
Implementing a Verified On-Disk Hash Table

Stephanie Wang

Abstract
As more and more software is written every day, so too
are bugs. Software verification is a way of using formal
mathematical methods to prove that a program has no
bugs. However, large-scale verified software systems are
often hard to use or integrate for a programmer with no
background in verification. In this project, I present a
verified key-value store implemented as an on-disk hash
table on the verified file system FSCQ. This is done by
layering abstract representations on top of one another. In
this case, the lowest abstraction layer is an array, or a raw
disk, and the highest is a map, or a key-value store. This
project serves as a case study for implementing commonly
used data structures on disk.

1 Introduction
It’s becoming clearer than ever that the current methods for
proving software correctness in the wild are not enough.
Most programmers rely on code reviews and on writing
good test cases, but these methods are rarely exhaustive.
Nuanced bugs can and do often slip through cracks, some-
times with disastrous results.

Formal software verification can ensure that a software
system has no bugs, but that means little if its interface or
limitations make it unusable to another programmer. For
example, the verified file system FSCQ is powerful in its
expressiveness regarding disk operations and crashes, but
programmers are unlikely to want to deal with the raw
disk interface that FSCQ exposes [1]. In order to make
verified software a viable option in everyday systems, it’s
necessary to build and verify easily composable systems.
In this project, I propose to build and verify a key-value
store on top of FSCQ.

There are a couple reasons for choosing a key-value

store. The first is that it can be built with a simple interface
that’s familiar to many programmers without experience in
verification. Also, it’s a widely studied system with many
applications in different contexts.

While this may be the umpteenth key-value store in ex-
istence, it’s also one of the first examples of a certified
on-disk data structure. To reach performance competitive
with a non-verified implementation, it’s necessary to im-
plement the key-value store as an on-disk hash table. This
makes the project a prime case study for verifying on-disk
data structures.

In Section 3, we will discuss how to verify a single
implementation of a key-value store. We’ll give an
append-only log in Section 3.1 and a hash table in Section
3.2 as examples.

2 Previous Work
Formal software verification is growing fast. There have
been several exciting projects where teams of programmers
and verifiers have succeeded in building and verifying large
and critical systems. These systems have varied from tools
like a C compiler [4] to application infrastructure like an
operating system [3].

One ongoing project is FSCQ, a verified filesystem that
also provides a type of logic for proving program correct-
ness in the presence of disk crashes [1]. This logic is called
“Crash Hoare logic". Hoare logic is a long-established set
of formal proof methods that allows one to define a pro-
gram’s correctness in terms of pre- and post-conditions
[2]. To prove a program’s correctness, one must prove
that if the pre-condition holds before entering the program,
the post-condition must hold after exiting the program. A
program in this case is really an abstraction; it can repre-
sent a single statement or a 1000-line Python script. Hoare
logic allows one to easily compose programs like these

1



into larger programs, as long as each post-condition fulfills
the pre-conditions for the following program.

The “Crash" in Crash Hoare logic comes from having a
crash condition in addition to the pre- and post-conditions
[1]. To prove a crash condition for a program, one must
prove that if the pre-condition holds, the crash condition
will hold after any given step of the program, since a crash
could happen at any point.

FSCQ provides several automation tactics to help step
through a program built on the write-ahead log layer
MemLog. These tactics are critical for proving the described
pre-, post-, and crash-conditions.

Another useful FSCQ proof technique is isolation logic.
This is the idea of isolating different parts of the disk, or
any other array, away from each other. In this way, one
can specify a change in one part of the disk while leaving
the rest of the disk unspecified. Under isolation logic, the
unspecified area of the disk remains unchanged. Then, one
can isolate proof efforts to the changed part of disk.

Another concept used in verifying FSCQ, as well as
many other verified systems, is the idea of abstraction
layers. This is similar to the same idea in normal software,
where complex systems abstract away lower-level systems
that are used in the implementation. The difference when
writing verified software is that one also has to prove that
the low-level implementation truly implements the high-
level abstraction.

This project requires combining these verification
techniques to build a top-level abstraction of a key-value
store that can be easily used by other programmers. The
lowest-level abstraction layer can be thought of as an
array, or raw disk blocks, while the top-level abstraction is
a map of keys to values.

3 Design
The key-value store will be implemented as a layer on top
of the write-ahead log layer (MemLog) provided by FSCQ
[1]. MemLog provides atomic transaction semantics for
operations like read, write, and commit.

Efficient hash tables can be complex to represent and
verify in Coq because of the various methods of collision
resolution, such as open addressing or chaining. For this
reason, we chose to implement a key-value store layer in

several iterations before attempting a fully reliable and
efficient hash table. Reliable in this case means that as
long as there is room on the disk, a key and value can
always be put successfully.

Each iteration on the key-value store layer requires three
parts. The first is an abstract representation of a key-value
store, denoted as a property rep of a list of key-value pairs.
We chose to start with a list abstraction rather than a Coq
map like FMap, even though the latter matches a key-value
store more closely, to make proofs more feasible. This
is because Coq proofs often depend on induction and are
therefore more suited to list objects than map objects. Each
version of rep specifies the existence of some raw disk and
a relationship between the list of key-value pairs and the
contents of this existential disk. This representation must
be strong enough that it specifies both directions of the
relationship. In other words, there must be some way of
translating a key-value store into the contents of a disk,
as well as some way of translating the same disk contents
back to the same key-value store.

The second part is implementations for the get and put
operations. These are often quite short and simple. A get
takes in a key and returns a value. A put takes in a key and
a value, and returns a boolean ok, which shows whether
the put was successful or not.

Finally, bringing the two together are theorems that
state get and put correctness in terms of the abstract
representation rep.

There will be two main correctness theorems, one each
for gets and puts. In general, each of the correctness
theorems requires that the representation holds for the
disk before the operation. They also require some post-
condition regarding the return value of the operation or the
state of the disk.

Although the Crash Hoare logic is essential for reason-
ing about disk crashes, most of the crash-conditions for
the theorems specified in this project are relatively simple.
The crash-conditions for a general Hoare theorem are used
to specify the possible disk states after a disk crash. A get
is read-only and a put requires only one commit. Then,
we only need to account for at most two possible disk
states after a crash, either the original disk, or the disk after
a put. These two states will always match either a pre-
or post-condition, so all proofs for the crash-conditions
can be solved almost entirely automatically. So, for the
purposes of simplifying the discussion of the get and put

2



correctness theorems, we will only discuss the pre- and
post-conditions.

For each iteration, the get correctness theorem states
that as long as the defined representation holds for the disk,
then any get will retrieve the most recent value called by
a put at the requested key. For a hash table, which doesn’t
generally store older values for a key, the most recently put
value can just be the value at the key in the current store.
A get should be read-only, so isolation logic is sufficient
to prove that the representation still holds for resulting,
unchanged disk. Formally, for any key-value list l, key k,
and value v:

rep l

is_last_put (l, k, v)
get(k)

The put correctness theorem states that as long as the
defined representation holds for the disk and there is room,
then after any successful put, the representation holds for
the updated disk. In other words, the key-value store is
updated with the new key and value, according to what
“updated" means in the context of the defined representa-
tion. In this case, an immediately subsequent get to the
same key should return the same value. If the put is unsuc-
cessful, then the disk should remain the same. Formally,
for any key-value list l, key k, and value v:

rep l
∧

length l < maxlen

ok = true
∧

rep update(l, key, value)
put(k, v)

If the put is not successful (if ok = f alse), then like
the get operation, the disk remains unchanged. Again,
isolation logic is enough to prove this.

All theorems are proven by unfolding the get and put
operations and then using small-step semantics on the un-
derlying disk operations. Proving these theorems shows
that the on-disk data structure and operations actually im-
plement the rep abstraction.

As mentioned above, the representation rep is an ab-
straction to a list of key-value pairs, but the more logical
abstraction would be a map that associates keys to values.
Although directly proving that a map abstraction holds on
a raw disk is difficult, this could be feasible using refine-
ment. Refinement proves equivalence between an abstract
model and an implementation of the model by proving that
each abstract step, along with its pre- and post-conditions,
has an equivalent step in the implementation. In this case,

we could refine a map abstraction to the list representation
that we work with in this project.

Next, we’ll discuss examples of key-value store
representations, specifically an append-only log and
a hash table with no collision resolution. For each
implementation, we’ll discuss the representation rep, the
get and put operations, and the correctness theorems.

3.1 Append-Only Log
An append-only log is probably the easiest, and least effi-
cient, representation of a key-value store to start with. For
this representation, a log of all (key, value) pairs is stored
on disk (Figure 1a). The log represents the history of all
put calls, with the most recent last.

There are five parts relating the append-only log repre-
sentation to the disk contents (Figure 1b). The first states
that there is a constant index, kv_pointer, on disk that
stores the current length of the log. The second states that
the keys are written at every other index in an array on
disk. The third states that the values are written at the other
indices. The fourth states that the length of the total disk
is equal to maxlen. Finally, the fifth states that the log of
key-value pairs is a contiguous prefix of the disk.

If any one of these parts were missing, the representation
would not be strong enough to prove correctness for get
and put. For example, if the fifth part regarding the disk
prefix were excluded, then it’d be possible to have all
the correct key-value pairs in their correct log order on
disk, but with holes in the disk. This would completely
invalidate the log length stored at kv_pointer.

A get returns the last value in the log that matches the
desired key. This is implemented by first reading the length
of the log from the kv_pointer block. Then, the operation
loops through pairs of blocks from 1 to the length of the
log. For each pair (key, value)in the list, if key matches the
desired key, then the value passed to the next iteration of
the loop is updated to be value.

A put is an append of a (key, value) pair to the end of
the list, which increments the length of the list by 1 (Figure
1a). This is implemented by first reading the length of the
log from the kv_pointer block. Then, key is written at
2× kv_pointer and value is written at 2× kv_pointer + 1.
To update the length of the log, the value at kv_pointer is
incremented by 1.

3



(a) An example of the disk contents corresponding to an append-only log representation.
kv_pointer is an index on disk that contains the number of pairs currently in the log. When a
put is successful, the new key and value are written at the value in kv_pointer and the value
in kv_pointer is incremented.

(b) The Coq definition for the append-only log representation. The first three lines define
where the length of the log, the keys, and the values can be found on disk. The fourth line
limits the length of the log to maxlen. The final line ensures that the log is a contiguous
prefix of the actual disk.

Figure 1: The on-disk contents and representation definition for an append-only log.

4



The idea of an “update" for this representation is rela-
tively simple. If l is the log of key-value pairs before a call
to put(key, value), then l appended with (key, value) will
be the log afterwards.

Once all of the above details were specified prop-
erly, proving get and put was straightforward, so
we will not discuss the details of proving the above
theorems. This is in part due to the very direct relation-
ship between the key-value log and the disk structure
itself. For more interesting and much more efficient ex-
amples, we’ll next examine a key-value store with hashing.

3.2 Hash Table
To ease the verification process, there are several limita-
tions on the first iteration of a hash table layer. The first is
that there is no collision resolution method. So unless the
desired key matches the key already at the hashed index,
a key collision will result in an unsuccessful put. The
second is that the hash table has a fixed size. The only
specification for the hash function h used is that it takes in
a key and outputs a disk address.

The representation for this layer is significantly more
complex than that of the append-only log. A few proper-
ties carry over. These are the properties specifying that
keys and values are found at alternating indices on disk,
allowing us to treat the disk as a list of pairs, as well as the
property that the length of the disk is maxlen.

The remaining four properties relate a list containing all
key-pairs currently in the store and the contents of the disk
(Figure 2):

(1) For any pair (key, value) in the list, (key, value) is
written at the correct index on disk. Specifically, if the disk
were treated as a list of pairs, then (key, value) would be
the h(key)-th pair.

The next two properties consider the existence of a sec-
ond list l′ of key-value pairs. (2) If the disk were to be
filtered for all nonempty blocks, then the result would be
some l′. (3) l′ is a permutation of l, the key-value store.

Finally, (4) there are no duplicate keys on the disk.
The first property relates the list contents to the disk con-

tents; the remaining three deal with the opposite relation,
as well as the remaining disk contents. Again, although
having all four of these properties may seem overly com-
plex, all properties are necessary to prove correctness of

get and put. For example, without the property prevent-
ing duplicate keys, there could be multiple instances of
some (key, value) pair on disk. As long as the h(key) index
on disk really did contain (key,value), this would still be
a valid disk under the representation. However, it would
be impossible to prove property (1) after a different value
were put at the same key. This is because the other copies
of (key, value) would still be on the disk and would then,
by properties (2) and (3), also be in l. But after the put,
the h(key)-th pair on disk would no longer contain value,
so property (1) no longer holds.

The get and put operations remain simple. For a call
to get(key), the disk is read at index 2×h(key). If there is
already a key there and it matches key, then the value at
the next disk block is read out and returned.

The put operation works similarly. For a call to
put(key, value), the disk is read at index 2× h(key). If
there is already a key there and the key does not match key,
then the put fails and returns f alse. Otherwise, key and
value are written at that index and the next, respectively,
and put returns true for success.

For a hash table, we no longer have to worry about
the most recently put value because old values are never
stored. Instead, a get must guarantee that whatever value
is returned is actually the right value in the current key-
value list l. And if no value is returned, it must be true that
the desired key does not appear in l with any value.

The concept of an “update" to the key-value store in this
case is similar to the idea of an upsert. If the key to update
is already in the key-value list l, then the corresponding
value in the tuple is updated. Otherwise, the new key-value
pair is inserted into the list. A key-value update to the disk
contents just writes the key and value at the hash of the
key.

This representation is much harder to prove correct than
the append-only log because the properties above are, for
the most part, disjoint. This means we have to prove the
properties individually even though they may depend on
each other. For instance, after a put, all properties must be
proven for the updated key-value store and disk. Property
(1) can be difficult to reason about without also proving
what key-value pairs are in the list l. But the contents of
l follow from properties (2) and (3), which we are also
trying to prove.

The get correctness theorem is easier to prove than the
put correctness theorem because there is no disk state

5



(a) An example of the disk contents diskl corresponding to a hash table representation. l′ is
the disk contents after filtering out all empty entries. l is the actual key-value store, which is
some permutation of l′. Any key-value pair in l can be found at the hash of the key on disk.

(b) The Coq definition for the subset of the hash table representation that defines the rela-
tionship between the disk contents on diskl and the key-value pairs in the store l. The first
property, hash_rep says that any key-value pair in l can be found at the hash of the key on
disk. The next two properties consider some other key-value list l′ that has all the non-empty
entries on diskl and is a permutation of the actual store, l. The final property says that there
are no duplicate keys on diskl.

Figure 2: The on-disk contents and representation definition for a hash table.

6



change during a get. To prove get, it is enough to prove a
couple lemmas that consider nonempty disk entries. These
lemmas translate properties (1)-(4), which may consider
the whole disk or key-value store list at once, into implica-
tions about individual entries on disk.

The put correctness theorem is much more difficult to
prove for the reasons discussed above. There are three
cases here for the desired key and value: (1) the key col-
lides with another key that is already written at the same
index. (2) there is already a value for the same key. (3) the
index h(key) is empty on disk.

There is little to prove for case 1, since nothing has
changed on disk. This can be proven just using proof
automation.

The second case when there is already a value for the
same key at the proper index is slightly harder, but there is
still no addition of a new key, just an update to the value.
Therefore, properties like property (1), which states that
the index h(key) must contain the correct key and value,
are easy to prove because only the value at the key has
changed since the original disk state.

The third case is the hardest because thus far, the proper-
ties stated only consider keys that are in the key-value list.
Nothing has been proven about the absence of keys. For
instance, here is one lemma that was necessary to prove
the third case:

Lemma 3.1. If diskl at h(key) is empty, then for any key′

such that h(key) = h(key′) there does not exist a value such
that (key′,value) is in the current key-value store.

3.3 Future Goals
So far, I have proven everything except the third case for
a put, as described in Section 3.2. Once this hash table
is fully proven, the next steps will be to add a collision
resolution method. We believe that the easiest extension
from the current hash table representation would be open
addressing with linear probing. While this would make
the hash table more reliable in the event of a key colli-
sion, this type of collision resolution can over time accrue
unnecessary overhead for certain get and put call. This
problem could be reduced by extending the current hash
table representation with chaining.

Verifying the hash table representations extended with
some collision resolution method would closely follow the

verification steps described in this section. We suspect that
the first obstacle will be to properly specify the represen-
tation itself. For instance, trying to represent something
like open addressing with linear probing will require an
extra property describing the relationship between the en-
tries themselves, since certain entries will appear in certain
indices on disk based on what entries were there first.

Verifying a hash table with chaining will be difficult
to do directly from the current representation. This is be-
cause chaining will probably require linked lists of blocks
on disk, or else we’d only be able to support a bounded
number of hash collisions. To implement variable-length
chaining, we would need to define an intermediate repre-
sentation that abstracts away some set of disk blocks into
a linked list.

Finally, to reach performance and space efficiency com-
petitive with existing key-value stores, it will probably
be necessary to eventually implement resizable hash ta-
bles. Again, verifying a resizable hash table will probably
closely follow the verification process for the fixed-size
hash table described here, with an additional constraint that
the size is within a certain bound of the number of entries
currently in the store. The get implementation could just
be a call to the get for a fixed-size hash table. For the put
(and eventually delete) operation, a call to the fixed-size
put may be followed by a resize operation. The challenge
here will be in proving that the abstraction still holds on
the disk after any put, even while many key-value entries
may change disk location.

In the (distant) future, the verified key-value store could
also be made concurrent. The current key-value layer is
being built on top of the write-ahead log MemLog, a layer
in FSCQ that guarantees transaction atomicity but has no
concurrency control. If a concurrency layer were to be
built into or on top of MemLog, a serializability guarantee
like snapshot isolation could easily be the key-value store,
as well as any other systems built on top of MemLog.

It may even be possible to transform this key-value
store into a replicated hash table by integrating with Verdi
[5]. Verdi is a framework that transforms state machines
into formally verified distributed systems with verified
consistency and fault-tolerance properties. Verdi already
has an example of a verified key-value store called vard.
However, vard is not verified to the filesystem level and
does not seem to support multi-operation transactions,
which would probably be relatively easy to add to an

7



on-disk hash table. By composing Verdi and FSCQ
together in this way, we could build a key-value store
with verified transactional properties from FSCQ, as well
as verified consistency and fault-tolerance proprerties
from Verdi. Still, it is impractical to reason about which
key-value store operations should be transformed into
distributed Verdi log operations until a fully-featured
key-value store is built and verified. In addition, using
the Verdi framework would not be enough to produce the
highly desirable distributed hash table. To build such a
system, we’d likely have to modify the key-value store
code directly.

4 Discussion
Above all, the lesson I learned from this project was that
formalization is hard. A hash table is a data structure that
many programmers have learned about and understand at
a programmatic level, but trying to specify its behavior in
formal language is a very different story, often surprisingly
so. For instance, the representation we’d written for a
hash table with no collision resolution in Section 3.2 was
incorrect for several weeks before we even noticed after
trying to prove a false lemma. Even now, it’s impossible
to tell whether the representation I’m trying to prove is
strong enough (although I have high hopes)!

In the same vein, my biggest mistake was to jump into
proving things before I’d thought about the representa-
tion’s specification enough. The equivalent key-value store
in unverified software would probably be simple enough
that any mistakes in the code could be ironed out simply
by going back and fixing an offending line or two. Here,
though, the proofs are much more complex than the code
and may often require a stronger or weaker specification.
Although I have no way of telling for sure, fixing the spec-
ification after attempting an impossible proof is probably
much more time-costly than taking more time to think
about the specification before attempting a possible proof.

Automation was limited in this project. FSCQ’s pro-
vided automation was essential for the project, but I had
little idea of how to automate any of the manual proofs
that I did. In addition, the couple times FSCQ automation
failed, it was difficult for me to determine the next step.
My only choice was to break down the automation tac-

tic into its individual steps and try each one individually.
But, although I knew at a high level what the automation
tactic did, I had little idea what each individual step was
responsible for.

One thing I’d love to see from Coq is a better way
to explore theorems and specifications without breaking
everything. Ideally, a verifier should probably specify
once and never have to revise once starting the proofs, but
I believe this is rarely the case in practical situations. My
own process was to iterate on the abstract representation,
lemmas, and proofs in turn until the correctness theorems
could be fully solved. Often, however, one small change in
a representation could break all of the parts that did work.
This could be as simple as renaming a hypothesis used in
a proof, or as complex as completely rewriting a lemma,
followed by all dependent lemmas.

I’d also love a richer theorem search engine than the
one currently included in Coq, which matches queried Coq
terms for any and all theorems that mention them. This
could often lead to too many search results, with no way to
narrow them down other than to query for additional Coq
terms. I often had a feeling that I was proving something
that had already been proven before in a more general form.
In this situation, I had no way of finding the more general
form besides browsing the Coq documentation.

5 Conclusion
The overhead of formally verifying software systems is still
quite high for the average programmer. One way around
this is to build certified systems that can be integrated with
other systems with minimal verification effort. A verified
filesystem like FSCQ is a prime example of such a system.

The raw disk that FSCQ is built on can be repurposed
for other efficient on-disk data structures. In this project,
we work towards building and verifying a key-value store
as an on-disk hash table using the disk interface provided
by FSCQ. The resulting system will have a simple and
familiar enough interface that any programmer should be
able to use it.

This ongoing project also serves as an interesting case
study for verifying and even just thinking about on-disk
data structures. As evidenced by this project, even a simple
data structure can have a complex representation with sev-
eral properties that must somehow be bound together. For

8



the sake of an easier proof effort, it’s essential to express
the representation through as few properties as possible.
And as in all formal verification, the most important goal
appears to be for the specification to strike the right balance
between strong and specific versus weak and general.

References
[1] Using Crash Hoare Logic for Certifying the FSCQ

File System. Submitted to ACM Symposium on Op-
erating Systems Principles (SOSP), Cambridge, Mas-
sachusetts, 2015.

[2] C.A.R. Hoare, An axiomatic basis for computer pro-
gramming. In Communications of the ACM 12 (10),
pages 576-580, 1969.

[3] G. Klein, K. Elphinstone, G. Heiser, J. Andronick, D.
Cock, P. Derrin, D. Elkaduwe, K. Engelhardt, M. Nor-
rish, R. Kolanski, T. Sewell, H. Tuch, and S. Win-
wood. seL4: Formal verification of an OS kernel. In
Proceedings of the 22nd ACM Symposium on Oper-
ating Systems Principles (SOSP), pages 207âĂŞ220,
Big Sky, MT, Oct. 2009.

[4] X. Leroy, A formally verified compiler back-end. Jour-
nal of Automated Reasoning, 43(4):363âĂŞ446, Dec.
2009

[5] J.R. Wilcox, D. Woos, P. Panchekha, Z. Tatlock, X.
Wang, M.D. Ernst, and T. Anderson. Verdi: A Frame-
work for Formally Verifying Distributed System Imple-
mentations. Conditionally accepted to PLDI 2015.

9


	Introduction
	Previous Work
	Design
	Append-Only Log
	Hash Table
	Future Goals

	Discussion
	Conclusion

