memory defined by the
destination operand, but may be interpreted by the system as a lock for a larger
memory area.

Software should access semaphores (shared memory used for signalling between
multiple processors) using identical addresses and operand lengths. For example, if
one processor accesses a semaphore using a word access, other processors should
not access the semaphore using a byte access.

NOTE

Do not implement semaphores using the WC memory type. Do not
perform non-temporal stores to a cache line containing a location
used to implement a semaphore.

The integrity of a bus lock is not affected by the alignment of the memory field. The
LOCK semantics are followed for as many bus cycles as necessary to update the
entire operand. However, it is recommend that locked accesses be aligned on their
natural boundaries for better system performance:

® Any boundary for an 8-bit access (locked or otherwise).
® 16-bit boundary for locked word accesses.

® 32-bit boundary for locked doubleword accesses.

® 64-bit boundary for locked quadword accesses.

Locked operations are atomic with respect to all other memory operations and all
externally visible events. Only instruction fetch and page table accesses can pass
locked instructions. Locked instructions can be used to synchronize data written by
one processor and read by another processor.

For the P6 family processors, locked operations serialize all outstanding load and
store operations (that is, wait for them to complete). This rule is also true for the
Pentium 4 and Intel Xeon processors, with one exception. Load operations that refer-

Vol.3 8-5

MULTIPLE-PROCESSOR MANAGEMENT

ence weakly ordered memory types (such as the WC memory type) may not be seri-
alized.

Locked instructions should not be used to insure that data written can be fetched as
instructions.

NOTE

The locked instructions for the current versions of the Pentium 4,
Intel Xeon, P6 family, Pentium, and Intel486 processors allow data
written to be fetched as instructions. However, Intel recommends
that developers who require the use of self-modifying code use a
different synchronizing mechanism, described in the following
sections.

8.1.3 Handling Self- and Cross-Modifying Code

The act of a processor writing data into a currently executing code segment with
the intent of executing that data as code is called self-modifying code. 1A-32
processors exhibit model-specific behavior when executing self-modified code,
depending upon how far ahead of the current execution pointer the code has been
modified.

As processor microarchitectures become more complex and start to speculatively
execute code ahead of the retirement point (as in P6 and more recent processor
families), the rules regarding which code should execute, pre- or post-modification,
become blurred. To write self-modifying code and ensure that it is compliant with
current and future versions of the 1A-32 architectures, use one of the following
coding options:

(* OPTION 1 *)

Store modified code (as data) into code segment;
Jump to new code or an intermediate location;
Execute new code;

(* OPTION 2 *)

Store modified code (as data) into code segment;

Execute a serializing instruction; (* For example, CPUID instruction *)
Execute new code;

The use of one of these options is not required for programs intended to run on the
Pentium or Intel486 processors, but are recommended to insure compatibility with
the P6 and more recent processor families.

Self-modifying code will execute at a lower level of performance than non-self-modi-
fying or normal code. The degree of the performance deterioration will depend upon
the frequency of modification and specific characteristics of the code.

8-6 Vol.3

MULTIPLE-PROCESSOR MANAGEMENT

The act of one processor writing data into the currently executing code segment of a
second processor with the intent of having the second processor execute that data as
code is called cross-modifying code. As with self-modifying code, 1A-32 processors
exhibit model-specific behavior when executing cross-modifying code, depending
upon how far ahead of the executing processors current execution pointer the code
has been modified.

To write cross-modifying code and insure that it is compliant with current and future
versions of the 1A-32 architecture, the following processor synchronization algorithm
must be implemented:

(* Action of Modifying Processor *)

Memory_Flag < O; (* Set Memory_Flag to value other than 1 *)
Store modified code (as data) into code segment;

Memory_Flag « 1;

(* Action of Executing Processor *)
WHILE (Memory_Flag = 1)

Wait for code to update;
ELIHW;

Execute serializing instruction; (* For example, CPUID instruction *)
Begin executing modified code;

(The use of this option is not required for programs intended to run on the Intel486
processor, but is recommended to insure compatibility with the Pentium 4, Intel
Xeon, P6 family, and Pentium processors.)

Like self-modifying code, cross-modifying code will execute at a lower level of perfor-
mance than non-cross-modifying (normal) code, depending upon the frequency of
modification and specific characteristics of the code.

The restrictions on self-modifying code and cross-modifying code also apply to the
Intel 64 architecture.

8.1.4 Effects of a LOCK Operation on Internal Processor Caches

For the Intel486 and Pentium processors, the LOCK# signal is always asserted on the
bus during a LOCK operation, even if the area of memory being locked is cached in
the processor.

For the P6 and more recent processor families, if the area of memory being locked
during a LOCK operation is cached in the processor that is performing the LOCK oper-
ation as write-back memory and is completely contained in a cache line, the
processor may not assert the LOCK# signal on the bus. Instead, it will modify the
memory location internally and allow it's cache coherency mechanism to insure that
the operation is carried out atomically. This operation is called “cache locking.” The
cache coherency mechanism automatically prevents two or more processors that

Vol.3 8-7

MULTIPLE-PROCESSOR MANAGEMENT

have cached the same area of memory from simultaneously modifying data in that
area.

8.2 MEMORY ORDERING

The term memory ordering refers to the order in which the processor issues reads
(loads) and writes (stores) through the system bus to system memory. The Intel 64
and 1A-32 architectures support several memory-ordering models depending on the
implementation of the architecture. For example, the Intel386 processor enforces
program ordering (generally referred to as strong ordering), where reads and
writes are issued on the system bus in the order they occur in the instruction stream
under all circumstances.

To allow performance optimization of instruction execution, the 1A-32 architecture
allows departures from strong-ordering model called processor ordering in
Pentium 4, Intel Xeon, and P6 family processors. These processor-ordering varia-
tions (called here the memory-ordering model) allow performance enhancing
operations such as allowing reads to go ahead of buffered writes. The goal of any of
these variations is to increase instruction execution speeds, while maintaining
memory coherency, even in multiple-processor systems.

Section 8.2.1 and Section 8.2.2 describe the memory-ordering implemented by
Intel486, Pentium, Intel Core 2 Duo, Intel Atom, Intel Core Duo, Pentium 4, Intel
Xeon, and P6 family processors. Section 8.2.3 gives examples illustrating the
behavior of the memory-ordering model on 1A-32 and Intel-64 processors. Section
8.2.4 considers the special treatment of stores for string operations and Section
8.2.5 discusses how memory-ordering behavior may be modified through the use of
specific instructions.

8.2.1 Memory Ordering in the Intel® Pentium® and Intel486™
Processors

The Pentium and Intel486 processors follow the processor-ordered memory model;
however, they operate as strongly-ordered processors under most circumstances.
Reads and writes always appear in programmed order at the system bus—except for
the following situation where processor ordering is exhibited. Read misses are
permitted to go ahead of buffered writes on the system bus when all the buffered
writes are cache hits and, therefore, are not directed to the same address being
accessed by the read miss.

In the case of 1/0 operations, both reads and writes always appear in programmed
order.

Software intended to operate correctly in processor-ordered processors (such as the
Pentium 4, Intel Xeon, and P6 family processors) should not depend on the relatively
strong ordering of the Pentium or Intel486 processors. Instead, it should insure that
accesses to shared variables that are intended to control concurrent execution

8-8 Vol.3

MULTIPLE-PROCESSOR MANAGEMENT

among processors are explicitly required to obey program ordering through the use
of appropriate locking or serializing operations (see Section 8.2.5, “Strengthening or
Weakening the Memory-Ordering Model”).

8.2.2 Memory Ordering in P6 and More Recent Processor Families

The Intel Core 2 Duo, Intel Atom, Intel Core Duo, Pentium 4, and P6 family proces-
sors also use a processor-ordered memory-ordering model that can be further
defined as “write ordered with store-buffer forwarding.” This model can be character-
ized as follows.

In a single-processor system for memory regions defined as write-back cacheable,
the memory-ordering model respects the following principles (Note the memory-
ordering principles for single-processor and multiple-processor systems are written
from the perspective of software executing on the processor, where the term
“processor” refers to a logical processor. For example, a physical processor
supporting multiple cores and/or HyperThreading Technology is treated as a multi-
processor systems.):

® Reads are not reordered with other reads.

® Writes are not reordered with older reads.

® Writes to memory are not reordered with other writes, with the exception of
— writes executed with the CLFLUSH instruction,

— streaming stores (writes) executed with the non-temporal move instructions
(MOVNTI, MOVNTQ, MOVNTDQ, MOVNTPS, and MOVNTPD),

— string operations (see Section 8.2.4.1).

® Reads may be reordered with older writes to different locations but not with older
writes to the same location.

® Reads or writes cannot be reordered with 1/0 instructions, locked instructions, or
serializing instructions.

® Reads cannot pass LFENCE and MFENCE instructions.
® Writes cannot pass SFENCE and MFENCE instructions.
In a multiple-processor system, the following ordering principles apply:

® Individual processors use the same ordering principles as in a single-processor
system.

® Writes by a single processor are observed in the same order by all processors.

® Writes from an individual processor are NOT ordered with respect to the writes
from other processors.

® Memory ordering obeys causality (memory ordering respects transitive
visibility).

® Any two stores are seen in a consistent order by processors other than those
performing the stores

Vol.3 8-9

MULTIPLE-PROCESSOR MANAGEMENT

® Locked instructions have a total order.

See the example in Figure 8-1. Consider three processors in a system and each
processor performs three writes, one to each of three defined locations (A, B, and C).
Individually, the processors perform the writes in the same program order, but
because of bus arbitration and other memory access mechanisms, the order that the
three processors write the individual memory locations can differ each time the
respective code sequences are executed on the processors. The final values in loca-
tion A, B, and C would possibly vary on each execution of the write sequence.

The processor-ordering model described in this section is virtually identical to that
used by the Pentium and Intel486 processors. The only enhancements in the Pentium
4, Intel Xeon, and P6 family processors are:

® Added support for speculative reads, while still adhering to the ordering
principles above.

® Store-buffer forwarding, when a read passes a write to the same memory
location.

® Out of order store from long string store and string move operations (see Section
8.2.4, “Out-of-Order Stores For String Operations,” below).

Order of Writes From Individual Processors

Processor #1 Processor #2 Processor #3
Each PFOCQSSOF Write A.1 Write A.2 Write A.3
is gfuarante'tta to Write B.1 Write B.2 Write B.3
periorm writes in Write C.1 Write C.2 Write C.3

program order.

Example of order of actual writes
from all processors to memory

Writes are in order Write A.1 —

with respect to Write B.1

individual processes. Write A.2 Writes from all
Write A.3 processors are
Write C.1 > not guaranteed
Write B.2 to occurin a
Write C.2 particular order.
Write B.3
Write C.3—

Figure 8-1. Example of Write Ordering in Multiple-Processor Systems

NOTE

In P6 processor family, store-buffer forwarding to reads of WC memory from
streaming stores to the same address does not occur due to errata.

8-10 Vol.3

MULTIPLE-PROCESSOR MANAGEMENT

8.2.3 Examples lllustrating the Memory-Ordering Principles

This section provides a set of examples that illustrate the behavior of the memory-
ordering principles introduced in Section 8.2.2. They are designed to give software
writers an understanding of how memory ordering may affect the results of different
sequences of instructions.

These examples are limited to accesses to memory regions defined as write-back
cacheable (WB). (Section 8.2.3.1 describes other limitations on the generality of the
examples.) The reader should understand that they describe only software-visible
behavior. A logical processor may reorder two accesses even if one of examples indi-
cates that they may not be reordered. Such an example states only that software
cannot detect that such a reordering occurred. Similarly, a logical processor may
execute a memory access more than once as long as the behavior visible to software
is consistent with a single execution of the memory access.

8.2.3.1 Assumptions, Terminology, and Notation

As noted above, the examples in this section are limited to accesses to memory
regions defined as write-back cacheable (WB). They apply only to ordinary loads
stores and to locked read-modify-write instructions. They do not necessarily apply to
any of the following: out-of-order stores for string instructions (see Section 8.2.4);
accesses with a non-temporal hint; reads from memory by the processor as part of
address translation (e.g., page walks); and updates to segmentation and paging
structures by the processor (e.g., to update “accessed” bits).

The principles underlying the examples in this section apply to individual memory
accesses and to locked read-modify-write instructions. The Intel-64 memory-
ordering model guarantees that, for each of the following memory-access instruc-
tions, the constituent memory operation appears to execute as a single memory
access:

® Instructions that read or write a single byte.

® Instructions that read or write a word (2 bytes) whose address is aligned on a 2
byte boundary.

® Instructions that read or write a doubleword (4 bytes) whose address is aligned
on a 4 byte boundary.

® Instructions that read or write a quadword (8 bytes) whose address is aligned on
an 8 byte boundary.

Any locked instruction (either the XCHG instruction or another read-modify-write
instruction with a LOCK prefix) appears to execute as an indivisible and uninterrupt-
ible sequence of load(s) followed by store(s) regardless of alignment.

Other instructions may be implemented with multiple memory accesses. From a
memory-ordering point of view, there are no guarantees regarding the relative order
in which the constituent memory accesses are made. There is also no guarantee that
the constituent operations of a store are executed in the same order as the constit-
uent operations of a load.

Vol.3 8-11

MULTIPLE-PROCESSOR MANAGEMENT

Section 8.2.3.2 through Section 8.2.3.7 give examples using the MOV instruction.
The principles that underlie these examples apply to load and store accesses in
general and to other instructions that load from or store to memory. Section 8.2.3.8
and Section 8.2.3.9 give examples using the XCHG instruction. The principles that
underlie these examples apply to other locked read-modify-write instructions.

This section uses the term “processor” is to refer to a logical processor. The examples
are written using Intel-64 assembly-language syntax and use the following nota-
tional conventions:

® Arguments beginning with an “r”, such as rl or r2 refer to registers (e.g., EAX)
visible only to the processor being considered.

® Memory locations are denoted with X, y, z.

® Stores are written as mov [_x], val, which implies that val is being stored into
the memory location x.

® Loads are written as mov r, [_x], which implies that the contents of the memory
location x are being loaded into the register r.

As noted earlier, the examples refer only to software visible behavior. When the
succeeding sections make statement such as “the two stores are reordered,” the
implication is only that “the two stores appear to be reordered from the point of view
of software.”

8.2.3.2 Neither Loads Nor Stores Are Reordered with Like Operations

The Intel-64 memory-ordering model allows neither loads nor stores to be reordered
with the same kind of operation. That is, it ensures that loads are seen in program
order and that stores are seen in program order. This is illustrated by the following
example:

Example 8-1. Stores Are Not Reordered with Other Stores

Processor O Processor 1

mov [_x], 1 mov r1, [_y]
mov [_y] 1 mov r2, [_X]

Initially x ==y ==
r1 ==1andr2 ==0is not allowed

The disallowed return values could be exhibited only if processor O’s two stores are
reordered (with the two loads occurring between them) or if processor 1's two loads
are reordered (with the two stores occurring between them).

If r1 == 1, the store to y occurs before the load from y. Because the Intel-64
memory-ordering model does not allow stores to be reordered, the earlier store to x
occurs before the load from y. Because the Intel-64 memory-ordering model does
not allow loads to be reordered, the store to x also occurs before the later load from
X. Thisr2 == 1.

8-12 Vol.3

MULTIPLE-PROCESSOR MANAGEMENT

8.2.3.3 Stores Are Not Reordered With Earlier Loads

The Intel-64 memory-ordering model ensures that a store by a processor may not
occur before a previous load by the same processor. This is illustrated by the
following example:

Example 8-2. Stores Are Not Reordered with Older Loads

Processor 0 Processor 1
mov 1, [_x] mov r2, [_y]
mov [_y], 1 mov [_x], 1
Initially x ==y ==
r1 ==1andr2 ==1is not allowed
Assume rl ==
® Because rl == 1, processor 1’s store to x occurs before processor 0’s load from
X.

® Because the Intel-64 memory-ordering model prevents each store from being
reordered with the earlier load by the same processor, processor 1’s load from y
occurs before its store to x.

® Similarly, processor 0’s load from x occurs before its store to y.

® Thus, processor 1's load from y occurs before processor 0’s store to y, implying
r2 ==0.

8.2.3.4 Loads May Be Reordered with Earlier Stores to Different
Locations

The Intel-64 memory-ordering model allows a load to be reordered with an earlier
store to a different location. However, loads are not reordered with stores to the
same location.

The fact that a load may be reordered with an earlier store to a different location is
illustrated by the following example:

Example 8-3. Loads May be Reordered with Older Stores

Processor 0 Processor 1
mov [_x], 1 mov [_y]. 1
mov r1, [_y] mov r2, [_x]
Initially x ==y ==

rl1 ==0andr2 ==0is allowed

At each processor, the load and the store are to different locations and hence may be
reordered. Any interleaving of the operations is thus allowed. One such interleaving

Vol.3 8-13

MULTIPLE-PROCESSOR MANAGEMENT

has the two loads occurring before the two stores. This would result in each load
returning value 0.

The fact that a load may not be reordered with an earlier store to the same location
is illustrated by the following example:

Example 8-4. Loads Are not Reordered with Older Stores to the Same Location

Processor 0

mov [_x], 1
mov r1, [_x]

Initially x ==
r1 ==0is not allowed

The Intel-64 memory-ordering model does not allow the load to be reordered with
the earlier store because the accesses are to the same location. Therefore, r1 == 1
must hold.

8.2.3.5 Intra-Processor Forwarding Is Allowed

The memory-ordering model allows concurrent stores by two processors to be seen
in different orders by those two processors; specifically, each processor may perceive
its own store occurring before that of the other. This is illustrated by the following
example:

Example 8-5. Intra-Processor Forwarding is Allowed

Processor 0 Processor 1
mov [_x], 1 mov [_v], 1
mov r1, [_x] mov r3, [_y]
mov r2, [_y] mov r4, [_x]

Initially x ==y ==

re ==0andr4 == 0 s allowed

The memory-ordering model imposes no constraints on the order in which the two
stores appear to execute by the two processors. This fact allows processor O to see
its store before seeing processor 1's, while processor 1 sees its store before seeing
processor O's. (Each processor is self consistent.) This allows r2 == 0 and r4 == 0.

In practice, the reordering in this example can arise as a result of store-buffer
forwarding. While a store is temporarily held in a processor's store buffer, it can
satisfy the processor's own loads but is not visible to (and cannot satisfy) loads by
other processors.

8-14 Vol.3

MULTIPLE-PROCESSOR MANAGEMENT

8.2.3.6 Stores Are Transitively Visible

The memory-ordering model ensures transitive visibility of stores; stores that are
causally related appear to all processors to occur in an order consistent with the
causality relation. This is illustrated by the following example:

Example 8-6. Stores Are Transitively Visible

Processor 0 Processor 1 Processor 2
mov [_x], 1 mov r1, [_x]
mov [_y], 1 mov r2, [_v]
mov r3, [_x]
Initially x ==y ==
r1==1,r2==1,r3==0is not allowed

Assume thatrl == 1 and r2 == 1.
® Because rl == 1, processor O’'s store occurs before processor 1’s load.

® Because the memory-ordering model prevents a store from being reordered with
an earlier load (see Section 8.2.3.3), processor 1's load occurs before its store.
Thus, processor Q’s store causally precedes processor 1's store.

® Because processor O’s store causally precedes processor 1's store, the memory-
ordering model ensures that processor O’s store appears to occur before
processor 1’s store from the point of view of all processors.

® Because r2 == 1, processor 1's store occurs before processor 2’s load.

® Because the Intel-64 memory-ordering model prevents loads from being
reordered (see Section 8.2.3.2), processor 2’s load occur in order.

® The above items imply that processor O’s store to x occurs before processor 2’s
load from x. This implies that r3 ==

8.23.7 Stores Are Seen in a Consistent Order by Other Processors

As noted in Section 8.2.3.5, the memory-ordering model allows stores by two
processors to be seen in different orders by those two processors. However, any two
stores must appear to execute in the same order to all processors other than those
performing the stores. This is illustrated by the following example:

Example 8-7. Stores Are Seen in a Consistent Order by Other Processors

Processor O Processor 1 Processor 2 Processor 3
mov [_x], 1 mov [_y] 1 mov r1, [_x] mov r3, [_v]
mov r2, [_y] mov r4, [_X]

Initially x ==y ==0

r1 ==1,r2==0,r3 == 1, r4 == Ois not allowed

Vol.3 8-15

MULTIPLE-PROCESSOR MANAGEMENT

By the principles discussed in Section 8.2.3.2,
® processor 2’s first and second load cannot be reordered,
® processor 3’s first and second load cannot be reordered.

® Ifrl==1andr2 ==0, processor O’s store appears to precede processor 1’s
store with respect to processor 2.

® Similarly, r3 == 1 and r4 == 0 imply that processor 1’s store appears to precede
processor O’s store with respect to processor 1.

Because the memory-ordering model ensures that any two stores appear to execute
in the same order to all processors (other than those performing the stores), this set
of return values is not allowed

8.2.3.8 Locked Instructions Have a Total Order

The memory-ordering model ensures that all processors agree on a single execution
order of all locked instructions, including those that are larger than 8 bytes or are not
naturally aligned. This is illustrated by the following example:

Example 8-8. Locked Instructions Have a Total Order

Processor 0 Processor 1 Processor 2 Processor 3
xchg [_x], r1 xchg[_yl, r2
mov r3, [_X] mov r5, [_v]
mov r4, [_y] mov r6, [_X]

Initially r1 ==r2==1,x==y ==
r3==1,r4==0,r5==1,r6 == 0is not allowed

Processor 2 and processor 3 must agree on the order of the two executions of XCHG.
Without loss of generality, suppose that processor 0’'s XCHG occurs first.

® Ifr5 == 1, processor 1's XCHG into y occurs before processor 3’s load from vy.

® Because the Intel-64 memory-ordering model prevents loads from being
reordered (see Section 8.2.3.2), processor 3’s loads occur in order and,
therefore, processor 1's XCHG occurs before processor 3’s load from x.

® Since processor 0’s XCHG into x occurs before processor 1's XCHG (by
assumption), it occurs before processor 3’s load from x. Thus, ré6 ==

A similar argument (referring instead to processor 2’s loads) applies if processor 1's
XCHG occurs before processor 0's XCHG.

8.2.3.9 Loads and Stores Are Not Reordered with Locked Instructions

The memory-ordering model prevents loads and stores from being reordered with
locked instructions that execute earlier or later. The examples in this section illustrate
only cases in which a locked instruction is executed before a load or a store. The

8-16 Vol.3

MULTIPLE-PROCESSOR MANAGEMENT

reader should note that reordering is prevented also if the locked instruction is
executed after a load or a store.

The first example illustrates that loads may not be reordered with earlier locked
instructions:

Example 8-9. Loads Are not Reordered with Locks

Processor 0

Processor 1

xchg [_x], 1
mov r2, [_v]

xchg [_y], r3
mov r4, [_x]

Inltlally X==y== 0,r1 ==r3==
re ==0and r4 == 0 s not allowed

As explained in Section 8.2.3.8, there is a total order of the executions of locked
instructions. Without loss of generality, suppose that processor 0’'s XCHG occurs first.

Because the Intel-64 memory-ordering model prevents processor 1’s load from
being reordered with its earlier XCHG, processor 0’s XCHG occurs before
processor 1's load. This implies r4 ==

A similar argument (referring instead to processor 2’s accesses) applies if
processor 1's XCHG occurs before processor 0’s XCHG.

The second example illustrates that a store may not be reordered with an earlier
locked instruction:

Example 8-10. Stores Are not Reordered with Locks

Processor 0 Processor 1
xchg [_x], r1 mov r2, [_v]
mov [_y], 1 mov r3, [_x]
Initially x ==y ==0,r1 ==1
re ==1andr3 == 0 s not allowed
Assume r2 ==
® Because r2 == 1, processor 0’s store to y occurs before processor 1’s load from
y.

® Because the memory-ordering model prevents a store from being reordered with
an earlier locked instruction, processor 0’s XCHG into x occurs before its store to
y. Thus, processor 0’s XCHG into x occurs before processor 1’s load from y.

® Because the memory-ordering model prevents loads from being reordered (see
Section 8.2.3.2), processor 1’s loads occur in order and, therefore, processor 1's
XCHG into x occurs before processor 1's load from x. Thus, r3 ==

Vol.3 8-17

MULTIPLE-PROCESSOR MANAGEMENT

8.2.4 Out-of-Order Stores For String Operations

The Intel Core 2 Duo, Intel Core, Pentium 4, and P6 family processors modify the
processors operation during the string store operations (initiated with the MOVS and
STOS instructions) to maximize performance. Once the “fast string” operations initial
conditions are met (as described below), the processor will essentially operate on,
from an external perspective, the string in a cache line by cache line mode. This
results in the processor looping on issuing a cache-line read for the source address
and an invalidation on the external bus for the destination address, knowing that all
bytes in the destination cache line will be modified, for the length of the string. In this
mode interrupts will only be accepted by the processor on cache line boundaries. It is
possible in this mode that the destination line invalidations, and therefore stores, will
be issued on the external bus out of order.

Code dependent upon sequential store ordering should not use the string operations
for the entire data structure to be stored. Data and semaphores should be separated.
Order dependent code should use a discrete semaphore uniquely stored to after any
string operations to allow correctly ordered data to be seen by all processors.

“Fast string” operation can be disabled by clearing the fast-string-enable bit (bit 0) of
IA32_MISC_ENABLES MSR.

Initial conditions for “fast string” operations are implementation specific. Example
conditions include:

¢ EDI and ESI must be 8-byte aligned for the Pentium Ill processor. EDI must be 8-
byte aligned for the Pentium 4 processor.

® String operation must be performed in ascending address order.
® The initial operation counter (ECX) must be equal to or greater than 64.

® Source and destination must not overlap by less than a cache line (64 bytes, for
Intel Core 2 Duo, Intel Core, Pentium M, and Pentium 4 processors; 32 bytes P6
family and Pentium processors).

® The memory type for both source and destination addresses must be either WB
or WC.

NOTE

Initial conditions for “fast string“ operation in future Intel 64 or 1A-32 processor fami-
lies may differ from above.

8.2.4.1 Memory-Ordering Model for String Operations on Write-back (WB)
Memory

This section deals with the memory-ordering model for string operations on write-
back (WB) memory for the Intel 64 architecture.

The memory-ordering model respects the follow principles:

1. Stores within a single string operation may be executed out of order.

8-18 Vol.3

MULTIPLE-PROCESSOR MANAGEMENT

2. Stores from separate string operations (for example, stores from consecutive
string operations) do not execute out of order. All the stores from an earlier string
operation will complete before any store from a later string operation.

3. String operations are not reordered with other store operations.

Fast string operations (e.g. string operations initiated with the MOVS/STOS instruc-
tions and the REP prefix) may be interrupted by exceptions or interrupts. The inter-
rupts are precise but may be delayed - for example, the interruptions may be taken
at cache line boundaries, after every few iterations of the loop, or after operating on
every few bytes. Different implementations may choose different options, or may
even choose not to delay interrupt handling, so software should not rely on the delay.
When the interrupt/trap handler is reached, the source/destination registers point to
the next string element to be operated on, while the EIP stored in the stack points to
the string instruction, and the ECX register has the value it held following the last
successful iteration. The return from that trap/interrupt handler should cause the
string instruction to be resumed from the point where it was interrupted.

The string operation memory-ordering principles, (item 2 and 3 above) should be
interpreted by taking the incorruptibility of fast string operations into account. For
example, if a fast string operation gets interrupted after k iterations, then stores
performed by the interrupt handler will become visible after the fast string stores
from iteration O to k, and before the fast string stores from the (k+1)th iteration
onward.

Stores within a single string operation may execute out of order (item 1 above) only
if fast string operation is enabled. Fast string operations are enabled/disabled
through the 1A32_MISC_ENABLE model specific register.

8.24.2 Examples lllustrating Memory-Ordering Principles for String
Operations

The following examples uses the same notation and convention as described in
Section 8.2.3.1.

In Example 8-11, processor O does one round of (128 iterations) doubleword string
store operation via rep:stosd, writing the value 1 (value in EAX) into a block of 512
bytes from location _x (kept in ES:EDI) in ascending order. Since each operation
stores a doubleword (4 bytes), the operation is repeated 128 times (value in ECX).
The block of memory initially contained 0. Processor 1 is reading two memory loca-
tions that are part of the memory block being updated by processor 0O, i.e, reading
locations in the range _x to (_x+511).

Example 8-11. Stores Within a String Operation May be Reordered
Processor 0 Processor 1

rep:stosd [_x] mov r1,[_z]

mov r2, [_y]

Vol.3 8-19

MULTIPLE-PROCESSOR MANAGEMENT

Example 8-11. Stores Within a String Operation May be Reordered

Processor 0 Processor 1

Initially on processor 0: EAX == 1, ECX==128, ES:EDI ==_x
Initially [x] to 511[_x]==0, _x <= _y <_z<_x+512
r1 ==1andr2==0is allowed

It is possible for processor 1 to perceive that the repeated string stores in processor
0 are happening out of order. We assume that fast string operations are enabled on
processor O.

In Example 8-12, processor 0 does two separate rounds of rep stosd operation of 128
doubleword stores, writing the value 1 (value in EAX) into the first block of 512 bytes
from location _x (kept in ES:EDI) in ascending order. It then writes 1 into a second

block of memory from (_x+512) to (_x+1023). All of the memory locations initially
contain 0. The block of memory initially contained 0. Processor 1 performs two load
operations from the two blocks of memory.

Example 8-12. Stores Across String Operations Are not Reordered

Processor 0 Processor 1
rep:stosd [_x]
mov r1,[_z]
mov ecx, $128
mov r2, [_y]
rep:stosd 512[_x]

Initially on processor 0: EAX == 1, ECX==128, ES:EDI ==_x
Initially [x] to 1023[_x]==0, _x <= _y < _x+512<_z< _x+1024
r1 ==1andr2 ==0is not allowed

It is not possible in the above example for processor 1 to perceive any of the stores
from the later string operation (to the second 512 block) in processor 0 before seeing
the stores from the earlier string operation to the first 512 block.

The above example assumes that writes to the second block (_x+512 to _x+1023)
does not get executed while processor 0’s string operation to the first block has been
interrupted. If the string operation to the first block by processor 0 is interrupted,
and a write to the second memory block is executed by the interrupt handler, then
that change in the second memory block will be visible before the string operation to
the first memory block resumes.

In Example 8-13, processor 0 does one round of (128 iterations) doubleword string
store operation via rep:stosd, writing the value 1 (value in EAX) into a block of 512
bytes from location _x (kept in ES:EDI) in ascending order. It then writes to a second
memory location outside the memory block of the previous string operation.

8-20 Vol.3

MULTIPLE-PROCESSOR MANAGEMENT

Processor 1 performs two read operations, the first read is from an address outside
the 512-byte block but to be updated by processor 0, the second ready is from inside
the block of memory of string operation.

Example 8-13. String Operations Are not Reordered with later Stores
Processor 0 Processor 1

rep:stosd [_x] mov rl,[_2]

mov [_z], $1 mov r2, [_vy]

Initially on processor 0: EAX == 1, ECX==128, ES:EDI ==_x

Initially [_y] ==[_2] == 0, [x] to 511[_x]==0, _x <= _y < _x+512, _z is a separate memory
location

r1 ==1andr2 ==0is not allowed

Processor 1 cannot perceive the later store by processor O until it sees all the stores
from the string operation. Example 8-13 assumes that processor O’s store to [_z] is
not executed while the string operation has been interrupted. If the string operation
is interrupted and the store to [_z] by processor O is executed by the interrupt

handler, then changes to [_z] will become visible before the string operation
resumes.

Example 8-14 illustrates the visibility principle when a string operation is interrupted.

Example 8-14. Interrupted String Operation

Processor 0 Processor 1
rep:stosd [_x] // interrupted before es:edi reach |mov r1,[_z]
v
mov [_z], $1 // interrupt handler mov r2, [_y]

Initially on processor 0: EAX == 1, ECX==128, ES:EDI ==_x

Initially [_y] ==[_2] ==0, [Xx] to 511[_x]==0, _x <= _y < _x+512, _z is a separate memory
location

r1 ==1andr2 ==0is allowed

In Example 8-14, processor O started a string operation to write to a memory block
of 512 bytes starting at address _x. Processor 0 got interrupted after k iterations of
store operations. The address _y has not yet been updated by processor 0 when
processor 0 got interrupted. The interrupt handler that took control on processor O
writes to the address _z. Processor 1 may see the store to _z from the interrupt

handler, before seeing the remaining stores to the 512-byte memory block that are
executed when the string operation resumes.

Example 8-15 illustrates the ordering of string operations with earlier stores. No
store from a string operation can be visible before all prior stores are visible.

Vol.3 8-21

MULTIPLE-PROCESSOR MANAGEMENT

Example 8-15. String Operations Are not Reordered with Earlier Stores
Processor 0 Processor 1

mov [_z], $1 mov r1, [_y]
rep:stosd [_x] mov r2, [_z]

Initially on processor 0; EAX == 1, ECX==128, ES:EDI ==_x

Initially [_y] ==[_2] == 0, [.X]to 511[_x]==0, _x <= _y < _x+512, _z is a separate memory
location

r1 ==1andr2 ==0is not allowed

8.2.5 Strengthening or Weakening the Memory-Ordering Model

The Intel 64 and 1A-32 architectures provide several mechanisms for strengthening
or weakening the memory-ordering model to handle special programming situations.
These mechanisms include:

® The I/0 instructions, locking instructions, the LOCK prefix, and serializing
instructions force stronger ordering on the processor.

® The SFENCE instruction (introduced to the 1A-32 architecture in the Pentium Il
processor) and the LFENCE and MFENCE instructions (introduced in the Pentium
4 processor) provide memory-ordering and serialization capabilities for specific
types of memory operations.

® The memory type range registers (MTRRs) can be used to strengthen or weaken
memory ordering for specific area of physical memory (see Section 11.11,
“Memory Type Range Registers (MTRRs)”). MTRRs are available only in the
Pentium 4, Intel Xeon, and P6 family processors.

® The page attribute table (PAT) can be used to strengthen memory ordering for a
specific page or group of pages (see Section 11.12, “Page Attribute Table (PAT)”).
The PAT is available only in the Pentium 4, Intel Xeon, and Pentium lll processors.

These mechanisms can be used as follows:

Memory mapped devices and other 1/0 devices on the bus are often sensitive to the
order of writes to their 1/0 buffers. 1/0 instructions can be used to (the IN and OUT
instructions) impose strong write ordering on such accesses as follows. Prior to
executing an 1/0 instruction, the processor waits for all previous instructions in the
program to complete and for all buffered writes to drain to memory. Only instruction
fetch and page tables walks can pass 1/0 instructions. Execution of subsequent
instructions do not begin until the processor determines that the 1/0 instruction has
been completed.

Synchronization mechanisms in multiple-processor systems may depend upon a
strong memory-ordering model. Here, a program can use a locking instruction such

8-22 Vol.3

MULTIPLE-PROCESSOR MANAGEMENT

as the XCHG instruction or the LOCK prefix to insure that a read-modify-write opera-
tion on memory is carried out atomically. Locking operations typically operate like
1/0 operations in that they wait for all previous instructions to complete and for all
buffered writes to drain to memory (see Section 8.1.2, “Bus Locking”).

Program synchronization can also be carried out with serializing instructions (see
Section 8.3). These instructions are typically used at critical procedure or task
boundaries to force completion of all previous instructions before a jump to a new
section of code or a context switch occurs. Like the 1/0 and locking instructions, the
processor waits until all previous instructions have been completed and all buffered
writes have been drained to memory before executing the serializing instruction.

The SFENCE, LFENCE, and MFENCE instructions provide a performance-efficient way
of insuring load and store memory ordering between routines that produce weakly-

ordered results and routines that consume that data. The functions of these instruc-
tions are as follows:

® SFENCE — Serializes all store (write) operations that occurred prior to the
SFENCE instruction in the program instruction stream, but does not affect load
operations.

® LFENCE — Serializes all load (read) operations that occurred prior to the LFENCE
instruction in the program instruction stream, but does not affect store
operations.

® MFENCE — Serializes all store and load operations that occurred prior to the
MFENCE instruction in the program instruction stream.

Note that the SFENCE, LFENCE, and MFENCE instructions provide a more efficient
method of controlling memory ordering than the CPUID instruction.

The MTRRs were introduced in the P6 family processors to define the cache charac-
teristics for specified areas of physical memory. The following are two examples of
how memory types set up with MTRRs can be used strengthen or weaken memory
ordering for the Pentium 4, Intel Xeon, and P6 family processors:

® The strong uncached (UC) memory type forces a strong-ordering model on
memory accesses. Here, all reads and writes to the UC memory region appear on
the bus and out-of-order or speculative accesses are not performed. This
memory type can be applied to an address range dedicated to memory mapped
1/0 devices to force strong memory ordering.

® For areas of memory where weak ordering is acceptable, the write back (WB)
memory type can be chosen. Here, reads can be performed speculatively and
writes can be buffered and combined. For this type of memory, cache locking is
performed on atomic (locked) operations that do not split across cache lines,
which helps to reduce the performance penalty associated with the use of the
typical synchronization instructions, such as XCHG, that lock the bus during the
entire read-modify-write operation. With the WB memory type, the XCHG
instruction locks the cache instead of the bus if the memory access is contained
within a cache line.

Vol.3 8-23

MULTIPLE-PROCESSOR MANAGEMENT

The PAT was introduced in the Pentium Il processor to enhance the caching charac-

teristics that can be assigned to pages or groups of pages. The PAT mechanism typi-
cally used to strengthen caching characteristics at the page level with respect to the
caching characteristics established by the MTRRs. Table 11-7 shows the interaction of
the PAT with the MTRRs.

We recommended that software written to run on Intel Core 2 Duo, Intel Atom, Intel
Core Duo, Pentium 4, Intel Xeon, and P6 family processors assume the processor-
ordering model or a weaker memory-ordering model. The Intel Core 2 Duo, Intel
Atom, Intel Core Duo, Pentium 4, Intel Xeon, and P6 family processors do not imple-
ment a strong memory-ordering model, except when using the UC memory type.
Despite the fact that Pentium 4, Intel Xeon, and P6 family processors support
processor ordering, Intel does not guarantee that future processors will support this
model. To make software portable to future processors, it is recommended that oper-
ating systems provide critical region and resource control constructs and API’s (appli-
cation program interfaces) based on 1/0, locking, and/or serializing instructions be
used to synchronize access to shared areas of memory in multiple-processor
systems. Also, software should not depend on processor ordering in situations where
the system hardware does not support this memory-ordering model.

8.3 SERIALIZING INSTRUCTIONS

The Intel 64 and 1A-32 architectures define several serializing instructions. These
instructions force the processor to complete all modifications to flags, registers, and
memory by previous instructions and to drain all buffered writes to memory before
the next instruction is fetched and executed. For example, when a MOV to control
register instruction is used to load a new value into control register CRO to enable
protected mode, the processor must perform a serializing operation before it enters
protected mode. This serializing operation insures that all operations that were
started while the processor was in real-address mode are completed before the
switch to protected mode is made.

The concept of serializing instructions was introduced into the 1A-32 architecture
with the Pentium processor to support parallel instruction execution. Serializing
instructions have no meaning for the Intel486 and earlier processors that do not
implement parallel instruction execution.

It is important to note that executing of serializing instructions on P6 and more
recent processor families constrain speculative execution because the results of
speculatively executed instructions are discarded. The following instructions are seri-
alizing instructions:

® Privileged serializing instructions — INVD, INVEPT, INVLPG, INVVPID, LGDT,

LIDT, LLDT, LTR, MOV (to control register, with the exception of MOV CR81), MOV
(to debug register), WBINVD, and WRMSR.

1. MOV CR8is not defined architecturally as a serializing instruction.

8-24 Vol.3

MULTIPLE-PROCESSOR MANAGEMENT

® Non-privileged serializing instructions — CPUID, IRET, and RSM.

When the processor serializes instruction execution, it ensures that all pending
memory transactions are completed (including writes stored in its store buffer)
before it executes the next _instruction. Nothing can pass a serializing instruction and
a serializing instruction cannot pass any other instruction (read, write, instruction
fetch, or 1/0). For example, CPUID can be executed at any privilege level to serialize
instruction execution with no effect on program flow, except that the EAX, EBX, ECX,
and EDX registers are modified.

The following instructions are memory-ordering instructions, not serializing instruc-
tions. These drain the data memory subsystem. They do not effect the instruction
execution stream:

® Non-privileged memory-ordering instructions — SFENCE, LFENCE, and
MFENCE.

The SFENCE, LFENCE, and MFENCE instructions provide more granularity in control-
ling the serialization of memory loads and stores (see Section 8.2.5, “Strengthening
or Weakening the Memory-Ordering Model™).

The following additional information is worth noting regarding serializing instruc-
tions:

® The processor does not writeback the contents of modified data in its data cache
to external memory when it serializes instruction execution. Software can force
modified data to be written back by executing the WBINVD instruction, which is a
serializing instruction. The amount of time or cycles for WBINVD to complete will
vary due to the size of different cache hierarchies and other factors. As a conse-
quence, the use of the WBINVD instruction can have an impact on
interrupt/event response time.

® When an instruction is executed that enables or disables paging (that is, changes
the PG flag in control register CRO), the instruction should be followed by a jump
instruction. The target instruction of the jump instruction is fetched with the new
setting of the PG flag (that is, paging is enabled or disabled), but the jump
instruction itself is fetched with the previous setting. The Pentium 4, Intel Xeon,
and P6 family processors do not require the jJump operation following the move to
register CRO (because any use of the MOV instruction in a Pentium 4, Intel Xeon,
or P6 family processor to write to CRO is completely serializing). However, to
maintain backwards and forward compatibility with code written to run on other
IA-32 processors, it is recommended that the jump operation be performed.

® Whenever an instruction is executed to change the contents of CR3 while paging
is enabled, the next instruction is fetched using the translation tables that
correspond to the new value of CR3. Therefore the next instruction and the
sequentially following instructions should have a mapping based upon the new
value of CR3. (Global entries in the TLBs are not invalidated, see Section 4.10.3,
“Invalidation of TLBs and Paging-Structure Caches.”)

® The Pentium processor and more recent processor families use branch-prediction
techniques to improve performance by prefetching the destination of a branch
instruction before the branch instruction is executed. Consequently, instruction

Vol. 3 8-25

MULTIPLE-PROCESSOR MANAGEMENT

execution is not deterministically serialized when a branch instruction is
executed.

8.4 MULTIPLE-PROCESSOR (MP) INITIALIZATION

The 1A-32 architecture (beginning with the P6 family processors) defines a multiple-
processor (MP) initialization protocol called the Multiprocessor Specification Version
1.4. This specification defines the boot protocol to be used by I1A-32 processors in
multiple-processor systems. (Here, multiple processors is defined as two or more
processors.) The MP initialization protocol has the following important features:

® It supports controlled booting of multiple processors without requiring dedicated
system hardware.

® It allows hardware to initiate the booting of a system without the need for a
dedicated signal or a predefined boot processor.

® It allows all IA-32 processors to be booted in the same manner, including those
supporting Intel Hyper-Threading Technology.

® The MP initialization protocol also applies to MP systems using Intel 64
processors.

The mechanism for carrying out the MP initialization protocol differs depending on
the 1A-32 processor family, as follows:

® For P6 family processors — The selection of the BSP and APs (see Section
8.4.1, “BSP and AP Processors”) is handled through arbitration on the APIC bus,
using BIPI and FIPI messages. See Appendix C, “MP Initialization For P6 Family
Processors,” for a complete discussion of MP initialization for P6 family
processors.

® Intel Xeon processors with family, model, and stepping I1Ds up to FO9H —
The selection of the BSP and APs (see Section 8.4.1, “BSP and AP Processors”) is
handled through arbitration on the system bus, using BIPI and FIPI messages
(see Section 8.4.3, “MP Initialization Protocol Algorithm for
Intel Xeon Processors™).

® Intel Xeon processors with family, model, and stepping I1Ds of FOAH and
beyond, 6EOH and beyond, 6FOH and beyond — The selection of the BSP and
APs is handled through a special system bus cycle, without using BIPI and FIPI
message arbitration (see Section 8.4.3, “MP Initialization Protocol Algorithm for
Intel Xeon Processors™).

The family, model, and stepping ID for a processor is given in the EAX register when
the CPUID instruction is executed with a value of 1 in the EAX register.

8-26 Vol.3

MULTIPLE-PROCESSOR MANAGEMENT

8.4.1 BSP and AP Processors

The MP initialization protocol defines two classes of processors: the bootstrap
processor (BSP) and the application processors (APs). Following a power-up or
RESET of an MP system, system hardware dynamically selects one of the processors
on the system bus as the BSP. The remaining processors are designated as APs.

As part of the BSP selection mechanism, the BSP flag is set in the 1A32_APIC_BASE
MSR (see Figure 10-5) of the BSP, indicating that it is the BSP. This flag is cleared for
all other processors.

The BSP executes the BIOS’s boot-strap code to configure the APIC environment,
sets up system-wide data structures, and starts and initializes the APs. When the BSP
and APs are initialized, the BSP then begins executing the operating-system initial-
ization code.

Following a power-up or reset, the APs complete a minimal self-configuration, then
wait for a startup signal (a SIPI message) from the BSP processor. Upon receiving a
SIPI message, an AP executes the BIOS AP configuration code, which ends with the
AP being placed in halt state.

For Intel 64 and 1A-32 processors supporting Intel Hyper-Threading Technology, the
MP initialization protocol treats each of the logical processors on the system bus or
coherent link domain as a separate processor (with a unique APIC ID). During boot-
up, one of the logical processors is selected as the BSP and the remainder of the
logical processors are designated as APs.

8.4.2 MP Initialization Protocol Requirements and Restrictions

The MP initialization protocol imposes the following requirements and restrictions on
the system:

® The MP protocol is executed only after a power-up or RESET. If the MP protocol
has completed and a BSP is chosen, subsequent INITs (either to a specific
processor or system wide) do not cause the MP protocol to be repeated. Instead,
each logical processor examines its BSP flag (in the 1A32_APIC_BASE MSR) to
determine whether it should execute the BIOS boot-strap code (if it is the BSP) or
enter a wait-for-SIPI state (if it is an AP).

® All devices in the system that are capable of delivering interrupts to the
processors must be inhibited from doing so for the duration of the MP initial-
ization protocol. The time during which interrupts must be inhibited includes the
window between when the BSP issues an INIT-SIPI-SIPI sequence to an AP and
when the AP responds to the last SIPI in the sequence.

Vol.3 8-27

MULTIPLE-PROCESSOR MANAGEMENT

8.4.3 MP Initialization Protocol Algorithm for
Intel Xeon Processors

Following a power-up or RESET of an MP system, the processors in the system
execute the MP initialization protocol algorithm to initialize each of the logical proces-
sors on the system bus or coherent link domain. In the course of executing this algo-
rithm, the following boot-up and initialization operations are carried out:

1. Each logical processor is assigned a unique APIC ID, based on system topology.
The unique ID is a 32-bit value if the processor supports CPUID leaf OBH,
otherwise the unique ID is an 8-bit value. (see Section 8.4.5, “ldentifying Logical
Processors in an MP System”). This ID is written into the local APIC ID register for
each processor.

2. Each logical processor is assigned a unique arbitration priority based on its
APIC ID.

3. Each logical processor executes its internal BIST simultaneously with the other
logical processors on the system bus.

4. Upon completion of the BIST, the logical processors use a hardware-defined
selection mechanism to select the BSP and the APs from the available logical
processors on the system bus. The BSP selection mechanism differs depending
on the family, model, and stepping IDs of the processors, as follows:

— Family, model, and stepping IDs of FOAH and onwards:

®* The logical processors begin monitoring the BNR# signal, which is
toggling. When the BNR# pin stops toggling, each processor attempts to
issue a NOP special cycle on the system bus.

®* The logical processor with the highest arbitration priority succeeds in
issuing a NOP special cycle and is nominated the BSP. This processor sets
the BSP flag in its IA32_APIC_BASE MSR, then fetches and begins
executing BIOS boot-strap code, beginning at the reset vector (physical
address FFFF FFFOH).

®* The remaining logical processors (that failed in issuing a NOP special
cycle) are designated as APs. They leave their BSP flags in the clear state
and enter a “wait-for-SIPI state.”

— Family, model, and stepping IDs up to FO9H:

®* Each processor broadcasts a BIPI to “all including self.” The first processor
that broadcasts a BIPI (and thus receives its own BIPI vector), selects
itself as the BSP and sets the BSP flag in its IA32_APIC_BASE MSR. (See
Appendix C.1, “Overview of the MP Initialization Process For P6 Family
Processors,” for a description of the BIPI, FIPI, and SIPI messages.)

®* The remainder of the processors (which were not selected as the BSP) are
designated as APs. They leave their BSP flags in the clear state and enter
a “wait-for-SIPI state.”

8-28 Vol.3

MULTIPLE-PROCESSOR MANAGEMENT

* The newly established BSP broadcasts an FIPI message to “all including
self,” which the BSP and APs treat as an end of MP initialization signal.
Only the processor with its BSP flag set responds to the FIPI message. It
responds by fetching and executing the BIOS boot-strap code, beginning
at the reset vector (physical address FFFF FFFOH).

5. As part of the boot-strap code, the BSP creates an ACPI table and an MP table and
adds its initial APIC ID to these tables as appropriate.

6. At the end of the boot-strap procedure, the BSP sets a processor counter to 1,
then broadcasts a SIPI message to all the APs in the system. Here, the SIPI
message contains a vector to the BIOS AP initialization code (at 000VVOOOH,
where VV is the vector contained in the SIPI message).

7. The first action of the AP initialization code is to set up a race (among the APs) to
a BIOS initialization semaphore. The first AP to the semaphore begins executing
the initialization code. (See Section 8.4.4, “MP Initialization Example,” for
semaphore implementation details.) As part of the AP initialization procedure,
the AP adds its APIC ID number to the ACPI and MP tables as appropriate and
increments the processor counter by 1. At the completion of the initialization
procedure, the AP executes a CLI instruction and halts itself.

8. When each of the APs has gained access to the semaphore and executed the AP
initialization code, the BSP establishes a count for the number of processors
connected to the system bus, completes executing the BIOS boot-strap code,
and then begins executing operating-system boot-strap and start-up code.

9. While the BSP is executing operating-system boot-strap and start-up code, the
APs remain in the halted state. In this state they will respond only to INITs, NMIs,
and SMls. They will also respond to snoops and to assertions of the STPCLK# pin.

The following section gives an example (with code) of the MP initialization protocol
for multiple Intel Xeon processors operating in an MP configuration.

Appendix B, “Model-Specific Registers (MSRs),” describes how to program the
LINT[O:1] pins of the processor’s local APICs after an MP configuration has been
completed.

8.4.4 MP Initialization Example

The following example illustrates the use of the MP initialization protocol used to
initialize processors in an MP system after the BSP and APs have been established.
The code runs on Intel 64 or 1A-32 processors that use a protocol. This includes P6
Family processors, Pentium 4 processors, Intel Core Duo, Intel Core 2 Duo and Intel
Xeon processors.

The following constants and data definitions are used in the accompanying
code examples. They are based on the addresses of the APIC registers defined in
Table 10-1.

ICR_LOW EQU OFEEOO300H

Vol.3 8-29

MULTIPLE-PROCESSOR MANAGEMENT

SVR EQU OFEEOOOFOH
APIC_ID EQU OFEEOOO020H
LvT3 EQU OFEED0370H
APIC_ENABLED EQU 0100H
BOOT_ID DD?

COUNT €QU OOH
VACANT EQU OOH

8.4.4.1 Typical BSP Initialization Sequence

After the BSP and APs have been selected (by means of a hardware protocol, see
Section 8.4.3, “MP Initialization Protocol Algorithm for Intel Xeon Processors”), the
BSP begins executing BIOS boot-strap code (POST) at the normal 1A-32 architecture
starting address (FFFF FFFOH). The boot-strap code typically performs the following
operations:

1. Initializes memory.
Loads the microcode update into the processor.
Initializes the MTRRs.

Enables the caches.

a bk wn

Executes the CPUID instruction with a value of OH in the EAX register, then reads
the EBX, ECX, and EDX registers to determine if the BSP is “Genuinelntel.”

6. Executes the CPUID instruction with a value of 1H in the EAX register, then saves
the values in the EAX, ECX, and EDX registers in a system configuration space in
RAM for use later.

7. Loads start-up code for the AP to execute into a 4-KByte page in the lower 1
MByte of memory.

8. Switches to protected mode and insures that the APIC address space is mapped
to the strong uncacheable (UC) memory type.

9. Determine the BSP’s APIC ID from the local APIC ID register (default is 0), the
code snippet below is an example that applies to logical processors in a system
whose local APIC units operate in XAPIC mode that APIC registers are accessed
using memory mapped interface:

MOV ESI, APIC_ID; Address of local APIC ID register

MOV EAX, [ESI];

AND EAX, OFFO00000H; Zero out all other bits except APIC ID
MOV BOOT_ID, EAX; Save in memory

Saves the APIC ID in the ACPI and MP tables and optionally in the system config-
uration space in RAM.

10. Converts the base address of the 4-KByte page for the AP’s bootup code into 8-bit
vector. The 8-bit vector defines the address of a 4-KByte page in the real-address

8-30 Vol. 3

11.

12.

13.

14.

15.

MULTIPLE-PROCESSOR MANAGEMENT

mode address space (1-MByte space). For example, a vector of OBDH specifies a
start-up memory address of 000BDOOOH.

Enables the local APIC by setting bit 8 of the APIC spurious vector register (SVR).

MOV ESI, SVR; Address of SVR

MOV EAX, [ESI];

OR EAX, APIC_ENABLED; Set bit 8 to enable (O on reset)
MOV [ESI], EAX;

Sets up the LVT error handling entry by establishing an 8-bit vector for the APIC
error handler.

MOV ESI, LVT3;

MOV EAX, [ESI];

AND EAX, FFFFFFOOH; Clear out previous vector.

OR EAX, 000000xxH; xx is the 8-bit vector the APIC error handler.
MOV [ESI], EAX;

Initializes the Lock Semaphore variable VACANT to OOH. The APs use this
semaphore to determine the order in which they execute BIOS AP initialization
code.

Performs the following operation to set up the BSP to detect the presence of APs
in the system and the number of processors:

— Sets the value of the COUNT variable to 1.

— Starts a timer (set for an approximate interval of 100 milliseconds). In the AP
BIOS initialization code, the AP will increment the COUNT variable to indicate
its presence. When the timer expires, the BSP checks the value of the COUNT
variable. If the timer expires and the COUNT variable has not been incre-
mented, no APs are present or some error has occurred.

Broadcasts an INIT-SIPI-SIPI IPI sequence to the APs to wake them up and
initialize them:

MOV ESI, ICR_LOW; Load address of ICR low dword into ESI.
MOV EAX, 000C4500H; Load ICR encoding for broadcast INIT IPI
; to all APs into EAX.

MOV [ESI], EAX; Broadcast INIT IPI to all APs

; 10-millisecond delay loop.

MOV EAX, 000C46XXH; Load ICR encoding for broadcast SIPI IP
; 1o all APs into EAX, where xx is the vector computed in step 10.
MOV [ESI], EAX; Broadcast SIPI IPI to all APs

; 200-microsecond delay loop

MOV [ESI], EAX; Broadcast second SIPI IPI to all APs

; 200-microsecond delay loop

Step 15:

Vol.3 8-31

MULTIPLE-PROCESSOR MANAGEMENT

16.
17.
18.

MOV EAX, 000C46XXH; Load ICR encoding from broadcast SIPI IP
; to all APs into EAX where xx is the vector computed in step 8.

Waits for the timer interrupt.
Reads and evaluates the COUNT variable and establishes a processor count.

If necessary, reconfigures the APIC and continues with the remaining system
diagnostics as appropriate.

8.4.4.2 Typical AP Initialization Sequence

When an AP receives the SIPI, it begins executing BIOS AP initialization code at the
vector encoded in the SIPI. The AP initialization code typically performs the following

operations:

1. Waits on the BIOS initialization Lock Semaphore. When control of the semaphore
is attained, initialization continues.

2. Loads the microcode update into the processor.

3. Initializes the MTRRs (using the same mapping that was used for the BSP).

4. Enables the cache.

5. Executes the CPUID instruction with a value of OH in the EAX register, then reads
the EBX, ECX, and EDX registers to determine if the AP is “Genuinelntel.”

6. Executes the CPUID instruction with a value of 1H in the EAX register, then saves
the values in the EAX, ECX, and EDX registers in a system configuration space in
RAM for use later.

7. Switches to protected mode and insures that the APIC address space is mapped
to the strong uncacheable (UC) memory type.

8. Determines the AP’s APIC ID from the local APIC ID register, and adds it to the MP
and ACPI tables and optionally to the system configuration space in RAM.

9. Initializes and configures the local APIC by setting bit 8 in the SVR register and
setting up the LVT3 (error LVT) for error handling (as described in steps 9 and 10
in Section 8.4.4.1, “Typical BSP Initialization Sequence”).

10. Configures the APs SMI execution environment. (Each AP and the BSP must have
a different SMBASE address.)

11. Increments the COUNT variable by 1.

12. Releases the semaphore.

13. Executes the CLI and HLT instructions.

14. Waits for an INIT IPI.

8-32 Vol.3

MULTIPLE-PROCESSOR MANAGEMENT

8.4.5 Identifying Logical Processors in an MP System

After the BIOS has completed the MP initialization protocol, each logical processor
can be uniquely identified by its local APIC ID. Software can access these APIC IDs in
either of the following ways:

Read APIC ID for a local APIC — Code running on a logical processor can read
APIC ID in one of two ways depending on the local APIC unit is operating in
X2APIC mode (see Intel® 64 Architecture x2APIC Specification)or in XAPIC
mode:

— If the local APIC unit supports x2APIC and is operating in x2APIC mode, 32-
bit APIC ID can be read by executing a RDMSR instruction to read the
processor’s x2APIC ID register. This method is equivalent to executing CPUID
leaf OBH described below.

— If the local APIC unit is operating in XAPIC mode, 8-bit APIC ID can be read by
executing a MOV instruction to read the processor’s local APIC ID register
(see Section 10.4.6, “Local APIC ID”). This is the ID to use for directing
physical destination mode interrupts to the processor.

Read ACPI or MP table — As part of the MP initialization protocol, the BIOS
creates an ACPI table and an MP table. These tables are defined in the Multipro-
cessor Specification Version 1.4 and provide software with a list of the processors
in the system and their local APIC IDs. The format of the ACPI table is derived
from the ACPI specification, which is an industry standard power management
and platform configuration specification for MP systems.

Read Initial APIC ID (If the process does not support CPUID leaf OBH) — An
APIC ID is assigned to a logical processor during power up. This is the initial APIC
ID reported by CPUID.1:EBX[31:24] and may be different from the current value
read from the local APIC. The initial APIC ID can be used to determine the
topological relationship between logical processors for multi-processor systems
that do not support CPUID leaf OBH.

Bits in the 8-bit initial APIC ID can be interpreted using several bit masks. Each
bit mask can be used to extract an identifier to represent a hierarchical level of
the multi-threading resource topology in an MP system (See Section 8.9.1,
“Hierarchical Mapping of Shared Resources”). The initial APIC ID may consist of
up to four bit-fields. In a non-clustered MP system, the field consists of up to
three bit fields.

Read 32-bit APIC ID from CPUID leaf OBH (If the processor supports CPUID
leaf OBH) — A unique APIC ID is assigned to a logical processor during power up.
This APIC ID is reported by CPUID.OBH:EDX[31:0] as a 32-bit value. Use the 32-
bit APIC ID and CPUID leaf OBH to determine the topological relationship between
logical processors if the processor supports CPUID leaf OBH.

Bits in the 32-bit x2APIC ID can be extracted into sub-fields using CPUID leaf OBH
parameters. (See Section 8.9.1, “Hierarchical Mapping of Shared Resources”).

Figure 8-2 shows two examples of APIC ID bit fields in earlier single-core processors.
In single-core Intel Xeon processors, the APIC ID assigned to a logical processor

Vol.3 8-33

MULTIPLE-PROCESSOR MANAGEMENT

during power-up and initialization is 8 bits. Bits 2:1 form a 2-bit physical package
identifier (which can also be thought of as a socket identifier). In systems that
configure physical processors in clusters, bits 4:3 form a 2-bit cluster ID. Bit O is used
in the Intel Xeon processor MP to identify the two logical processors within the
package (see Section 8.9.3, “Hierarchical ID of Logical Processors in an MP System”).
For Intel Xeon processors that do not support Intel Hyper-Threading Technology, bit
0 is always set to O; for Intel Xeon processors supporting Intel Hyper-Threading
Technology, bit O performs the same function as it does for Intel Xeon processor MP.

For more recent multi-core processors, see Section 8.9.1, “Hierarchical Mapping of
Shared Resources” for a complete description of the topological relationships
between logical processors and bit field locations within an initial APIC ID across Intel
64 and IA-32 processor families.

Note the number of bit fields and the width of bit-fields are dependent on processor
and platform hardware capabilities. Software should determine these at runtime.
When initial APIC IDs are assigned to logical processors, the value of APIC ID
assigned to a logical processor will respect the bit-field boundaries corresponding
core, physical package, etc. Additional examples of the bit fields in the initial APIC ID
of multi-threading capable systems are shown in Section 8.9.

APIC ID Format for Intel Xeon Processors that
do not Support Intel Hyper-Threading Technology

7 5 4 3 2 1 0
Reserved 0
Cluster

Processor ID

APIC ID Format for P6 Family Processors
7 4 3 2 1 0

Reserved

Cluster
Processor ID

Figure 8-2. Interpretation of APIC ID in Early MP Systems

For P6 family processors, the APIC ID that is assigned to a processor during power-
up and initialization is 4 bits (see Figure 8-2). Here, bits 0 and 1 form a 2-bit
processor (or socket) identifier and bits 2 and 3 form a 2-bit cluster ID.

8-34 Vol.3

MULTIPLE-PROCESSOR MANAGEMENT

8.5 INTEL® HYPER-THREADING TECHNOLOGY AND
INTEL® MULTI-CORE TECHNOLOGY

Intel Hyper-Threading Technology and Intel multi-core technology are extensions to
Intel 64 and 1A-32 architectures that enable a single physical processor to execute
two or more separate code streams (called threads) concurrently. In Intel Hyper-
Threading Technology, a single processor core provides two logical processors that
share execution resources (see Section 8.7, “Intel® Hyper-Threading Technology
Architecture”). In Intel multi-core technology, a physical processor package provides
two or more processor cores. Both configurations require chipsets and a BIOS that
support the technologies.

Software should not rely on processor names to determine whether a processor
supports Intel Hyper-Threading Technology or Intel multi-core technology. Use the
CPUID instruction to determine processor capability (see Section 8.6.2, “Initializing
Multi-Core Processors™).

8.6 DETECTING HARDWARE MULTI-THREADING
SUPPORT AND TOPOLOGY

Use the CPUID instruction to detect the presence of hardware multi-threading
support in a physical processor. Hardware multi-threading can support several vari-
eties of multigrade and/or Intel Hyper-Threading Technology. CPUID instruction
provides several sets of parameter information to aid software enumerating topology
information. The relevant topology enumeration parameters provided by CPUID
include:

® Hardware Multi-Threading feature flag (CPUID.1:EDX[28] = 1) —
Indicates when set that the physical package is capable of supporting Intel
Hyper-Threading Technology and/or multiple cores.

® Processor topology enumeration parameters for 8-bit APIC ID:

— Addressable IDs for Logical processors in the same Package
(CPUID.1:EBX[23:16]) — Indicates the maximum number of addressable
ID for logical processors in a physical package. Within a physical package,
there may be addressable IDs that are not occupied by any logical
processors. This parameter does not represents the hardware capability of
the physical processor.2

®* Addressable IDs for processor cores in the same Package®
(CPUID.(EAX=4, ECX=0%):EAX[31:26] + 1 = Y) — Indicates the maximum

2. Operating system and BIOS may implement features that reduce the number of logical proces-
sors available in a platform to applications at runtime to less than the number of physical pack-
ages times the number of hardware-capable logical processors per package.

Vol.3 8-35

MULTIPLE-PROCESSOR MANAGEMENT

number of addressable IDs attributable to processor cores (Y) in the physical
package.

¢ Extended Processor Topology Enumeration parameters for 32-bit APIC
ID: Intel 64 processors supporting CPUID leaf OBH will assign unique APIC IDs to
each logical processor in the system. CPUID leaf OBH reports the 32-bit APIC ID
and provide topology enumeration parameters. See CPUID instruction reference
pagesin Intel® 64 and 1A-32 Architectures Software Developer’s Manual, Volume
2A.

The CPUID feature flag may indicate support for hardware multi-threading when only
one logical processor available in the package. In this case, the decimal value repre-
sented by bits 16 through 23 in the EBX register will have a value of 1.

Software should note that the number of logical processors enabled by system soft-
ware may be less than the value of “Addressable IDs for Logical processors”. Simi-
larly, the number of cores enabled by system software may be less than the value of
“Addressable IDs for processor cores”.

Software can detect the availability of the CPUID extended topology enumeration leaf
(OBH) by performing two steps:

® Check maximum input value for basic CPUID information by executing CPUID
with EAX= 0. If CPUID.OH:EAX is greater than or equal or 11 (OBH), then proceed
to next step,

® Check CPUID.EAX=0BH, ECX=0H:EBX is non-zero.

If both of the above conditions are true, extended topology enumeration leaf is avail-
able. Note the presence of CPUID leaf OBH in a processor does not guarantee support
that the local APIC supports x2APIC. If CPUID.(EAX=0BH, ECX=0H):EBX returns
zero and maximum input value for basic CPUID information is greater than OBH, then
CPUID.OBH leaf is not supported on that processor.

8.6.1 Initializing Processors
Supporting Hyper-Threading Technology

The initialization process for an MP system that contains processors supporting Intel
Hyper-Threading Technology is the same as for conventional MP systems (see
Section 8.4, “Multiple-Processor (MP) Initialization). One logical processor in the
system is selected as the BSP and other processors (or logical processors) are desig-
nated as APs. The initialization process is identical to that described in Section 8.4.3,
“MP Initialization Protocol Algorithm for Intel Xeon Processors,” and Section 8.4.4,
“MP Initialization Example.”

3. Software must check CPUID for its support of leaf 4 when implementing support for multi-core. If
CPUID leaf 4 is not available at runtime, software should handle the situation as if there is only
one core per package.

4, Maximum number of cores in the physical package must be queried by executing CPUID with
EAX=4 and a valid ECX input value. Valid ECX input values start from O.

8-36 Vol.3

MULTIPLE-PROCESSOR MANAGEMENT

During initialization, each logical processor is assigned an APIC ID that is stored in
the local APIC ID register for each logical processor. If two or more processors
supporting Intel Hyper-Threading Technology are present, each logical processor on
the system bus is assigned a unique ID (see Section 8.9.3, “Hierarchical ID of Logical
Processors in an MP System”). Once logical processors have APIC IDs, software
communicates with them by sending APIC IPI messages.

8.6.2 Initializing Multi-Core Processors

The initialization process for an MP system that contains multi-core Intel 64 or 1A-32
processors is the same as for conventional MP systems (see Section 8.4, “Multiple-
Processor (MP) Initialization”). A logical processor in one core is selected as the BSP;
other logical processors are designated as APs.

During initialization, each logical processor is assigned an APIC ID. Once logical
processors have APIC IDs, software may communicate with them by sending APIC
IPI messages.

8.6.3 Executing Multiple Threads on an Intel® 64 or IA-32
Processor Supporting Hardware Multi-Threading

Upon completing the operating system boot-up procedure, the bootstrap processor
(BSP) executes operating system code. Other logical processors are placed in the
halt state. To execute a code stream (thread) on a halted logical processor, the oper-
ating system issues an interprocessor interrupt (IP1) addressed to the halted logical
processor. In response to the IPI, the processor wakes up and begins executing the
thread identified by the interrupt vector received as part of the IPI.

To manage execution of multiple threads on logical processors, an operating system
can use conventional symmetric multiprocessing (SMP) techniques. For example, the
operating-system can use a time-slice or load balancing mechanism to periodically
interrupt each of the active logical processors. Upon interrupting a logical processor,
the operating system checks its run queue for a thread waiting to be executed and
dispatches the thread to the interrupted logical processor.

8.6.4 Handling Interrupts on an IA-32 Processor Supporting
Hardware Multi-Threading

Interrupts are handled on processors supporting Intel Hyper-Threading Technology
as they are on conventional MP systems. External interrupts are received by the 1/0
APIC, which distributes them as interrupt messages to specific logical processors
(see Figure 8-3).

Logical processors can also send IPIs to other logical processors by writing to the ICR
register of its local APIC (see Section 10.7, “Issuing Interprocessor Interrupts”). This
also applies to dual-core processors.

Vol.3 8-37

MULTIPLE-PROCESSOR MANAGEMENT

Intel Processor with Intel Intel Processor with Intel
Hyper-Threading Technology Hyper-Threading Technology
Logical Logical Logical Logical
Processor 0| Processor 1 Processor 0| Processor 1
Processor Core Processor Core

Local APIC | Local APIC Local APIC | Local APIC

Bus Interface Bus Interface
AIPIs A Interrupt AlPlS A Interrupt
Messages Messages
- >
A Interrupt Messages
Bridge
<> PCI

Y

/O APIC [External
< Interrupts

System Chip Set

Figure 8-3. Local APICs and I/0 APIC in MP System Supporting Intel HT Technology

8.7 INTEL® HYPER-THREADING TECHNOLOGY
ARCHITECTURE

Figure 8-4 shows a generalized view of an Intel processor supporting Intel Hyper-
Threading Technology, using the original Intel Xeon processor MP as an example.
This implementation of the Intel Hyper-Threading Technology consists of two logical
processors (each represented by a separate architectural state) which share the
processor’s execution engine and the bus interface. Each logical processor also has
its own advanced programmable interrupt controller (APIC).

8-38 Vol.3

MULTIPLE-PROCESSOR MANAGEMENT

Logical Logical
Processor O | Processor 1
Architectural | Architectural

State State

Execution Engine

Local APIC | Local APIC

Bus Interface

!

-

System Bus

Figure 8-4. IA-32 Processor with Two Logical Processors Supporting Intel HT
Technology

8.7.1 State of the Logical Processors

The following features are part of the architectural state of logical processors within
Intel 64 or 1A-32 processors supporting Intel Hyper-Threading Technology. The
features can be subdivided into three groups:

® Duplicated for each logical processor

® Shared by logical processors in a physical processor

® Shared or duplicated, depending on the implementation

The following features are duplicated for each logical processor:

® General purpose registers (EAX, EBX, ECX, EDX, ESI, EDI, ESP, and EBP)
® Segment registers (CS, DS, SS, ES, FS, and GS)

® EFLAGS and EIP registers. Note that the CS and EIP/RIP registers for each logical
processor point to the instruction stream for the thread being executed by the
logical processor.

® x87 FPU registers (STO through ST7, status word, control word, tag word, data
operand pointer, and instruction pointer)

® MMX registers (MMO through MM7)
® XMM registers (XMMO through XMM7) and the MXCSR register

® Control registers and system table pointer registers (GDTR, LDTR, IDTR, task
register)

Vol.3 8-39

MULTIPLE-PROCESSOR MANAGEMENT

® Debug registers (DRO, DR1, DR2, DR3, DR6, DR7) and the debug control MSRs

® Machine check global status (IA32_MCG_STATUS) and machine check capability
(1A32_MCG_CAP) MSRs

® Thermal clock modulation and ACPI Power management control MSRs
® Time stamp counter MSRs

® Most of the other MSR registers, including the page attribute table (PAT). See the
exceptions below.

® Local APIC registers.

® Additional general purpose registers (R8-R15), XMM registers (XMM8-XMM15),
control register, IA32_EFER on Intel 64 processors.

The following features are shared by logical processors:

® Memory type range registers (MTRRS)

Whether the following features are shared or duplicated is implementation-specific:

® |JA32_MISC_ENABLE MSR (MSR address 1A0H)

® Machine check architecture (MCA) MSRs (except for the 1A32_MCG_STATUS and
IA32_MCG_CAP MSRs)

® Performance monitoring control and counter MSRs

8.7.2 APIC Functionality

When a processor supporting Intel Hyper-Threading Technology support is initialized,
each logical processor is assigned a local APIC ID (see Table 10-1). The local APIC ID
serves as an ID for the logical processor and is stored in the logical processor’s APIC
ID register. If two or more processors supporting Intel Hyper-Threading Technology
are present in a dual processor (DP) or MP system, each logical processor on the
system bus is assigned a unique local APIC ID (see Section 8.9.3, “Hierarchical ID of
Logical Processors in an MP System”).

Software communicates with local processors using the APIC’s interprocessor inter-

rupt (IPl) messaging facility. Setup and programming for APICs is identical in proces-
sors that support and do not support Intel Hyper-Threading Technology. See Chapter
10, “Advanced Programmable Interrupt Controller (APIC),” for a detailed discussion.

8.7.3 Memory Type Range Registers (MTRR)

MTRRs in a processor supporting Intel Hyper-Threading Technology are shared by
logical processors. When one logical processor updates the setting of the MTRRs,
settings are automatically shared with the other logical processors in the same phys-
ical package.

The architectures require that all MP systems based on Intel 64 and 1A-32 processors
(this includes logical processors) must use an identical MTRR memory map. This

8-40 Vol.3

MULTIPLE-PROCESSOR MANAGEMENT

gives software a consistent view of memory, independent of the processor on which
it is running. See Section 11.11, “Memory Type Range Registers (MTRRS),” for infor-
mation on setting up MTRRs.

8.74 Page Attribute Table (PAT)

Each logical processor has its own PAT MSR (IA32_CR_PAT). However, as described
in Section 11.12, “Page Attribute Table (PAT),” the PAT MSR settings must be the
same for all processors in a system, including the logical processors.

8.7.5 Machine Check Architecture

In the Intel HT Technology context as implemented by processors based on Intel
NetBurst microarchitecture, all of the machine check architecture (MCA) MSRs
(except for the 1A32_MCG_STATUS and IA32_MCG_CAP MSRs) are duplicated for
each logical processor. This permits logical processors to initialize, configure, query,
and handle machine-check exceptions simultaneously within the same physical
processor. The design is compatible with machine check exception handlers that
follow the guidelines given in Chapter 15, “Machine-Check Architecture.”

The 1A32_MCG_STATUS MSR is duplicated for each logical processor so that its
machine check in progress bit field (MCIP) can be used to detect recursion on the
part of MCA handlers. In addition, the MSR allows each logical processor to deter-
mine that a machine-check exception is in progress independent of the actions of
another logical processor in the same physical package.

Because the logical processors within a physical package are tightly coupled with
respect to shared hardware resources, both logical processors are notified of
machine check errors that occur within a given physical processor. If machine-check
exceptions are enabled when a fatal error is reported, all the logical processors within
a physical package are dispatched to the machine-check exception handler. If
machine-check exceptions are disabled, the logical processors enter the shutdown
state and assert the IERR# signal.

When enabling machine-check exceptions, the MCE flag in control register CR4
should be set for each logical processor.

On Intel Atom family processors that support Intel Hyper-Threading Technology, the
MCA facilities are shared between all logical processors on the same processor core.

8.7.6 Debug Registers and Extensions

Each logical processor has its own set of debug registers (DRO, DR1, DR2, DR3, DR6,
DR7) and its own debug control MSR. These can be set to control and record debug
information for each logical processor independently. Each logical processor also has
its own last branch records (LBR) stack.

Vol.3 8-41

MULTIPLE-PROCESSOR MANAGEMENT

8.7.7 Performance Monitoring Counters

Performance counters and their companion control MSRs are shared between the
logical processors within a processor core for processors based on Intel NetBurst
microarchitecture. As a result, software must manage the use of these resources.
The performance counter interrupts, events, and precise event monitoring support
can be set up and allocated on a per thread (per logical processor) basis.

See Section 19.19, “Performance Monitoring and Intel Hyper-Threading Technology
in Processors Based on Intel NetBurst Microarchitecture,” for a discussion of perfor-
mance monitoring in the Intel Xeon processor MP.

In Intel Atom processor family that support Intel Hyper-Threading Technology, the
performance counters (general-purpose and fixed-function counters) and their
companion control MSRs are duplicated for each logical processor.

8.7.8 IA32_MISC_ENABLE MSR

The 1A32_MISC_ENABLE MSR (MSR address 1A0H) is generally shared between the
logical processors in a processor core supporting Intel Hyper-Threading Technology.
However, some bit fields within 1A32_MISC_ENABLES MSR may be duplicated per
logical processor. The partition of shared or duplicated bit fields within
IA32_MISC_ENABLES is implementation dependent. Software should program dupli-
cated fields carefully on all logical processors in the system to ensure consistent
behavior.

8.7.9 Memory Ordering

The logical processors in an Intel 64 or 1A-32 processor supporting Intel Hyper-
Threading Technology obey the same rules for memory ordering as Intel 64 or 1A-32
processors without Intel HT Technology (see Section 8.2, “Memory Ordering™). Each
logical processor uses a processor-ordered memory model that can be further
defined as “write-ordered with store buffer forwarding.” All mechanisms for strength-
ening or weakening the memory-ordering model to handle special programming situ-
ations apply to each logical processor.

8.7.10 Serializing Instructions

As a general rule, when a logical processor in a processor supporting Intel Hyper-

Threading Technology executes a serializing instruction, only that logical processor is
affected by the operation. An exception to this rule is the execution of the WBINVD,
INVD, and WRMSR instructions; and the MOV CR instruction when the state of the CD
flag in control register CRO is modified. Here, both logical processors are serialized.

8-42 Vol.3

MULTIPLE-PROCESSOR MANAGEMENT

8.7.11 MICROCODE UPDATE Resources

In an Intel processor supporting Intel Hyper-Threading Technology, the microcode
update facilities are shared between the logical processors; either logical processor
can initiate an update. Each logical processor has its own BIOS signature MSR
(IA32_BIOS_SIGN_ID at MSR address 8BH). When a logical processor performs an
update for the physical processor, the IA32_BIOS_SIGN_ID MSRs for resident logical
processors are updated with identical information. If logical processors initiate an
update simultaneously, the processor core provides the necessary synchronization
needed to insure that only one update is performed at a time.

Operating system microcode update drivers that adhere to Intel’s guidelines do not
need to be modified to run on processors supporting Intel Hyper-Threading Tech-
nology.

8.7.12 Self Modifying Code

Intel processors supporting Intel Hyper-Threading Technology support self-modifying
code, where data writes modify instructions cached or currently in flight. They also
support cross-modifying code, where on an MP system writes generated by one
processor modify instructions cached or currently in flight on another. See Section
8.1.3, “Handling Self- and Cross-Modifying Code,” for a description of the require-
ments for self- and cross-modifying code in an 1A-32 processor.

8.7.13 Implementation-Specific Intel HT Technology Facilities

The following non-architectural facilities are implementation-specific in 1A-32 proces-
sors supporting Intel Hyper-Threading Technology:

® Caches
® Translation lookaside buffers (TLBSs)
® Thermal monitoring facilities

The Intel Xeon processor MP implementation is described in the following sections.

8.7.13.1 Processor Caches

For processors supporting Intel Hyper-Threading Technology, the caches are shared.
Any cache manipulation instruction that is executed on one logical processor has a
global effect on the cache hierarchy of the physical processor. Note the following:

®* WBINVD instruction — The entire cache hierarchy is invalidated after modified
data is written back to memory. All logical processors are stopped from executing
until after the write-back and invalidate operation is completed. A special bus
cycle is sent to all caching agents. The amount of time or cycles for WBINVD to
complete will vary due to the size of different cache hierarchies and other factors.

Vol.3 8-43

MULTIPLE-PROCESSOR MANAGEMENT

As a consequence, the use of the WBINVD instruction can have an impact on
interrupt/event response time.

® INVD instruction — The entire cache hierarchy is invalidated without writing
back modified data to memory. All logical processors are stopped from executing
until after the invalidate operation is completed. A special bus cycle is sent to all
caching agents.

® CLFLUSH instruction — The specified cache line is invalidated from the cache
hierarchy after any modified data is written back to memory and a bus cycle is
sent to all caching agents, regardless of which logical processor caused the cache
line to be filled.

® CD flag in control register CRO — Each logical processor has its own CRO
control register, and thus its own CD flag in CRO. The CD flags for the two logical
processors are ORed together, such that when any logical processor sets its CD
flag, the entire cache is nominally disabled.

8.7.13.2 Processor Translation Lookaside Buffers (TLBs)

In processors supporting Intel Hyper-Threading Technology, data cache TLBs are
shared. The instruction cache TLB may be duplicated or shared in each logical
processor, depending on implementation specifics of different processor families.

Entries in the TLBs are tagged with an ID that indicates the logical processor that
initiated the translation. This tag applies even for translations that are marked global
using the page-global feature for memory paging. See Section 4.10, “Caching Trans-
lation Information,” for information about global translations.

When a logical processor performs a TLB invalidation operation, only the TLB entries
that are tagged for that logical processor are guaranteed to be flushed. This protocol
applies to all TLB invalidation operations, including writes to control registers CR3
and CR4 and uses of the INVLPG instruction.

8.7.13.3 Thermal Monitor

In a processor that supports Intel Hyper-Threading Technology, logical processors
share the catastrophic shutdown detector and the automatic thermal monitoring
mechanism (see Section 14.5, “Thermal Monitoring and Protection”). Sharing results
in the following behavior:

® If the processor’s core temperature rises above the preset catastrophic shutdown
temperature, the processor core halts execution, which causes both logical
processors to stop execution.

® When the processor’s core temperature rises above the preset automatic thermal
monitor trip temperature, the clock speed of the processor core is automatically
modulated, which effects the execution speed of both logical processors.

For software controlled clock modulation, each logical processor has its own
1A32_CLOCK_MODULATION MSR, allowing clock modulation to be enabled or

8-44 Vol.3

MULTIPLE-PROCESSOR MANAGEMENT

disabled on a logical processor basis. Typically, if software controlled clock modula-
tion is going to be used, the feature must be enabled for all the logical processors
within a physical processor and the modulation duty cycle must be set to the same
value for each logical processor. If the duty cycle values differ between the logical
processors, the processor clock will be modulated at the highest duty cycle selected.

8.7.13.4 External Signal Compatibility

This section describes the constraints on external signals received through the pins
of a processor supporting Intel Hyper-Threading Technology and how these signals
are shared between its logical processors.

STPCLK# — A single STPCLK# pin is provided on the physical package of the
Intel Xeon processor MP. External control logic uses this pin for power
management within the system. When the STPCLK# signal is asserted, the
processor core transitions to the stop-grant state, where instruction execution is
halted but the processor core continues to respond to snoop transactions.
Regardless of whether the logical processors are active or halted when the
STPCLK# signal is asserted, execution is stopped on both logical processors and
neither will respond to interrupts.

In MP systems, the STPCLK# pins on all physical processors are generally tied
together. As a result this signal affects all the logical processors within the system
simultaneously.

LINTO and LINT1 pins — A processor supporting Intel Hyper-Threading
Technology has only one set of LINTO and LINT1 pins, which are shared between
the logical processors. When one of these pins is asserted, both logical
processors respond unless the pin has been masked in the APIC local vector
tables for one or both of the logical processors.

Typically in MP systems, the LINTO and LINT1 pins are not used to deliver
interrupts to the logical processors. Instead all interrupts are delivered to the
local processors through the 1/0 APIC.

A20M# pin — On an IA-32 processor, the A20M# pin is typically provided for
compatibility with the Intel 286 processor. Asserting this pin causes bit 20 of the
physical address to be masked (forced to zero) for all external bus memory
accesses. Processors supporting Intel Hyper-Threading Technology provide one
A20M# pin, which affects the operation of both logical processors within the
physical processor.

The functionality of A20M# is used primarily by older operating systems and not
used by modern operating systems. On newer Intel 64 processors, A20M# may
be absent.

Vol. 3 8-45

MULTIPLE-PROCESSOR MANAGEMENT

8.8 MULTI-CORE ARCHITECTURE

This section describes the architecture of Intel 64 and 1A-32 processors supporting
dual-core and quad-core technology. The discussion is applicable to the Intel Pentium
processor Extreme Edition, Pentium D, Intel Core Duo, Intel Core 2 Duo, Dual-core
Intel Xeon processor, Intel Core 2 Quad processors, and quad-core Intel Xeon
processors. Features vary across different microarchitectures and are detectable
using CPUID.

In general, each processor core has dedicated microarchitectural resources identical
to a single-processor implementation of the underlying microarchitecture without
hardware multi-threading capability. Each logical processor in a dual-core processor
(whether supporting Intel Hyper-Threading Technology or not) has its own APIC
functionality, PAT, machine check architecture, debug registers and extensions. Each
logical processor handles serialization instructions or self-modifying code on its own.
Memory order is handled the same way as in Intel Hyper-Threading Technology.

The topology of the cache hierarchy (with respect to whether a given cache level is
shared by one or more processor cores or by all logical processors in the physical
package) depends on the processor implementation. Software must use the deter-
ministic cache parameter leaf of CPUID instruction to discover the cache-sharing
topology between the logical processors in a multi-threading environment.

8.8.1 Logical Processor Support

The topological composition of processor cores and logical processors in a multi-core
processor can be discovered using CPUID. Within each processor core, one or more
logical processors may be available.

System software must follow the requirement MP initialization sequences (see
Section 8.4, “Multiple-Processor (MP) Initialization™) to recognize and enable logical
processors. At runtime, software can enumerate those logical processors enabled by
system software to identify the topological relationships between these logical
processors. (See Section 8.9.5, “ldentifying Topological Relationships in a MP
System”).

8.8.2 Memory Type Range Registers (MTRR)

MTRR is shared between two logical processors sharing a processor core if the phys-
ical processor supports Intel Hyper-Threading Technology. MTRR is not shared
between logical processors located in different cores or different physical packages.

The Intel 64 and IA-32 architectures require that all logical processors in an MP
system use an identical MTRR memory map. This gives software a consistent view of
memory, independent of the processor on which it is running.

See Section 11.11, “Memory Type Range Registers (MTRRS).”

8-46 Vol.3

MULTIPLE-PROCESSOR MANAGEMENT

8.8.3 Performance Monitoring Counters

Performance counters and their companion control MSRs are shared between two
logical processors sharing a processor core if the processor core supports Intel
Hyper-Threading Technology and is based on Intel NetBurst microarchitecture. They
are not shared between logical processors in different cores or different physical
packages. As a result, software must manage the use of these resources, based on
the topology of performance monitoring resources. Performance counter interrupts,
events, and precise event monitoring support can be set up and allocated on a per
thread (per logical processor) basis.

See Section 19.19, “Performance Monitoring and Intel Hyper-Threading Technology
in Processors Based on Intel NetBurst Microarchitecture.”

8.8.4 IA32_MISC_ENABLE MSR

Some bit fields in IA32_MISC_ENABLE MSR (MSR address 1A0H) may be shared
between two logical processors sharing a processor core, or may be shared between
different cores in a physical processor. See Appendix B, “Model-Specific Registers
(MSRs)”.

8.8.5 MICROCODE UPDATE Resources

Microcode update facilities are shared between two logical processors sharing a
processor core if the physical package supports Intel Hyper-Threading Technology.
They are not shared between logical processors in different cores or different phys-
ical packages. Either logical processor that has access to the microcode update
facility can initiate an update.

Each logical processor has its own BIOS signature MSR (IA32_BIOS_SIGN_ID at MSR
address 8BH). When a logical processor performs an update for the physical
processor, the 1A32_BIOS_SIGN_ID MSRs for resident logical processors are
updated with identical information. If logical processors initiate an update simulta-
neously, the processor core provides the synchronization needed to ensure that only
one update is performed at a time.

8.9 PROGRAMMING CONSIDERATIONS FOR HARDWARE
MULTI-THREADING CAPABLE PROCESSORS

In a multi-threading environment, there may be certain hardware resources that are
physically shared at some level of the hardware topology. In the multi-processor
systems, typically bus and memory sub-systems are physically shared between
multiple sockets. Within a hardware multi-threading capable processors, certain
resources are provided for each processor core, while other resources may be

Vol.3 8-47

MULTIPLE-PROCESSOR MANAGEMENT

provided for each logical processors (see Section 8.7, “Intel® Hyper-Threading Tech-
nology Architecture,” and Section 8.8, “Multi-Core Architecture”).

From a software programming perspective, control transfer of processor operation is
managed at the granularity of logical processor (operating systems dispatch a
runnable task by allocating an available logical processor on the platform). To
manage the topology of shared resources in a multi-threading environment, it may
be useful for software to understand and manage resources that are shared by more
than one logical processors.

8.9.1 Hierarchical Mapping of Shared Resources

The APIC_ID value associated with each logical processor in a multi-processor
system is unique (see Section 8.6, “Detecting Hardware Multi-Threading Support and
Topology”). This 8-bit or 32-bit value can be decomposed into sub-fields, where each
sub-field corresponds a hierarchical level of the topological mapping of hardware
resources.

The decomposition of an APIC_ID may consist of several sub fields representing the
topology within a physical processor package, the higher-order bits of an APIC ID
may also be used by cluster vendors to represent the topology of cluster nodes of
each coherent multiprocessor systems. If the processor does not support CPUID leaf
OBH, the 8-bit initial APIC ID can represent 4 levels of hierarchy:

® Cluster — Some multi-threading environments consists of multiple clusters of
multi-processor systems. The CLUSTER_ID sub-field is usually supported by
vendor firmware to distinguish different clusters. For non-clustered systems,
CLUSTER_ID is usually 0 and system topology is reduced to three levels of
hierarchy.

® Package — A multi-processor system consists of two or more sockets, each
mates with a physical processor package. The PACKAGE_ID sub-field distin-
guishes different physical packages within a cluster.

® Core — A physical processor package consists of one or more processor cores.
The CORE_ID sub-field distinguishes processor cores in a package. For a single-
core processor, the width of this bit field is 0.

® SMT — A processor core provides one or more logical processors sharing
execution resources. The SMT_ID sub-field distinguishes logical processors in a
core. The width of this bit field is non-zero if a processor core provides more than
one logical processors.

SMT and CORE sub-fields are bit-wise contiguous in the APIC_ID field (see
Figure 8-5).

8-48 Vol.3

MULTIPLE-PROCESSOR MANAGEMENT

X=31 if x2APIC is supported X 0
Otherwise X=7 Reserved

Cluster ID Q

Package ID

Core ID

SMT ID

Figure 8-5. Generalized Four level Interpretation of the APIC ID

If the processor supports CPUID leaf OBH, the 32-bit APIC ID can represent cluster
plus several levels of topology within the physical processor package. The exact
number of hierarchical levels within a physical processor package must be enumer-
ated through CPUID leaf OBH. Common processor families may employ topology
similar to that represented by 8-bit Initial APIC ID. In general, CPUID leaf OBH can
support topology enumeration algorithm that decompose a 32-bit APIC ID into more
than four sub-fields (see Figure 8-6).

The width of each sub-field depends on hardware and software configurations. Field
widths can be determined at runtime using the algorithm discussed below (Example
8-16 through Example 8-20).

Figure 7-6 depicts the relationships of three of the hierarchical sub-fields in a hypo-
thetical MP system. The value of valid APIC_IDs need not be contiguous across
package boundary or core boundaries.

31 0
Pack
ackege Reserved
smT | R Cluster ID]
Package ID
RID
SMT ID
Physical Processor Topology 32-bit APIC ID Composition

Figure 8-6. Conceptual Five-level Topology and 32-bit APIC ID Composition

Vol.3 8-49

MULTIPLE-PROCESSOR MANAGEMENT

8.9.2 Hierarchical Mapping of CPUID Extended Topology Leaf

CPUID leaf OBH provides enumeration parameters for software to identify each hier-
archy of the processor topology in a deterministic manner. Each hierarchical level of
the topology starting from the SMT level is represented numerically by a sub-leaf
index within the CPUID OBH leaf. Each level of the topology is mapped to a sub-field
in the APIC ID, following the general relationship depicted in Figure 8-6. This mech-
anism allows software to query the exact number of levels within a physical
processor package and the bit-width of each sub-field of x2APIC ID directly. For
example,

® Starting from sub-leaf index 0 and incrementing ECX until CPUID.(EAX=0BH,
ECX=N):ECX[15:8] returns an invalid “level type“ encoding. The number of
levels within the physical processor package is “N“ (excluding PACKAGE). Using
Figure 8-6 as an example, CPUID.(EAX=0BH, ECX=3):ECX[15:8] will report
0OH, indicating sub leaf O3H is invalid. This is also depicted by a pseudo code
example:

Example 8-16. Number of Levels Below the Physical Processor Package

Byte type = 1;
s=0;
While (type) {
EAX = 0BH; // query each sub leaf of CPUID leaf OBH
ECX =s;
CPUID;
type = ECX[15:8]; // examine level type encoding
S ++;
}
N = ECX[7:0];

® Sub-leaf index 0 (ECX= 0 as input) provides enumeration parameters to extract
the SMT sub-field of x2APIC ID. If EAX = O0BH, and ECX =0 is specified as input
when executing CPUID, CPUID.(EAX=0BH, ECX=0):EAX[4:0] reports a value (a
right-shift count) that allow software to extract part of x2APIC ID to distinguish
the next higher topological entities above the SMT level. This value also
corresponds to the bit-width of the sub-field of x2APIC ID corresponding the
hierarchical level with sub-leaf index O.

® For each subsequent higher sub-leaf index m, CPUID.(EAX=0BH,
ECX=m):EAX[4:0] reports the right-shift count that will allow software to extract
part of Xx2APIC ID to distinguish higher-level topological entities. This means the
right-shift value at of sub-leaf m, corresponds to the least significant (m+1)
subfields of the 32-bit x2APIC ID.

Example 8-17. BitWidth Determination of x2APIC ID Subfields

8-50 Vol.3

MULTIPLE-PROCESSOR MANAGEMENT

Form=0,m<N,m++;
{ cumulative_width[m] = CPUID.(EAX=0BH, ECX= m): EAX[4:0]; }
Bitwidth[0] = cumulative_width[0];
Form=1,m<N,m++;
BitWidth[m] = cumulative_width[m] - cumulative_width[m-1];

Currently, only the following encoding of hierarchical level type are defined: O
(invalid), 1 (SMT), and 2 (core). Software must not assume any “level type“ encoding
value to be related to any sub-leaf index, except sub-leaf O.

Example 8-16 and Example 8-17 represent the general technique for using CPUID
leaf OBH to enumerate processor topology of more than two levels of hierarchy inside
a physical package. Most processor families to date requires only “SMT” and “CORE”
levels within a physical package. The examples in later sections will focus on these
three-level topology only.

8.9.3 Hierarchical ID of Logical Processors in an MP System

For Intel 64 and 1A-32 processors, system hardware establishes an 8-bit initial APIC
ID (or 32-bit APIC ID if the processor supports CPUID leaf OBH) that is unique for
each logical processor following power-up or RESET (see Section 8.6.1). Each logical
processor on the system is allocated an initial APIC ID. BIOS may implement features
that tell the OS to support less than the total number of logical processors on the
system bus. Those logical processors that are not available to applications at runtime
are halted during the OS boot process. As a result, the number valid local APIC_IDs
that can be queried by affinitizing-current-thread-context (See Example 8-22) is
limited to the number of logical processors enabled at runtime by the OS boot
process.

Table 8-1 shows an example of the 8-bit APIC IDs that are initially reported for logical
processors in a system with four Intel Xeon MP processors that support Intel Hyper-
Threading Technology (a total of 8 logical processors, each physical package has two
processor cores and supports Intel Hyper-Threading Technology). Of the two logical
processors within a Intel Xeon processor MP, logical processor O is designated the

primary logical processor and logical processor 1 as the secondary logical processor.

Vol.3 8-51

MULTIPLE-PROCESSOR MANAGEMENT

TO|| T1 TO|| T2
Core 0 Corel
Package 0

TO|| T1 TO|| T1
Core 0 Corel
Package 1

SMT_ID

Core ID

Package ID

Figure 8-7. Topological Relationships between Hierarchical IDs in a Hypothetical MP
Platform

Table 8-1. Initial APIC IDs for the Logical Processors in a System that has Four Intel
Xeon MP Processors Supporting Intel Hyper-Threading Technology*

Initial APIC ID Package ID Core ID SMTID
OH OH OH OH
TH OH OH H
2H TH OH OH
3H TH OH H
4H 2H OH OH
5H 2H OH TH
6H 3H OH OH
7H 3H OH H

NOTE:

1. Because information on the number of processor cores in a physical package was not available
in early single-core processors supporting Intel Hyper-Threading Technology, the core ID can be

treated as 0.

Table 8-2 shows the initial APIC IDs for a hypothetical situation with a dual processor
system. Each physical package providing two processor cores, and each processor
core also supporting Intel Hyper-Threading Technology.

8-52 Vol.3

MULTIPLE-PROCESSOR MANAGEMENT

Table 8-2. Initial APIC IDs for the Logical Processors in a System that has Two
Physical Processors Supporting Dual-Core and Intel Hyper-Threading Technology

Initial APIC ID Package ID Core ID SMTID
OH OH OH OH
H OH OH TH
2H OH 1H OH
3H OH TH TH
4H TH OH OH
5H TH OH H
6H TH TH OH
7H TH TH TH

8.9.3.1 Hierarchical ID of Logical Processors with x2APIC ID

Table 8-3 shows an example of possible x2APIC ID assignments for a dual processor
system that support x2APIC. Each physical package providing four processor cores,
and each processor core also supporting Intel Hyper-Threading Technology. Note that
the x2APIC ID need not be contiguous in the system.

Table 8-3. Example of Possible x2APIC ID Assignment in a System that has Two
Physical Processors Supporting x2APIC and Intel Hyper-Threading Technology

x2APIC ID Package ID Core ID SMTID
OH OH OH OH
H OH OH TH
2H OH 1H OH
3H OH TH TH
4H OH 2H OH
5H OH 2H TH
6H OH 3H OH
7H OH 3H TH
10H 1H OH OH
11H TH OH TH
12H TH TH OH
13H 1H 1H TH
14H TH 2H OH

Vol.3 8-53

MULTIPLE-PROCESSOR MANAGEMENT

Table 8-3. Example of Possible x2APIC ID Assignment in a System that has Two
Physical Processors Supporting x2APIC and Intel Hyper-Threading Technology

x2APIC ID Package ID Core ID SMTID
15H H 2H 1H
16H TH 3H OH
17H TH 3H 1H

8.9.4 Algorithm for Three-Level Mappings of APIC_ID

Software can gather the initial APIC_IDs for each logical processor supported by the
operating system at runtime® and extract identifiers corresponding to the three
levels of sharing topology (package, core, and SMT). The three-level algorithms
below focus on a non-clustered MP system for simplicity. They do not assume APIC
IDs are contiguous or that all logical processors on the platform are enabled.

Intel supports multi-threading systems where all physical processors report identical
values in CPUID leaf OBH, CPUID.1:EBX[23:16]), CPUID.4%:EAX[31:26], and
CPUID.4":EAX[25:14]. The algorithms below assume the target system has
symmetry across physical package boundaries with respect to the number of logical
processors per package, number of cores per package, and cache topology within a
package.

The extraction algorithm (for three-level mappings from an APIC ID) uses the
general procedure depicted in Example 8-18, and is supplemented by more detailed
descriptions on the derivation of topology enumeration parameters for extraction bit
masks:

1. Detect hardware multi-threading support in the processor.

2. Derive a set of bit masks that can extract the sub ID of each hierarchical level of
the topology. The algorithm to derive extraction bit masks for
SMT_ID/CORE_ID/PACKAGE_ID differs based on APIC ID is 32-bit (see step 3
below) or 8-bit (see step 4 below):

3. If the processor supports CPUID leaf OBH, each APIC ID contains a 32-bit value,
the topology enumeration parameters needed to derive three-level extraction bit
masks are:

5. As noted in Section 8.6 and Section 8.9.3, the number of logical processors supported by the 0S
at runtime may be less than the total number logical processors available in the platform hard-
ware.

6. Maximum number of addressable ID for processor cores in a physical processor is obtained by
executing CPUID with EAX=4 and a valid ECX index, The ECX index start at O.

7. Maximum number addressable ID for processor cores sharing the target cache level is obtained
by executing CPUID with EAX = 4 and the ECX index corresponding to the target cache level.

8-54 Vol.3

MULTIPLE-PROCESSOR MANAGEMENT

Query the right-shift value for the SMT level of the topology using CPUID leaf
OBH with ECX =0H as input. The number of bits to shift-right on x2APIC ID
(EAX[4:0]) can distinguish different higher-level entities above SMT (e.g.
processor cores) in the same physical package. This is also the width of the
bit mask to extract the SMT_ID.

Query CPUID leaf OBH for the amount of bit shift to distinguish next higher-
level entities (e.g. physical processor packages) in the system. This describes
an explicit three-level-topology situation for commonly available processors.
Consult Example 8-17 to adapt to situations beyond three-level topology of a
physical processor. The width of the extraction bit mask can be used to derive
the cumulative extraction bitmask to extract the sub IDs of logical processors
(including different processor cores) in the same physical package. The
extraction bit mask to distinguish merely different processor cores can be
derived by xor’ing the SMT extraction bit mask from the cumulative
extraction bit mask.

Query the 32-bit x2APIC ID for the logical processor where the current thread
is executing.

Derive the extraction bit masks corresponding to SMT_ID, CORE_ID, and
PACKAGE_ID, starting from SMT_ID.

Apply each extraction bit mask to the 32-bit x2APIC ID to extract sub-field
IDs.

If the processor does not support CPUID leaf OBH, each initial APIC ID contains
an 8-bit value, the topology enumeration parameters needed to derive extraction
bit masks are:

a.

Query the size of address space for sub IDs that can accommodate logical
processors in a physical processor package. This size parameters
(CPUID.1:EBX[23:16]) can be used to derive the width of an extraction
bitmask to enumerate the sub IDs of different logical processors in the same
physical package.

Query the size of address space for sub IDs that can accommodate processor
cores in a physical processor package. This size parameters can be used to
derive the width of an extraction bitmask to enumerate the sub IDs of
processor cores in the same physical package.

Query the 8-bit initial APIC ID for the logical processor where the current
thread is executing.

Derive the extraction bit masks using respective address sizes corresponding
to SMT_ID, CORE_ID, and PACKAGE_ID, starting from SMT_ID.

Apply each extraction bit mask to the 8-bit initial APIC ID to extract sub-field
IDs.

Vol.3 8-55

MULTIPLE-PROCESSOR MANAGEMENT

Example 8-18. Support Routines for Detecting Hardware Multi-Threading and Identifying the
Relationships Between Package, Core and Logical Processors

1. Detect support for Hardware Multi-Threading Support in a processor.

// Returns a non-zero value if CPUID reports the presence of hardware multi-threading
// support in the physical package where the current logical processor is located.

// This does not guarantee BIOS or OS will enable all logical processors in the physical
// package and make them available to applications.

// Returns zero if hardware multi-threading is not present.

#tdefine HWMT_BIT 0x10000000

unsigned int HWMTSupported(void)
{
// ensure cpuid instruction is supported
execute cpuid with eax = 0 to get vendor string
execute cpuid with eax = 1 to get feature flag and signature

// Check to see if this a Genuine Intel Processor

if (vendor string EQ Genuinelntel) {
return (feature_flag_edx & HWMT_BIT); // bit 28
}

return O;

Example 8-19. Support Routines for Identifying Package, Core and Logical Processors from
32-bit x2APIC ID

a. Derive the extraction bitmask for logical processors in a processor core and
associated mask offset for different cores.

int DeriveSMT_Mask_Offsets (void)

{
if (HWMTSupported()) return -1;
execute cpuid witheax = 11, ECX = (;
If (returned level type encoding in ECX[15:8] does not match SMT) return -1;
Mask_SMT_shift = EAX[4:0]; // # bits shift right of APIC ID to distinguish different cores
SMT_MASK = ~((-1) << Mask_SMT_shift); // shift left to derive extraction bitmask for SMT_ID
return O;

b. Derive the extraction bitmask for processor cores in a physical processor package
and associated mask offset for different packages.

8-56 Vol.3

MULTIPLE-PROCESSOR MANAGEMENT

int DeriveCore_Mask_Offsets (void)
{
if (HWMTSupported()) return -1;
execute cpuid witheax = 11, ECX = (;
while(ECX[15:8]) { // level type encoding is valid
If (returned level type encoding in ECX[15:8] matches CORE) {
Mask_Core_shift = EAX[4:0]; // needed to distinguish different physical packages
COREPIusSMT_MASK = ~((-1) << Mask_Core_shift);
CORE_MASK = COREPIuSSMT_MASK ~ SMT_MASK;
PACKAGE_MASK = (-1) << Mask_Core_shift;

return O
}
ECX ++;
execute cpuid with eax = 11;
}
return -1;

c. Query the x2APIC ID of alogical processor.

APIC_IDs for each logical processor.

unsigned char Getx2APIC_ID (void)

{
unsigned reg_edx = 0;
execute cpuid witheax =11,ECX =0
store returned value of edx
return (unsigned) (reg_edx) ;
}

Example 8-20. Support Routines for Identifying Package, Core and Logical Processors from 8-
bit Initial APIC ID

a. Find the size of address space for logical processors in a physical processor
package.

#define NUM_LOGICAL_BITS 0x00FF0000
// Use the mask above and CPUID.1.EBX[23:16] to obtain the max number of addressable IDs
// for logical processors in a physical package,

//Returns the size of address space of logical processors in a physical processor package;
// Software should not assume the value to be a power of 2.

Vol.3 8-57

MULTIPLE-PROCESSOR MANAGEMENT

unsigned char MaxLPIDsPerPackage(void)
{
if (HWMTSupported()) return 1;
execute cpuid with eax = 1
store returned value of ebx
return (unsigned char) ((reg_ebx & NUM_LOGICAL_BITS) >> 16);
}

b. Find the size of address space for processor cores in a physical processor package.

// Returns the max number of addressable IDs for processor cores in a physical processor package;
// Software should not assume cpuid reports this value to be a power of 2.

unsigned MaxCorelDsPerPackage(void)
{
if (HWMTSupported()) return (unsigned char) 1;
if cpuid supports leaf number 4
{ // we can retrieve multi-core topology info using leaf 4
execute cpuid witheax =4,ecx =0
store returned value of eax
return (unsigned) ((reg_eax >> 26) +1);
}
else // must be a single-core processor
return 1;

}

c. Query the initial APIC ID of a logical processor.

tdefine INITIAL_APIC_ID_BITS OxFFO00000 // CPUID.1.EBX[31:24] initial APIC ID

// Returns the 8-bit unique initial APIC ID for the processor running the code.
// Software can use 0S services to affinitize the current thread to each logical processor
// available under the OS to gather the initial APIC_IDs for each logical processor.

unsigned GetInitAPIC_ID (void)
{
unsigned int reg_ebx = 0;
execute cpuid with eax = 1
store returned value of ebx
return (unsigned) ((reg_ebx & INITIAL_APIC_ID_BITS) >> 24;

d. Find the width of an extraction bitmask from the maximum count of the bit-field
(address size).

8-58 Vol.3

MULTIPLE-PROCESSOR MANAGEMENT

// Returns the mask bit width of a bit field from the maximum count that bit field can represent.

// This algorithm does not assume ‘address size’ to have a value equal to power of 2.

// Address size for SMT_ID can be calculated from MaxLPIDsPerPackage()/MaxCorelDsPerPackage()
// Then use the routine below to derive the corresponding width of SMT extraction bitmask

// Address size for CORE_ID is MaxCorelDsPerPackage(),

// Derive the bitwidth for CORE extraction mask similarly

unsigned FindMaskWidth(Unsigned Max_Count)
{unsigned int mask_width, cnt = Max_Count;
_asm{

mov eax, cnt

mov ecx, 0

mov mask_width, ecx

dec eax

bsr cx, ax

jz next

inc cx

mov mask_width, ecx

next:

mov eax, mask_width

}

return mask_width;

e. Extract a sub ID from an 8-bit full ID, using address size of the sub ID and shift
count.

// The routine below can extract SMT_ID, CORE_ID, and PACKAGE_ID respectively from the init
APIC_ID

// To extract SMT_ID, MaxSublDvalue is set to the address size of SMT_ID, Shift_Count = 0

// To extract CORE_ID, MaxSublIDvalue is the address size of CORE_ID, Shift_Count is width of SMT
extraction bitmask.

// Returns the value of the sub ID, this is not a zero-based value

Unsigned char GetSublID(unsigned char Full_ID, unsigned char MaxSublDvalue, unsigned char
Shift_Count)

{
MaskWidth = FindMaskWidth(MaxSublDValue);
MaskBits = ((uchar) (Oxff << Shift_Count)) ~ ((uchar) (Oxff << Shift_Count + MaskWidth)) ;
SublD = Full_ID & MaskBits;
Return SublD;
}

Vol.3 8-59

MULTIPLE-PROCESSOR MANAGEMENT

Software must not assume local APIC_ID values in an MP system are consecutive.
Non-consecutive local APIC_IDs may be the result of hardware configurations or
debug features implemented in the BIOS or OS.

An identifier for each hierarchical level can be extracted from an 8-bit APIC_ID using
the support routines illustrated in Example 8-20. The appropriate bit mask and shift
value to construct the appropriate bit mask for each level must be determined
dynamically at runtime.

8.9.5 Identifying Topological Relationships in a MP System

To detect the number of physical packages, processor cores, or other topological
relationships in a MP system, the following procedures are recommended:

® Extract the three-level identifiers from the APIC ID of each logical processor
enabled by system software. The sequence is as follows (See the pseudo code
shown in Example 8-21 and support routines shown in Example 8-18):

®* The extraction start from the right-most bit field, corresponding to
SMT_ID, the innermost hierarchy in a three-level topology (See Figure
8-7). For the right-most bit field, the shift value of the working mask is
zero. The width of the bit field is determined dynamically using the
maximum number of logical processor per core, which can be derived
from information provided from CPUID.

* To extract the next bit-field, the shift value of the working mask is
determined from the width of the bit mask of the previous step. The width
of the bit field is determined dynamically using the maximum number of
cores per package.

* To extract the remaining bit-field, the shift value of the working mask is
determined from the maximum number of logical processor per package.
So the remaining bits in the APIC ID (excluding those bits already
extracted in the two previous steps) are extracted as the third identifier.
This applies to a non-clustered MP system, or if there is no need to
distinguish between PACKAGE_ID and CLUSTER_ID.

If there is need to distinguish between PACKAGE_ID and CLUSTER_ID,
PACKAGE_ID can be extracted using an algorithm similar to the
extraction of CORE_ID, assuming the number of physical packages in
each node of a clustered system is symmetric.

® Assemble the three-level identifiers of SMT_ID, CORE_ID, PACKAGE_ IDs into
arrays for each enabled logical processor. This is shown in Example 8-22a.

® To detect the number of physical packages: use PACKAGE_ID to identify those
logical processors that reside in the same physical package. This is shown in
Example 8-22b. This example also depicts a technique to construct a mask to
represent the logical processors that reside in the same package.

® To detect the number of processor cores: use CORE_ID to identify those logical
processors that reside in the same core. This is shown in Example 8-22. This

8-60 Vol.3

MULTIPLE-PROCESSOR MANAGEMENT

example also depicts a technique to construct a mask to represent the logical
processors that reside in the same core.

In Example 8-21, the numerical ID value can be obtained from the value extracted
with the mask by shifting it right by shift count. Algorithms below do not shift the
value. The assumption is that the SublD values can be compared for equivalence
without the need to shift.

Example 8-21. Pseudo Code Depicting Three-level Extraction Algorithm

For Each local_APIC_ID{
// Calculate SMT_MASK, the bit mask pattern to extract SMT_ID,
// SMT_MASK is determined using topology enumertaion parameters
// from CPUID leaf OBH (Example 8-19);
/1 otherwise, SMT_MASK is determined using CPUID leaf 0TH and leaf 04H (Example 8-20).
// This algorithm assumes there is symmetry across core boundary, i.e. each core within a
// package has the same number of logical processors
// SMT_ID always starts from bit O, corresponding to the right-most bit-field
SMT_ID = APIC_ID & SMT_MASK;

/1 Extract CORE_ID:
// CORE_MASK is determined in Example 8-19 or Example 8-20
CORE_ID = (APIC_ID & CORE_MASK) ;

/1 Extract PACKAGE_ID:

// Assume single cluster.

// Shift out the mask width for maximum logical processors per package
/1 PACKAGE_MASK is determined in Example 8-19 or Example 8-20
PACKAGE_ID = (APIC_ID & PACKAGE_MASK) ;

Example 8-22. Compute the Number of Packages, Cores, and Processor Relationships in a MP
System

a) Assemble lists of PACKAGE_ID, CORE_ID, and SMT_ID of each enabled logical processors

//The BIOS and/or OS may limit the number of logical processors available to applications
// after system boot. The below algorithm will compute topology for the processors visible
// to the thread that is computing it.

// Extract the 3-levels of IDs on every processor

// SystemAffinity is a bitmask of all the processors started by the OS. Use OS specific APIs to
// obtain it.

// ThreadAffinityMask is used to affinitize the topology enumeration thread to each processor

Vol.3 8-61

MULTIPLE-PROCESSOR MANAGEMENT

using OS specific APIs.
// Allocate per processor arrays to store the Package_ID, Core_ID and SMT_ID for every started
// processor.

ThreadAffinityMask = 1;
ProcessorNum = 0;
while (ThreadAffinityMask != 0 && ThreadAffinityMask <= SystemAffinity) {
// Check to make sure we can utilize this processor first.
if (ThreadAffinityMask & SystemAffinity){
Set thread to run on the processor specified in ThreadAffinityMask
Wait if necessary and ensure thread is running on specified processor

APIC_ID = GetAPIC_ID(); // 32 bit ID in Example 8-19 or 8-bit ID in Example
8-20
Extract the Package_ID, Core_ID and SMT_ID as explained in three level extraction
algorithm of Example 8-21
PackagelD[ProcessorNUM] = PACKAGE_ID;
CorelD[ProcessorNum] = CORE_ID;
SmtID[ProcessorNum] = SMT_ID;
ProcessorNum-++;
}
ThreadAffinityMask <<= 1;

}

NumStartedLPs = ProcessorNum;

b) Using the list of PACKAGE_ID to count the number of physical packages in a MP system and
construct, for each package, a multi-bit mask corresponding to those logical processors residing in
the same package.

// Compute the number of packages by counting the number of processors
// with unique PACKAGE_IDs in the PackagelD array.
// Compute the mask of processors in each package.

PackagelDBucket is an array of unique PACKAGE_ID values. Allocate an array of
NumStartedLPs count of entries in this array.

PackageProcessorMask is a corresponding array of the bit mask of processors belonging to
the same package, these are processors with the same PACKAGE_ID

The algorithm below assumes there is symmetry across package boundary if more than
one socket is populated in an MP system.

// Bucket Package IDs and compute processor mask for every package.
PackageNum = 1;

PackagelDBucket[0] = PackagelD[O];
ProcessorMask = 1;

8-62 Vol.3

MULTIPLE-PROCESSOR MANAGEMENT

PackageProcessorMask[0] = ProcessorMask;
For (ProcessorNum = 1; ProcessorNum < NumStartedLPs; ProcessorNum++) {
ProcessorMask << = 1;
For (i=0; i < PackageNum; i++) {
// we may be comparing bit-fields of logical processors residing in different
// packages, the code below assume package symmetry
If (PackagelD[ProcessorNum] == PackagelDBucket[i]) {
PackageProcessorMask([i] |= ProcessorMask;
Break; // found in existing bucket, skip to next iteration
}
}
if (i ==PackageNum) {
//PACKAGE_ID did not match any bucket, start new bucket
PackagelDBucket[i] = PackagelD[ProcessorNum];
PackageProcessorMask[i] = ProcessorMask;
PackageNum++;
}
}

// PackageNum has the number of Packages started in OS
// PackageProcessorMask[] array has the processor set of each package

¢) Using the list of CORE_ID to count the number of cores in a MP system and construct, for each
core, @ multi-bit mask corresponding to those logical processors residing in the same core.

Processors in the same core can be determined by bucketing the processors with the same
PACKAGE_ID and CORE_ID. Note that code below can BIT OR the values of PACKGE and CORE ID
because they have not been shifted right.

The algorithm below assumes there is symmetry across package boundary if more than one socket
is populated in an MP system.

//Bucketing PACKAGE and CORE IDs and computing processor mask for every core
CoreNum = 1;
CorelDBucket[0] = PackagelD[0] | CorelD[0];
ProcessorMask = 1;
CoreProcessorMask[0] = ProcessorMask;
For (ProcessorNum = 1; ProcessorNum < NumStartedLPs; ProcessorNum-++) {
ProcessorMask << =1;
For (i=0; i < CoreNum; i++) {
// we may be comparing bit-fields of logical processors residing in different
// packages, the code below assume package symmetry
If ((PackagelD[ProcessorNum] | CorelD[ProcessorNum]) == CorelDBucket[i]) {
CoreProcessorMask([i] |= ProcessorMask;
Break; // found in existing bucket, skip to next iteration

Vol.3 8-63

MULTIPLE-PROCESSOR MANAGEMENT

}
if (i == CoreNum) {
//Did not match any bucket, start new bucket
CorelDBucket[i] = PackagelD[ProcessorNum] | CorelD[ProcessorNum];
CoreProcessorMask[i] = ProcessorMask;
CoreNum++;

}
}
// CoreNum has the number of cores started in the OS
// CoreProcessorMask[] array has the processor set of each core

Other processor relationships such as processor mask of sibling cores can be
computed from set operations of the PackageProcessorMask[] and CoreProcessor-
Mask[].-

The algorithm shown above can be adapted to work with earlier generations of
single-core 1A-32 processors that support Intel Hyper-Threading Technology and in
situations that the deterministic cache parameter leaf is not supported (provided
CPUID supports initial APIC ID). A reference code example is available (see Intel® 64
Architecture Processor Topology Enumeration).

8.10 MANAGEMENT OF IDLE AND BLOCKED CONDITIONS

When a logical processor in an MP system (including multi-core processor or proces-
sors supporting Intel Hyper-Threading Technology) is idle (no work to do) or blocked
(on a lock or semaphore), additional management of the core execution engine
resource can be accomplished by using the HLT (halt), PAUSE, or the
MONITOR/MWAIT instructions.

8.10.1 HLT Instruction

The HLT instruction stops the execution of the logical processor on which it is
executed and places it in a halted state until further notice (see the description of the
HLT instruction in Chapter 3 of the Intel® 64 and 1A-32 Architectures Software Devel-
oper’s Manual, Volume 2A). When a logical processor is halted, active logical proces-
sors continue to have full access to the shared resources within the physical package.
Here shared resources that were being used by the halted logical processor become
available to active logical processors, allowing them to execute at greater efficiency.
When the halted logical processor resumes execution, shared resources are again
shared among all active logical processors. (See Section 8.10.6.3, “Halt Idle Logical
Processors,” for more information about using the HLT instruction with processors
supporting Intel Hyper-Threading Technology.)

8-64 Vol.3

MULTIPLE-PROCESSOR MANAGEMENT

8.10.2 PAUSE Instruction

The PAUSE instruction can improves the performance of processors supporting Intel
Hyper-Threading Technology when executing “spin-wait loops” and other routines
where one thread is accessing a shared lock or semaphore in a tight polling loop.
When executing a spin-wait loop, the processor can suffer a severe performance
penalty when exiting the loop because it detects a possible memory order violation
and flushes the core processor’s pipeline. The PAUSE instruction provides a hint to
the processor that the code sequence is a spin-wait loop. The processor uses this hint
to avoid the memory order violation and prevent the pipeline flush. In addition, the
PAUSE instruction de-pipelines the spin-wait loop to prevent it from consuming
execution resources excessively and consume power needlessly. (See Section
8.10.6.1, “Use the PAUSE Instruction in Spin-Wait Loops,” for more information
about using the PAUSE instruction with 1A-32 processors supporting Intel Hyper-
Threading Technology.)

8.10.3 Detecting Support MONITOR/MWAIT Instruction

Streaming SIMD Extensions 3 introduced two instructions (MONITOR and MWAIT) to
help multithreaded software improve thread synchronization. In the initial imple-
mentation, MONITOR and MWAIT are available to software at ring 0. The instructions
are conditionally available at levels greater than 0. Use the following steps to detect
the availability of MONITOR and MWAIT:

® Use CPUID to query the MONITOR bit (CPUID.1.ECX[3] = 1).

® If CPUID indicates support, execute MONITOR inside a TRY/EXCEPT exception
handler and trap for an exception. If an exception occurs, MONITOR and MWAIT
are not supported at a privilege level greater than 0. See Example 8-23.

Example 8-23. Verifying MONITOR/MWAIT Support

boolean MONITOR_MWAIT_works = TRUE;
try{
_asm{
XOr ecx, ecx
xor edx, edx
mov eax, MemArea
monitor
}
// Use monitor
} except (UNWIND) {
// if we get here, MONITOR/MWAIT is not supported
MONITOR_MWAIT_works = FALSE;

Vol. 3 8-65

MULTIPLE-PROCESSOR MANAGEMENT

8.10.4 MONITOR/MWAIT Instruction

Operating systems usually implement idle loops to handle thread synchronization. In
a typical idle-loop scenario, there could be several “busy loops” and they would use a
set of memory locations. An impacted processor waits in a loop and poll a memory
location to determine if there is available work to execute. The posting of work is
typically a write to memory (the work-queue of the waiting processor). The time for
initiating a work request and getting it scheduled is on the order of a few bus cycles.

From a resource sharing perspective (logical processors sharing execution
resources), use of the