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1 Introduction

Cryptographic protocols are a critical piece of the common Internet infrastructure.
Yet the ways of gaining assurance about the correctness of cryptographic protocols
are unsatisfying at best. The gold standard is a computational proof of security
by reduction from a well-known computational problem widely believed to be
intractable. However, this kind of analysis is requires substantial mathematical
rigor and persistence, especially if done quantitatively as appropriate for real
systems. Furthermore, the classical proofs are not modular: a proof that protocol
P respects some security property will need to be redone for every combination
of extensions to P. As a practical example of this, base TLS 1.2 is secure both
when used with either channel binding authentication or session resumption,
but fails to provide any meaningful security if the two extensions are enabled
together!.

As an alternative to computational reduction proofs, Dolev-Yao-style symbolic
have been used. Instead of assuming compromise and deriving a contradiction,
properties are proved by showing that no operation in the postulated list of
what the adversary can do could violate the desired property. Proofs in this
style are much less technically sophisticated, but the setup is error-prone: for
example, omitting the fact that textbook RSA encryption and multiplication are
commutative from the list of adversary’s capabilities can allow for “verification’
of an exploitable protocol.

i

We seek to build a formal model of high-level cryptographic operations similar to
those provided by NaCl? that would allow to prove secrecy and authentication
properties of protocols that use them, for example SIGMA?®. All guarantees
would be with respect to a “reasonable” number of messages and computational
limitations of the adversary as defined by the specifications of the primitives; our
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model will not involve any quantitative reasoning. Similarly, we assume that the
specifications of the primitives capture all information flow from their inputs to
their outputs — proving the lack of side channels in an implementation is not a
goal. This paper presents a model of public-key encryption and its application
to reasoning about execution traces of cryptographic protocols; we also discuss
using the core message passing concurrency library from Verdi to reason about
all possible executions of protocols.

1.1 The Subject of Verification

This work is motivated by the observation that many protocols tend to achieve
their secrecy and authentication properties constructively in a particular sense
explored in this section. Each step (encryption, checking of an authenticator,
selectively revealing information) creates a divide between desirable and unde-
sirable scenarios. This is an observation about protocol design, not analysis:
in fact, the most of the protocols covered here have been analyzed using both
computational and symbolic models. To show an example of this design pat-
tern, let’s consider the CurveCP protocol (table 1) which provides a TLS-like
encrypted channel. The protocol (1) establishes an ephemeral Diffie-Hellman
secret between an externally authenticated long-term public key of the server
and a randomly generated public key of the client; (2) then uses an embedded
encrypted “vouch” packet to say that the public key the server saw indeed
belongs to some desired client. The first step enables clients to tell the good
server from an impostor, and the second lets the server distinguish the specific
client from others. These intended results can be translated to the language of
state invariants as follows: (1) for all clients in the state right after receiving
the server’s first message, the value that the client has stored as “the servers’
ephemeral public key” is the public counterpart of some secret generated by the
server and never revealed to anybody else and (2) all servers in the state right
after receiving a vouch subpacket have the value stored as “client’s ephemeral
public key” be the public counterpart of a value generated and kept secret by
the client who the server has listed under “client identity” for the same session.



Table 1: CurveCP connection initialization from curvecp.org.

Hello packet: (C',0,Box[0'](C'->8))

where C' is the client’s short-term public

key and S is the server’s long-term public

key and 0 is zero-padding and 0' is

zero-padding
Cookie packet (1):
(Box[S',K](8->C')) where S'
is the server’s short-term public
key and X is a cookie

Initiate packet with Vouch subpacket (2):

(C',K,Box[C,V,N,...]1(C'->S"))

where C is the client’s long-term public

key and V=Box[C'] (C->S) and N is the

server’s domain name and ... is a

message

There are three things we consider noteworthy about the reasoning in the previous
paragraph. First, it is boring in the sense that the three ways of stating the
two points read almost the same to somebody with experience in working with
cryptography. The protocol itself is fairly straightforwardly derived from the
possible scenarios it must distinguish, and the invariants say the same thing while
being slightly more careful about quantifiers. Second, it is actually non-trivial.
The history section of the extended version of Hugo Krawczyk’s SIGMA paper?
tells a story of how designing a similar protocol using low-level primitives lead to
exploitable misconceptions in designs used in IPSec. Figure 1 even challenges the
reader to tell bogus versions from good ones, and even though the each variant is
adequately described using a simple three-line arrows-and-messages diagram, the
correct answer is not obvious. Last but not the least, the reasoning presented
about CurveCP is modular: in the actual protocol, the server does send its
ephemeral public key over the network (encrypted using a symmetric key that is
never revealed), but arguing that this optimization does not jeopardize safety
is independent from the proof of the authenticity property. We believe having
this kind of flexibility in a safe manner is hugely important for more realistic
use case.

To stress the importance of design flexibility, let’s look at some examples. The
general bidirectional vouching structure advocated for in the SIGMA paper
is applicable in a wide variety of scenarios, but the specific message flow is
subject to a numerous other constraints related to relationship privacy, denial-of-
service-attack resilience, latency, and the underlying transport. For this reason,
three extremely similar variants of the SIGMA protocol are to be hand-verified

4http://webee.technion.ac.il/~hugo/sigma-pdf.pdf



separately in a computational model, which to the best of our knowledge has
not been done. An even better example of this issue is the Axolotl family
of protocols® used in Pond and TextSecure: while conceptually equivalent to
CurveCP, a long list of additional constraints (for example, forward secrecy,
protection from compromise in the past, both of these for content and metadata)
has forced the protocol to continuously perform Diffie-Hellman key exchanges
and hash ratchet steps to provide the same guarantees in a wider range of
scenarios. Indeed, the extra complexity incurs a cost: as demonstrated in°, a
stripped down version of Axolotl does exhibit some behavior that is sufficiently
counter-intuitive to be called an attack by a well-intentioned interpretation by a
third party (even though the authors of the protocol argue that the property
which the reported attack breaks cannot in practice hold in any protocol”).

One way of looking at this work is that we are creating a framework for showing
that particular refinements of a general protocol template provide the desired
properties in spite of changes required by other design constraints. This spe-
cialization enables us to simplify our reasoning significantly: we axiomatize
how a system can possibly keep a value secret in an almost syntactic manner
inspired by taint tracking, and reduce proving secrecy in a single execution of a
protocol to proving a non-taintedness of the execution trace. Reasoning about
all possible executions is enabled by the message passing concurrency library
from Verdi. Some protocols can not be verified in this manner because they use
lower-level primitives for which we do not have a taint-tracking-style model. For
example, we do not expect this approach to work for realistic OTR, SSHv2.0 or
SSL (even though verification of an idealized version may succeed). We consider
this limitation to be an analog of a better-known principle about verification of
software implementations: it is easier to build a verified system bottom-up than
to prove correctness of an independently written codebase.

2 Preservation of Secrecy

To introduce or mechanism for reasoning about secrecy, let’s first consider a
simpler problem: how to show that a network message does not leak a secret
key. In our model, the network message is produced by evaluating an expression
with the current state and possibly some stimuli as its inputs. One approach
would be to show that the value being sent to the network is the same for all
possible values of the secret key. Proving this would involve applying the fact
f_equal (applying the same function to the same inputs produces identical
outputs) recursively over the entirety of the expression tree. This is equivalent
to showing that the secret key does not appear in the expression by showing that
it does not appear in any of the subexpressions. To simplify extending this kind
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of reasoning to encryption, we choose the second route: we axiomatize that the
value v is indistinguishable from other possible values of the same type given the
expression e if it is indistinguishable given each argument to the function at the
root of e. This requires us to represent the expression tree as an explicit Gallina
object. However, as we are only interested in the structure of the expression tree
and not the details of its behavior, we leave the types and functions (including
constants) as opaque Gallina objects. The following is a simplified version of our
expression language that only models traditional taint propagation.

funcType : list Type -> Type -> Type (* argTs -> retT -> funcT *)

call : funcType 7argts 7T -> hlist id 7argts -> 7T

Inductive exp : Type —-> Type :=

| External' : forall {T: Type} {argts} (f:@funcType argts T) (args:hlist exp argts), exp T.

Inductive IND : forall {V T:Type}, V -> Exp T -> Prop :=

| INDArgs' : forall {V T} (v:V) argts f args,
(forall W (e:Exp W) (pf_m:member W argts), IND v (hget args pf_m))
-> IND v (@External T argts f args).

Writing down the indistinguishability relation is a non-trivial technical task: the
standard advice for keeping proofs simple would point towards using a 1ist_all
predicate to assert the indistinguishability from the arguments, yet this is not
possible because the strict positivity requirement of CIC does not let us pass
a closure producing IND to some other function inside the declaration of IND.
Instead, we state the inductive predicate using a nested forall quantifying over
all expressions that appear in the arguments list and stating the independence
property about them. As this definition does not directly allow proofs by case
analysis on a known argument list, we prove a separate lemma showing that the
definition we actually want implies the one that fits the requirements of CIC. This
proof took considerable effort and required using the dependent destruction
tactic from the Program library to perform case analysis on proof arguments.
The lemma is formally stated as follows:

forall {V T} (v:V) argts f args
hA1l (fun t (e:Exp t) => IND v e) args
-> IND v (@External T argts f args).

2.1 Modeling Public Key Encryption

We chose to model the crypto_box encryption scheme from NaC1® because it
provides a useful and intuitive security guarantee with very modest requirements
on how it is used. We further simplify our analysis by ignoring the concerns
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of nonce generation: crypto_box is secure when used with a random nonce?,
and while some protocols do use a counter instead, the issue of making sure
that nonces do not repeat is not the part of security we wish to model. We
also set aside the concern of the length of the ciphertext revealing information
about the message: it as well can be dealt with separately. We would like to
stress that the formalization did not force our hand here; we are optimistic
that modeling message length leakage, sender public key leakage, and the nonce
management requirements is simply a matter of adding more preconditions to
the rule that allows inferring the secrecy of an encrypted message. We also
assume for simplicity that all errors are handled by ignoring the message whose
handling caused the error because this is the case for all protocols we think could
be verified using our approach.

However, with these details taken care of, the public key encryption security
guarantee'’ becomes fairly simple: if a key that was generated randomly is used
to encrypt a message, the chance that an attacker will be able to distinguish that
message from another possible message is negligible as long as the attacker’s
knowledge of the secret key is limited: it is safe to reveal the public key and
encryption and decryption results. This does not directly fit into the taint
tracking system, but only because the taint propagation rules depend on what
may already have leaked. We work around this by adding an additional argument,
the context containing all current and previous messages. We also need to
axiomatize that our randomly generated keys are independent of each other and
user input. Our final secrecy rules are shown in the following code snippet, along
with a proof that the smallest use case, encrypting a message using a fresh key
and revealing ciphertext, does not reveal the message.!.

Section IND.
Context ~{params : CryptoParams}.

Variable C : Type.

Variable ctx : Exp C.

Inductive IND : forall {V T:Type}, V -> Exp T -> Prop :=
(* Normal taint tracking: *)

| INDArgs' : forall {V T} (v:V) argts f args,

(forall W (e:Exp W) (pf_m:member W argts), IND v (hget args pf_m))

-> IND v (Q@External T argts f args)
(* Random number generation: *)
| INDBoxNewNeq : forall idxl idx2, idxl <> idx2 ->
IND (Unop box_new idx1l) (Unop box_new idx2)
| INDBoxNewSym : forall {T} (x:T) idx,
IND (Unop box_new idx) (Symbolic x)
(* Public-Key encryption: *)

9http://nacl.cr.yp.to/box.html
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| INDBoxKeygen : forall idx,
IND (Unop box_new idx) (Unop box_keygen (Unop box_new idx))
| INDBoxMessage : forall {V M} (v:V) (m:Exp M) idx pk,
IND (Unop box_new idx) ctx ->
IND v (Terop (@box _ M) (Unop box_new idx) pk m)
| INDBoxOpen : forall {V M} (v:V) (m:Exp M) sk pk sk' pk',
IND v m —>
IND v (Terop (@box_open _ M) sk pk' (Terop (@box _ M) sk' pk m))
(* Branching (sel flag t f := if flag then t else f): *)
| INDSel : forall {T} (v:T) (1 r:Exp T) (br:Exp bool),
IND v (sel (eval br) 1 r) -> IND v br -> IND v (Terop sel br 1 r)

Section ArgueSampleTrace.
Context ~{params : CryptoParams}.
Definition sk := Unop box_new (Const 0). (* secret key *)
Definition pk := Unop box_keygen sk. (* public key *)
Definition m := Symbolic EmptyString (* emptystring forces the message type *).
Definition ct := Terop (@box _ string) sk pk m. (* ciphertext *)
Definition ctx := Binop pair pk ct. (* the adversary's knowledge *)
Example m_ind_ctxt : IND ctx m ctx.
apply INDArgs; repeat split.
- (x goal: IND ctx m pk *)
repeat (apply INDArgs; repeat split).
- (x goal: IND ctx m ct *)
apply INDBoxMessage.
(* goal: IND ctx sk ctx *)
repeat (apply INDArgs; repeat split).
(* goal: IND ctx sk m *)
eapply INDBoxNewSym.
Qed.
End ArgueSampleTrace.

3 Modeling Protocols

The IND relation provides a way of stating secrecy properties communications
transcripts specified in its input language, but it does not say anything about
what could have gone differently under different network delays or active attacks
by an adversary. Similarly to looking at an arrows-and-messages diagram, proving
that some transcript did not reveal secret information is not sufficient to conclude
that the protocol always manages to keep the secrets secret. However, given a
sufficiently powerful verification system such as Coq, the safety of the protocol
can be verified by quantifying over all possible transcripts and proving the same
IND statement. Fortunately, the Verdi framework for verifying properties of



distributed systems includes a reusable core library for modeling concurrent
interaction in a message passing system.

3.1 Concurrency and Authentication

To get a sense of how concurrency affects cryptographic reasoning, we an authen-
tication property of a simple service using a model derived from Verdi. Verdi
models a set of processes that receive input (from the outside world, “the user”)
and network messages (from other processes), and react to them by producing
output and network messages. The framework also presents several models of
the network, from stricter to more realistic: with or without message reordering,
with or without message loss, with or without message duplication.

We added an additional rule to the network model that allowed for messages to
be forged by an adversary. To retain the ability to prove any properties involving
the network, we also added a third event type (in addition to input/output and
message): a process either signs a message or verifies a signature by some other
process. Using this, we stated the axiom that if a signature verification succeeds,
a corresponding sign event must have occurred at some point in the past. While
it would have been possible (and probably practical) to do so, in the interest of
time, we did not update the Verdi programming language (a wrapper to two list
monads) to include the crypto history but instead wrote our test program in
S-expression form. Similarly, the current modification arbitrarily assumes that a
process ignores all messages from which it finds invalid signatures.

We used this network model to verify the correctness of a small “time”-stamping
server: for any message received from the network, the server would sign the
message prepended with a value of its own. A client of this service would vet its
reply by verifying the server’s signature, and output (to the user) the content
if the signature is correct. We proved that every output of the client indeed
has the server’s header prepended to it. The proof consisted of two lemmas,
both by induction over “time” (the steps taken by the system): first, everything
the server has ever signed has the correct header, and second, the client only
outputs messages that were previously signed by the server. In our opinion, this
reasoning is much more intuitive than an explicit reduction that an adversary
who could make the client output something else must also be able to forge a
signature. While the proof does use inversion to constraint where the contents
of message must have originated, this bit of retroactive reasoning does not leak
through to the statements of the lemmas. This enables modularity: extending
the behavior of the client or the server would only require modifications to their
corresponding lemma, not both. The following code snippet shows the modified
rule in the network semantics and the statements of the two lemmas.

| SM_deliver : forall net net' p out d 1 cEvents,

net_handlers (pDst p) (pSrc p) (pBody p) (nwState net (pDst p)) =
(out, d, 1, cEvents) —>



net' = mkNetwork (update (nwState net) (pDst p) d)
((mark_cevents_src (pDst p) cEvents) ++ (nwCrypto net)) ->
(forall them msg, (In (Verify them msg) cEvents) ->
(In (them, Sign msg) (awCrypto net'))) ->
step_m net net' [(pDst p, inr out)]

Lemma signed_hasHeader : forall st trace,
refl_trans_nl_trace step_m step_m_init st trace ->
forall n s, In (n, Sign s) (nwCrypto st) -> hasHeader s.

Lemma notary_correct:
forall st trace, step_m_star step_m_init st trace ->
forall (n:Name) (ss:list string),
In (n, inr ss) trace -> forall s, In s ss -> hashHeader s

From the success of this experiment we concluded that the Verdi model of
message passing can be modified to perform the concurrency-related reasoning
needed for modeling cryptographic protocols. The Verdi proofs no longer hold
because the network semantics need to be modified to allow for messages to be
tampered with, but the general approach seems to be a very good fit.

3.2 Concurrency and Secrecy

To be able to argue secrecy of the network state tracked by Verdi core, we change
its type from list msgto Exp (list msg) and modify the state transition rules
to take an expression for the input state to an expression for the outputs and a
new state. This requires modifying the expression language to support defining
expressions that act on some abstract inputs and later substituting concrete
values for the placeholder. We use the Parametric Higher Order Abstract Syntax
technique'? to implement substitution: instead of giving the placeholder a name,
we internally model an underspecified expression as a function from an input
of any type to an expression where each node is annotated with what it would
be after substitution. All inputs that make the annotation of the top-level
expression have the same type as the original expression must are guaranteed to
be valid substitutions by the typing rules — code that must work for all types of
the value being substituted cannot modify the value because it does not know its
type. The current interface for specifying cryptographic protocols is as follows:

Class NetParams (P : CryptoParams) :=
{
input : Type ;
output : Type ;
state : Type ;

2http://adam.chlipala.net/cpdt/html/ProgLang.html



msg : Type ; (* network message *)

name : Type ;

name_eq_dec : forall x y : name, {x = y} + {x <> y} ;
nodes : list name ;

all_names_nodes : forall n, In n nodes ;
no_dup_nodes : NoDup nodes ;

init_handlers : name -> Exp state;

(* Expl T1 T2 is an expression of type T2 with one free variable of type T1 *)
net_handlers : name -> Expl (state * msg) (state * list output * list msg);
input_handlers : name -> Expl (state * input) (state * list msg)

As discussed earlier, it is necessary to modify Verdi’s network semantics to model
the increased uncertainty caused by the presence of an attacker: a message
received by a good node is no longer required to have been sent by a good
node. The limits on the computational power and luck available to the adversary
are encoded in the restriction that the messages good nodes receive from the
network must be inferable from what has already been revealed. For example,
an attacker is not allowed to guess the secret key of a server and add it to

the network context by feeding it into an echo service provided by that server.

Constants, such as those that appear in the specification of the protocol, are
however by definition indistinguishable from symbolic messages (that come from
the user) and can be freely manipulated by the attacker. Furthermore, if an
attacker has independently learned a message and a secret key, it is no longer
true that an authenticated encryption of the message under that secret key is
indistinguishable from other authenticated encryptions, so the adversary can use
it to their advantage. Note that none of this is specified as an exhaustive list
of what an attacker can do as in classical Dolev-Yao models; the only directly
specified constraint is that the attacker cannot send out information that it does
not know. The following code snippet shows the inductive definition of how the
state of the network and the participants changes throughout the execution of a
protocol and a statement of an example lemma.

Record network := mkNetwork { nwCtx : Exp (list msg);
nwState  : name -> Exp state }.

Inductive step_c : step_relation network (name * (input + Exp (list output)))

| SC_deliver : forall net nm r,
(~ IND m (nwCtx net) (nwCtx net)) —>

Subst (Binop pair (nwState net n) m) (net_handlers n) = r ->

step_c
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net
(mkNetwork
(Binop (@app msg) (Unop snd r) (nwCtx net))
(update (nwState net) n (Unop fst (Unop fst r))))
[(n, inr (Unop snd (Unop fst r)))]
| SC_input : forall net n i r,
Subst (Binop pair (nwState net n) (Symbolic i)) (input_handlers n) = r ->
step_c
net
(mkNetwork
(Binop (@app msg) (Unop snd r) (nwCtx net))
(update (nwState net) n (Unop fst r)))
[(n, inl i)]

Example longtermKeySecret : forall w trace, step_c_star step_c_init w trace ->
IND (nwCtx w) (Unop state_longterm_sk (nwState w Alice)) (nwCtx w).

4 Limitations and Future Work

While the current expression language is technically general enough for encoding
real-world protocols, it is not convenient enough to make doing so practical. The
most important missing feature is lack of support for structured data: records
are treated the same way as any other type, so the result of looking at one
field in a record is tainted with the information from all of them. We tried
to code around this while implementing SIGMA, but the resulting code was
practically unreadable, let alone verifiable. Simply admitting the specific proof
goals relating to independence of two fields of the same record would be both
deeply dissatisfying and block any significant use of proof automation. Support
for a structured data abstraction is as crucial for verifying protocols as it is for
implementing them, and seems inevitably necessary for verification of realistic
protocols. Additionally, support for a recursion or looping construct would be
necessary for protocols that use iteration, for example Axolotl.

A more mundane change that would also improve usability would be to port the
Verdi embedded language (Coq notation around list monads) to the expression
language described in here. The LockServer example in the Verdi paper is
simple when read in nice syntax yet barely recognizable in S-expression format,
a similar change would have improved the experience of implementing SIGMA a
lot.

The model of cryptographic primitives could be made more comprehensive
and accurate by tracking a number of additional factors. Here is a probably
incomplete list of the parts of NaCl that are not modeled in the current version
of this project.
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1. Information flow through length of ciphertext (would require restricting
the plaintexts to types that have a defined length).

2. Information flow from the public keys to the ciphertext (non-anonymity).

3. Authentication properties of crypto_box.

4. Decrypt/Verify functions that do not abort (would require making the IND
rules depend on the result of the operation as for sel).

5. Symmetric encryption and authentication (would probably be simpler than
the public key counterparts and follow the same style).

6. Nonce management: the good properties of crypto_box hold only if the
context includes only one distinct encrypted message per each nonce and
unordered pair of the sender’s and receiver’s public keys.

7. “Scalar multiplication” for generating general purpose shared secrets
(IND skl e -> IND sk2 e -> IND (smul skl (smul sk2 base)) e).

It would also be interesting to see if the hand-written specifications of the
cryptographic primitives could be proven sound in a computational model,
perhaps using CertiCrypt'® or EasyCrypt'#. This additional rigor may seem
unnecessary, but formalizing cryptographic semantics is subtle: for example,
modeling textbook RSA without taking into account that its ciphertexts are
homomoorphic with respect to multiplication can let exploitable weaknesses to
stay unnoticed.

5 Reflections on Engineering Verified Systems

1. One cannot verify what one does not understand.
2. Tooling quality matters.

Seriously, though, that’s basically all that I have to say. In some more words. . .

The hardest issues I have tackled while practicing formal verification are those of
my own ignorance: if I don’t know how to model or prove a thing, there is no use
having all world’s rigor and fluency embodied in a piece of software. These kind
of issues are the hard to recognize and even harder to admit because there always
they usually show up when integrating pieces of code already deemed correct,
and there is rarely a single line that somebody can point a finger at and hiss
“bug!”. When I verified Dijkstra’s algorithm I made unidiomatic implementation
choices because I did not understand how structural recursion and induction
hypotheses relate to for loops and invariants, and when I finally got to cleaning
up the mess I managed to write down a too specific invariant in place of a general
one in the hurry. Both errors were conceptual, and started to show far away
from their root cause. I think I did a better job of being aware of my limitations

Bhttp://certicrypt.gforge.inria.fr/
Mhttps:/ /www.easycrypt.info/trac/
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in this project, but the issues were still the same. Because I do not understand
how dependent pattern matching works internally, I had no way of predicting
that an embedded functional language calling functions by hlist-s of arguments
would make it hard to reason about which element of a known list of arguments
an unknown value is. Furthermore, the solution was completely manageable
once known: isolate the smallest proof context where the issue shows, Import
Program and use dependent destruction instead of destruction, and things
work (thanks to Peng Wang for helping me out). Yet I did not know what I
did not know, and there went those two weeks. Similarly, the current blocker
(taint tracking over structured data) could have been foreseen if I had worked
on or seriously thought about implementing any programming language with
structured data, not just Imp and lisp. The fact that I did not encounter
any serious crypto-related issues this time I would attribute to... well, having
encountered them during my the previous attempts of building a similar project.

Even though I had a generally good time with the Coq system, I did encounter
a handful of Anomalies. Most (maybe all) of them were results of me typing in
blatant absurdities that I had managed to confound myself were correct, but
it would have been so much nicer to receive an actual error message instead of
“Anomaly” or “Universe inconsistency”, or a crash. In particular, I found the
Inductive definition system to be noticeably flaky in my April 2015 build of
Coq 8.5 (the Proof mode was generally okay). Now, from a technical point of
view, these problems are secondary when compared to conceptual errors, but
they also have detrimental effect on learning and motivation. It is infinitely more
satisfying to see an explainable error than a segfault, and being able to use a
standard library model of a simpler expression language instead of making my
own when would have been a good way of getting started, even though I might
have needed to change it to fit my needs in the long run. There are enough
papers that prove that there exists a way in which Coq can be used to verify real
systems, but making it scale would require well-documented curated libraries of
reusable building blocks. And there is a long way between “was good enough
to get a result for a paper” and “fit to be in a standard toolchain”. While our
lack of understanding of our systems is the main bottleneck to getting them
verified, the main obstacle to exposing our misconceptions is how frustrating it
is to develop in Coq, which is mostly caused by lacking software engineering and
technical debt. Well, at least these were my two cents.
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