eJitk — Extending Jitk to eBPF

Louis Sobel — 6.888 Project

May 21, 2015

1 Introduction

This paper gives the background and description of my 6.888
project to expand Jitk [1]] to support eBPF. The BSD Packet
Filter (BPF) language [2] was first introduced into the Linux
kernel as a way to efficiently run user-provided code to filter
network packets within the kernel. Since then, kernel devel-
opers have built a new version, extended BPF (eBPF), with
additional capabilities and uses [3].

Jitk is a project that provides a verified compiler for BPF
programs. The project I describe in this paper builds on Jitk
to provide a verified compiler for the new version of BPF:
eBPF. There are a number of significant differences between
BPF and eBPF. I account for some of these differences in the
specification, implementation, and proofs of the compiler.

The rest of the paper is as follows. Section 2 gives further
background on BPF, Jitk, and eBPF. Section 3 discusses the
work for the elitk project. Section 4 lists remaining work.
Section 5 reflects on my experience with Coq, and Section 6
concludes.

2 Background

This section provides background information on BPF and its
use in the kernel, Jitk and its implementation approach, and
eBPF and its differences with BPF.

2.1 BPF

BPF was introduced as a way to efficiently run filters passed
from userspace within the kernel network stack. It is a byte-
code based language whose interpreter presents a simple vir-
tual machine with two registers, a small scratch memory re-
gion, and the input packet itself. There are ALU operations,
loads and stores to access memory, and relative jumps whose
offsets are limited to non-negative numbers — this ensures ter-
mination.

Since being introduced into the Linux kernel, BPF’s role
has expanded beyond interpreted packet filtering. The kernel
contains just-in-time (JIT) compilers for BPF[4], which in-
crease the performance of BPF programs by compiling them
to a native instruction set. Additionally, BPF is used in the
Seccomp subsystem to provide applications fine-grained con-
trol over which system calls they are permitted to make.

2.2 Jitk

Jitk targets the Seccomp use case of BPF. It includes a veri-
fied JIT compiler that takes BPF as input and generates native
assembly code which is proven to have the same semantics.

Jitk consists of number of components written in Coq.
Rather than verifying the BPF compiler all the way to as-
sembly, Jitk leverages the verified C compiler CompCert[3].
CompCert includes an intermediate language Cminor. Jitk
translates BPF to Cminor, relying on CompCert to translate
Cminor to native code.

To do this, Jitk defines three things: a formal specification
of the BPF language, a filter for statically checking BPF pro-
grams, and a function that performs the actual eBPF — Cmi-
nor translation. Jitk also has two proofs of the correctness of
this translation. The first is that the compiler preserves the se-
mantics of BPF. This proof shows that the generated Cminor
code preserves the small-step semantics of BPF as defined in
the specification.

The second proof shows that if the filter accepts a BPF pro-
gram, then that program terminates. This proof requires that
no undefined behavior passes the filter. For example, the filter
rejects jumps with negative offsets and out-of-bound memory
accesses, ensuring defined behavior. This proof does not de-
tect a filter that is too strict.

2.3 eBPF

This section describes the semantic differences between BPF
and eBPF as well as how eBPF is used in the Linux kernel.

2.3.1 Comparison with BPF

eBPF is fundamentally similar to BPF, but has a number of
significant differences. Like BPF, eBPF presents a virtual ma-
chine with a simple bytecode interface. There are registers,
ALU operations, loads, stores, and jumps. The specification
for eBPF is available in the Linux source tree[6]]. eBPF is dif-
ferent from BPF in many ways. Four of the main differences
involve registers, word size, kernel function calls, and jump
instructions.

Registers BPF has only two registers: reg_a, an accumu-
lator, and reg_x, a memory index register. eBPF has
eleven, R[0-10]. R10 is a read-only frame pointer
which represents the start of the code’s available scratch
memory. These registers are designed to each map di-
rectly to a native machine register for simple compila-
tion.



Word Size eBPF’s virtual machine is 64-bits, whereas BPF’s
is 32-bits. This is for easy compilation to 64-bit archi-
tectures like ARMv8 and x86_64. 32-bit operation is
preserved for compatibility — each of the eleven 64-bit
registers has an implicit 32-bit sub-register. There are
two corresponding disjoint classes of ALU operations.

Kernel Function Calls Unlike BPF programs, eBPF pro-
grams are capable of calling into the kernel using a set of
predefined functions. The purpose of this is to make the
language extensible and flexible. The calling convention
was chosen to make kernel function calls zero-overhead
for compiled programs.

Jump Instructions Jump instructions in BPF always do un-
signed comparisons and have two offsets: one for if the
result of the comparison is true and the other for if the re-
sult is false. eBPF adds jumps with signed comparisons
and changes all jumps to have only one offset — used if
the result of the comparison is true — and otherwise fall
through to the next instruction.

2.3.2 Usein Linux

The use of eBPF in Linux has evolved since eBPF was in-
troduced. As described in [7]], eBPF was first integrated into
the kernel as an internal translation target for BPF. It is de-
signed to be easier to compile to native code and, because of
its ability to make external calls into the kernel, can easily
be extended. eBPF programs can be compiled to native code
or, if a compiler isn’t available for a particular architecture,
interpreted.

As of Linux 3.18, eBPF is available to user space
programs[3]]. It is the goal of some Linux developers to make
eBPF the “universal in-kernel virtual machine"[7] replacing
the handful of others that exist. There also is an LLVM back-
end so that application developers can write eBPF programs
in C, rather than the raw eBPF bytecode.

eBPF is an attractive target for verification. One reason
is its widespread and increasing use, as described above. If
Linux is converging on one in-kernel virtual machine, having
a verified compiler for that language would have a high im-
pact. Any eBPF system, by design, allows the execution of
user-supplied code on potentially user-supplied data within
the kernel — so its security is critical. However, bugs and vul-
nerabilities have been found; Jitk describes many. Verifica-
tion could prevent these bugs. As an example of complexity
of the system, one part of the current Linux code that verifies
the safety of eBPF programs is a 2003 line C file[8]. It is
possible this verifier is bug free, but a proof of that would be
useful.

2.3.3 Linux Verifier

The verifier for the Linux use of eBPF goes beyond simple
checks on instructions (like no divide-by-immediate-zeros).
For example, there are a number of restrictions placed on

eBPF beyond those placed on BPF, such as preventing reg-
isters from being read before they are written and checking
the types of arguments to external function calls. These oc-
cur statically, and allow for improved performance because
the checks do not have to occur at runtime. This enables the
simple instruction-to-instruction JIT goal of eBPF.

3 elJitk

This section describes the progress I made towards imple-
menting elitk, a verified compiler for eBPF based off of BPF.
The design for elitk is based off of Jitk’s approach. Key
features I added were the support for a type-checking filter,
which can enforce the types of registers and maintain these
types across loads and stores. I did not implement all of eBPF
and did not create a full end-to-end compilation path.

The approach I took was to start from the existing BPF
compiler and incrementally modify it to account for the dif-
ferences between eBPF and BPF. This plan was feasible be-
cause of the fundamental similarity between BPF and eBPF.

3.1 Design

The design for the verified eBPF compiler is identical in
structure to that of the existing BPF compiler in Jitk. The
eBPF compiler is more complex due to the additional fea-
tures, discussed in section that eBPF provides com-
pared to original BPF.

The eBPF verified compiler is written in Coq. It order to
achieve eBPF — native translation, I built a eBPF — Cminor
compiler. CompCert’s Cminor — native translation would be
used to finish the compilation from eBPF to native assembly.
As in Jitk, there are five main components: the specification,
the filter, the translation function, the semantic preservation
proof, and the termination proof.

3.1.1 Specification

The specification provides three things. First, a datatype rep-
resenting the possible states that a eBPF computation can be
in. Second, an enumeration of the eBPF opcodes. Third, the
semantics of eBPF — what effect each opcode has on the state
and under what conditions an opcode is defined.

3.1.2 Filter

The filter is a function that statically checks an eBPF pro-
gram (a list of eBPF opcodes) for conformance with the spec-
ification. Every opcode in a program for which the filter re-
turns true must have defined behavior. Some things the filter
checks for include negative jump offsets and division by zero.
I added a second filter that ensures that registers are properly
typed.



3.1.3 Translation Function

The translation function is the actual JIT compiler. This is a
Coq function that translates an eBPF program into a Cminor
AST that preserves the semantics of the eBPF program.

3.1.4 Semantic Preservation Proof

This is a proof that the translation function preserves the se-
mantics of the provided eBPF. It relies on a matching function
from eBPF states to Cminor states.

3.1.5 Termination Proof

The termination proof verifies that if the filter accepts an
eBPF program then that program eventually terminates. This
proof also ensures that the filter does not allow any undefined
behavior.

3.2 Typed Register File

The typed register file is the primary contribution of this
project. As previously described, the Linux verifier keeps
track of the types that each register has. These types are
used to statically ensure certain properties of an eBPF pro-
gram. Implementing this required modifying the eBPF spec-
ification, the filter, and the termination proof.

I implemented three register types:

* RCInt, an integer type

* RCPointer RPframe, a frame pointer to the start of the
stack

* RCPointer RPctx, a context pointer to the start of the
input data

The register file itself is a mapping from a register number
(0-10) to an optional register content type. The register file
can be empty for a register—that means that that register’s
contents are undefined.

The semantics of eBPF instructions were changed to in-
clude preconditions on the types of values expected to be in
the provided registers. For example, the exit instruction re-
quires, as specified, that the contents of register 0 be defined
and an RCInt. The new filter enforces this and the termina-
tion proof proves that the filter does so.

I added a new filter function that can statically type check
registers by recursively walking every execution path. This is
similar in functionality to the verifier in the Linux kernel. It
uses an abstract register file state to keep track, at each recur-
sive invocation, of what types are in each registers. When it
checks an instruction that modifies a register, it changes the
register file state that it passes to the recursive call. Condi-
tional jumps are handled by validating both branches of the
jump.

The termination proof states that if this filter function ac-
cepts an input, then the eBPF code will be fully defined by
the specification, meaning that any preconditions on register

types will be satisfied. It does that using a universal quantifier
on register file states passed into the filter function, then spec-
ifying that universal quantifier to match the actual register file
of some computation.

3.3 Basic Features

Using the typed register file, some basic features of eBPF
were straightforward to implement. ALU operations can ad-
dress any registers, but the register used as a source must be
a defined integer. The exit instruction ensures that register
0 has a value, so it is not possible to run an eBPF program
that returns an undefined value. Another eBPF change was to
make jumps only have one target, which was straightforward
to implement.

3.4 Loads and Stores

Loads and stores were a complicated eBPF feature that I im-
plemented. They also relied on the typed register file. There
are two types of loads in eBPF. The first are the backwards
compatible loads from the input packet. These load instruc-
tions have a complicated specification: register 6 must con-
tain a RCPointer RPframe, the result is returned in register
0, and registers 1-5 are scratched, or set to undefined, because
this load is actually implemented in Linux as a function call. I
was able to replicate this specification in eBPF, including the
scratching of registers and requirement on register 6.

The second type of load has a corresponding store instruc-
tion. They are generic loads and stores, which take a source
register, an offset, and a destination register as arguments.

Load R[dst] = *(R[src] + off)

Store *(R[dst] + off) = R[srcl

The base register (destination for store and load for source)
must be a RCPointer type, which can be enforced using the
typed register file. Depending on the type of the pointer, these
loads and stores do very different things.

If the pointer is a RPctx, the loads and stores are straight-
forward, either loading or storing integers from the input
packet. The stack loads and stores, when the base register
is a RPframe pointer, are more interesting, because the types
of registers are preserved across stack spillfills. The stack is
implemented in the eBPF state as a map from stack-slots to
an optional register content type. When doing a load or store
to stack memory, the offset is converted into an index into this
map and used to properly update the eBPF state.

4 Remaining Work

I did not completely implement the full eBPF language or the
full Jitk process for eBPF. An important language feature not
implemented is eBPF’s ability to make external calls. These
calls are typed check by the Linux verifier against a whitelist
of allowed calls and what values must be in registers 1-5.



This would be possible to implement in eBPF and would re-
quire extending the specification to perform the proper type
checking and generate the needed trace for the refinement
proof.

Parts of the Jitk process not in eJitk are encoding / decod-
ing and extraction. Jitk has a way to encode a BPF program
to bytes and decode it back into abstract objects. There is
an automatic proof that shows that the encode—decode pre-
serves the structure. Jitk also has extraction, which enables
BPF code compiled using it to actually be run. The eBPF
compiler in eJitk has no way of actually running.

5 Reflection

This section briefly reflects on my experience performing
proof engineering in Coq.

Incremental Approach Worked The approach I took was
to modify Jitk, incrementally morphing it into eJitk aim-
ing to have working proofs at each step. This approach
worked well. It allowed me to experiment and add new
features with the goal of doing the proof, not building
the infrastructure around the proof. Also, returning to a
working proof was always a git stash away. This ap-
proach allowed me to build off of others code which was
a good learning experience. This was also a downside
of the approach—I emulated much of the structure and
style of the existing work, rather than always thinking
deeply about what the best way to do something was.

Math is Hard Let annoyed-hours be a metric computed
by multiplying the time a proof takes to prove by
the amount of frustration suffered during that proof.
Math proofs were above and beyond the largest
source of annoyed-hours. For example, early in the
project, 1 spent nearly four hours proving 0 <= 4 <
Int.max_unsigned, which is obviously and actually
true. These hours were nearly constant frustration, as
it was obvious that my goal was true, but I did not
have the mental tools to prove it. I became more pro-
ficient at these sorts of proofs as I gained experience, but
some things still seemed disproportionately hard. I could
imagine these sorts of proofs being a large impediment
to other engineers attempting to learn Coq. Better or
more prominently documented automation tactics could
help.

No Extraction Another frustrating part of Coq engineering
that took time to get used to was never running code, es-
pecially compared to dynamically typed interpreted lan-
guages, such as Python, where “unit tests are the type
system”. The Coq code never has to run, just compile. I
never implemented extraction for elJitk, so it is not even
possible at the moment to run the code I was working
on. I see the value to this—it is proved correct so there
is no need to run it. But I also sense that it could have
a negative aspect, where the real world requirements for

systems could be shuffled to the back of the mind as en-
gineers focus on getting proofs to pass.

6 Conclusion

This paper presented the background, design, and discussion
of my 6.888 project, elJitk. The project made good progress
in implementing a version of Jitk for eBPF. The responsibili-
ties of the Linux eBPF system are expanding. Having a veri-
fied compiler for eBPF would greatly reduce the likelihood of
bugs in a complicated and security critical part of the kernel.

7 References

[1] X. Wang, D. Lazar, N. Zeldovich, A. Chlipala, and Z. Tatlock, “Jitk:
a trustworthy in-kernel interpreter infrastructure,” in Proceedings of the
11th USENIX conference on Operating Systems Design and Implemen-
tation, pp. 33—47, USENIX, 2014.

[2] S. McCanne and V. Jacobson, “The BSD packet filter: A new architec-
ture for user-level packet capture,” in Proceedings of the USENIX Winter
1993 Conference, pp. 2-2, USENIX Association, 1993.

[3] J. Corbet, “Attaching eBPF programs to sockets.” http://lwn.net/
Articles/625224/|

[4] J. Corbet, “A JIT for packet filters.” http://lwn.net/Articles/
437981/,

[5] X. Leroy, “Formal verification of a realistic compiler,” Communications
of the ACM, vol. 52, no. 7, pp. 107-115, 2009.

[6] J. Schulist, D. Borkman, and A. Starovoitov, “Linux socket filtering
aka berkeley packet filter (BPF).” https://git.kernel.org/
cgit/linux/kernel/git/stable/linux-stable.git/tree/
Documentation/networking/filter.txt?id=refs/tags/v3.
19.2. Linux Source Code Documentation.

[7] J. Corbet, “BPF: the universal in-kernel virtual machine.” http://lwn.
net/Articles/599755/.

[8] Linux Kernel, “kernel/bpf/verifier.c.” https://git.kernel.org/
cgit/linux/kernel/git/stable/linux-stable.git/tree/
kernel/bpf/verifier.c?id=refs/tags/v3.19.2


http://lwn.net/Articles/625224/
http://lwn.net/Articles/625224/
http://lwn.net/Articles/437981/
http://lwn.net/Articles/437981/
https://git.kernel.org/cgit/linux/kernel/git/stable/linux-stable.git/tree/Documentation/networking/filter.txt?id=refs/tags/v3.19.2
https://git.kernel.org/cgit/linux/kernel/git/stable/linux-stable.git/tree/Documentation/networking/filter.txt?id=refs/tags/v3.19.2
https://git.kernel.org/cgit/linux/kernel/git/stable/linux-stable.git/tree/Documentation/networking/filter.txt?id=refs/tags/v3.19.2
https://git.kernel.org/cgit/linux/kernel/git/stable/linux-stable.git/tree/Documentation/networking/filter.txt?id=refs/tags/v3.19.2
http://lwn.net/Articles/599755/
http://lwn.net/Articles/599755/
https://git.kernel.org/cgit/linux/kernel/git/stable/linux-stable.git/tree/kernel/bpf/verifier.c?id=refs/tags/v3.19.2
https://git.kernel.org/cgit/linux/kernel/git/stable/linux-stable.git/tree/kernel/bpf/verifier.c?id=refs/tags/v3.19.2
https://git.kernel.org/cgit/linux/kernel/git/stable/linux-stable.git/tree/kernel/bpf/verifier.c?id=refs/tags/v3.19.2

	Introduction
	Background
	BPF
	Jitk
	eBPF
	Comparison with BPF
	Use in Linux
	Linux Verifier


	eJitk
	Design
	Specification
	Filter
	Translation Function
	Semantic Preservation Proof
	Termination Proof

	Typed Register File
	Basic Features
	Loads and Stores

	Remaining Work
	Reflection
	Conclusion
	References

