
6.888: Certified Systems Software 2015

VerifiedDSP: Verifying Digital
Signal Processing Designs in Coq

https://github.com/JeremyRubin/VerifiedDSP

Jeremy Rubin
jlrubin@mit.edu

Abstract
Digital Signal Processors and microcontrollers are
used widely in a wide range of devices and ma-
chines. There are many life critical applications,
including medical equipment, transport, and com-
munications. It is therefore of great importance to
ensure the proper functionality of such devices.
Many of these devices are simple, preferring to
rely on a tried and true 8-bit architecture without a
full operating system so that they may more easily
reason about real-time responses to events. For in-
stance, it could be disastrous to have a garbage col-
lection pause while trying to apply the brakes of a
car. However, this simplicity comes at a cost; with-
out higher level constructs a programmer must
manually write and check a lot more code due to
the high resource constraints. Furthermore, it is
hard for a programmer to verify that the code they
wrote is correctly translated into the binary loaded
onto chip, the compiled version may have different
properties than desired.

This paper presents a new framework, Veri-
fiedDSP, for programming 8-bit Intel 8051 series
microcontrollers and designing embedded Digi-
tal Signal Processing systems. It includes an 8051

simulator, a prototyping framework for mocking
out specifications, and some higher level con-
structs to help programmers formalize the behav-
ior and run time of control loops.

1. Introduction
Modern machines often rely on a combination of
mechanical systems, electrical systems, sensors,
and software. The advent of embedded systems
has allowed for much more accurate and compli-
cated designs to be built because they allow for
tighter feedback loops as well as convenient ways
to interface between disparate systems.

Often times these embedded systems are built
with simple microcontrollers (µCs) such as 8-
bit because a more powerful computers are not
needed, energy-inefficient, and are harder to rea-
son about for real-time applications. In some sec-
tors, Real-Time Operating Systems (RTOS) have
become popular due to programming ease, but
there are many applications where a lighter weight
solution is needed. Many systems which require
light weight microcontrollers also happen to be
life-critical. Unfortunately, there have been many
instances where the life-critical nature of this role
was made all too clear with catastrophic failures.

This paper presents an effort to reduce the like-
lihood of engineering errors as well as toolchain
errors when building a Digital Signal Processing
unit (DSP), including complex designs using a mi-

Framework to prove 8-bit embedded software systems on the Intel 8051 series 1 2015/5/17

https://github.com/JeremyRubin/VerifiedDSP


crocontroller such as the 8-bit Intel 8051 series mi-
crocontrollers1.

There are two main components of this project:
a trusted-but-proof-ready 8051 simulator, and util-
ities which assist programmers in prototyping
formally reasoning about behavior of embedded
designs. Behavior is characterized by traces on
“pins”.

These traces can encode many properties such
as return values, execution time, pin output, and
non interference.

The internal behavior of the microcontroller is
provable, but the higher level specifications of a
design, only deal in traces. The internal state of
the microcontroller can still be reasoned about for
proofs, but it is masked to allow for a better devel-
opment cycle. Microcontroller functionality can
be mocked out, and refinement can be shown be-
tween a functional description and a microcon-
troller.

This system will have many limitations which
may affect its real-world usefulness, which will be
expounded in the discussion.

2. Motivation
There are several concrete examples of embedded
system failures which motivate this work.

2.1 Medical Devices
The Therac-25 was a radiation therapy machine
which lethally overdosed 6 people [11]. While a
large portion of the of the blame for this could
be placed on the lack of hardware failsafe, it was
ultimately unverified software which caused the
deadly malfunction.

Another interesting medical device is the pace-
maker. A 2004 study saw that approximately 1/1,200
pacemaker reprogramming events loaded faulty
programs onto the device, which could cause a
patient’s heart rate to elevate to 185 beats per min-
utes. The fault was due to multiple timer inter-
rupts being enabled at the same time, when only

1 This chip was chosen because the author is familiar with
them and they are very widely deployed.

one was supposed to be enabled at any given time
[10].

2.2 Transport
Automobiles are also a large concern with regards
to embedded systems as they rely on multiple for
the core functionality of the vehicle. Over the past
decade, there have been a number of bugs and er-
rors caused – or suspected to be caused – by faulty
software. For instance, several major automobile
manufacturers – Nissan, Honda, and Subaru – re-
called vehicles for faulty embedded systems which
could deploy airbags during normal vehicle oper-
ation or start the car at random while parked [12].

2.3 Communications
Networked mobile devices use small hardware se-
cure chips called subscriber identification module
cards (SIM cards) to reliably identify clients con-
necting to the network. They contain a µC which
manages the processing of cellular data, such as
encryption and signatures for requests from a cer-
tain number (such as send a text-message). Re-
cently, exploits have been found that allow a re-
mote attacker to take control of the SIM card and
issue illegitimate requests [2].

3. Design Overview
The following subsections will contain an overview
of the major parts of this project: subsection 3.1
will discuss the component definitions; subsec-
tion 3.2 will discuss the wiring framework used to
connect the components; subsection 3.3 discusses
the execution of a wiring;subsection 3.4 will dis-
cuss the microcontroller implementations.

3.1 Component
The fundamental definition in VerifiedDSP is the
IO module, which has 3 main definitions detailed
in Listing 1.

1 Module IO .
2 D e f i n i t i o n t := n a t .
3 D e f i n i t i o n t r a c e := l i s t ( l i s t t ) .
4 I n d u c t i v e func :=
5 | f n a r g s : n a t → ( t r a c e → t ) → f unc .

Framework to prove 8-bit embedded software systems on the Intel 8051 series 2 2015/5/17



6 End IO .

Listing 1. IO module definition

IO.func The most important definition is IO.func.
An IO.func is a pair of a number of arguments and
a function which can process an IO.trace to pro-
duce an output IO.t.

IO.t IO.t can be thought of as a voltage, and it is
the type passed around by other modules.

IO.trace The IO.trace is simply a list of lists of
the IO.t voltage. Each trace is implicitly numbered
by their position in the top list.

1 D e f i n i t i o n i n t e g r a t o r : IO . func :=
2 IO . f n a r g s 1 ( fun x ⇒suml ( hd [ ]

x ) ) .
3 D e f i n i t i o n i n c r e m e n t o r : IO . func :=
4 IO . f n a r g s 1 ( fun x ⇒l e n ( hd [ ] x

) ) .
5 D e f i n i t i o n z e r o r a i l : IO . func :=
6 IO . f n a r g s 0 ( fun ⇒0) .

Listing 2. An integration unit, an incrementing
unit, and an always 0 “rail”

Some example components are shown in Listing 2.

3.2 Wiring
At the core of this project is a way of connect-
ing these components together to perform compu-
tations. This is modeled as an infinite breadboard
with a single discrete time clock. There is a set of
N pins that a device can connect to. Devices can
read any pin, and can write to a single pin. Multi-
ple outputs can be simulated by making duplicate
copies of the same hardware which write to dif-
ferent pins. Listing 3 shows the breadboard defini-
tion.

1 I n d u c t i v e w i r i n g :=
2 | base : w i r i n g
3 | w a t c h s e t : w i r i n g → l i s t n a t →
4 IO . func → n a t →
5 w i r i n g
6 | j u s t s e t : w i r i n g →
7 IO . func → n a t → w i r i n g
8 | j o i n : w i r i n g → w i r i n g → w i r i n g

9 | doc : w i r i n g → n a t → s t r i n g →
w i r i n g .

Listing 3. wiring type definition

watch set observes a list of pins, and writes to a
single pin.
just set only has access to a single clock trace, but
sets values without observing other state.
join joins two separate networks together.
doc adds non functional documentation for conve-
nience, which is useful for more complex projects.
We define the following notations for the wiring:

w//m ∼> f ∼> n ≡ watch set w m f n (1)

w ∗ /m ∼> f ∼> n ≡ just set w f n (2)

w1 ∼ & ∼ w2 ≡ join w1 w2 (3)

w # p c ≡ doc w p c (4)

Once a wiring is complete, it should be checked
for correctness. The property valid wiring, as de-
scribed in Listing 4, checks this. These invariants
are important for a correct design.

1 F i x p o i n t v a l i d w i r i n g ’ w i n s o u t s : Prop
:=

2 match w wi th
3 | base ⇒
4 s e t i n t e r s e c t i n s o u t s = i n s
5 | w’ / / from ∼> f n a r g s n f ∼> t o ⇒
6 ∼s e t i n t o o u t s ∧
7 n = l e n g t h from ∧
8 v a l i d w i r i n g ’ w’ ( un ion i n s from )
9 ( s e t a d d t o o u t s )

10 | w’ ∗ / f n ∼> t o⇒
11 ∼s e t i n t o o u t s
12 ∧ v a l i d w i r i n g ’ w’ i n s
13 ( s e t a d d t o o u t s )
14 | w1 ∼&∼ w2 ⇒
15 l e t w1o := o u t p u t p i n s w1 [ ] i n
16 l e t w2o := o u t p u t p i n s w2 [ ] i n
17 v a l i d w i r i n g ’ w1 ( un ion w2o i n s )
18 ( un ion w2o o u t s ) ∧
19 v a l i d w i r i n g ’ w2 ( un ion w1o i n s )
20 ( un ion w1o o u t s )
21 | w’ # ⇒
22 v a l i d w i r i n g ’ w’ i n s o u t s
23 end .
24 D e f i n i t i o n v a l i d w i r i n g w :=

v a l i d w i r i n g ’ w n i l n i l .

Listing 4. Check that all pins that are being read
from are written to, that there is no contention for

Framework to prove 8-bit embedded software systems on the Intel 8051 series 3 2015/5/17



pins (ie, two devices driving the same pin, and
that all devices are fully connected to the proper
number of pins.)

Wirings are not correct by construction. This is
because it is desirable to produce incomplete mod-
ules which need to be plugged in to one another
(ie, using a join) before being finished. The doc
constructor is important for this so that developers
may easily check to see what the other developer
intended to be connected.

If two modules are needed in the same system,
but they conflict there is a function rewire which
provably reconnects a system so as not to conflict
on any pin. It works by adding the max pin number
+ 1 of the other circuit to every pin numbering.
If the smallest pin number in a system is greater
than the largest in the other, then it is clear that
they will not clash. The specific implementation
should not be relied as many different rewirings
could be performed. Understanding rewirings is
another use for the documentation functionality.

1 D e f i n i t i o n example :=
2 base
3 ∗ / z e r o r a i l ∼> 0
4 ∗ / i n c r e m e n t o r ∼> 2
5 / / [ 2 ] ∼> i n t e g r a t o r ∼> 3
6 # 3 ” I n t e g r a t e d i n c r e m e n t o r ” .

Listing 5. A simple wiring

Two modules which obeys valid wiring can
not interfere with one another and can be safely
joined. A valid wiring can be joined with an ar-
bitrary (valid or invalid) wiring an either become
invalid or stay valid, if it stays valid then certain
properties should be preserved as shown in List-
ing 6.

1 Theorem n o n i n t e r f e r e n c e 1 :
2 f o r a l l w w’ ,
3 v a l i d w i r i n g w →
4 v a l i d w i r i n g (w ∼&∼ w’ ) →
5 f o r a l l n t ,
6 l e t o r i g := f i n d t r a c e t ( run w n ) i n
7 l e t mod := f i n d t r a c e t ( run (w ∼&∼ w’ )

n ) i n
8 match o r i g , mod wi th
9 | Some a , Some b ⇒ a = b

10 | Some a , None ⇒ F a l s e
11 | None , Some a ⇒ True

12 | None , None ⇒ True
13 end .

Listing 6. On adding a new module w´ to a valid
wired w, for all traces the outputs are the same if
present, or may be added if not present.

3.3 Running
Once a wiring is constructed, it can be run. Run-
ning a wiring involves walking over the wire struc-
ture and applying the latest traces to determine the
next states. Functions are computed over the entire
trace at each step. This could be optimized, but for
proofs it is simpler. The run function can be proven
to preserve history (Listing 7) and present consis-
tent views of pins to all functions in the structure.
For example, the trace on pin 3 from Listing 5 is
[36; 28; 21; 15; 10; 6; 3; 1; 0; 0].

1 Theorem n o m o d i f y h i s t o r y : f o r a l l n w,
run w n = t l ( run w ( S n ) ) .

Listing 7. The next run is identical up to the latest
result

3.4 8051
An IO.func can be implemented as any function
which can operate over a IO.trace. Thus, it is
possible to design significantly more complicated
IO.funcs than those in Listing 2. VerifiedDSP in-
cludes a general purpose 8051 IO.func that can be
integrated into any design. The basic signature of
the device is as follows:

1 D e f i n i t i o n i8051 Component
2 b i n adc dac :=
3 f n a r g s ( 8∗4 ) ( fun t ⇒
4 l e t ps := t r a c e s t

adc i n
5 dac (

r u n 8 0 5 1 b i n s t r i n g b i n ps ) ) .

Listing 8. The adc and dac provide conversions
to and from the networks type, the bin is a list of
bytes to be loaded into code memory. The 8051’s
ports must all be connected. First the program is
loaded into memory, then the component can be
executed over any set of 32 pin traces. There is

Framework to prove 8-bit embedded software systems on the Intel 8051 series 4 2015/5/17



only one output pin, but as noted earlier duplicate
devices can be used to simulate multiple output
pins.

A specific program on an 8051 can be shown
to simulate another function using the relation
func same in Listing 9.

1 D e f i n i t i o n func same ( i i ’ : IO . func ) :=
2 f o r a l l ( t r : IO . t r a c e ) ,
3 l e t l e n g t h s := ( map
4 ( fun x ⇒ l e n g t h x )
5 t r ) i n
6 l e t f l := hd 0 l e n g t h s
7 i n
8 f o l d l e f t ( fun acc x
9 ⇒x= f l∧acc ) l e n g t h s

10 True→
11 match i , i ’ w i th
12 | IO . f n a r g s n f ,
13 IO . f n a r g s n ’ f ’⇒
14 l e n g t h t r = n →
15 f t r = f ’ t r ∧ n = n ’
16 end .
17

18 (∗ ∗
19 [ 2 ; 0 ; 0 ] i s 8051 b i n a r y f o r :
20 . o rg 0h
21 main :
22 l jmp main
23 ∗ ∗ )
24 Theorem s i m u l a t e s : func same (

i8051 Component [ 2 ; 0 ; 0 ] t h r e s h o l d
dac )

25 ( IO . f n a r g s ( 8∗4 ) ( fun ⇒ 0) ) .

Listing 9. Check that over any well formed
IO.trace, two IO.funcs have identical results. In
Theorem simulates, an 8051 is shown to simulate
a zero function

3.4.1 Implementation and Progress
A complete VerifiedDSP 8051 model is still in
progress. Currently, the 8051 can run approx-
imately 5 instructions (eg, JMP, LJMP, SETB,
CLR, ANL). The implementations are heavliy de-
rived from RockSalt [8], and is basically a port
from their x86 model to 8051. Listing 10 shows
the RTL implementation of the SETB instruction.

1 D e f i n i t i o n conv SETB ( op1 : ope rand ) :
Conv u n i t :=

2 match op1 wi th
3 | B i t o p ( b i t a d d r baddr ) ⇒
4 i f i s v a l i d b i t a d d r baddr t h e n
5 l e t b s e l := and baddr 3 i n
6 l e t add r := and baddr (∼3) i n
7 l e t ormask := s h l 1 b s e l i n
8 ormaskReg <− l o a d i n t ormask ;
9 a <− l o a d i n t add r ;

10 v <− r e a d b y t e a ;
11 v ’ <− a r i t h o r o p v ormaskReg ;
12 w r i t e b y t e v ’ a
13 e l s e
14 emi t e r r o r r t l
15 | ⇒ emi t e r r o r r t l
16 end .

Listing 10. The SETB instructions Register
Transfer Logic implementation. The argument
type is first checked, and then the argument is
checked to be a valid bit address (not all values
are bit addressable). The proper bit is or’ed into
memory.

The semantics of the processor are basically
correct, remaining work would be in implement-
ing the remainder of the instruction set and devel-
oping proof automation to make it easier to de-
velop with.

3.5 Extraction
As a last note, the designs can be extracted into
running programs in Ocaml using the Coq ex-
traction facilities. This is of dubious value given
that mostly the correctness of designs is interest-
ing (and can thus be done from within Coq), but
it could be useful for running tests on prototype
designs before trying to formally prove them.

4. Related Work
Several projects have related goals:

4.0.1 Bedrock
Bedrock is a project which facilitates the for-
mal verification of low level code. It is imple-
mented as a Coq Library, but it provides signifi-
cant enough extensions and capabilities that it is

Framework to prove 8-bit embedded software systems on the Intel 8051 series 5 2015/5/17



more aptly described as a language for separa-
tion logic. Bedrock provides significant instruc-
tion on the implementation of a separation logic
system[3][4].

4.0.2 Reflex
Reflex is a project which makes a verified mes-
sage passing kernel that can interpret a set of user
defined rules about non interference and causal-
ity. Reflex is not intended for embedded systems,
but the model of non interference and causality is
instructive for a style in which one might prove
properties about an embedded system [7]. For ex-
ample, one such property could be that seems nat-
ural to try to prove in a Reflex style could be that
at least 100 cycles pass in between asking for and
reading a value from an Analog Digital Converter.

4.0.3 Correctness Proofs for Device Drivers
in Embedded Systems

Duan and Regher[9] discuss a system which can
verify low-level device drivers. Their approach al-
lows for separately clocked components interac-
tions to be modeled and verified. They use a pre-
existing ARMv4 simulator and develop a formal
semantics for interacting with UART. Their proofs
are all manual, and they hope to build proof au-
tomation on top of their proofs for UART.

4.0.4 RockSalt
This effort derives heavily from RockSalt. Rock-
Salt was a project to write a formally proven ver-
sion of Native Client(NaCl), Google’s tool for
generating and checking untrusted binaries which
can then be safely run with confidence they will
never escape the sandbox [8].

A major part of the RockSalt contribution was
an excellent model of Register Transfer Language
on top of which they modeled MIPS and x86 pro-
cessors. The ability to end-to-end check properties
of the binary is a powerful tool in guaranteeing
functional correctness. Their effort was very in-
structive in the implementation of the 8051 model;
it is an adaptation of their code.

4.0.5 Model Checking Software for
Microcontrollers

This project formally models an 8-bit Atmega mi-
crocontroller. The project reasons about assembly
code, but is designed to have proof automation for
high level theorems from C, C++, and other pro-
gramming langauges. There does not seem to be
facilities for run time verifition [6].

4.0.6 An Approach for the Formal
Verification of DSP Designs using
Theorem Proving

This project is very similar in nature to Verified-
DSP. They implemented a similar architecture us-
ing HOL. However, their implementation does not
have a full microcontroller, just a Register Trans-
fer Logic. They prove correct an FFT algorithm in
this manner, and then are able to export it into
a netlist for hardware synthesis. They seem to
lack an elegant method of connecting modules
together, unlike the wiring construct in Verified-
DSP. There is no source code available for their
implementation[1].

5. Discussion

5.1 Future Work

5.1.1 Usability Study
This framework cannot prevent all classes of bugs.
In order to test the effectiveness of such a system
(once there is more automation), it is imperative to
run a user study to see if such a model helps. One
such user study could testing and timing users on
their ability to complete the following tasks with
and without the simulation tools (given a small
hardware test-bench):

1. Write a program which makes an LED blink
with a certain frequency

2. Write a program which writes a copy of an
array into a specific memory location, maps
f(x) = x+1 over the array, without modifying
any other memory.

Framework to prove 8-bit embedded software systems on the Intel 8051 series 6 2015/5/17



3. Write a program which when a push button is
hit, turns one LED on at half brightness, and
another LED at half brightness otherwise.

These tests would determine if these tools im-
proves a programmer’s ability to reason about run-
time, non-interference, and memory safety.

5.1.2 Limitations
The current design fails to address several key em-
bedded system properties and has a few weak-
nesses.

Simulator Correctness The simulator is not guar-
anteed to be correct. In fact, it is definitely not cor-
rect as certain aspects of the model are not fully
implemented, such as setting ports IO mode. The
model can be proven to be consistent within it-
self (ie, no confused parse), but there is no way
to check that the model matches the real world
8051. A test-jig could be built to verify the 8051
simulator against real hardware.

Interrupts Interrupts are explicitly required to
be disabled because they would add a lot of ad-
ditional complexity to the system. One could po-
tentially, using an 8051 timers, devise a scheme as
follows:

1 t i m e r i s r :
2 d i s a b l e i n t e r r u p t s
3 go t o i n t e r r u p t s o v e r
4 s e t t i m e r t o p r i o r i t y h igh wi th s i z e

200 c y c l e s
5 s e t a l l o t h e r i n t e r r u p t s p r i o r i t y low
6 e n a b l e i n t e r r u p t s
7 some i n t e r r u p t i b l e loop
8 i n t e r r u p t s o v e r :

Listing 11. The timer ISR is used to guaranteed
a bound on the amount of time interrupt might be
executing.

Such a scheme allows for a provably bounded win-
dow on interrupts; this is of dubious value given
that polling would also accomplish a similar goal
with more deterministic performance.

More Hardware Interfaces Embedded systems
fundamentally interface with hardware, which can
have difficult to understand behavior. This work
only has the semantics for an 8051 and some sim-
ple DSP designs. However, one exciting possibil-
ity would be the development of semantics for a li-
brary peripheral chips. This would allow program-
mers to verify more complicated and realistic de-
signs.

Furthermore, an additional modulus could be
added onto modules to support slower clock cycle
than the rest of the network, which may be desir-
able to simulate communicating with faster/slower
hardware.

Nondeterminism This work does not help with
verification given unreliable hardware such as sen-
sors or power supply.

Assembler Another challenge would be to im-
plement an assembler so that code in higher level
expressions can be reliably compiled. Making an
assembler in Coq may have some other bene-
fits in aiding later verifiable macro development
[5]. Currently, the standard 8051 as31 compiler is
used.

5.2 Reflections on Formal Verification
This was my first experience with formal verifica-
tion. In sum, formal verification is hard, very hard.

5.2.1 Code Reuse
One of the great promises of formal verification
is code reuse. Once algorithms or software are
proven correct once, they can become a permanent
fixture and a basis for more formalized software.
In theory, at least. In practice, I found it very dif-
ficult to work with existing code bases for a num-
ber of reasons. First and foremost, it seems that
the Coq compiler has breaking changes fairly fre-
quently, as I was unable to build fairly recent code
from the RockSalt project. The reason for this was,
it seems, that Coq makes major tradeoffs in the
proof scripts in terms of variable names. Another
factor which made it difficult for me was just the
overall complexity of the existing code. Hacking
on something as complex as RockSalt really frus-

Framework to prove 8-bit embedded software systems on the Intel 8051 series 7 2015/5/17



trated my progress, when I started developing the
more novel parts of this project I was able to make
a lot more progress because I knew what I wanted
and was trying to do. Furthermore, I discovered a
bug in the RockSalt code and would be interested
to see if it exists in the main code as well and was
not a result of my modifications.

1 D e f i n i t i o n b a d i m m e d i a t e 1 6 :=
2 ( f i e l d 8 ) @ ( ( fun r ⇒ Imm16 op
3 (@Word . r e p r 15 r ) ) :
4 → r e s u l t m o p e r a n d t ) .
5

6 D e f i n i t i o n immed ia t e 16 :=
7 ( f i e l d 16) @ ( ( fun r ⇒ Imm16 op
8 (@Word . r e p r 15 r ) ) :
9 → r e s u l t m o p e r a n d t ) .

Listing 12. The RockSalt bug: the parser helper
for immediate constants only reads the MSB of the
constant

5.2.2 Abandon Proof!
Stating Theorems is much easier than proving
them, and from my experience, a large portion
of the benefit of formal verification is simply stat-
ing the theorems as it forces a deep reflection on
the architecture and functionality of the code. That
said, once I had Theorems, proving them seemed
to be very difficult, and I abandoned many proofs.
However, in the process of trying to prove them
(and failing) I discovered some more critical bugs
which prevented any progress from proceeding at
all, which suggests that trying to prove things is
useful even if you give up! I also found that de-
velopment went more quickly when I posed the
theorems then admitted them as I built more ar-
chitecture.

5.2.3 What Did I Just Prove
Getting the higher level specifications correct in a
verification effort is difficult. What is trying to be
built? What semantics should it have? When the
all the proofs are done, does it actually accomplish
the desired goal? This is difficult to know.

5.2.4 Editors
I was a vim user before I started writing Coq code.
Luckily evil-mode lessened the transition burden

to emacs, but certainly a new editor was a large
distraction!

5.2.5 Time
I found it hard to hack lightly on this stuff. Whereas
with most projects I can make fine progress with
an hours time, I almost never got anything done
within the first three contiguous hours of work on
this project. This high startup cost made making
progress during a busy semester hard. However,
scheduling large blocks of time to work on it was
ultimately effective.

5.2.6 Interactivity
This is a really great UI feature for programming,
and I’m surprised that more languages don’t have
an interactive compilation mode like Coq’s. Per-
haps it wouldn’t be useful in other languages, but
I found being able to quickly go line by line to be
a very intuitive way to code compared to my tra-
ditional workflow.

5.2.7 Overview
Despite the obstacles faced, I really enjoyed doing
this project. Writing Coq code and proofs is in-
sanely addicting; I would routinely find myself at
5 in the morning telling myself to go to sleep. It is
challenging, and sometimes I would spend hours
trying to prove something trivial. Almost nothing
compared to the exhilaration I felt when I got a
tough proof Qed’d though! The puzzle solving na-
ture really does something for me.

Writing Coq is certainly not like any other tradi-
tional programming language, including the func-
tional varieties such as Haskell or Ocaml. Al-
though it has its negatives, such as poor reusabil-
ity of code and high barriers to entry, the positives
outweighed it by far for me. Simply put, it’s just a
lot of fun!

5.3 Conclusion
This paper presents a novel framework, Verified-
DSP, which can be used to verify and prototype
Digital Signal Processing designs in Coq. This
framework is very flexible, as it can serve as a
backbone for prototyping digital signal processors

Framework to prove 8-bit embedded software systems on the Intel 8051 series 8 2015/5/17



because functionality can be mocked out and then
refined with closer to hardware function descrip-
tions (ie, microcontroller binaries or RTL).

Additionally, this paper details the author’s first
major experience with formal verification tech-
niques. There were several obstacles and tactics
to get around them that might be good advice
for someone just starting to explore the field, and
can hopefully guide future work in making formal
methods more accessible.

Acknowledgments
A huge thank you to professors Frans Kaashoek
and Nickolai Zeldovich for teaching the Certified
Systems seminar at MIT. It has been one of the
most interesting classes I have taken at MIT by
far! Without their incessant encouragement and
support, I would not have been able to complete
this project.

References
[1] B. Akbarpour and S. Tahar. An approach for the

formal verification of dsp designs using theorem
proving.

[2] S. Anthony. The humble sim card has finally
been hacked: Billions of phones at risk of data
theft, premium rate scams.
http://www.extremetech.com/computing/161870-
the-humble-sim-card-has-finally-been-hacked-
billions-of-phones-at-risk-of-data-theft-premium-
rate-scams, July
2013.

[3] A. Chlipala. Mostly-automated verification of
low-level programs in computational separation
logic. In PLDI. Harvard University, 2011.

[4] A. Chlipala. The bedrock structured
programming system, combining generative
metaprogramming and hoare logic in an
extensible program verifier. In ICFP. MIT
CSAIL, 2013.

[5] A. K. et al. Coq: The worlds best macro
assembler? In PPDP. Microsoft Research, 2013.

[6] B. S. et al. Model checking software for
microcontrollers. Department of Computer
Science of RWTH Aachen University, 2006.

[7] D. R. et al. Automating formal proofs for reactive
systems. In PLDI. University of California, San
Diego, 2014.

[8] G. M. et al. Rocksalt: Better, faster, stronger sfi
for the x86. In PLDI. Harvard University, 2012.

[9] J. R. Jianjun Duan. Correctness proofs for device
drivers in embedded systems.

[10] J. V. Levert and J. C. Hoorntje. Runaway
pacemaker due to software-based programming
error. In PACE, Vol. 27, page 1689. Department
of Cardiology, Isala Klinieken, locatie
Weezenlanden, Zwolle, the Netherlands, 2004.

[11] N. Leveson. Safeware: System Safety and
Computers. Addison Wesley, 1995.

[12] J. Traenkenschuh. Secure your embedded
systems now!
http://www.informit.com/articles/article.aspx?p=2140093,
October 2013.

Framework to prove 8-bit embedded software systems on the Intel 8051 series 9 2015/5/17


	Introduction
	Motivation
	Medical Devices
	Transport
	Communications

	Design Overview
	Component
	Wiring
	Running
	8051
	Implementation and Progress

	Extraction

	Related Work
	Bedrock
	Reflex
	Correctness Proofs for Device Drivers in Embedded Systems
	RockSalt
	Model Checking Software for Microcontrollers
	An Approach for the Formal Verification of DSP Designs using Theorem Proving


	Discussion
	Future Work
	Usability Study
	Limitations

	Reflections on Formal Verification
	Code Reuse
	Abandon Proof!
	What Did I Just Prove
	Editors
	Time
	Interactivity
	Overview

	Conclusion


