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Abstract: We describe the design, implementation, and
evaluation of Depot, a cloud storage system that mini-
mizes trust assumptions. Depot assumes less than any
prior system about the correct operation of participat-
ing hosts—Depot tolerates Byzantine failures, including
malicious or buggy behavior, by any number of clients
or servers—yet provides safety and availability guaran-
tees (on consistency, staleness, durability, and recovery)
that are useful. The key to safeguarding safety without
sacrificing availability (and vice versa) in this environ-
ment is to join forks: participants (clients and servers)
that observe inconsistent behaviors by other participants
can join their forked view into a single view that is con-
sistent with what each individually observed. Our exper-
imental evaluation suggests that the costs of protecting
the system are modest. Depot adds a few hundred bytes
of metadata to each update and each stored object, and
requires hashing and signing each update.

1 Introduction
This paper describes the design, implementation, and
evaluation of Depot, a cloud storage system in the spirit
of S3 [3] and Azure [5]. However, given that to customers
a storage service provider (SSP) is a potentially complex
black box controlled by another party, it seems prudent
to rely on end-to-end checks of well-defined properties
rather than to make strong assumptions about the SSP’s
design, implementation, operation, and status. Depot is
therefore designed to tolerate Byzantine failures, includ-
ing malicious or buggy behaviors by the SSP. More pre-
cisely, Depot minimizes trust assumptions among nodes
with respect to both safety and availability:

• Depot eliminates trust for safety. A client needs to
trust only itself to ensure correct operation. Depot
guarantees that any subset of correct clients sharing
data observe sensible, well-defined semantics. This
holds regardless of how many nodes fail and no matter
whether they are clients or servers, whether these are
failures of omission or commission, and whether these
failures are accidental or malicious.

• Depot minimizes trust for availability. We wish we
could say “trust only yourself” for availability. De-
pot does eliminate trust for updates: a client can al-
ways update any object for which it is authorized, and
any subset of connected, correct clients can always

share updates. However, for reads, there is a funda-
mental limit to what any storage system can guaran-
tee: if no correct, reachable node has an object, that
object may be unavailable. We cope with this funda-
mental limit by allowing reads to be served by any
node (even other clients) while preserving the sys-
tem’s guarantees, and by configuring the replication
policy to use several servers (which protects against
failures of clients and subsets of servers) and at least
one client (which protects against temporary [11] and
permanent [6, 23] cloud failures).

Safety vs. availability vs. trust. Though prior efforts
have reduced trust assumptions in storage systems, they
have not minimized trust with respect to safety, availabil-
ity, or both. For example, quorum and replicated state
machine approaches [9, 24, 28, 29, 32, 41, 53, 54, 85, 95,
99, 100] tolerate failures by a fraction of servers. How-
ever, they sacrifice safety when faults exceed a threshold
and availability when too few servers are reachable. Sys-
tems like SUNDR [61] and FAUST [20], and other fork-
based systems [19, 22, 62, 64, 74] that remain safe with-
out trusting a server minimize trust for safety. However,
they compromise availability in two ways. First, if the
server is unreachable, clients must block. Second, a fault
server can make correct clients’ views diverge perma-
nently, preventing them from ever observing each other’s
new updates.

Indeed, it is challenging to guarantee safety and pro-
tect availability while minimizing trust assumptions:
without some assumptions about correct operation, pro-
viding even a weak guarantee like eventual consistency
seems difficult. For example, a faulty storage node re-
ceiving an update from a correct client might quietly fail
to propagate that update, thereby hiding it from the rest
of the system. Perhaps surprisingly, we find that even-
tual consistency is possible in this environment. In fact,
Depot provides far stronger semantics.

A client in the Depot storage system is guaranteed to
see eventual consistency, bounded staleness, and a slight
weakening of causal consistency that we call Fork-Join-
Causal consistency (FJC). Roughly speaking, FJC means
that all nodes eventually see the same updates, that all
correct nodes’ updates are eventually visible, and that a
correct node’s updates and their dependencies are always
observed in a causal order.
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Approach. Depot is designed around three key ideas.

1. Local verification: Depot clients and servers maintain
sufficient local state to validate updates for safety [61].

2. Join forks: Faulty nodes can fork the system’s view
of history by introducing incompatible updates [61].
Thus, a crucial requirement for availability is that
nodes be able to join forks: nodes that observe incon-
sistent behaviors by other nodes must join their forked
histories into a single view that is consistent with what
each individually observed. Such joining is challeng-
ing; as mentioned above, prior systems permanently
strand forked nodes on different branches of history.

3. Unify protection of safety and availability. The key to
Depot’s simplicity is in the realization that the forks
caused by faulty nodes can be joined by leveraging the
same mechanisms used to handle concurrency in sys-
tems that remain globally available during partitions or
disconnections. Depot introduces mechanisms to de-
tect when a faulty node forks its history and to treat the
faulty node’s writes on each fork as concurrent writes
by two virtual nodes. Thus, rather than inventing ex-
otic new abstractions for dealing with forks by faulty
nodes, Depot employs familiar techniques from the lit-
erature on disconnected operation [17, 35, 42, 51, 80,
92] to protect both safety and availability.

Although in principle reducing trust assumptions is
always desirable [58, 59, 81], in practice, cost matters.
We therefore evaluate the costs of providing untrusted
storage in our implementation of Depot. We also evalu-
ate a modified Depot client that uses Amazon S3’s as an
untrusted storage platform. We find costs to be modest.
Depot adds a few hundred bytes to each request and a
few milliseconds of processing to small requests and a
few tens of milliseconds (due to larger overheads to per-
form secure hashes) on large files.

2 Why untrusted storage?
When we say that “servers are untrusted”, we do not sug-
gest that they should be implemented or selected less
carefully than they are today. Data owners should still
try to hire a SSP that follows best practices. Rather, re-
moving trust is about exercising more caution: it means
tolerating a larger number of failures by making fewer
and weaker assumptions. Thus, under Depot, it is good
for nodes to operate correctly, but we do not assume that
they do. Instead, participants can verify other nodes and
ensure continued operation with clean semantics if some
nodes fail to act as hoped.

It is often desirable to minimize trust and employ end-
to-end correctness checks in any system [58, 59, 81], but
we take particular pains to minimize trust assumptions in
our cloud storage service for three reasons.

First, from a client’s point of view, the SSP is a po-
tentially complex black box controlled by another party,
so it seems prudent not to assume the correctness of the
SSP’s internals. While most storage service providers
may follow best practices, some may not, and it may be
hard to tell the difference (until it is too late). For exam-
ple, one customer discovered after repeated disk failures
that his large ISP reused old disk drives in new servers
until they failed [36]. Though this is only an anecdote,
it is rooted in the reality of providers’ opacity. Further-
more, any storage service, well-managed or otherwise, is
subject to non-negligible risks: coping with known hard-
ware failure modes in local file systems is difficult [78];
in cloud storage, this difficulty can only grow.

Second, replication across servers and locations is not
a panacea. As Vogels notes, “[The] absolutely unrealis-
tic assumption [of uncorrelated failures] will come back
to haunt you in real life, where failures frequently are
correlated, as they are often triggered by external or en-
vironmental events” [96]. In the context of cloud ser-
vices, one must consider software bugs and vulnerabil-
ities [15], correlated manufacturing defects [77], mis-
configuration and operator error [73], malicious insid-
ers [94], bankruptcy [6], undiagnosed problems [23], and
acts of God [30] and man [70]. Moreover, even when
failures are uncorrelated, the risk that some objects are
unlucky and struck by simultaneous failures rises rapidly
as systems grow [72].

Third, from an SSP’s point of view, lack of trust may
be a significant barrier to the adoption of cloud services,
so client-verifiable end-to-end guarantees may help con-
vince customers to accept the approach.

We also minimize trust towards clients. Clients are
vulnerable to several of the same types of failures dis-
cussed above. Having pushed the envelope on protecting
the system against server misbehavior, we do not want a
single faulty client to disrupt the operation of the system.

3 Architecture and scope
Figure 1 depicts Depot’s high-level architecture. A set of
clients stores key-value pairs on a set of servers. In our
target scenario, the servers are operated by a storage ser-
vice provider (SSP) that is distinct from the data owner
that operates the clients. Keys and values are arbitrary
strings, with overhead engineered to be low when values
are at least a few KB.

For scalability, we slice the system into groups of
servers, where each group is responsible for one or more
volumes. Each volume corresponds to a range of one cus-
tomer’s keys, and a server independently runs the proto-
col for each volume assigned to it. Many strategies for
partitioning keys among nodes are possible [13, 34, 48,
50, 72, 90], and we leave the assignment of keys to vol-
umes to layers above Depot.
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FIG. 1—Architecture of Depot. The arrows between servers
indicate replication and exchange.

The servers for each volume may be geographically
distributed, a client can access any server, and servers
replicate updates using any arbitrary topology (chain,
mesh, star, etc.) As in Dynamo [34], to maximize avail-
ability Depot does not require overlapping read and write
quorum, and—as the dotted lines suggest—Depot can
even continue to function during periods of complete
server unavailability by having clients communicate di-
rectly with one another.

We use the term node to mean either a client or a
server. Clients and servers run the same basic Depot pro-
tocol, though they are configured differently.

3.1 Issues addressed
One of our aims in this work is to push the envelope in the
trade-offs between trust assumptions and system guaran-
tees. Specifically, for a set of standard properties that one
might desire in a storage system, we have asked, what
is the minimum assumption that we need to provide use-
ful guarantees, and what are those guarantees? Below we
list the issues we examine. The next two sections then
describe the core Depot protocol (§4) and explain how
Depot builds on it to provide these properties (§5).

• Consistency (§5.1) and bounded staleness (§5.3): We
want to limit the extent to which the storage system
can reorder, delay, or omit updates in a way that is
visible to a client’s reads. The goal is to provide suf-
ficiently strong and precise guarantees that users and
programmers can understand and predict how the sys-
tem will behave.

• Availability and durability (§5.2): Durability means
that we want to ensure that a client eventually succeeds

in reading an object. Availability means that we want
to maximize the fraction of time that a client succeeds
in reading or updating an object.

• Integrity and authorization (§5.4): Only clients autho-
rized to update an object should be able to create valid
updates that affect reads on that object.

• Recovery (§5.5): Data owners care about end-to-end
reliability. Data integrity, consistency, and durability
are not enough when the layers above Depot—faulty
client nodes, applications, or users—can issue autho-
rized writes that replace good data with bad. Depot
does not try to distinguish good updates from bad
ones, nor does it innovate on the abstractions used to
defend data from higher-layer failures. We do however
explore how Depot can support standard techniques
such as recovery to earlier versions of data.

• Evicting faulty nodes (§5.6): If a faulty node provably
deviates from the protocol, we wish to evict it from the
system so that it will not continue to cause confusion.
However, it is vital that we never evict correct nodes.
Note that we explicitly do not attempt to solve the

confidentiality/privacy problem within Depot. Instead,
like commercial storage systems [3, 5], Depot enforces
integrity and authorization (via client signatures) but
leaves it to higher layers to use appropriate techniques
for the privacy requirements of each application (e.g. al-
low global access, encrypt values, encrypt both keys and
values, introduce artificial requests to thwart traffic anal-
ysis, etc.).

We do not claim that the above list of issues is com-
prehensive. For example, it may be useful to audit storage
service providers with black box tests to verify that they
are storing data as promised [52, 86, 87], but we do not
examine that issue. Still, we believe that the properties
are sufficient to make the resulting system useful.

3.2 System and threat model
Before continuing, we briefly describe our technical as-
sumptions. First, nodes are subject to standard crypto-
graphic hardness assumptions, and each node has a pub-
lic key known to all nodes. Second, any number of nodes
can fail in arbitrary (Byzantine [57]) ways: they can
crash, corrupt data, lose data, process some updates but
not others, process messages incorrectly, collude, etc.

Third, we assume an unbounded number of syn-
chronous intervals of sufficient length to allow a pair
of timely, connected, and correct nodes to exchange
a finite number of messages. This assumption implies
that a faulty node cannot forever prevent correct nodes
from communicating. However, we make no assump-
tions about when these synchronous intervals happen.

Fourth, above we used the term correct node some-
what loosely. This term refers to a node that neither devi-
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ates from the protocol nor becomes permanently unavail-
able; a node that crashes and recovers is equivalent to a
node that never crashes but that is sometimes slow. Two
final technical points related to durability and liveness of
garbage collection. First, a node that obeys the protocol
for a time but later deviates is never counted as correct;
second, we assume that unrecoverable clients are eventu-
ally replaced: an administrator needs only the old client’s
keys and configuration to bring up a new machine [24].

4 Core protocol
In Depot, clients’ reads and updates to shared objects
should always appear in an order that reflects the logic of
higher layers. For example, an update that removes one’s
parents from a friend list and an update that posts spring
break photos should appear in that order, not the other
way around [31]. However, Depot has two challenges:
first, it wants maximum availability, which fundamen-
tally conflicts with the strictest orderings [38] . Second, it
wants to continue to provide its ordering guarantees de-
spite arbitrary misbehavior from any subset of nodes. In
this section, we describe how the protocol at Depot’s core
achieves a sensible and robust order of updates while op-
timizing for availability.

Of course, ordering updates and reads is not the only
thing that Depot must do. However, it is the essential
building block for Depot’s other properties. In §5 we de-
fine precisely the consistency guarantee that Depot en-
forces and discuss how Depot provides the other proper-
ties listed in §3.

Note that clients and servers run the same basic pro-
tocol. This symmetry not only simplifies the design but
also provides flexibility. For example, if servers are un-
reachable, clients can share data directly. For simplicity,
the discussion in this section does not distinguish be-
tween clients and servers.

4.1 Basic protocol for update propagation
This subsection describes the basic protocol to propagate
updates, ignoring the problems raised by faulty nodes.
The protocol is essentially a standard log exchange pro-
tocol [16, 76], but we describe it here for background and
to define terms. Subsections 4.2 and 4.3 describe how
Depot defends against faulty nodes.

The core message in Depot is an update that changes
the value associated with a key. It has the following form:

dVV, {key, H(value), logicalClock@nodeID, H(history)}
σnodeID

Updates are associated with logical times. A node as-
signs each update an accept stamp of the form logical-
Clock@nodeID [76]. A node increments its logical clock
on each local write. Also, when a node N receives an up-
date u from another node, N advances its logical clock to
exceed u’s so that an update’s accept stamp exceeds the
accept stamp of any update on which it depends [56].

Each node maintains two main local data structures:
a log of updates it has seen and a checkpoint reflecting
the current state of the system to support random ac-
cess reads and writes. Note that Depot separates data
from metadata [16], so the log and checkpoint contain
collision-resistant hashes of values. If a node knows the
hash of a value, it can fetch the full value from another
node and store the full value in its checkpoint. To garbage
collect its log, a node creates a second checkpoint corre-
sponding to a past logical time and removes all log en-
tries with accept stamp prior to that time [76].

Information about updates propagates through the
system when nodes exchange tails of their logs. Each
node N maintains a version vector VV with an entry for
each node M in the system: N.vv[M] is the highest logi-
cal clock N has observed for any update by M [75]. To
transmit updates from node M to node N, M sends to N
the updates from its log that N has not seen.

Each node sorts the writes in its log by accept stamp,
sorting first by logicalClock and breaking ties with
nodeID. Thus, each new write issued by a node ap-
pears at the end of its own log and (assuming no faulty
nodes) the log reflects a causally consistent ordering of
all writes. Also, the checkpoint state for any object o is
the most recent write to o in the log, so (assuming no
faulty nodes) reads from the checkpoint are causally con-
sistent.

Conflict resolution. Two updates are logically concur-
rent if neither appears in the other’s history. Logically
concurrent updates that modify different objects can be
readily applied by the local state of the node that re-
ceives them. However, if two concurrent updates modify
the same object, these updates conflict.

Many approaches to resolving conflicting updates
have been proposed [51, 80, 92], and Depot does not
claim to extend the state of the art on this front. Our pro-
totype implements a simple mechanism that supports a
range of application-level conflict resolution policies: a
read of key k in Depot returns the set of logically most
recent updates to k. This set includes any update to k that
has not been superseded by a logically later update of k.
Applications may then resolve conflicts by filtering (e.g.,
reads return the update by the highest-numbered node,
reads return an application-specific merge of all updates,
or reads return all updates) or by replacing (e.g., the ap-
plication reads the multiple concurrent values, performs
some computation on them, and then writes a new value
that is guaranteed to appear logically after and thereby
supersede the conflicting writes.)

4.2 Defending against faulty nodes
There are three fields in an update that defend the proto-
col against faulty nodes. The first is a history hash that
encodes the history on which the update depends using
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a collision-resistant hash that covers the most recent up-
date by each node in the system known to the writer when
it issued the update. By recursion, this hash covers all up-
dates included by the writer’s current version vector. Sec-
ond, each update is sent with a dependency version vec-
tor, dVV, that indicates the version vector that the history
hash covers. Note that while dVV logically represents a
full version vector, when node N creates an update, dVV
actually contains only the entries that have changed since
the last write by N [83]. Third, a node signs its updates
with its private key. These signatures ensure that, to be
viewed as valid and to be applied to the local state at any
correct node, an update on a given object must be signed
by a node authorized to update the object.

To defend against faulty nodes, a correct node N uses
the update’s history hash and dVV to enforce the follow-
ing invariant: an update u is accepted only if it is prop-
erly signed and N has already accepted all the updates
on which u depends. Attempts by a faulty node to fabri-
cate u and pass it as coming from a correct node; reorder
or omit updates on which u depends; or include in u in-
compatible dVV and history hashes, will all result in N
rejecting u.

To compromise consistency, a faulty node has one re-
maining option: make the system violate causal consis-
tency by forking, that is, showing different histories to
different communication partners [61]. The rest of this
section describes how Depot tolerates such attacks.

Detecting forked histories. A correct node produces a
sequence of updates with monotonically increasing his-
tories captured by each update’s dVV and history hash.
In contrast, a faulty node M can fork its updates, creat-
ing two updates u1@M and u′1@M such that neither write’s
history includes the other’s. M can then send u1@M and
the updates on which it depends to one node, N1, and
u′1@M and its preceding updates to another node, N2.

If updates did not include their history hashes, such
forking updates might confuse other nodes. To continue
the running example, N1 could issue some new updates
that depend on updates from one of M’s forked updates
(e.g., u1@M) and then send these new updates to N2.
N2 might receive N1’s new updates, but not the updates
by M on which they depend—because N2 already re-
ceived u′1@M , its version vector appears to already in-
clude the prior updates. However, if now N2 applies just
N1’s writes to its log and checkpoint, multiple consis-
tency violations may occur. First, the system may never
achieve eventual consistency because N2 may never see
write u1@M . Further, the system may violate causality be-
cause N2 has updates from N1 but not some earlier up-
dates (e.g., u1@M) on which they depend.

The additional information with each update prevents
such confusion. In the example, if N1 tries to send its

new updates to N2, N2 will be unable to match the new
updates’ history hashes to the updates N2 actually ob-
served, and N2 will break its connection; the reverse hap-
pens if N2 tries to send updates to N1. As a result, N1 and
N2 will be unable to exchange any updates after the fork
point introduced by M after u0@M .

Discussion. If we stopped here, the protocol would en-
force fork causal consistency, which we define precisely
in a technical report [63]. It means that each node sees
a causally consistent subset of the system’s updates even
though the system as a whole is no longer causally con-
sistent. Informally, history has branched, but each node
peers backward from its branch to the beginning of time,
seeing causal events the entire way.

Though these forks are regrettable, they are impossi-
ble to prevent if nodes are allowed to misbehave arbitrar-
ily. More precisely, as proved in [63], fork causal con-
sistency is the strongest consistency guarantee that one
can provide in a system in which (a) nodes can misbe-
have; (b) causal consistency is provided in the absence of
misbehavior; and (c) a node can exchange updates with
another without needing to involve a third party.

Unfortunately, enforcing this strong consistency
would compromise availability: fork causal consistency
requires that once two nodes have been forked, they
can never observe one another’s updates after the fork
point [61]. In many environments, this lack of availabil-
ity is unacceptable. In those cases, it would be far prefer-
able to weaken consistency slightly to ensure an avail-
ability property: correct nodes can always share updates.
We now describe how Depot upholds this property.

4.3 Joining forks
To protect availability, nodes must be able to join forked
branches of the system’s history by receiving non-
causally-consistent updates by a faulty node and updates
by other nodes that depend on them.

At a high level, Depot converts concurrent updates by
a single faulty node into concurrent updates by a pair of
virtual nodes. Depot then applies well-studied techniques
for weakly consistent systems in benign settings [51, 92].
We now fill in the details that underly this approach.

Tracking forked histories. A node identifies a fork
when it receives two updates issued by the same writer
(e.g., u1@M and u′1@M) such that (i) neither update in-
cludes the other in its history and (ii) each update’s his-
tory hash links it to a history that includes the same pre-
vious update by that writer (e.g., u0@M).

If a node N2 receives from node N1 an update that
is incompatible with the updates it has received, and if
neither node has yet identified the fork point, N1 and
N2 perform a binary search on the updates included in
the nodes’ version vectors to identify the latest version
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vector, VVcommon, encompassing a common history. N1
then sends its log of updates beginning from VVcommon.
At some point, N2 receives the update (e.g., u1@M) that
is incompatible with two updates (e.g., u0@M and u′1@M)
that N2 has already received.

After a node identifies the three updates responsible
for a fork, it expands its version vector to include three
entries for the node that issued the forking updates. The
first is the pre-fork entry, whose index is the index (e.g.,
node ID) before the fork and whose contents will not ad-
vance past the logical clock of the last update before the
fork (e.g., u0@M). The other two are the two post-fork en-
tries, whose indices consist of the index before the fork
augmented with the history hash of the respective first
update after the fork. These entries initially hold the log-
ical clock of the first updates after the fork (e.g., of u1@M
and u′1@M), and these values advance as the node receives
new updates after the fork point.

A faulty node can be responsible for multiple
forks [76], so we must ask whether multiple forks stymie
the construction immediately above. The answer is no:
this construction (augmenting the prior index with the
hash of the update after the latest fork) is an opera-
tion that composes. More specifically, after i dependent
forks, a virtual node’s index in the version vector is
well-defined: it is nodeID + H(ufork1)+ H(ufork2)+ ... +
H(uforki).

Log exchange revisited. This expanded version vector
makes it easy to identify which updates to send to a peer.
In the standard protocol, when a node wants to receive
updates from another node, it sends its current version
vector to the sender so that the sender knows which up-
dates are needed. After a node detects a fork and splits
one version vector entry into three, it includes all three
entries when asking for updates. If the sender is already
aware of the fork, it is already maintaining the same three
entries summarizing its state, and as in the standard pro-
tocol, the difference between the version vector entries
identifies which updates from each fork must be sent.
If the sender has received updates from one branch but
not the other, it can identify which branch it is on us-
ing the history hash and then use the logical time from
that branch to identify which updates to send. Finally,
if the sender has received updates that belong to neither
branch, a new fork point is created as above.

4.4 Client access protocol
So far, we have described the update propagation proto-
col, which is the core of Depot, but we have not described
how GETs and PUTs are handled by clients. In this sec-
tion, we describe the protocol clients use to interact with
servers. Unlike the update propagation protocol, which is
identical for both clients and servers, clients and servers
take different actions in the client access protocol. The

client access protocol can be divided into a PUT-protocol
and a GET-protocol.

A PUT in Depot involves the following steps. The is-
suing client generates an appropriate update (as defined
in §4.1) and value for the PUT request and stores this
value and update in its local store. It then sends the value
and update to a server for storage (which is usually a
nearby server). On receiving this value and update from
a client, the server verifies the update and that the value
hash present in the update matches the hash of the re-
ceived value. If so, the server stores the value and update
on its persistent store and sends an acknowledgment to
the client. In the background, the server propagates this
update and value to the other servers through periodic
gossip messages. A client retrieves these new updates
during a GET or during background gossiping.

A GET in Depot has two paths: fast and slow. The fast
path is optimized for the scenario when the background
gossips have propagated most updates to the client per-
forming the GET. Therefore, in the fast path, we assume
that the client has already received and verified all the
updates and is missing only the value(s) for the accessed
key. The client sends the requested key to a server which
responds by sending back the most recent value(s) for
the requested key from its local store. The client verifies
that the hash(es) of the value(s) received for the requested
key matches the value hash(es) present in the most recent
update(s) it knows to that key. If successful, these steps
constitute the fast path of Depot.

The slow path is taken when a client with a stale up-
date to a key tries to access that key. In this case, the
hash(es) of value(s) sent by the server don’t match the
value hash(es) of the most recent update(s) to the ac-
cessed key. On detecting this mismatch, the client ini-
tiates a value and update transfer by sending its version
vector—to initiate the log-exchange as described in §4.1,
and the key that it is interested in accessing—to request
the value(s) for this key. The server sends back the new
update(s) and the most recent value(s) for the requested
key. The client verifies the received updates as described
in §4.2 and the value(s) as in the case of fast path.

Depot includes an additional optimization to prevent
the server from transferring the value(s) in the fast path
when the client has a stale update. When a client issues
a GET for a key, it includes a 2-byte compact, but in-
secure, hash of the most recent value hash(es) for the re-
quested key. The server uses this compact hash to ensure,
with high probability, that both the client have the same
value(s) for the accessed key. If so, the server proceeds
as described in the fast path description earlier. If not, the
server sends back a message requesting the client to take
the slow path, thereby avoiding the transfer of value(s).

To avoid the slow path, Depot clients periodically re-
trieve new updates from their preferred servers and, af-
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Safety/ Correct nodes
Dimension Liveness Property required

Consistency Safety Fork-Join Causal Any subset
Safety Bounded staleness Any subset
Liveness Eventual Any subset

consistency

Availability Liveness Always write Any subset
Liveness Always exchange Any subset
Liveness Read availability / A correct node

durability has object

Integrity Safety Only auth. updates Clients

Recoverability Safety Valid discard 1 correct client

Eviction Safety Valid eviction Any subset

FIG. 2—Summary of properties provided by Depot.

ter verifying them, store them in their local store. Note
that the verification of received updates is required to en-
sure consistency. Storing these verified updates (∼285
bytes in our implementation) for future GETs minimizes
latency and avoids duplicate transfers. By appropriately
configuring their prefetch frequencies for their environ-
ment, clients can avoid the slow path.

Alternatively, in environments with high update fre-
quency, clients can configure their system to take the
slow path always, as a way of saving bandwidth and
CPU cycles, and reducing latency. This configuration
avoids the additional latency of failed fast paths, when
a slow path is highly likely to be taken, and avoids the
bandwidth and CPU cycles to retrieve and verify signa-
tures on all but the most recent updates. Recall that in De-
pot, each update includes a history hash of prior updates
and therefore, a signature on an update can also serve
as signature on prior updates by the same client. Omit-
ting all but the most recent signatures saves bandwidth
because clients don’t need to receive these omitted sig-
natures, which constitute about half of our metadata, and
it saves CPU because a client doesn’t spend CPU cycles
to verify these omitted signatures. While this optimiza-
tion of omitting all but last signature from each client is
useful in general, it is especially useful in this configu-
ration when updates are fetched on demand rather than
prefetched during the background gossips.

5 Properties and guarantees
This section describes how Depot uses the replication
protocol as a building block to enforce useful proper-
ties with minimal trust assumptions. Figure 2 summa-
rizes these properties and lists the assumptions required
to uphold them.

Below, we define these properties more precisely and
describe how Depot provides them. The key idea is that
the protocol described in §4 enforces a new consis-
tency semantic called fork-join causal consistency (FJC).
Given FJC consistency, we can constrain and reason

about the order that updates propagate through the sys-
tem and use those constraints to help enforce the remain-
ing properties.

5.1 FJC consistency
Clients expect storage services to provide consistent ac-
cess to stored data. Depot guarantees fork-join-causal
(FJC) consistency for all reads and updates to a volume
that are observed by any correct node. A more formal
description of FJC consistency appears in Appendix A.
Here we describe two important aspects of FJC consis-
tency:
• Eventual consistency. Any update issued or read by

a correct node is eventually observable by all correct
nodes. Also, reads of a lookup-key at correct nodes
that can observe the same set of updates to that key
return the same values. Observable simply means that,
if an application were to issue a read of the updated
object, it would receive a version that is at least as new
as the indicated update [37].

• Dependency preservation. If update u1 by a correct
node depends on an update u0 by any node, then any
correct node will observe u0 before it observes u1.
This property implies a number of useful session guar-
antees [91] for programs running on correct nodes
including monotonic reads, monotonic writes, read-
your-writes, and writes-follow-reads.
More broadly, from the point of view of applications

and users, FJC consistency appears almost identical to
causal consistency. There are two main differences. First,
under FJC consistency, a faulty node can issue writes w
and w′ such that one correct node observes w without first
observing w′ while another observes w′ without first ob-
serving w. Note, though, that Depot ensures that all such
writes eventually become visible to correct nodes: Depot
uses fork joining to transform w and w′ into causally con-
current writes by two virtual nodes. Second, under FJC
consistency, faulty nodes can issue updates whose his-
tories do not include all updates on which they actually
depend. For example, a faulty node can read an update
uc from a correct node and then create an update uf that
does not include uc in its history hash or dVV.

Stronger consistency during benign runs. Depot
guarantees FJC consistency semantics for all runs, even
if an arbitrary number of nodes fail in arbitrary ways.
During benign runs, Depot ensures causal consistency.
Although causal consistency is weaker than the strictest
consistency of linearizability [46], we accept this weak-
ening because it allows Depot to remain available to
reads and writes during partitions [34, 38].

5.2 Availability and durability
Availability (roughly: “I can get to my data now”) and
durability (roughly: “I can eventually get to my data”)
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are vital properties for storage services. There is, unfor-
tunately, a limit to what any storage system can guaran-
tee: if no correct node has an object, then the object may
not be durable, and if no correct, reachable node has an
object, then the object may not be available.

Depot copes with these fundamental limits in two
ways. First, the protocol minimizes the number of cor-
rect nodes required for availability. Second, the system
configuration increases the likelihood that an object is
available and durable across important failure scenarios.

Protocol. The replication protocol described in §4
maximizes durability and availability for reads and
writes by providing the following guarantees:

• Always write: An authorized node can always update
any object.

• Always exchange: Any subset of correct nodes can ex-
change any updates they have observed if they can
communicate during a sufficiently long synchronous
interval.

• Read availability: If during a sufficiently long syn-
chronous interval any reachable correct node has an
object, then a read by a correct node will succeed.

• Durability: If any correct hoarding node has an object,
then a read of that object will eventually succeed.

The durability property includes the term hoarding
node. Recall from §4 that Depot separates data from
metadata: updates and checkpoints include a hash of a
key’s value but the value itself is sent/stored separately. A
hoarding node for an object is a node that always stores
the object’s value; a hoarding node for a version of an
object stores that version of the object’s value as long as
that version is valid. In contrast, a caching node for an
object may discard the object’s value at any time and can
fetch values that match currently valid hashes from other
(hoarding or caching) nodes. Thus, an update is durable
once its value reaches a correct node that will not prema-
turely discard it.

It may not be surprising that operations can succeed
if a correct/reachable node has the needed data, but note
that when an operation succeeds it not only accesses the
requested data but also guarantees that the requested data
is safe to access under the system’s consistency, stale-
ness, and integrity guarantees.

Notice that a hoarding node must atomically process
a key’s update (metadata) and store the corresponding
value. When a hoarding node updates an object, it stores
the update and value locally. When a hoarding node re-
quests updates from another node it sets a flag to indi-
cate that values also need to be sent; if the sender does
not have the required values, then the hoarding receiver
requests the updates from another node.

Configuration. Depot’s protocol allows us to trade off
availability and replication. In principle, we could realize
our goal of having each node trust only itself for avail-
ability and durability by having all nodes hoard all ob-
jects, but in practice such an approach is not appealing
for many cloud storage applications.

In the Depot prototype servers for a volume hoard that
volume, and each client hoards object versions for up-
dates they write. On a get(), a client first tries to read
from any server. If that fails, it tries other servers. Finally,
it goes directly to the client that produced the most recent
update for the object stored in the local checkpoint.

This configuration allows us to survive diverse fail-
ure scenarios including not only the routine failure case
where some subset of servers or clients fail and lose data
but also the client disaster or cloud disaster case where
all clients or all servers fail [6, 23] or become unavail-
able [11]. As an aside, Depot servers do not trust each
other either, so a customer can configure replication to
span several storage service providers (SSPs) [52] to fur-
ther safeguard durability and availability without affect-
ing Depot’s safety guarantees; client write hoarding can
be deactivated in such scenarios.

5.3 Bounded staleness
A client expects that, soon after it updates an object,
other clients that read the object see the update. The fol-
lowing guarantee codifies this expectation:
• Bounded staleness. If correct clients c1 and c2 have

clocks that remain within ∆ of a true clock and c1
updates an object at time t0, then by no later than
t0 +2Tannounce +Tprop +∆, either (1) the update is visi-
ble to c2 or (2) c2 suspects that it has missed an update
from c1.

Tannounce and Tprop are configuration parameters indicat-
ing how often a node announces its liveness and how
long propagating such announcements is expected to
take; both are typically a few tens of seconds.

We use Depot’s FJC consistency to guarantee that
a client always either knows it has seen all recent up-
dates or suspects it has not. Every Tannounce seconds, each
Depot client updates a per-client beacon object [61] in
each volume with its current physical time. When c2
sees that c1’s beacon object indicates time t, then c2 is
guaranteed—by FJC consistency—to see all updates is-
sued by c1 before time t. On the other hand, if c1’s bea-
con object does not show a recent time, c2 suspects that
it may not have seen other recent updates by c1. Suspi-
cion guarantees that if the servers are failing to propagate
c2’s updates to c1, c1 can take action, but false positives
are possible. For example, the servers may be operating
correctly but c1 may have crashed.

When c2 suspects it has missed updates from c1, it
switches to a different server. If that fails to resolve the
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problem, c2 attempts to contact c1 directly to fetch any
missed updates and the updates on which they depend.
As noted in §5.2, c2 will retry with different servers
(and, if necessary clients), until it succeeds in receiv-
ing the needed updates. Furthermore, because the repli-
cation protocol enforces FJC consistency regardless of
the topology over which updates flow, the updates c2 re-
ceives are always consistent.

Get staleness semantics v. availability. Applications
have two options if a node suspects it is missing updates
when the application issues a get(). The get() can return a
warning that the result might be stale. This option is our
default and it provides the guarantee stated at the start
of this subsection. Alternatively, if applications prefer to
trade worse availability for better consistency [38], they
can choose to block until the node has succeeded in re-
ceiving all recent beacons.

The reader may notice that a faulty client might fail
to update its beacon, making all clients suspicious all the
time. What, then, are the benefits of this bounded stale-
ness guarantee? There are three. First, recall from §2 that
although we are prepared for bad failures, we hope (and
expect) that most of the time we will operate in more be-
nign conditions. When clients, servers, and the network
are not faulty, clients are assured that they are reading
fresh data. Second, when servers or some network paths
are faulty, suspicion causes clients to fail-over to other
communication paths to get the recent updates they need.
Third, if a client like c1 is faulty, this protocol (correctly)
warns other clients that some of the faulty clients’ up-
dates may be missing.

Bounded staleness v. FJC. Bounded staleness and
FJC consistency are complementary properties; both are
needed in our context. Without bounded staleness, a
faulty server could serve a client an arbitrarily old snap-
shot of the system’s state—and be correct according to
FJC. Conversely, bounding staleness without a consis-
tency guarantee (assuming such a thing is possible; recall
that we bound staleness by relying on consistency) is not
enough. For engineering reasons, our staleness guaran-
tees are typically on the order of tens of seconds; absent
consistency guarantees, applications could be confused
because there could be significant periods of time when
some updates are visible, but related ones are not.

5.4 Integrity and authorization
Under Depot, no matter how many nodes are faulty, only
authorized clients can update a key/value pair in a way
that affects correct clients’ reads. Depot enforces autho-
rization and integrity by requiring nodes to sign their up-
dates, and correct nodes treat unauthorized updates as
no-ops that do not affect future reads of the update’s
lookup-key. Note that because updates’ histories are en-

tangled, nodes must continue to propagate these updates.
In our prototype, when a volume is created, it is con-

figured to statically associate ranges of lookup-keys with
specific nodes’ public keys. This simple approach allows
specific client nodes to read and write specific subsets of
the system’s objects and to prevent servers from read-
ing or modifying the objects they store on behalf of
clients. More sophisticated approaches to key manage-
ment [68, 98] are left as future work.

5.5 Recovery
Even if a storage system retains a consistent and fresh
view of the data written to it, data owners care about end-
to-end reliability, and the applications and users above
the storage system pose a significant risk. For example,
careless users or administrators [71, 82], buggy applica-
tions, malware, and malicious insiders [7, 14] all may
corrupt or destroy valuable data. Depot does not attempt
to distinguish “good” updates from “bad” ones or ad-
vance the state of the art in protecting storage systems
from bad updates. Depot’s FJC consistency does, how-
ever, provide a basis for applying many standard de-
fenses. For example, Depot can keep all versions of the
objects in a volume, or it can provide a basic laddered
backup scheme (all versions of an object kept for a day,
daily versions kept for a week, weekly versions kept for
a month, and monthly versions kept for a year).

Discarding versions by unanimous consent. Given
FJC consistency, implementing laddered backups is
straightforward. Initially, servers retain the update and
full value for every update they receive, and clients re-
tain the update and value for every update they create.

Then, servers and clients discard the non-laddered
versions by unanimous consent of clients. Every day,
clients garbage collect a prefix of the system’s logs by
producing a checkpoint of the system’s state (using tech-
niques adopted from Bayou [76]). The checkpoint in-
cludes information needed to protect the system’s con-
sistency and a candidate discard list (CDL) that states
which prior checkpoints and which versions of which ob-
jects may be discarded. The job of proposing the CDL ro-
tates over the clients, and happens every day at midnight.
The key to correctness here is (a) a correct client will not
sign a CDL that would delete a checkpoint version pre-
maturely; and (b) a correct node discards a checkpoint or
version if and only if it is listed in a CDL signed by all
clients. This ensures the valid discard property:
• Valid discard. If at least one client is correct, a correct

node will never discard a checkpoint or a version of an
object required by the backup ladder.
Note that a faulty client cannot cause the system

to discard data that it needs: the above approach pro-
vides the same read availability and durability guar-
antees for backup versions as for the current version
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(§5.2). However, a faulty client can delay garbage col-
lection. If a backup certificate fails to garner unanimous
consent of clients, clients notify a system administrator
who trouble-shoots the problem or, if all else fails, re-
places the faulty client with a new machine. Thus, faulty
clients can cause the system to temporarily consume ex-
tra storage resources, but assuming clients that prevent
garbage collection progress are eventually repaired, these
resources are guaranteed to be released eventually.

5.6 Evicting faulty nodes
Depot evicts nodes that provably deviate from the pro-
tocol (e.g., by issuing and signing forking writes) and
ensures valid eviction:

• Valid eviction. No correct node is ever evicted from the
system.

Eviction only occurs if nodes sign messages constituting
a cryptographic proof of misbehavior; if a faulty node
is merely unresponsive, that is handled exactly as SLA
violations are today. Due to space constraints, we omit
further discussion of eviction.

6 Experimental evaluation
In this section we first say a few words about our pro-
totype, and then we evaluate Depot experimentally. Our
principal question is: what is the cost of the guarantees
that Depot provides relative to a baseline storage system?

6.1 Implementation
We have implemented the Depot key-value store proto-
type in Java.

The prototype implements the protocol described in
§4 and most of the mechanisms described in §5. The De-
pot prototype does not implement the laddered backup
scheme described in §5.5. We have also not implemented
the optimization to omit unneeded signatures in Depot
as described in §4.4. Additionally, we do not implement
any mechanisms to prevent faulty nodes from exhausting
the timestamp space by issuing writes with an artificially
large accept stamp; a simple defense is for correct nodes
to delay receiving any update with a logical clock that
exceeds the node’s local time in microseconds.

Our prototype uses Berkeley DB for local storage.
Each write to Berkeley DB is committed by calling com-
mit before returning. Berkeley DB is configured to write
data to disk buffers (by calling fsync) for every transac-
tion.

In our experiments, servers gossip every second to ex-
change updates while clients gossip with a chosen pri-
mary server every 5 seconds. Note that different clients
may have different primary servers. We use 1024 bit RSA
keys and SHA-256 hash for all experiments unless noted
otherwise.

System Description

Baseline Clients send get/put requests to a server and trust
the server to operate correctly. Clients don’t main-
tain any local state or perform any check.

B+Hash Clients attach SHA-256 hashes to the values that
they store and verify these hashes on gets.

B+H+Sig Clients sign the values that they store and verify
these signatures on gets.

B+H+S+Store Same as B+H+Sig, but clients also locally store the
values that they write to ensure durability and avail-
ability in presence of server failures.

FIG. 3—Summary of baseline variants. Our evaluation com-
pares the costs of these variants to those of Depot.

6.2 Setup and method
Most of our experiments compare our implementation
of Depot to a set of baseline key-value storage systems
that provide increasingly stronger properties. Figure 3
describes these baseline variants. All of them replicate
the key-value pairs to a set of servers but omit one or
more of Depot’s safeguards. We have implemented these
baseline variants using the same code base as Depot.
Therefore, these comparison systems are not heavily op-
timized. In particular, our baseline variants attach some
metadata (∼ 100 bytes) to each PUT to detect precedence
and ensure eventual consistency. This metadata is also
logged to the disk. In addition, like in Depot, the base-
line variants separate data from metadata, causing writes
to two different Berkeley DB tables on every PUT, which
is possibly inefficient compared to what a real storage ap-
plication would do. Thus, we may slightly underestimate
Depot’s true overheads.

We focus on measuring the “price of distrust” with
an emphasis on the network bandwidth consumption,
the storage overheads at both clients and servers, the
CPU cycles consumed at both clients and servers, and
latency of processing requests. Our evaluation converts
these resource overheads into a common currency [40].
For this conversion, we use the following cost model, de-
rived from what Amazon’s S3 and EC2 charge their cus-
tomers [1, 2], but we also provide the raw per-resource
overheads so that the reader can compute costs under
other assumptions:

Client-server network bandwidth $.10/GB
Server-server network bandwidth $.01/GB
Disk storage (client or server) $.10/GB per month
CPU processing (client or server) $.10 per hour

For intuition, note that the following cost about the
same (roughly one nano-dollar, or $1

109 ): transmitting 10
bytes between a client and a server, or storing 10 bytes
for a month. In comparison, signing one small message
takes ≈4 ms of CPU and costs about 100 nano-dollars.

10



Configuration. We run most experiments on a local
testbed comprising up to 25 Dell PowerEdge r200 nodes,
each with a quad-core Intel Xeon X3220 2.40 GHz pro-
cessor, 8 GB RAM, two local disks, and one 1 giga-
bit Ethernet port. The operating system is Fedora Core
2.6.25.14-69. The nodes are part of a local Emulab [97],
allowing us to vary the topology and performance of the
network connecting them.

Our default configuration is 8 clients and 4 servers
with the servers connected in a mesh and two clients
connecting to each server. We have disabled garbage col-
lection §5.5 and beaconing §5.3 for the experiments re-
ported in this section.

In addition to these controlled configurations, we use
Amazon S3 as a testbed: we configure Depot to use
the existing, unmodified Amazon S3 service for storage
rather than storing data on full-fledged Depot servers.
Note that as detailed below, the guarantees Depot pro-
vides in this configuration are somewhat weaker than it
provides when Depot is used at both clients and servers.
We compare the performance and costs of this configura-
tion with that of a baseline system that uses S3 directly,
without Depot’s safeguards.

We first report the result of a few microbenchmarks
for reference. We then present the results from our local
testbed experiments in §6.4 and from our S3 experiments
in §6.5.

6.3 Microbenchmarks
Berkeley DB. We show the result of a simple bench-
mark on Berkeley DB to profile its latency and CPU
overheads. The benchmark issues a sequence of GET and
PUT operations to randomly chosen keys from a volume
of 1000 keys. We report the latency and CPU utilization
for various object sizes. Berkeley DB was configured to
commit data to disk after every GET and PUT. The Berke-
ley DB cache size was set to 100 MB for all these bench-
marks. We used the base API for Java version of Berke-
ley DB and we invoked DbTransaction.commitSync()
after every PUT and GET transaction. Figure 4 reports
the observed CPU utilization and latency values averaged
over 1000 operations.

We observe that the Berkeley DB latencies have
significant standard deviation, and that both the mean
and standard deviation increase as object size increases.
Berkeley DB is not log-structured: it stores data in small
files on the underlying filesystem. Both the allocation
of new data blocks and the creation of new files re-
quire additional disk seeks. We speculate that these ad-
ditional periodic disk seeks are responsible for high vari-
ance in Berkeley DB PUT latencies. Furthermore, for 1
MB objects, the GET latency increases and the write la-
tency slightly decreases with the increase in the num-
ber of PUTs. We speculate that, because Berkeley DB

Workload Latency (ms) CPU
OpType Size # of Ops (µ±σ) 90 Perc (ms/req)

PUT 3B 700 1.4±0.8 1.2 0.9
PUT 3B 1500 1.4±0.7 1.2 0.9
PUT 3B 3250 1.3±0.7 1.2 0.6
PUT 3B 5500 1.4±1.5 1.2 0.4
PUT 10KB 700 2.6±1.2 2.4 1.2
PUT 10KB 1500 2.6±1.4 2.4 1.1
PUT 10KB 3250 2.6±1.7 2.4 0.7
PUT 10KB 5500 2.6±1.6 2.4 0.5
PUT 1MB 700 26.1±12.4 23.1 9.2
PUT 1MB 1500 26.1±16.5 22.9 8.7
PUT 1MB 3250 26.0±12.2 23.1 9.4
PUT 1MB 5500 25.8±12.5 22.8 8.0
GET 3B 700 0.3±0.5 0.2 1.0
GET 3B 1500 0.2±0.5 0.1 1.0
GET 3B 3250 0.2±0.5 0.1 0.6
GET 3B 5500 0.2±0.4 0.1 0.5
GET 10KB 700 0.4±0.9 0.2 1.1
GET 10KB 1500 0.3±0.9 0.2 1.1
GET 10KB 3250 0.3±1.0 0.2 0.8
GET 10KB 5500 0.3±1.1 0.1 0.6
GET 1MB 700 8.0±9.1 6.2 10.2
GET 1MB 1500 7.8±8.9 6.2 10.1
GET 1MB 3250 20.7±10.9 18.6 8.6
GET 1MB 5500 23.9±9.7 21.8 8.2

FIG. 4—Latency (mean, standard deviation, and 90th per-
centile) and CPU utilization of Berkeley DB on 1000 random
PUTs and GETs of varying object sizes. We observe that the
Berkeley DB latencies have significant standard deviation and
both the mean and standard deviation increase with the increase
in object size. Furthermore, for 1 MB objects, the GET latency
increases and the write latency slightly decreases with the in-
crease in the number of PUTs.

OpType Size Latency (ms) CPU
(µ±σ) 90 Percentile (ms/req)

Hash 3B 0.1±0.3 0.0 0.0
Hash 10KB 0.3±0.8 0.2 0.0
Hash 1MB 15.5±0.5 15.5 14.2

RSA-Sign 10KB 4.2±0.7 4.0 3.2
RSA-Verify 10KB 0.3±0.5 0.2 0.0

FIG. 5—Latency and CPU utilization of a SHA-256, RSA-
sign, and RSA-verify averaged over 1000 operations for var-
ious object sizes. The SHA-256 computation time grows with
the increase in input size.

stores data as a B-tree, small number of PUTs cause fre-
quent reorganization of tree whereas with large num-
ber of PUTs reorganizations of the PUTs are relatively
rare causing improved PUT latencies. Conversely, with
increasing number of PUTs, GETs require more B-tree
traversals and therefore incur higher latencies.

SHA-256 and RSA sign/verify. Figure 5 shows the
typical costs of executing cryptographic operations like
signature generation, signature verification, SHA-256
hash computation for various object sizes. We use the
Sun Java security library to implement these crypto-
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FIG. 6—Normalized resource utilization of Depot running on the local testbed for 10 KB objects. (S) indicates the aggregate
resource utilization at servers whereas (C) indicates the aggregate resource utilization at clients. The labels on the Stor/Ver (C) bars
indicate the actual cost; we can’t report normalized cost because the storage cost in the baseline is 0. The labels, rather than the y-
axis, provide the correct normalized values for CPU/PUT (C) bars of B+Hash, B+H+Sig, and Depot systems because the values for
these bars are disproportionately large and representing these large values on y-axis would have compromised the visual clarity for
other bars. Overall, we observe that Depot’s overheads are small for GET bandwidth and CPU, server-server bandwidth, and server
storage cost. The PUT client-server bandwidth overheads are modest: about 20%. The PUT client CPU overheads are substantial
due to the additional Berkeley DB access and cryptographic checks. Depot’s client storage overheads are also substantial due to the
added requirement for the clients to store data for PUTs that they create and metadata for all PUTs.

graphic operations. The cost of hash computation grows
with the increase in input size.

6.4 Local testbed
In this section, we use the local testbed configuration de-
scribed above to answer the question: how much do De-
pot’s safeguards cost over baseline variants in terms of
network bandwidth, client and server storage, client and
server CPU cycles, dollars spent, and latency?

To understand these costs, we run workloads under
various parameters. The workload consists of a sequence
of PUTs and GETs from and to a volume preloaded with
1000 key-value pairs. We use the term object and value
interchangeably in this discussion. We partition the write
key set into several non-overlapping ranges, one for each
client. This approach simplifies the analysis but does not
measure the cost of concurrent writes. Write keys are
chosen randomly from the write key set while read keys
are chosen randomly from the entire volume. We fix the
key size at 32 bytes and experiment with three different
value sizes: 3 bytes, 10 KB, and 1 MB. We experiment
with the following read-write percentages: 0/100, 10/90,
50/50, 90/10, 100/0. Each client issues one operation per
second, and each run lasts for 10 minutes.

We first consider the cost in terms of network band-
width, storage, CPU cycles (§6.4.1) and then convert
these numbers to an estimated dollar cost (§6.4.2). We
then evaluate the latency overheads (§6.4.3).

6.4.1 Resource utilization
Figure 6 shows the normalized resource utilization of
Depot for 10 KB objects compared to other baseline vari-
ants in the local testbed experiments described above.

Figure 7 shows the measured resource consumption
numbers in the experiments with Depot and the base-
line variants for various object sizes and read/write per-
centages. The network bandwidth numbers depicted in
this figure correspond to the payload size and not the ac-
tual network traffic. The storage numbers give the on-
disk space consumed by Berkeley DB across the client
and server nodes. Similarly, the CPU numbers reflect ag-
gregate CPU utilization across client and server nodes
as reported through Linux’s /proc interface. We don’t
measure CPU utilization for individual operations. As a
result, the reported numbers include GETs, PUTs, and any
background processing done by our system.

Network bandwidth. The network bandwidth over-
heads of our system are small for 10 KB values:
∼ 20% additional client-server PUT network bandwidth,
∼ 2% additional server-server network bandwidth, and
∼ 0.02% additional client-server GET network band-
width. For larger values, these overheads further di-
minish. For small values (3 bytes), our metadata over-
heads dominate the total network bandwidth. However,
for larger values on the order of megabytes, the relative
costs are far smaller.

Depot increases bandwidth consumption for two rea-
sons. First, Depot includes additional information in up-
dates to prevent faulty nodes from modifying or omit-
ting updates. The absolute bandwidth overheads due to
this factor are small and constant—285 bytes of metadata
per-PUT for Depot (resulting from a 128 byte signature,
32 byte value hash, 32 byte history hash, 32 byte key, and
few other fields which carry length and version informa-
tion) versus 38 bytes of metadata for the baseline system
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Workload Client-Server BW (B) Server-Server BW (B) Storage/Version (B) CPU (ms/req)
Percentage (r/w) Size Machinery GET PUT Bytes/PUT Client Server Client Server

100/0 3B Baseline 40 NA 0 0 868 0.5 0.7
100/0 3B B+Hash 72 NA 0 0 1032 0.6 0.9
100/0 3B B+H+Sign 173 NA 0 0 1419 0.9 0.9
100/0 3B B+H+Sig+Store 173 NA 0 269 1412 1.0 0.9
100/0 3B Depot 42 NA 0 2146 1611 0.9 0.7
90/10 3B Baseline 40 39 262 0 1023 0.4 1.1
90/10 3B B+Hash 72 71 357 0 1146 0.6 1.3
90/10 3B B+H+Sign 173 172 662 0 1568 1.3 1.2
90/10 3B B+H+Sig+Store 173 172 665 296 1554 1.4 1.2
90/10 3B Depot 42 2027 797 2300 1724 2.9 1.6
0/100 3B Baseline NA 39 227 0 1071 0.2 2.9
0/100 3B B+Hash NA 71 322 0 1198 0.4 3.4
0/100 3B B+H+Sign NA 172 624 0 1600 4.7 3.5
0/100 3B B+H+Sig+Store NA 172 624 288 1594 5.4 3.5
0/100 3B Depot NA 2029 769 2414 1811 13.3 6.2

100/0 10KB Baseline 10278 NA 0 0 41844 0.5 0.8
100/0 10KB B+Hash 10310 NA 0 0 41954 0.7 0.9
100/0 10KB B+H+Sign 10410 NA 0 0 42378 1.1 0.9
100/0 10KB B+H+Sig+Store 10410 NA 0 10508 42403 1.1 1.0
100/0 10KB Depot 10280 NA 0 12386 42563 0.9 0.8
90/10 10KB Baseline 10278 10277 30862 0 41899 0.4 1.2
90/10 10KB B+Hash 10310 10309 30947 0 41984 0.8 1.4
90/10 10KB B+H+Sign 10410 10409 31295 0 42491 1.5 1.3
90/10 10KB B+H+Sig+Store 10410 10409 31232 10531 42409 1.6 1.4
90/10 10KB Depot 10280 12271 31251 12531 42526 2.8 1.9
50/50 10KB Baseline 10278 10277 30880 0 41910 0.4 2.9
50/50 10KB B+Hash 10310 10309 30844 0 41912 0.7 3.2
50/50 10KB B+H+Sign 10410 10409 31095 0 42233 3.1 3.4
50/50 10KB B+H+Sig+Store 10410 10409 31045 10507 42242 3.5 3.3
50/50 10KB Depot 10280 12265 31323 12605 42664 8.4 5.6
10/90 10KB Baseline 10278 10277 30692 0 41838 0.3 4.4
10/90 10KB B+Hash 10310 10309 30798 0 41992 0.4 4.4
10/90 10KB B+H+Sign 10410 10409 31130 0 42389 4.3 4.1
10/90 10KB B+H+Sig+Store 10410 10409 31090 10528 42341 4.9 4.6
10/90 10KB Depot 10280 12268 31256 12647 42592 12.9 8.0
0/100 10KB Baseline NA 10277 30791 0 42090 0.2 4.6
0/100 10KB B+Hash NA 10309 30933 0 42267 0.6 5.2
0/100 10KB B+H+Sign NA 10409 31203 0 42618 5.0 4.4
0/100 10KB B+H+Sig+Store NA 10409 31216 10522 42649 5.7 5.3
0/100 10KB Depot NA 12269 31390 12652 42829 14.0 8.5

100/0 1MB Baseline 1048615 NA 0 0 4214734 1.5 7.9
100/0 1MB B+Hash 1048647 NA 0 0 4214891 16.9 8.5
100/0 1MB B+H+Sign 1048747 NA 0 0 4228880 17.7 8.7
100/0 1MB B+H+Sig+Store 1048747 NA 0 1048992 4214247 18.0 8.4
100/0 1MB Depot 1048617 NA 0 1050936 4253474 17.1 8.3
90/10 1MB Baseline 1048615 1048614 3145990 0 4206477 1.6 12.8
90/10 1MB B+Hash 1048647 1048646 3135363 0 4213542 17.2 14.2
90/10 1MB B+H+Sign 1048747 1048746 3158797 0 4209598 18.3 14.2
90/10 1MB B+H+Sig+Store 1048747 1048746 3142271 1049036 4203402 20.6 13.2
90/10 1MB Depot 1048617 1050624 3171806 1051131 4227101 21.5 21.1
0/100 1MB Baseline NA 1048614 3128129 0 4178196 0.4 55.1
0/100 1MB B+Hash NA 1048646 3129267 0 4182253 18.9 55.0
0/100 1MB B+H+Sign NA 1048746 3127915 0 4179411 23.4 55.1
0/100 1MB B+H+Sig+Store NA 1048746 3128115 1048477 4178022 36.3 54.3
0/100 1MB Depot NA 1050604 3129905 1051091 4183385 44.0 123.1

FIG. 7—Comparison of bandwidth and storage costs of various approaches over a range of workloads and object sizes. The network
bandwidth overheads of our system are small—20% additional client-server PUT network bandwidth, 2% additional server-server
network bandwidth, 0.02% addition client-server GET network bandwidth—for 10 KB objects. The server storage overheads are
likewise small. The client storage overheads are non-trivial because Depot requires clients to storage all metadata and data for PUTs
they create. The CPU overheads are significant and result primarily from Berkeley DB and cryptographic operations like SHA-256
computation, RSA signing, and RSA verification.

13



regardless of the size of the value. Second, to ensure con-
sistency despite faults, clients in Depot receive and ver-
ify all updates and not just the updates whose values are
returned by a subsequent GET by that client.

Due to both these factors, the PUT network bandwidth
of Depot is higher than that of baseline variants. For ex-
ample, in our experimental configuration with 8 clients,
we pay roughly 2 KB (= 285 ×7) of overhead per PUT.
In comparison, the B+Hash system pays about 70 bytes
and the B+H+Sign system pays about 170 bytes for each
PUT.

The GET network bandwidth of Depot matches that of
the baseline system because clients in Depot prefetch and
store updates. Once a client receives the update for a key,
subsequent GETs to the same key don’t require any up-
date transfer until a new PUT to that key occurs. Hence,
storing this update locally makes GETs very cheap in De-
pot, making it an effective choice for read-dominated
workloads. Depot transfers fewer bytes per-GET than
B+Hash, B+H+Sign, and B+H+S+Store because these
systems need to fetch the hash or signature attached to
the value on every GET whereas Depot stores the update
for subsequent uses.

The total server-server network bandwidth includes
the bandwidth required to distribute the PUT obtained by
one server to other servers. We used 4 servers in our ex-
periment and therefore the expected server-server band-
width is 3 times the value and update size for each PUT
(servers distribute the value and update to other servers).
The network bandwidth of Depot is higher than that of
baseline variants due to the additional per-PUT metadata.
However, for objects of size 10 KB or larger, the increase
is small: about 2% for 10 KB objects and about 0.8% for
1 MB objects.

Storage. The client and the server storage columns in
Figure 7 show the aggregate disk utilization across the
system for each version. Recall that each PUT creates a
new version in our implementation. The disk utilization
for each version includes the value and update storage
cost at the authoring client and all the servers, and update
storage cost at the remaining clients.

The server storage overheads of our system are small
and result primarily from the additional metadata at-
tached to each PUT. As in the case of network band-
width, the additional cost due to update-metadata is small
and diminishes in relative magnitude for moderate ob-
ject sizes. For moderately large objects, the storage cost
is dominated by the data storage cost; that is, the update
storage cost is a negligible fraction of the total storage
cost. For small objects, the metadata overheads dominate
the storage cost. In our implementation, the baseline sys-
tem stores around 200 bytes of metadata (including the
100 bytes of metadata added by Berkeley DB) for each

PUT whereas Depot stores around 400 bytes for each PUT
including the 285 bytes of update metadata for each put
and 100 bytes of Berkeley DB metadata.

The client storage cost is significant and consists of
the cost of storing the value and update at clients. Appli-
cations that don’t care about availability or durability in
the presence of server failures may reduce this overhead
by not storing values at clients. However, clients must
still store their PUT updates locally. The reason is that, as
explained in §4, this per-PUT update is needed for con-
sistency. Moreover, according to our rough model (§6.2),
storing a byte for a month costs the same as fetching this
byte once. Therefore, if this update is likely to be reused
within a month (perhaps for serving another GET to the
same key or for verifying a later GET to another key in
the same volume), it is economical to store the data.

CPU cycles. Depot’s CPU overheads are significant
compared to the CPU consumption of the baseline sys-
tem. Just like other metrics, the numbers reported in Fig-
ure 7 reflect the aggregate utilization across clients and
servers. Note that while the CPU number per request
for GET-all (100/0) and PUT-all (0/100) workloads ac-
curately reflect the CPU utilization of GETs and PUTs re-
spectively, workloads like 90/0, 50/50, 10/90 do not pro-
vide accurate CPU utilization measurements. The rea-
son behind this limitation of our measurement is that,
as stated earlier, we don’t measure CPU utilization on
a per-request level.

The difference of CPU utilization between the base-
line variants and Depot is dominated by the CPU cost of
additional Berkeley DB accesses at clients and servers
and added cryptographic operations. For example, con-
sider the client CPU time of executing a GET for 1 MB
object. The baseline system takes 1.5 ms of CPU time
per-GET whereas B+Hash, that performs an additional
SHA-256 computation on 1 MB object, takes 16.9 ms of
CPU time per-GET. The difference (16.9−1.50 = 15.40
ms) is dominated by the 14.45 ms of CPU time required
to compute the SHA-256 of 1 MB object. As another ex-
ample, consider the difference in client CPU time of a
PUT in B+H+S+Store and B+H+Sig. The B+H+S+Store
system takes 36.30 ms whereas the B+H+Sig system
takes 23.4 ms. The difference (36.30−23.40 = 12.90ms)
is dominated by the 8 ms of CPU time required to store
1 MB object in Berkeley DB.

The server CPU utilization for various baseline vari-
ants remains mostly constant as expected—the only dif-
ference between these variants from the point of view of
server is the size of the object.

We note that, contrary to the intuition, GETs in De-
pot are cheaper than the GETs in the B+H+Sig and
B+H+S+Store for 1 MB objects. Two factors are re-
sponsible for this behavior. First, unlike B+H+Sig and
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FIG. 9—Dollar cost of Depot running on the local testbed. Us-
ing our cost model, we convert Depot’s network, storage, and
CPU consumption to a common currency and compare this ag-
gregate cost to that of the Baseline, B+Hash, B+H+Sign, and
B+H+S+Store systems. For objects 10KB or larger, Depot’s
cost overheads are modest. For visual clarity, we scale the fig-
ure to include all but client storage cost ($/TB Storage (C)),
which we depict by suitably labeling the bars. The GET and
server storage overheads of Depot are very small. PUTs are 50%
more expensive in Depot relative to the baseline, owing to the
additional metadata transfers between clients and servers, and
between servers. The client storage overheads are significant
because in the Baseline system, clients do not store their PUTs.

B+H+S+Store, Depot clients don’t verify signatures on
fast get paths thereby avoiding the latency of signa-
ture verification. Second, our B+Hash, B+H+Sign, and
B+H+S+Store implementations do an additional mem-
ory allocation where we copy the original payload into a
new buffer after appending appropriate cryptographic in-
formation, such as a SHA-256 hash or a RSA signature.
This extra work makes our baseline variants more expen-
sive than an ideal implementation and makes our results
look slightly better than their true value. We speculate
that this extra memory allocation and copying poses no-
ticeable CPU and latency overheads and are responsible
for the anomalous GET values. While we have not fixed
this anomaly yet, we have verified that excess memory
pressure can significantly increase overall CPU utiliza-
tion and latency. This anomaly is masked for PUTs, per-
haps, due to the other overheads dominating in Depot,
and it doesn’t manifest for small objects.

Summary. We observe that Depot has minimal impact
on the GET bandwidth and the server-server storage cost
for moderate size objects. Depot causes modest increase
in the PUT bandwidth, which gradually diminishes with
increasing object sizes. Depot has significant cost on
client storage because, unlike baseline variants that don’t
require any client storage, Depot requires clients to store
the values that they insert on PUTs and the updates for
values that they retrieve on GETs.

6.4.2 Dollar cost
Figure 7 shows several aspects of Depot’s overheads, but
in any given environment, some aspects are more im-
portant than others. Figure 8 shows the same overheads
weighted according to the cost model presented above to
obtain an estimated operation cost for GET-all and PUT-
all workloads. The dollar costs in Figure 8 are scaled to 1
TB of objects stored for 30 days. For example, for 10 KB
objects, the dollar costs reflect our estimate of the cost
of executing 108 PUTs or GETs of the 10 KB object. Fig-
ure 9 shows a normalized slice of Figure 8 corresponding
to the object size of 10 KB in the form of a bar graph.

Analytical model. In addition to the measured re-
sources, Figure 8 also includes a lower bound on dol-
lar cost for baseline variants. We use an analytical model
to estimate the storage and network bandwidth costs for
this lower bound. The model assumes that objects of a
specified value size are stored at the servers. The model
augments the objects to include any metadata needed for
a given baseline variant (for example, B+Hash stores a 32
byte SHA 256 hash of the value in the object. B+H+Sign
stores a 128 byte RSA signature in the object). In case of
B+H+S+Store, these objects are also stored at the client.
We also add a fixed length metadata field to account for
any additional information like key length, value length
etc that a real protocol will have to send. The fixed length
metadata is about 2 bytes for Baseline system, 4 bytes for
B+Hash, 8 bytes for B+H+Sign and B+H+S+Store. The
storage cost in bytes is computed by first fixing the num-
ber of objects and the value size, and then estimating the
amount of storage consumed in bytes for storing these
objects. The storage cost in bytes can be easily translated
to dollar costs using the cost model described in §6.2.

We model GET as transferring a key from the client to
a server and transferring an object from the server back
to the client, and we model PUT as transferring (key, ob-
ject) from the client to a server and then the server trans-
ferring this pair to other servers in the cluster. We assume
the CPU costs to be zero so that we could treat the costs
obtained from the model as a lower bound on the true
costs. The cost of a request in dollars is computed by es-
timating the number of bytes transferred for each opera-
tion and then converting the bandwidth costs into dollars
using the cost model described in §6.2. These computed
costs are presented in Figure 8.

One of the limitations of this model is that for a PUT,
the model assumes that the (key, object) pair is syn-
chronously transferred from the receiving server to the
remaining servers in the cluster. Instead, our implemen-
tation of Depot and baseline variants propagates key-
value pairs asynchronously and as a result, may not fin-
ish all the propagation when experiment is terminated.
Due to this factor, we may, at times, observe a slightly
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Workload Cost ($/TB)
Perc(r/w) Size Machinery M-PUT L-PUT M-PUT L-GET M-S Store L-S Store M-C Store L-C Store

100/0 3B Baseline NA NA 1194.7 13811.7 102.4 7409.2 0.0 0.0
100/0 3B B+Hash NA NA 2423.5 18419.0 1331.2 8813.2 0.0 0.0
100/0 3B B+H+Sign NA NA 5836.8 24530.7 4744.5 12111.4 0.0 0.0
100/0 3B B+H+Sig+Store NA NA 5836.8 25126.0 4744.5 12057.2 0.0 9212.1
100/0 3B Depot NA NA NA 17562.4 NA 13753.5 NA 73280.5
0/100 3B Baseline 1587.2 34439.1 NA NA 102.4 9146.1 0.0 0.0
0/100 3B B+Hash 3184.6 42886.4 NA NA 1331.2 10225.3 0.0 0.0
0/100 3B B+H+Sign 7622.0 91615.0 NA NA 4744.5 13654.2 0.0 0.0
0/100 3B B+H+Sig+Store 7622.0 98749.7 NA NA 4744.5 13607.2 4744.5 9859.9
0/100 3B Depot NA 271177.6 NA NA NA 15460.7 NA 82421.4

100/0 10KB Baseline NA NA 102.7 106.6 102.4 104.6 0.0 0.0
100/0 10KB B+Hash NA NA 103.1 108.1 102.8 104.9 0.0 0.0
100/0 10KB B+H+Sign NA NA 104.1 110.0 103.8 105.9 0.0 0.0
100/0 10KB B+H+Sig+Store NA NA 104.1 110.3 103.8 106.0 0.0 105.1
100/0 10KB Depot NA NA NA 107.7 NA 106.4 NA 123.9
0/100 10KB Baseline 133.5 148.0 NA NA 102.4 105.2 0.0 0.0
0/100 10KB B+Hash 134.0 151.2 NA NA 102.8 105.7 0.0 0.0
0/100 10KB B+H+Sign 135.3 163.1 NA NA 103.8 106.5 0.0 0.0
0/100 10KB B+H+Sig+Store 135.3 168.2 NA NA 103.8 106.6 103.8 105.2
0/100 10KB Depot NA 221.2 NA NA NA 107.1 NA 126.5

100/0 1MB Baseline NA NA 102.4 102.7 102.4 102.9 0.0 0.0
100/0 1MB B+Hash NA NA 102.4 103.1 102.4 102.9 0.0 0.0
100/0 1MB B+H+Sign NA NA 102.4 103.2 102.4 103.2 0.0 0.0
100/0 1MB B+H+Sig+Store NA NA 102.4 103.2 102.4 102.9 0.0 102.4
100/0 1MB Depot NA NA NA 103.1 NA 103.8 NA 102.6
0/100 1MB Baseline 133.1 134.6 NA NA 102.4 102.0 0.0 0.0
0/100 1MB B+Hash 133.1 135.1 NA NA 102.4 102.1 0.0 0.0
0/100 1MB B+H+Sign 133.1 135.3 NA NA 102.4 102.0 0.0 0.0
0/100 1MB B+H+Sig+Store 133.1 135.6 NA NA 102.4 102.0 102.4 102.4
0/100 1MB Depot NA 138.0 NA NA NA 102.1 NA 102.6

FIG. 8—Comparison of dollar costs derived from the bandwidth, server storage, and CPU costs of various approaches over a range
of workloads. Server storage costs are reported on a per server basis whereas client storage costs are aggregated across all the
clients. We also show the analytical costs computed using the model described in Section 6.4.2. The analytical costs are prefixed
with “M-” whereas the empirical costs are prefixed with “L-”. We don’t report the analytical costs for Depot because we have
not modeled Depot analytically. Depot has small costs on GETs and server storage. PUT costs are higher but diminish in relative
magnitude as the object size is increased. Client storage costs are significant because Depot requires clients to store data for PUTs
they create and metadata for all PUTs. The analytical costs differ significantly from the empirical costs for 3 byte objects because
the CPU cycles, that constitute a dominant fraction of the overall costs, are ignored by the analytical model.

lower put bandwidth and server storage cost than ex-
pected. However, looking at the logs reveals that no more
than 1% values were missing at any node in any of our
execution. Thus, 1% of extra overhead should be added
to Depot and other baseline variant system’s overheads
when comparing against the analytical model.

Comparison. We observe that Depot’s dollar over-
heads for GET and server storage are small and diminish
for large object sizes. For example, for 10 KB objects, a
GET is only 5% more expensive than the analytical lower
bound for the baseline system. For small objects, the ex-
cessive CPU cost and update make Depot an order of
magnitude more expensive than the baseline system.

The server storage dollar overhead is also very small.
Depot is 4% more expensive compared to the analytical
lower bound for baseline and 2% more expensive com-
pared to the empirical baseline system. The Berkeley DB
metadata accounts for a significant fraction of this cost

and we are looking to optimize this overhead in near fu-
ture. Like in resource overhead discussion (§6.4.1), the
storage costs in Figure 8 are reported for each version.

The PUT overheads are significant due to the addi-
tional metadata that PUTs require to be transmitted. For
small objects, even the processing costs introduce signif-
icant overhead. For large objects, the PUT costs become
more favorable. In the future, we are looking to optimize
the PUT cost by reducing the size of an update.

The client storage costs are also significant. Note
that while Figure 8 includes the average storage costs
for servers, it includes the cumulative storage costs for
clients.

Summary. In summary, for 10 KB objects replicated
to 4 servers, Depot costs $776.1 per TB of PUTs (in-
cluding storage costs) in comparison to the $543.1 per
TB required by the analytical lower bound for the base-
line system and $568.8 per TB required by the empirical
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Workload µ±σ (ms) Percentiles (ms)
Op Size Machinery 50 90 99

GET 3B Baseline 0.7±0.5 1 1 1
GET 3B B+Hash 0.8±0.9 1 1 1
GET 3B B+H+Sign 1.2±0.5 1 2 2
GET 3B B+H+S+Store 1.2±0.5 1 2 2
GET 3B Depot 0.8±0.6 1 1 1
PUT 3B Baseline 2.8±3.6 2 6 16
PUT 3B B+Hash 3.4±6.6 2 5 37
PUT 3B B+H+Sign 6.8±3.0 6 8 21
PUT 3B B+H+S+Store 8.5±5.8 7 10 28
PUT 3B Depot 11.4±4.7 10 17 26

GET 10KB Baseline 1.0±0.6 1 1 2
GET 10KB B+Hash 1.3±0.6 1 2 3
GET 10KB B+H+Sign 1.6±0.7 2 2 3
GET 10KB B+H+S+Store 1.6±0.7 2 2 3
GET 10KB Depot 1.4±1.1 1 2 4
PUT 10KB Baseline 3.3±3.2 2 5 15
PUT 10KB B+Hash 4.1±5.3 3 7 24
PUT 10KB B+H+Sign 8.2±3.9 7 10 23
PUT 10KB B+H+S+Store 10.1±5.7 9 13 27
PUT 10KB Depot 14.8±6.5 13 21 34

GET 1MB Baseline 16.3±8.1 15 21 43
GET 1MB B+Hash 32.3±8.3 30 40 59
GET 1MB B+H+Sign 32.8±8.3 31 40 60
GET 1MB B+H+S+Store 32.8±8.4 31 40 62
GET 1MB Depot 31.5±8.2 30 38 58
PUT 1MB Baseline 31.7±21.7 23 53 125
PUT 1MB B+Hash 54.0±31.1 42 83 192
PUT 1MB B+H+Sign 67.9±47.7 53 104 293
PUT 1MB B+H+S+Store 80.2±39.8 65 134 238
PUT 1MB Depot 104.8±47.3 89 159 307

FIG. 10—Mean, and {50,90,99} percentile latencies for a PUT-
all (0/100) and GET-all (100/0) workload with varying object
sizes. The absolute GET latencies of Depot are slightly higher
than those of the Baseline system due to the additional Hash
computation done in Depot. Depot pre-fetches metadata, mak-
ing GETs cheaper than B+H+Sign and B+H+S+Store variants.
The PUT latencies are dominated by the signature generation
cost and Berkeley DB access cost for small objects whereas for
large objects, hash computation cost also becomes significant.
The latencies increase by an order of magnitude on increas-
ing the object size from 3 bytes to 1 MB for all systems. The
dominant factors contributing to the increase are network trans-
fer latency, Berkeley DB access latency, increase in SHA-256
computation cost.

baseline system. GETs are more efficient. For a TB of 10
KB GETs, Depot requires $107.7 compared to $102.7 re-
quired by the analytical Baseline, and $106.6 required by
the empirical Baseline system.

6.4.3 Latency
We now evaluate the latency overhead of Depot. Fig-
ure 10 shows the latency of PUT and GET for the baseline
variants and Depot for various object sizes computed in
the experiments described in §6.4. For each experiment,
we report the mean and standard deviation, as well as
the 50, 90, and 99 percentiles. Unfortunately, our current

code was instrumented to report latencies at millisecond
granularity, which is why the percentiles are reported as
whole numbers. We plan to obtain more precise latency
measurements in the near future.

The absolute increase in GET latency is small for
small objects. The increase is solely determined by hash
computation delay; for 1 MB objects, Depot increases
the average GET latency of baseline system from 16.3
ms to 31.5 ms. The difference roughly corresponds to
the cost of computing a SHA-256 hash on 1 MB ob-
ject. The GET latencies are somewhat stable, and the
median latency closely follows the mean. Note that De-
pot is slightly cheaper than the two baseline variants
(B+H+Sign, B+H+S+Store) that sign data. The reason
is that Depot retrieves the update and performs the sig-
nature verification in the background. In comparison,
B+H+Sign and B+H+S+Store perform signatures on the
critical path of a GET.

For large objects, Depot is even slightly cheaper than
the B+Hash variant. As explained in CPU cost discussion
in §6.4.1, we speculate that this anomaly is an artifact of
our implementation for baseline variants.

The PUT latency of Depot is noticeably worse than
the baseline system. For small objects, signature compu-
tation and Berkeley DB are the dominant source of la-
tency. For larger objects, even the SHA-256 computation
cost becomes significant. More precisely, the PUT latency
in Depot results from the following main actions:

1. Signature generation at client (4.2 ms, c.f. Figure 5).

2. Value hash computation (0.3 ms for 10 KB, 15.5 ms
for 1 MB, c.f. Figure 5).

3. Berkeley DB store of value and update at client (2.6
ms for 10 KB, 7.8-23.9 ms for 1 MB, c.f. Figure 4).

4. Network transfer (1 Gbps, from §6.2).

5. Serialization delays.

6. Server signature verification (0.3 ms, c.f. Figure 5).

7. Server value hash verification (0.3 ms for 10 KB, 15.5
ms for 1 MB, c.f. Figure 5).

8. Server history hash verification (0.3 ms, c.f. Figure 5).

9. Server Berkeley DB store.
Our current implementation is not optimized to

pipeline these steps. We note that for small objects, the
signature generation and Berkeley DB access at clients
is the major source of Depot overheads. For large ob-
jects (1 MB), hash computation cost also becomes sig-
nificant. Note that we run this experiment on a 1Gbit/s
LAN; in many cloud storage deployments, WAN delays
would shrink the relative gap.

Variance. There are three main sources of variance in
our latencies. First, we observe that in our microbench-
marks, the Berkeley DB accesses show latencies rang-
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Workload GET Latency (ms) PUT Latency (ms)
Percentage Size Machinery µ±σ Percentiles µ±σ Percentiles

(r/w) 50 90 99 50 90 99

100/0 10KB Baseline 1.0±0.6 1 1 2 NA NA NA NA
100/0 10KB B+Hash 1.3±0.6 1 2 3 NA NA NA NA
100/0 10KB B+H+Sign 1.6±0.7 2 2 3 NA NA NA NA
100/0 10KB B+H+Sig+Store 1.6±0.7 2 2 3 NA NA NA NA
100/0 10KB Depot 1.4±1.1 1 2 4 NA NA NA NA

90/10 10KB Baseline 1.0±1.1 1 1 3 3.7±5.7 3 4 42
90/10 10KB B+Hash 1.3±1.0 1 2 3 3.6±3.9 3 5 13
90/10 10KB B+H+Sign 1.7±0.9 2 2 3 8.5±8.1 7 8 56
90/10 10KB B+H+Sig+Store 1.7±1.1 2 2 3 9.9±6.3 8 11 41
90/10 10KB Depot 1.4±1.5 1 2 7 16.2±10.3 13 23 69

50/50 10KB Baseline 1.1±1.6 1 1 5 3.3±3.3 3 4 13
50/50 10KB B+Hash 1.3±0.8 1 2 3 3.4±3.1 3 4 15
50/50 10KB B+H+Sign 1.7±1.7 2 2 4 8.0±4.5 7 9 21
50/50 10KB B+H+Sig+Store 1.8±1.3 2 2 6 10.3±6.1 9 14 40
50/50 10KB Depot 1.5±1.9 1 2 8 15.1±6.4 13 22 40

10/90 10KB Baseline 1.1±1.0 1 1 4 3.2±3.7 2 4 20
10/90 10KB B+Hash 1.2±0.7 1 2 3 2.9±1.5 3 3 10
10/90 10KB B+H+Sign 1.6±0.9 1 2 5 7.9±3.4 7 10 21
10/90 10KB B+H+Sig+Store 1.6±1.1 2 2 7 8.9±3.4 8 10 19
10/90 10KB Depot 1.9±5.5 1 2 11 14.9±6.4 13 21 33

0/100 10KB Baseline NA NA NA NA 3.3±3.2 2 5 15
0/100 10KB B+Hash NA NA NA NA 4.1±5.3 3 7 24
0/100 10KB B+H+Sign NA NA NA NA 8.2±3.9 7 10 23
0/100 10KB B+H+Sig+Store NA NA NA NA 10.1±5.7 9 13 27
0/100 10KB Depot NA NA NA NA 14.8±6.5 13 21 34

FIG. 11—Latency table for varying workloads (r/w percentages) and 10 KB objects. We show mean, standard deviation, and 50,
90, 99 percentile latency values. The GET latency increases with the increase in number of PUTs whereas the PUT latency decreases
with the increase in number of PUTs. The variation of the read/write percentage has no impact on the median latencies but noticeable
impact on the 99 percentile latencies. We speculate that increase in number of PUTs makes it less likely for GETs to be served from
Berkeley DB cache. Conversely, PUTs become cheaper because B-tree expansions become less likely with increase in number of
PUTs. This theory also explains why the median latencies are not affected but higher percentiles and mean latencies are affected.

ing from 15 ms to 100 ms for 1 MB objects. Second,
we observed that JVM scheduling is not very optimal.
For example, using JRockit JVM [8] showed improved
and stable latencies (by 2 ms for PUTs on 10 KB ob-
jects). We have not yet switched to JRockit because (1)
JRockit performance for computing SHA-256 hashes is
worse than Sun JVM (JRockit takes 18 ms for comput-
ing SHA-256 hash on 1 MB as opposed to 15 ms taken
by Sun JVM), and (2) Berkeley DB crashes with JRockit
with over 1200 1 MB writes.

The final source of latencies in Depot is the queuing
delays. The server-server gossips induce bursty load on
the system, making the system transiently overloaded,
even though the system as a whole is not overloaded. For
example, on further investigating logs, we discovered av-
erage queuing delays of 21 ms in Depot in comparison to
those of 3 ms in B+H+S+Store for 1 MB objects. The
queuing delays are more prominent in Depot because
server processing in Depot takes longer (∼48 ms for 1
MB objects) than that in B+H+S+Store (∼31 ms). In the
future, we expect to reduce queuing delays by pipelin-
ing various steps of request processing, and by reducing
burstiness of traffic by adding support for forward PUTs

at servers.

Variation with read/write percentage Figure 11
shows the mean, standard-deviation, and {50, 90, 99}
percentiles of PUT and GET latencies for various
read/write percentages for 10 KB objects on the ran-
dom workload described in §6.4. Figures 12, 13, 14,
and 15 report the 50 percentile GET, 50 percentile PUT,
99 percentile GET, and 99 percentile PUT latencies for the
same random workload as before. The expected behav-
ior is that we should see no variation in latencies with
change in read/write percentages. While the median la-
tencies follow this expected behavior, other percentiles
and mean latencies vary with the change in read/write
percentage. The increase in total number of PUTs causes
a slight increase in GET latency and slight decrease in
PUT latency. We have yet to fully understand the rea-
son behind this trend. However, we speculate that with
the increase in the number of PUTs, the GETs are less
likely be served from the Berkeley DB cache, causing
an increase in GET latency. Similarly, because Berkeley
DB organizes data as a B-tree, increase in the number of
writes makes B-tree expansion less likely, making PUTs
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FIG. 12—50th percentile of latency for GETs with 10 KB ob-
jects and varying r/w percentages for Depot and baseline vari-
ants running on the local testbed. The latency values are sta-
ble and are roughly constant. The actual in mean between the
B+Hash and B+H+Sig is small (∼0.2 ms) but because we mea-
sure latencies at the granularity of ms, this small effect is mag-
nified due to rounding error.
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FIG. 13—50th percentile of latency of PUTs with 10 KB ob-
jects and varying r/w percentage for Depot and other baseline
systems running on the local testbed. The latency values are sta-
ble but PUT latency decreases slightly as number of PUTs is in-
creased, We speculate that this behavior results from Berkeley
DB’s B-tree organization of data. The difference between bars
in the same group can be explained by the additional Berkeley
DB accesses and cryptographic operations.

faster on average.

Summary. In summary, we observe that Depot has
higher latencies. The GET latencies have small overhead
which grows with increasing object size. The PUT over-
heads are dominated by the signature creation cost for
small object sizes but as the object size increases, hash
computation and Berkeley DB cost becomes significant.
We speculate that we can see significant improvements
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FIG. 14—99th percentile of latency for GETs with 10 KB ob-
jects and varying r/w percentages for Depot and baseline vari-
ants running on the local testbed. The latency values are not
very stable yet. Generally, the latencies increase on the increas-
ing the number of PUTs.
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FIG. 15—99th percentile of latency for PUTs with 10 KB ob-
jects and varying r/w percentages for Depot and baseline vari-
ants running on the local testbed. The latency values are not
very stable yet. Generally, the latencies decrease on the increas-
ing the number of PUTs.

by fixing the storage layer and pipelining disk accesses
with network transfers and cryptographic computations.
Furthermore, moving to a WAN environment may further
mitigate the increase in these latencies. We note similar
behavior in our S3 experiments that we present in the
next section.

6.5 S3 testbed
In this section we use Amazon S3 as a testbed. The high
level question we would like to answer is: what is the cost
of not trusting Amazon S3? As in the local testbed exper-
iments (§6.4), we decompose this question into two fur-
ther ones: (1) what are the storage and bandwidth over-
heads of a Depot client over a Baseline client both in

19



Metric Baseline Depot % Overhead

Bytes stored per 10KB object at S3 10240 10479 2.3
Bytes stored per 10KB object at client 0 10479 NA
Server storage cost for 1TB with 10KB objects $102.72 $104.80 2.0
Client storage cost for 1TB with 10KB objects 0 $104.80 NA

Total bytes transferred per request 10272 10511 2.3
Bandwidth cost for 1TB with 10KB objects $102.72 $105.12 2.3

FIG. 16—Bandwidth and storage overheads of the Baseline and Depot clients when both use Amazon S3 to store data. Costs are
reported in dollars. Depot adds negligible overheads to server storage and network bandwidth both in terms of bytes and dollars.
Client storage overheads are sizeable: to avoid trusting other nodes for durability, Depot clients have to store full copies of objects.

bytes and dollars? and (2) what is the additional latency
perceived by Depot clients when compared to a Baseline
client?

To answer these questions, we configure Depot to use
the existing, unmodified Amazon S3 service for storage.
Rather than the configuration used above (8 clients and
4 servers), here we still use 8 clients, but we do not
know how many servers are employed by S3 to service
our requests. The workload is 1 request per second from
each client to a randomly selected object in a volume
of 1000 objects, each of size 10KB. The percentage of
reads/writes is 90/10. We compare storage costs in this
configuration with the storage, network bandwidth and
latency costs of a Baseline client that PUTs (GETs) keys
to (from) S3 directly, without Depot’s safeguards. Our
evaluation setup does not yet allow measuring CPU over-
heads if the workload used is a mix of GETs and PUTs,
so we have not presented the CPU overheads of Depot
client that uses S3. But, we expect CPU overheads simi-
lar to those of the LAN experiments.

We use a separate code base to support this configura-
tion. Owing to limitations of our current implementation,
the guarantees provided by Depot in this case are weaker
than when Depot is used at both clients and servers.
This code base supports FJC consistency, bounded stale-
ness, eventual consistency, and integrity, as described in
§5. However, it does not yet support the client-to-client
exchanges needed to provide the full always-exchange,
read availability, and durability guarantees, and we do
not implement versioning for recovery or proof of mis-
behavior for eviction.

Figure 16 states the overhead introduced by Depot
over the baseline for storage and bandwidth in the above
experiments. Total bytes transferred per request increases
by about 230 bytes. Server storage overhead is about 230
bytes per object. Client storage overhead is significant:
in Depot, the clients store keys and values (i.e., entire
objects) while the Baseline client stores only keys. Note,
though, that Depot clients could be configured to store
only metadata, if they are willing to trust other nodes for
durability and availability (§5.2).

We quantify these overheads in terms of extra dollars
that users have to pay if they used Depot clients. For this,

Operation S3 roundtrip Client addition Total latency

Baseline GET 164.9±199 0.16±0.0 165.0±199
Depot GET 171.3±234 0.22±0.1 171.6±234
Baseline PUT 187.0±202 0.30±0.0 187.3±202
Depot PUT 210.9±227 6.96±0.3 217.8±227

FIG. 17—Average latencies along with their standard devi-
ations in milliseconds perceived by the Baseline and Depot
clients for GET and PUT operations with 10KB payload when
both use Amazon S3 for storage, broken down into S3 round
trip time and client-side processing time. Depot adds about 7
milliseconds for PUT latency over S3 roundtrip time and neg-
ligible overheads to GET latency. Variance present in the end-
to-end latency comes from the S3 roundtrip time variance, and
Depot adds negligible variance to the end-to-end latency.

we use the cost model presented in §6.2 and calculate
the storage and network bandwidth costs of using Depot
and Baseline clients. For storage costs, we calculate the
cost of storing 1TB data broken down into 10KB objects
at S3, and for network bandwidth costs, we find the cost
of transferring this 1TB data to/from S3 using GET and
PUT requests. With this setup, the storage overhead of
Depot over Baseline is about 230 bytes per 10KB object
and it translates to about $3.00. The bandwidth overhead
for a request with 10KB object of Depot over Baseline is
about 230 bytes and it translates to about $2.50.

Figure 17 lists the latencies perceived by a Depot
client for GET and PUT with a Baseline client in the above
experiments. Depot adds about 7 msec to the end-to-end
latency for PUT operations and negligible overhead for
GET operations. The extra latency added by Depot comes
mainly from the secure hash calculation and signature
generation.

To illustrate the relative magnitude of the Depot-
introduced latency, we plot the end-to-end latency expe-
rienced by Depot clients next to the S3 roundtrip com-
ponent for GET and PUT operations. Figure 18 contains
that plot; as can be seen, Depot’s contribution to the total
latency in the above experiments is negligible.

It is worth noting that the Depot clients have to trans-
fer few extra bytes to and from S3 as compared to a Base-
line client for the same payload size. However, the S3
roundtrip time has huge variance (as evident from our re-
sults presented in Figure 17). The roundtrip time to trans-
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client for GET and PUT operations with 10KB payload when
both use Amazon S3 for storage. Latencies are reported in mil-
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fer these extra bytes and the latency overhead added by
the Depot clients are effectively masked by the variance.

In summary, Depot adds negligible overheads in terms
of latency, bandwidth, and server storage, but Depot
clients have non-negligible overheads in terms of client
storage if they are not willing to trust other nodes for
durability and availability.

6.6 Summary
We have evaluated the resource utilization, dollar cost,
and latency overheads of Depot in two different envi-
ronments: a local testbed and unmodified Amazon S3.
In both these environments, we observed that Depot has
modest resource overheads for 10 KB or larger objects.
Converting these raw resource utilization numbers into
dollars of operation cost for 10 KB objects indicated that
Depot incurs 35% overhead (in terms of dollars) on PUTs
and 1% overhead on GETs in our testbed deployment and
30% overhead in Amazon S3 deployment. Client storage
was the most significant cost component in both these
settings; Depot requires clients to store values and meta-
data locally to avoid trusting other nodes for durability
and availability. The latency overheads of Depot in LAN
settings were modest for GETs but significant for PUTs.
In the Amazon S3 deployment, Depot adds negligible ad-
ditional latency over S3.

7 Related work
We present prior work in terms of a trade-off between
availability and fault-tolerance. In contrast, Depot both
maximizes availability and tolerates arbitrary failures.

Low fault-tolerance, high availability. System de-
signers have long optimized for availability, both via
provisioning and via system structure. Lately, key-value
stores in clouds [3–5, 25, 31, 34] have taken a prag-
matic approach to availability, achieving this property
through both system design and choice of reliable nodes.
However, these systems are still not maximally avail-
able. In contrast, decentralized data replication systems
like Bayou [76, 89, 92], Ficus [42, 80], Grapevine [17],
Quicksilver [84, 93], Coda [51], PRACTI [16], Tier-
Store [35], and Cimbiosys [79] are maximally avail-
able, even when connectivity is intermittent. Some of
the approaches in these systems are used in decen-
tralized repositories, such as git [39], Mercurial [69],
DARCS [33], and Pastwatch [101]. Unlike our cloud ser-
vice environment, nodes typically keep a full copy of the
entire history and trust the nodes from which they fetch
updates; nothing prevents or guarantees detection of a
node that issues forking writes or sends different inde-
pendent subsets of writes to the nodes that fetch updates
from it.

Medium fault-tolerance, medium availability. An-
other class of work provides safety even when only a sub-
set (for example, 2/3 of the nodes) is trustworthy. How-
ever, the price for this increased fault tolerance compared
to the prior category is decreased availability: to com-
plete, an operation must reach a quorum of nodes. Such
systems include Byzantine-Fault Tolerant replicated state
machines (BFT RSMs) [9, 12, 24, 28, 29, 32, 41, 45, 47,
53, 54, 85, 95, 99, 100] and Byzantine Quorums [65, 66].
Note that researchers are keenly interested in reducing
trust: compared to the classic BFT RSM literature, the
recently-proposed A2M [26], Trinc [60], BFT2F [62],
and Bonafide [27] all tolerate more failures, the former
two by assuming trusted hardware and the latter two
by weakening guarantees. However, unlike Depot, these
systems still have a fault threshold, and none works dis-
connectedly.

High fault-tolerance, low availability. The next cat-
egory further reduces the assumptions needed for safety.
In SUNDR [61], FAUST [20], and related systems [18,
21, 22, 64], the server is totally untrusted, yet even under
faults provides a safety guarantee: fork-linearizability,
fork-sequential consistency, etc. [74]. All of these sys-
tems severely impose on availability. First, in benign
runs, their admittedly stronger semantics (versus Depot’s
causal consistency) simplifies detecting forks (since all
correct nodes operate in lock-step) but means that they
cannot be available during a network partition or server
failure. Second, after a forking attack, nodes are stranded
on different forks and cannot talk to each other. We view
this as an unacceptable encroachment on availability: to
truly tolerate faulty nodes means to not stop the system
when it experiences a fault.
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Other systems. A number of other systems have
sought to minimize trust for correctness and availabil-
ity. We now cover these briefly. None of them gives a
correctness guarantee under arbitrary faults. We stand
in solidarity with Zeno [88], whose motivation is simi-
lar to ours. However, Zeno does not come close to op-
erating with maximum availability or minimal trust as-
sumptions: it assumes f + 1 available servers per parti-
tion, where f is the number of faulty servers. PeerRe-
view [43] is geared to the distributed case, but it requires
a quorum of witnesses at all times, one of which must
be correct (a trust requirement that Depot does not have),
and all of which must have complete information (which
hinders availability). FARSITE [10] targets decentralized
environments and seeks to minimize trust; nevertheless,
it uses BFT RSM techniques so, unlike Depot, does not
minimize trust for correctness or availability.

Other decentralized systems have, like Depot,
been designed to resist large-scale correlated failures.
Glacier [44] can tolerate a high threshold of faulty nodes.
However, it cannot tolerate more than this threshold, and
it stores only immutable objects. OceanStore [55] is de-
signed to minimize trust for durability but does not tol-
erate nodes that fail perniciously. The S2D2 peer-to-peer
storage system [49] uses a mechanism like Depot’s his-
tory hash, but S2D2 cannot prevent faulty nodes from
exposing correct nodes to arbitrary subsets of writes.
TimeWeave [67] is designed to provide a sensible order-
ing of distributed events, but it also does not tolerate the
most pernicious behavior: a faulty node can undetectably
expose two different histories to two different nodes, so
TimeWeave cannot provide fork-causal consistency.

8 Conclusion
Depot began with an attempt to explore a radical point
in the design space for cloud storage: trust no one. Ulti-
mately we fell short of that goal: unless everyone stores a
full copy of the data, then nodes must rely on one another
for durability and availability. Nonetheless, we believe
that Depot appears to significantly expand the boundary
of the possible by demonstrating how to eliminate trust
assumptions for safety and to minimize trust assumptions
for liveness. In particular, we show that providing strong
safety guarantees need not imperil liveness, and we show
how to leverage a novel consistency semantic (Fork-Join
Causal consistency) to provide other useful properties.
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A Fork-join-causal consistency
We express fork join causal (FJC) consistency semantics
in terms of a set of conditions that must hold for the ob-
server graph that we associate with each execution of a
system.

The observer graph of an execution captures how in-
formation flows during the execution: the graph’s ver-
tices represent the read and write operations executed
by the nodes, and the edges encode dependencies among
these operations. The graph is not an actual data structure
that our protocol maintains, but it is useful for presenta-
tion purposes.

Definition 1. An observer graph is an execution and an
edge assignment.

Definition 2. An execution is a set of read and write ver-
tices, with one vertex for each read or write operation by
any node.

1. Write vertices are tuples of the form (n,s,oId,val),
where n is the node issuing the write operation, s is
a per-node sequence number that monotonically in-
creases with every operation issued by n, oId is the
identifier of the object being written, and val is the
value written to object oId .

2. Read vertices are tuples of the form (n,s,oId,wl)
where n, oId, and s define the node issuing the read,
the object read, and the sequence number of the op-
eration and where wl denotes the list of write vertices
whose values are returned by the read. We say a read r
reads from a write w if r.wl includes w.

Definition 3. An edge assignment for an execution is a
set of directed edges connecting vertices of an execution.

An edge assignment is an abstract representation of
the data flow in an execution. Notice that the definition
does not specify how the edge assignment is produced.
A given consistency semantic is defined by a consistency
check that determines the set of executions it allows. In
particular, showing than an execution is consistent under
some semantics simply requires to show that an oracle
can produce an edge assignment that passes the consis-
tency check; showing instead that a system enforces some
consistency semantics requires presenting an algorithm
that for every execution of the system constructs an edge
assignment that passes the consistency check.

Definition 4. A consistency check for a consistency se-
mantic C is a set of conditions that an observer graph
must satisfy to be called consistent with respect to C.

Definition 5. An execution α is C-consistent iff there ex-
ists an edge assignment for α such that the resulting ob-
server graph satisfies C’s consistency checks.

A final bit of housekeeping:

Definition 6. We say that vertex u precedes vertex v in
observer graph G (denoted as u ≺G v) if there is a di-
rected path from u to v in G. By extension, we say that
the operation corresponding to u precedes the one corre-
sponding to v. If u ≺G v, then v depends on u. If u 6≺G v
and v 6≺G u, then we say that u and v are concurrent.

We now define the set of executions admitted by FJC
consistency semantics in terms of its consistency checks.

Fork-join-causal consistency: An execution α is said
to be fork-join-causal (FJC) consistent if there exists an
edge assignment for α that produces an observer graph
G that satisfies the following consistency check:

1. Serial ordering at each correct node. The ordering of
operations by any correct node is reflected in the ob-
server graph. Specifically, if p is a correct node and v
and v′ are vertices corresponding to operations by p,
then v.s < v′.s⇔ v≺G v′.

2. Reads by correct nodes return the latest preced-
ing concurrent writes. For any read operation r =
(p,s,oId,wl) issued by a correct node p, and writes w
and w′ to object oId, the following condition holds:

w ∈ wl⇔ w≺G r∧ 6 ∃w′ : w≺G w′ ≺G r

Comparison with causal consistency. Causal consis-
tency enforces conditions that are analogous to the one
enforced by FJC, but it requires them to hold for opera-
tions issued by all nodes—not just correct nodes. Specif-
ically, an execution α is said to be causally consistent if
there exists an edge assignment for α that produces an
observer graph G that satisfies the following consistency
check:

1. Serial ordering at each node. The ordering of op-
erations by any correct node is reflected in the ob-
server graph. Specifically, if p is a node and v and
v′ are vertices corresponding to operations by p, then
v.s < v′.s⇔ v≺G v′.

2. Reads return the latest preceding concurrent writes.
For any read operation r = (p,s,oId,wl) issued by a
node p, and writes w and w′ to object oId, the follow-
ing condition holds:

w ∈ wl⇔ w≺G r∧ 6 ∃w′ : w≺G w′ ≺G r
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(a) Execution (b) Observer graph

FIG. 19—An execution with a faulty node p2 and its corresponding observer graph. The observer graph is not causally consistent
because w1 and w2 are not ordered according to the history of node p2. The observer graph is, however, FJC consistent because p2
is faulty and therefore FJC consistency doesn’t require total ordering of p2’s operations.

Figure 19-(a) shows an execution that is FJC consis-
tent but not causally consistent. In this example, node p2
is faulty and produces two writes w1 and w2. Node p1
observes w1 but not w2, and node p3 observes w2 but not
w1. As Figure 19-(b) illustrates, we can produce an edge
assignment and observer graph that passes all FJC tests
by violating the serial ordering constraint at the faulty
node. Conversely, it is impossible to produce an edge as-
signment to produce an observer graph G′ that passes the
causal consistency checks.
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